| A global unique H(1/2) based dynamical energy inner product based weak solution of the 3D-Navier-Stokes equationsNote: The proposed solution concept is concerned with an additional (additive) "dynamical energy" norm concept (complementary to the standard Dirichlet integral based H(1) energy norm with respect to the extended H(1/2) Hilbert space norm) as introduced in www.unified-field-theory.de https://www.fuchs-braun.com/ Physically speaking, …
The 3D-NSE solution concept We provide a global unique (weak, generalized Hopf) H(1/2)-solution of the generalized 3D Navier-Stokes initial value problem. The global boundedness of a generalized energy inequality with respect to the energy Hilbert space H(1/2) is a consequence of the Sobolevskii estimate of the non-linear term (1959). The extended (energy) Hilbert space is in line with the proposed Krein space based quanta potential energy Hilbert space concept in unified-field-theory.de. It enables an alternative mathematical model for Mie’s concept of an electric pressure enhancing the Maxwell equations. The second unknown function in the NSE is the pressure p; the pressure function p can be represented as Riesz operator transforms of (u x u), while the gradient (force) operator applied to the unknown pressure function p becomes the Calderón-Zygmund integrodifferential operator applied to the (velocity) NSE-solution function u (EsG) p. 44. Some earlier related papers are
|