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Abstract  
 

The Boltzmann equation is a (non-linear) integrodifferential equation which forms the basis for the kinetic theory of 
gases. This not only covers classical gases, but also electron /neutron /photon transport in solids & plasmas / in nuclear 
reactors / in superfluids and radiative transfer in planetary and stellar atmospheres ([CeC]. The Boltzmann equation is 
derived from the Liouville equation for a gas of rigid spheres, without the assumption of “molecular chaos”; the basic 
properties of the Boltzmann equation are then expounded and the idea of model equations introduced. Related 
equations are e.g. the Boltzmann equations for polyatomic gases, mixtures, neutrons, radiative transfer as well as the 
Fokker-Planck and Vlasov equations. The treatment of corresponding boundary conditions leads to the discussion of the 
phenomena of gas-surface interactions and the related role played by proof of the Boltzmann H-theorem. 
 

In [MoC] an exponential Laudau damping is proven based on analytical regularity assumptions and corresponding 
analytical norms having up to 5 parameters (which is far away from any physical meaning). This note is about a 
proposed modified frame based on (distributional Hilbert scale) functional spaces and related functional inequalities for 
the nonlinear transport equation. Our alternative approach is based on the results of [CoA], incorporating the Hilbert 
transform concept to define appropriate Hilbert space (resp. Hölder space) norms. The Galerkin-Ritz method is 
proposed to calculate corresponding (quasi-optimal) approximation solutions, e.g. with underlying boundary elements 
approximation spaces enabled by the wavelet analysis tool.  We note that the Hilbert transform is also applied in [DeP] 
for a spectral theory of the linearized Vlasov-poisson equation. 
 

The Vlasov-Poisson equation (the collisionless Boltzmann equation) is time-reversible (for short periods of time due to 
the Landau damping, [MoC]). However, for long times the deformation of the distribution function approaches 
increasingly shorter scales which at some point in time go along any reasonable plasma physical length scale. At this 
point in time changes must be considered irreversible. Landau predicted this irreversible behavior on the analysis of the 
solution of the Cauchy problem for the linearized Vlasov equation around a spatially homogeneous Maxwellian 
(Gaussian) equilibrium. Landau formally solved the equation by means of Fourier and Laplace transforms. This 
phenomenon prevents instability from developing, and creates a region of stability in the parameter space. 
 

In [GlR], [GlR1], it is shown that a solution of the linearized Vlasov equation in the whole space (linearized around a 
homogeneous equilibrium )0(:0 ff   of infinite mass) decays at best like  modulo logarithmic corrections, for 
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and like )( lotO   if )(0 vf  is a Gaussian. In order to get an answer to the question, if convergence holds in infinite 

time for the solution of the “full” nonlinear equation there is a mechanism required that would keep the distribution 
function f close to the original equilibrium.  

We propose to apply the distributional Hilbert space concept of this paper to derive model adequate a priori estimate for 
the transport equation. The objective is, that the appropriately defined (distributional Hilbert space) norms enable 
appropriate Landau damping estimates, based on “realistic” physical modelling assumptions: 
 

Following the ideas from [BrK1], [BrK3], [BrK5], this first leads to a change from 
 

 
to 

 . 
 

to anticipate the non-linear character of the transport equation and the compactness results from [LiP], [LiP1], we suggest the 
Hilbert scale norms 
 

   ,   
 

and an analysis in a weak 
2/1H  Hilbert space with correspondingly defined appropriate wavelets. The simple rational 

for this approach is, that an (classical or variational) integral equation model requires less regularity assumptions as the 
corresponding PDE representation, while, at the same time, the wavelet analysis tool requires much less regularity 
requirements than the regular (smoothing) cut-off functing approach. By co-incidence or by chance it all meets to a  

2/1H  (energy, variational ) Hilbert space framework. The alternatively proposed Schrödinger (Calderon) momentum 

operator  [BrK5] hasn’t been included into the revisited CLM vorticity equation model with viscosity term (appendix). In 
[DaD] a Galerkin analysis for Schrödinger equation by wavelets is provided. 
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1. The Boltzmann equation 

 
The Boltzmann equation with Maxwellian (Gaussian) molecules is given by 
 

 

 

with the non-linear collision operator . The Boltzmann's equation is a nonlinear 

integro-differential equation with a linear first-order operator. The nonlinearity comes from the 
quadratic integral (collision) operator that is decomposed into two parts (usually called the 
gain and the loss terms). In [LiP] it is proven that the gain term enjoys striking compactness 
properties. The Boltzmann equation and the Fokker-Planck (Landau) equation are concerned 
with the Kullback information, which is about a differential entropy defined by 
 

 . 

 

It plays a key role in the mathematical expression of the entropy principle. The Boltzmann 
entropy is given by 

  . 

 

The Fokker-Planck (Landau) equation is given by   
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    dwdywytfyxWxtfF ),,()(:),(   . 

 
The existence of global solutions of the Boltzmann and Landau equations depends heavily 
on the structure of the collision operators ([LiP1]). The corresponding variational 

representation of with a coercive operator A  and a compact disturbance K

fulfills a coerciveness condition (Garding type inequality) in the form (see also [KaY]) 
 
 

     or           
 

with   compactly embedded. The corresponding (Hilbert scale) approximation theory 

is e.g. given in [BrK], [AzA], lemma 4.2. 
 
The idea of this paper, is, to propose an appropriate Hilbert scale frame for analyzing the 
nonlinear (collisionsless) Vlasov equation concerning global stability (avoiding analytical 
norms, which are “hybrid” and “gliding” [MoC]), applying  
 

- compactness properties enjoyed by global solutions (which can be interpreted as 
compact disturbance to the linear case) 
 

- Hölder norm estimates (to anticipate the Landau damping effect in the nonlinear 
context; ([NiJ], ([NiJ1], ([NiJ2]) 
 

- the wavelet analysis tool analyzing very large time scales to anticipate dissipative 
phenomena. 

 

 
In [ViI] the existence and uniqueness of nonnegative eigenfunction is analyzed. In [MoB] the 
eigenvalue spectrum of the linear neutron transport (Boltzmann) operator has been studied. 
The spectrum turns out to be quite different from that obtained according to the classical 
theory. The two theories about related physical aspects have one aspect in common: namely 
that there exists a region of the spectral plane which filled up by the spectrum.  
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The Gibbs principle states that the maximum entropy of a thermodynamic system is 
achieved, when all considered macroscopic parameters  of the described systems yield 
stationary values. The entropy concept is applied in (non-linear) partial differential evolution 
equations to analyze well-posedness of those equations providing qualitative descriptions of 
the behavior of its solutions, especially in the long-term regime. 
 

The (negative) entropy 

ℎ(𝑡) ≔ 𝐸[𝑓] ≔ ∫ 𝑓 ∙ 𝑙𝑜𝑔𝑓𝑑𝑣

𝑅3

 

 

fulfills the so-called H-theorem, i.e. ℎ̇ ≤ 0. In the sub-space of the probability distribution 
function space, consisting of distribution functions with momentum equal zero and (normed) 
temperature equal 1 the strictly convex entropy functional 𝐸[𝑓] is minimized by the 3-D 
Maxwell distribution 
 

𝑓∞(𝑣) ≔
1

(2𝜋)3/2
𝑒−|𝑣|

2/2
 

 

Therefore, the corresponding “relative entropy”  defined by 
 

𝑔(𝑡) ≔ 𝐸𝑟[𝑓] ≔ 𝐸[𝑓] − 𝐸[𝑓∞] 
 

fulfills 𝐸𝑟[𝑓] ≥ 0 , 𝐸𝑟[𝑓∞] = 0 .  
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The Gronwall lemma dilemma 
 
 
In order to analyze the convergence of the entropy generation resp. its dissipation 𝑔̇ , the 
term is tried to be estimated to the below by the relative entropy itself. In case it would hold 

𝑔̇(𝑡) ≥ 𝜇 ∙ 𝑔(𝑡)̇  for some constant  𝜇 > 0̇  it  follows 𝑔̇(𝑡) ≤ −𝜇𝑔(𝑡) . From the Gronwall lemma 
then it follows the exponential convergence to zero. 
 
Generalized lemma of Gronwall:    let  𝜑, 𝜗𝜖𝐶[0, 𝑇] and 𝜗 ≥ 0 fulfilling 
 

𝜑(𝑡) ≤ 𝑐1 + ∫ 𝜗(𝜏) ∙ 𝜑(𝜏)𝑑𝜏
𝑡

0
 for all 𝑡𝜖[0, 𝑇] 

 

then it holds 

𝜑(𝑡) ≤ 𝑐1 ∙ 𝑒
∫ 𝜗(𝜏)𝑑𝜏
𝑡

0   . 
 
Stronger forms of Gronwall’s lemma are produced, replacing the above assumption with 
more general inequalities, which usually fit the form (see [WiD] and the corresponding 
references, e.g. C. E. Langenhop, F. Brauer, V. Lakshmikantham) 
 

𝜑(𝑡) ≤ 𝑐1 + ℎ(∫ 𝑔(𝑡, 𝜏, 𝜑(𝜏)𝑑𝜏)
𝑡

0
  . 

 
From [LaC] we recall the following upper and lower bounds on the norm of a solution of the 
equation  
 

𝑑𝑧

𝑑𝑥
= 𝐹(𝑥, 𝑧)   with  |𝐹(𝑥, 𝑧)| ≤ 𝑣(𝑥)𝑔(|𝑧|) 

 

given by 

𝐺−1 [𝐺(|𝑧(𝑎)|) − ∫𝑣(𝑠)𝑑𝑠

𝑥

𝑎

≤ |𝑧(𝑥)|] ≤ 𝐺−1 [𝐺(|𝑧(𝑎)|) + ∫𝑣(𝑠)𝑑𝑠

𝑥

𝑎

] 

where 

𝐺(𝑢) ≔ ∫
𝑑𝑡

𝑔(𝑡)

𝑢

𝑢0
  . 

 
 We note that special classes of the Riccati equations  
 

𝑦̇(𝑡) + 𝑝(𝑡)𝑦(𝑡) − 𝑦2(𝑡) = 𝑞(𝑡)̇  
 
play a key role in the (long time regime) analysis of the non-stationary, non-linear Navier-
Stokes equations. The assumptions of corresponding “general solution” theorems are based 
on Gronwall-type integral values ([BuK]). In [BaA] special solutions of the Riccati equations 
are provided applicable to the multidimensional Gross-Pitaevskii equation of Bose-Einstein 
condensates. 
 
The lemma of Gronwall is also sometime applied in finite element approximation analysis of 
parabolic or hyperbolic PDE enabled by the Ritz/Galerkin approximation theory. In all those 
cases there might be quasi-optimal error estimates derived with respect to the expected 
convergence factor. However, applying the lemma of Gronwall to derive those estimates 
always require purely additional regularity assumptions, just for technical reasons. This is 
already be the case for the most simple linear parabolic PDE, the heat equation. From a 
mathematical point of view the underlying handicap is just about the not appropriately used 
norms. Overcoming this handicap in the case of the heat equation this lead to the 
“appropriate” norm in the form ([NiJ4]) 
 

|‖𝑢‖|𝛼
2(𝑡) ≔ ∫ ‖𝑢‖𝛼

2(𝜏)𝑑𝜏
𝑡

0
 . 
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It results into required optimal shift theorems, enabling truly quasi-optimal finite element error 
estimates. In order to enable an “entropy” analysis in an appropriate Hilbert scale framework 
two things need to be adapted: 
 

- the strictly convex entropy functional 𝐸[𝑓] minimizing by the 3-D Maxwell distribution 
needs to be represented as a energy or operator minimization problem 
 

- the proposed distributional Hilbert scale framework for the NSE in [BrK1] needs to be 
acknowledged leading to a correspondingly defined distributional time-depending 
norm for the considered cases in this paper. 

 
The Hilbert transform of 𝑙𝑜𝑔(|𝑓|) is analyzed in [MaJ]. A very first idea could be a modified 
𝑙𝑜𝑔(𝑥)(𝑓) operator in the form  𝑙𝑜𝑔(𝑥;𝜏)(𝑓) .  

 
Alternatively, in line with the proposed distributional 𝐻

−
1

2

−Hilbert space concept of this 

paper, we suggest to define “continuous entropy” in a weak 𝐻
−
1

2

− frame in the form 

 

ℎ(𝑋):= (𝑓, 𝑙𝑜𝑔
1

𝑓
)−1/2 , 

 

where 𝑋 denotes a continuous random variable with density 𝑓(𝑥). In this case it can be 

derived from a Shannon (discrete) entropy in the limit of 𝑛, the number of symbols in 
distribution 𝑃(𝑥) of a discrete random variable 𝑋 ([MaC]): 
 

𝐻(𝑋):= ∑ 𝑃(𝑥𝑖)log⁡(
1

𝑃(𝑥𝑖)
)𝑖  . 

 

This distribution 𝑃(𝑥) can be derived from a set of axioms. This is not the case, in case of the 
standard entropy in the form 
 

ℎ(𝑋):= (𝑓, 𝑙𝑜𝑔
1

𝑓
)0. 

 

Regarding the second topic above we mention the ergodic mean definition in the well 
established theory of asymptotic behavior of evolution systems ([BrH]). 
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The alternative Schrödinger (Calderòn) momentum operator and the 

𝐻
−
1

2

− Hilbert space 

 
 
Following the idea of [BrK5] distributional Hilbert scales can be defined based on the 
eigenpairs ),( ii  of the Laplace operator in the form 
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Additionally, for 0t there can be an inner product resp. norm defined with “exponential 

decay” 
tie
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In [BrK5] the distributional  2/1H  Hilbert space is proposed to model quantum states, 

alternatively to the Hilbert space 
0H . For 

  0000 HHxxx    

with 

  1
00 x   ,    2

2/1
0:



 x  

 

the following inequality is valid for any 
0Hx  
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2
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In the appendix we provide the relationship to the statisticial thermodynamics concept of E. 

Schrödinger leading to a kind of “Schrödinger-heat-bath-room” concept, given by 

1H

whereby 
 

 112/1
)(

1 HHHH
c

. 

 

Tauberian theorems are usually assumed to connect the asymptotic behavior of a 
generalized function (or a distribution) in the neighbourhood of zero with that of its Fourier 
transform, Laplace transform, or some other integral transform at infinity. The inverse 
theorems are usually called “Abelian”. In [VlV] (quasi-) asymptotic properties of solutions of 
convolution equations are analyzed considering several cases, like the wave equation, the 
Klein-Gordon equation, the telegraph equation and the Cauchy problem  for the (generalized) 
heat equation. 
 
The distribution function of trapped electrons at the point 𝑥 corresponding to the potential  
𝜑(𝑥) can be described by the solution of an integral equation [BeI]. The entire ion distribution 
𝑓+(𝐸) and the distribution of untrapped electrons 𝑓−(𝐸) are integral equations of the 
convolution type for the distribution function of the trapped electrons. It can be readily solved 
by Laplace transformation. 
 
For Laplace’s asymptotic formula ([EsR]  3.5) the following corresponding formula for the 
Gaussian function play a key role ([EsR]  p. 107): 
 

 

𝑒−((√𝜇𝑥)
2
≈ ∑

𝐺𝑎𝑚𝑚𝑎(
2𝑛+1

2
)∙𝛿(2𝑛)(𝑥)

(2𝑛)!∙𝜇(2𝑛+1)/2
∞
𝑛=0     as  𝜇 → ∞  . 
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The plasma dispersion function, the Dawson function and the 

𝐻
−
1

2

− Hilbert space 

 
 
In [BrK3] the relationship to a corresponding newly proposed ground state energy model is 
provided enabled by Pseudo-Differential Operator theory (e.g. [EsG]). The relationship to 
corresponding Hölder space and corresponding Schauder estimates are e.g. given in [NiJ1], 
[NiJ2]. With respect to the wavelet analysis tool we note that the wavelet admissibility 
condition corresponds to the distributional  2/1H  Hilbert space norm. 
 

We further note that the plasma dispersion function  defined by 
 









 ds

s

e
Z

s
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

2

2

1
)(

 

 

is identical to the Hilbert transform of the Gaussian function, the Dawson function, defined by  
 







0

22

:)()( dteeFZ t . 

 

This identity is called the Hermite weight formula ([GaW], section 4 below).  
 

One of the key properties of the Dawson functions are ([AbM] 7.1.15/16/21, 7.3.25), [GrI] 
3.896, 3.952):    
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with  )(n

kx , )(n

kH are the zeros and weight factors of the Hermite polynomials (see 

also [GrF], [PaJ]). 
Let 

2/2

2

1
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In [KoV]  the asymptotic expansion for the Kummer function obtained in the study of the 
linear response of magnetized Bose plasma at are presented for large and small values of its 
parameters. For the theory of nuclear fusion, space physics, nonlinear plasma theory 
(plasmas as fluids, single-particle motions, waves in plasmas) we refer to [ChF]. 
With respect to the below in the context of estimates from the theory of concentration of 
measure the logarithmic Sobolev inequality plays a key role in some mean-field problems.  
This is about the inequality 
 

 


 


 d
g

g
gdg

2

2

1
log

 

 

for all )(1 dLg  such that 0g  and  1fgd . 

 

From the above Dawson function (resp. the dispersion function) property ii) it follows 
 

)()(2)()( 2 xFxxFxFxF      
 

resp.    
   )(log)())(21)((2)(:)(~ 2 xdxFdxxxFxFxdFxd    . 

 

As 
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one could also define 
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where 
 

)(21)(2 000 xFxxF     i.e.   1

00 )1()(2  xxF . 

 
For a product theorem for Hilbert transforms we refer to ([BeE]).  
 
In the context of the Clausen function/integral of the following section we recall from [BoJ], 
p.56, the  formula    
 

1

2𝜋
∫ (𝜋 − 𝜗)2𝑙𝑜𝑔2(2 sin (

𝜗

2
) 𝑑𝜗 = ∑

(∑
1

𝑘
)𝑛

𝑘=1

2

𝑛+1
∞
𝑛=1

𝜋

0
. 
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The Rutherford 𝜶 − particle cross section scattering model 
 
 
The same “trick” as above to build a modified density function by replacing 
 

𝑑𝜇̃ → 𝑑𝜇 
 
can be applied to Rutherford’s (statistical) cross section concept for the 𝛼 −particle scattering 
model:  
 
putting 

𝐶 ≔ 𝜋 [
2𝑒2 ∙ 𝑍

𝑚𝛼 ∙ 𝑣
2
]

2

 

 

whereby 𝑒 ∙ 𝑍 denotes the charge of the kernel of the atom, 𝑚𝛼 its mass and 𝑣 the velocity of 
the 𝛼 − particle, Rutherford’s cross section differential is given by 
 

𝑑𝜎 ≔ −𝐶
cot(

𝜗

2
)

sin2(
𝜗

2
)
= 𝐶

𝑑

𝑑𝜗
[𝑐𝑜𝑡2(

𝜗

2
)]   . 

 

Referring to [BrK4], the cross section differential is related to the fractional function  
𝜌(𝜗) resp. its corresponding Hilbert transform 𝐻[𝜌](𝜗) ≔ 𝜌𝐻(𝜗) by the following identities: 
 

𝜌(𝜗) ≔
1

2𝜋
(𝜗 − [𝜗]) =

1

2𝜋
[𝜋 − 2∑

sin(𝜋𝜗)

𝑛

∞

𝑛=1

] ∈ 𝐿2
#(0,2𝜋) 

 

𝑔(𝑥) ≔ 𝜌𝐻(𝜗) = ∑
cos(𝜋𝜗)

𝑛

∞
𝑛=1 = −log⁡(2 sin (

𝜗

2
)) ∈ 𝐿2

#(0,2𝜋). 
 

Then it holds 
 
 

⁡𝑓(𝜗) ≔ 𝜌𝐻
′ (𝜗) = −

1

2
∙ cot (

𝜗

2
) = − log′ (2 sin (

𝜗

2
)) ∈ 𝐻−1

# (0,2𝜋)   i.e. weakly    ∈ 𝐻−1/2
# (0,2𝜋) 

𝑓′(𝜗) = 𝜌𝐻
′′(𝜗) =

1

4∙sin2⁡(
𝜗

2
)
∈ 𝐻−2

# (0,2𝜋)                                i.e. weakly   ∈ 𝐻−1
# (0,2𝜋) 

 

resp. 
 

cot2 (
𝜗

2
) = 4 ∙ 𝜌𝐻

′ 2(𝜗) 

 

and 
 

𝑓′(𝜗)

𝑓(ϑ)
=

𝜌𝐻
′′(𝜗)

𝜌𝐻
′ (𝜗)

= −
cot(

𝜗

2
)

2∙sin2(
𝜗

2
)
=

1

2

𝑑

𝑑𝜗
[𝑐𝑜𝑡2 (

𝜗

2
)] = 𝑙𝑜𝑔′𝑓(𝜗) = 𝑙𝑜𝑔′(𝜌𝐻

′ (𝜗)) . 

 
As it holds 
 

((𝑓, 𝑣)
−
1

2

< ∞     ∀𝑣 ∈ 𝐻−1/2
# (0,2𝜋)    resp.    (𝑓, 𝑔)−1/2 ≤ ‖𝑓‖−1‖𝑔‖0 < ∞ 

 

with the Clausen integral  (e.g. [BrK4]) 
 

ℎ(𝜗) ≔ ∫ 𝑔(𝑡)𝑑𝑡
𝜗

0
   ,   𝜗 ∈ [0, 𝜋] 

 

one could replace 
 

‖𝑓‖−1
2 → (𝑓, ℎ′)

−
1

2
;(0,𝜋)

+ (𝑓, 𝑔)
−
1

2
;(𝜋,2𝜋)

= (𝑓, ℎ)0;(0,𝜋) + (𝑓, 𝑔)
−
1

2
;(𝜋,2𝜋)

  . 
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The Vlasov equation and the 

𝐻
−
1

2

− Hilbert space 

 
A plasma consists of heavy, positively charged ions and smaller negatively charged 
electrons. Each electron possesses a random velocity v , which are distributed according to 

a distribution function f . Then the Vlasov equation describes the time evolution of the 

distribution function for a collisionless physical system of the plasma. Together with the 
Poisson equation, which yields the potential, it forms the Vlasov-Poisson system. According 
to the Landau damping phenomenon the density  of the plasma converges to its mean 

value, while the interaction force F converges to 0 . Following the notation of [MoC] the 

Vlasov equation is given by 
 

  0



ffFfv

t

f
vx

 . 

Putting 

 dvvktftk ),,(ˆ:)(̂  

we define 
 


dk

k

t
t k

2

2
2

1

)(ˆ
:)(




   ,     dvdkvtftf k ),(ˆ:)( 22

0

   ,   
  










d

tg
dvdk

vk

vtf
tf k

),(ˆ),(ˆ
:)(

22
2

2/1

 . 

 

Multiplying the corresponding Fourier coefficient equation of the Vlasov-Poisson equation 
 

)()),(ˆ(ˆ(2ˆ)(2
ˆ

0 vfdwwfWkifkvif v   

with kf /ˆ  leads to 
 

v

vf
fWifif

kvdt

d v
kkkkk

)(
ˆˆˆ2ˆ2)ˆ11

(
2

1 022 
  . 

 

After integration with respect to the parameters vk, , one gets 

 

dkdv
v

vf
fWff

dt

d

i

v
kkk





)(
ˆˆˆ

4

1 0
2

0

2

2/1




. 

 

Alternatively to the Landau damping criterion 
 

 


0
)(0 dv

v

vfv  

we propose the condition 




1
0 )(

c
v

vfv . 

 

In case of a Coloumb potential fulfilling the inequality 

2

2ˆ

k

c
Wk 

 

this leads to the a priori estimate 
 

)(
ˆ

)()(
4

1 2

1212

2

21

2

0

2

2/1
tccdk

k
cctftf

dt

d

i

k


  





. 

 

For an alternative analysis in Hölder spaces frame (with appropriately defined parameter(s) 

),(   ) dealing with Volterra integrals based on Gaussian kernel functions we refer to 

[HöK]. Related a priori estimates with respect to time-weighted Hilbert space norms are 
provided in [Ni3]. One of the applied auxiliary inequality is 
 

24/14/1

2

1

4

1

4

1
caacba     

 

to govern corresponding integral integral inequalities (see also the proof technique in [GlR]. 
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The collision operator of the Fokker-Planck (Landau) equation and the Leray-

Hopf (Helmholtz-Weyl) operator in the 𝐻
−
1

2

− Hilbert space framework 

 
 

Following the notation of [LiP1] in case of space dimension  𝑛 = 3 the symmetric, non-
negative, even in 𝑧 matrix of the Fokker-Planck collision operator is given by 
 
 

𝑎𝑖,𝑗(𝑧) =
𝑎(𝑧)

|𝑧|
(𝛿𝑖𝑗 −

𝑧𝑖𝑧𝑗
|𝑧|2

) 

 

where 𝑎(𝑧) is even, smooth and positive.  
 
In [LeN] the Oseen kernel is analyzed with respect to the kernel of corresponding multipliers, 
which involves the incomplete gamma function and the confluent hypergeometric functions of 
the first kind. This explicit expression provides directly the classical decay estimates with 
sharp bounds. In this context the action of the Leray projector on Gaussian functions is 
analyzed.  
 
In a weak 𝐻

−
1

2

−Hilbert space frame the action on the modified Leray projector on the Hilbert 

transformed Gaussian is (re-) producing the Gaussian function, due to the skew-symmetry 
property of the Hilbert resp. the Riesz operators ([BrK1], [BrK5]). 
 
The Leray-Hopf (Helmholtz-Weyl) operator is the matrix valued Fourier multiplier given by 

 

𝑷(𝑧) = (𝛿𝑖𝑗 −
𝑧𝑖𝑧𝑗
|𝑧|2

)
1≤𝑖,𝑗≤𝑛

 

 
It is not a classical pseudodifferential operator, but a Fourier multiplier with same continuity 

properties as those of the Riesz operators 𝑹(𝑧). Related to this there is the matrix of 
operators given by 
 

𝑸 = (𝑅𝑖𝑅𝑗)1≤𝑖,𝑗≤𝑛
= 𝑸2 

 
Comparing both matrix multipliers, the Fokker-Planck collision operator (FPCO) and the 
Leray-Hopf projection operator (LHPO) their relationship can be interpreted in that way that 
the FPCO is a compact disturbance of the LHPO in a 𝐻

−
1

2

−variational framework, i.e. a 

corresponding Garding type inequality is given. Then standard (Hilbert scale) approximation 
theory can be applied, e.g. given in [BrK], [AzA], lemma 4.2. 
 
We further note the relationship between the BMO and the  H

−
1

2

, “function” spaces, whereby 

the latter one is proposed alternatively for a generalization of the logarithmic Sobolev 
inequality ([IbH]). 
 
We further mention the ergodic mean definition in the well established theory of asymptotic 
behavior of evolution systems ([BrH]). 
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2. Landau damping for the linearized Vlasov Poisson equation  
in a weakly collisional regime ([TrI]) 

 
 
This section recalls the result of [TrI] in order to support further Fourier wave/ Calderon 
wavelet analysis in an appropriately defined Hilbert (Sobolev) frame. The Garding type 
inequality of the Boltzmann and Landau equations indicates an underlying selfadjoint, 

positive definite operator with corresponding energy norm 


u . Its counterpart in the context 

of the Navier-Stokes equations is the Stokes operator. With respect to the Vlasov equation 
this is about the Boltzmann operator or the Fokker-Planck operator 
 

)(:)( vhdivhhMhC vv    
 

where M  is the Maxwellian distribution, h  is a mean-zero perturbation of the solution of the 

Vlasov equation in the form 
 

)(),( fCfxtFfvf vxt    

defined by  

),,()(:),,( vxthvMvxtf  . 
 

In the case of the collisional Vlasov equation (w/o the term coming from the mean-field 
interaction between particles) 

)(hChvh xt    
 

for fixed 0 , it is clear that hypocoercive effect is dominant for large times. Applying the 

results of [DoJ] obtains a result of decay at infinity with a rate of type  te   for some 0   in 

some Hilbert space. With respect to further Fourier analysis we note that the Fourier 

transform of te   is given by 

2/22
))(( n





 . 

 

In [TrI] Sobolev spaces 
lH  with parameter l  are considered for fixed 2/nl   

 

 
 


n RZR

v

l

HL
n

n
vx

dxdvfvh
 



22

2

)2/(

2
222

)1(:
 

 

in order to ensure continuous functions based on the Sobolev embedding theorem. For the 
same reason the regularity of the Dirac function depends also from the space dimension, i.e.  

  2/nH . 
 

With respect to the decay rate at infinity te   for some 0  above (and the proposed 

distributional Hilbert space frame in the following section) we note that the Fourier transform 
of the Poisson kernel ),( P  given by 
 

2/)1(222/)1(
)(

2/)1((
)(

)2(

1
),(










nn

x

n

n
eFourierP









 . 

 

The corresponding equality for the Gauss-Weierstrass kernel is given by 
 

)4/(

2/

22

)4(

1
)(

)2(

1
),(







 eeFourierP

n

x

n
 . 

 

With respect to time-weighted Hilbert space norms we note the following identity ([StE]) 
 








 
0

)/(2/1

0

/2/1 221








 deedteete btbtb   . 

 



  

13 
 

The Fourier-Hermite expansion of the ordinary one-dimensional Boltzmann equation (in 
natural units) for the single-particle distribution function is given by 
 

 

where 
   and     . 

 
Regarding the Landau damping for the linearized Vlasov Poisson equation in a weakly 
collisional regime the main result of [TrI] is 
 
Theorem 1.1.: Consider a mean-zero distribution n

vxni HLHh 2: (i.e. the wavelet 

admissibility condition is fulfilled). There exist 0,0 00   such that for all  0,0    the 

density ),( xt   of the solution  ),,( vxthh   satisfies the following estimates 
 

(1)     
2/2

)1(
),( 2

nL
t

c
t

x 


      

 

(2)    t
ecth 0),0,(ˆ

 
     nR      

 

(3)    
2/)2(22

)1(

1
),,(ˆ




nt
ckth




   0 nZk , nR  

 
These estimates are valid for 
 

i) the model associated to the linear Boltzmann collision operator :   
for all times 0t   

 

ii) for the model with Fokker-Planck collision  :  for  /1,0t . 

 
For related a priori estimates with respect to time-weighted Hilbert space norms we refer to 
e.g. [Ni3] and the related references. 
 

Following the idea of [BrK5] the above L  norm based inequalities are proposed to be 

replaced by corresponding (distributional) Hilbert norm based estimates. The same idea is 
proposed with respect to the following section. 
 
We further note that in the context of estimates from the theory of concentration of measure 
the logarithmic Sobolev inequality plays a key role in some mean-field problems. This is 
about the inequality 
 

 


 


 d
f

f
fdf

2

2

1
log

 

 

for all )(1 dLf   such that 0f  and  1fd . 

 
For a generalization of a logarithmic Sobolev inequality to the Hölder class we refer to [IbH]. 

 
 
 
 

 
 
 
 

 









 







2/2

)(
2

1
)( vkxi evHeaxf

2/2/ 22

)()1()( vv e
dv

d
evH  

 !)()(
2

1 2/2

ndvevHvH nm

v

mn




  

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3. Time decay for solutions to one dimensional  
two component plasma equations ([GlR]) 

 
In [GlR] the  time decay of solutions to one-dimensional two component plasma equations for 
the Vlasov-Poisson equation (VP) and the relativistic Vlasov-Poisson (RVP) are provided. Let 

f  denote the number density in phase space of particles with mass one and positive unit 

charged, while g  is the number density of particles with mass 0m  and negative unit charge, 

i.re. both are solutions of the Vlassov equation.Let further denote 
 









 


 x

x

dyytdyytxtE ),(),(
2

1
:),( 

 

 

the  elelectric field. Then it holds   
 






 dvvxtgvxtfxtxtEx )),,(),,((:),(),( 
     and    






 dvvxtgvxtfvxtjxtEt )),,(),,((),(),(
  . 

 

. 
 

For the solutions of both equations, the Vlasov-Poisson system (VP) and relativistic Vlasov-
Poisson system (RVP), it holds 
 

0),(lim 
 Lt

tE    . 

 

This result dependents on the space dimension 1n due to the Sobolev embedding theorem 

state, i.e. 
 

    for  2/nk   

i.e. 
 

0

2/11 CHH  
 

 

Following the idea of [BrK5], replacing the Dirac function 
  2/1H by the distributional Hilbert 

space 
2/1H this leads to a replacement of 

 

          
L

tE ),(                                
2/12/12/1

),(),(),(



HHH

ttEtE   . 

 
 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

0CH k 
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4. The plasma dispersion function and 
ion waves and their damping 

 
 
The first part of this section recalls the corresponding sections of  ([ChF] 7.9.1). The 
distribution of thermal kinetic energies for a gas in the Maxwellian state is e.g. given in [BiJ] 
7.3:  
 
 

The Vlasov equation is used to derive the dispersion relation for electron plasma oscillations. 
In zeroth order one assumes a uniform plasma with distribution . In first order, one 

denotes the perturbation   by  in the form 
 

),,()(),,( 10 tvrfvftvrf


  
 

The plasma dispersion function  defined by 
 

  ,    

 

is applied to calculate the ion Landau damping of ion acoustic waves in the absence of 
magnetic fields. It is derived from the solution  
 

 

 

(the jth species has charge  , mass  , and particle velocity ) of the Vlasov equation. 

The density perturbation of the jth species is given by 
 

  . 

 
Setting 
 

 
 

one gets the dispersion relation 
 

 

 

from which electron plasma waves can be obtained setting  (infinitely massive ions).  

 
Putting     
 

                                                  ,   

one obtains 
 

  ,   

 

which is the same as ([BiJ] (6.2)):  
 

 

 

when  is Maxwellian. The term   represents the deviation from quasi-neutrality.  

 

)(0 vf

),,( tvrf ),,(1 tvrf

)(Z









 ds

s

e
Z

s




2

1
)( 0)( mI

j

jj

j

j

j
kv

vf

m

Eiq
f







/0

1

jq jm jv

j

j

jj

j

j

jjjij dv
kv

vf

m

Eiq
dvvfn 















/
)(

0

1

2/1

0

22

0 )/( jjjpj MeZn 







j jthj

pj

e

the

p

Zv
Z

v
k

)(
)(

2

2

2

2

2






0 pj

22

2

2 1
2:

Dthe

p

D
v

k



 )/(: thjj kv 

)(
2

1
2

2

e

D

Z
k

k


dv
kv

vf

k

ep










)/(

/
1 0

2

2





ef 0

22

Dk 
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For the special case of a single ion species ( ) the dispersion relation becomes 
 
 

 . 

 

“Solving this equation is a nontrivial problem” ([ChF] (7.128)). Considering the limit  the 

asymptotic expression  
 

 
 

is applied to calculate the approximate damping rate.  
 
 
With respect to the following sections (and [BrK1,3,4,5]) we note, that the plasma dispersion 
function  defined by 
 









 ds

s

e
Z

s




2

1
)(

 

 

is up to a constant for real  the Hilbert transform of the Gaussian function 
 

  








 dt

tx

e
xIxIeH

t
x

2

2 1
)(

1
:)(

1
:



 

 

leading to the Dawson function  
 




x

tx dteexF
0

22

:)(
 

 

by the Hermite weight formula ([GaW]) 
 

)(2
11

)(
1

2

xFdt
tx

e
xI

t







 




  . 

 
 
 

5. Exact nonlinear plasma oscillation 
 
In [BeI] the problem of a one-dimensional stationary nonlinear electrostatic wave in a plasma 
free from inter-particle collisions is solved exactly by elementary means. It is demonstrated 
that, by adding appropriate numbers of particles trapped in the potential-energy troughs, 
essentially arbitrary traveling wave solutions can be constructed. 
 
When one passes to the limit of small-amplitude waves it turns out that the distribution 
function does not possess an expansion whose first term is linear in the amplitude, as is 
conventionally assumed. This disparity is associated with trapped particles. It is possible, 
however, to salvage the usual linearized theory by admitting singular distribution functions. 
These, of course, do not exhibit Landau damping, which is associated with the restriction to 
well-behaved distribution functions. 
 
The possible existence of such waves in an actual plasma will depend on factors, which is 
ignored in [BeI]. 
 
 
 
 
 

 

122  Dk 

e

i

thi ZT

T

kv
Z

2
)( 



1j

....
2

3
2)( 42

2

 

iiii
ieiZ  

)(Z
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6. The Hilbert transform applied to a nonlocal transport equation 
 
 
For  inner products are defined by ([CoA]) 
 

  for  even    

 

  for  even   . 

 

Then the central a priori estimates are given by ([CoA], theorem 1.1/1.4) 
 
 

A. For   and 
 

A1:  , even, it holds 
 

 

 

A2: and nonnegative (or nonpositive), it holds 
 

 

 

B. For   and 
 

B1: For , even, it holds 
 

 

 

B2: For , nonnegative (or nonpositive), it holds 
 

  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

10  

0)()((:)),((
2

 






x

dx
xvxuxvu




)(1 RHu 

0))(()(:)),((
2

 



x

dx
xvxuxvu H




)(1 RHu 

)()( 11 RHRCf 

10   f

dx
x

xfxf
cdx

x

fxf H



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
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12/1   f
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x

fxf H






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)()( 11 RHRCf 

10   f

dx
x

xfxf
cdx

x

xf H

 




 221

2 )()()(

12/1   f

dx
x

xfxf
cdx

x

xf H

 




 221

2 )()()(



  

18 
 

7. The reduced (semi-infinite & finite) Hilbert transform 
 
The reduced (semi-infinite & finite) Hilbert transform, Stieltjes integral, Plemelj formula, and 
its related diagonalizing operator are analyzed in ([ShE]):  
 

The Hilbert transform operator 
 

 

 

acting on functions defines an unitary, symmetric operator on . Its 

spectrum consists just of the points . Hilbert tranforms on are defined by ( ) 
 

. 

 

By Plemelj’s formulas we have the relations 
 

 . 

For   ,  and 
 

  ,     . 

 

it holds for certain (fastly decreasing) functions ([ShE] Theorem 1.1) 
 
 

  i.e.   
 

where 
   ,     

 
 

yielding a spectral decomposition of the isometry ([ShE] Remark 1.2). 
 
 
The reduced finite Hilbert transform operator and the Schrödinger differential operator are 
analyzed in ([KoW]):  
 
The finite Hilbert transform operators 
 

   ,    ,   

 

are bounded in with norm   . The self-adjoint Schrödinger differential operator 

 defined for is isometrically equivalent to 

 

 ,  

 

which is isometrically equivalent to the multiplicative operator 
 

 ,  

 

defined for all  such that 
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8. The Landau damping, integral inequalities for the Hilbert transform applied to a 
nonlocal (Burgers type) transport equation in one space variable 

 
 
The Vlasov-Poisson equation (the collisionless Boltzmann equation) is time-reversible (for 
short periods of time due to the Landau damping, [MoC]). However, for long times the 
deformation of the distribution function approaches increasingly shorter scales which at some 
point in time go belong any reasonable plasma physical length scale. At this point in time 
changes must be considered irreversible. Landau predicted this irreversible behavior on the 
analysis of the solution of the Cauchy problem for the linearized Vlasov equation around a 
spatially homogeneous Maxwellian (Gaussian) equilibrium. Landau formally solved the 
equation by means of Fourier and Laplace transforms. This phenomenon prevents instability 
from developing, and creates a region of stability in the parameter space. 
 
In [GlR], [GlR1], it is shown that a solution of the linearized Vlasov equation in the whole 
space (linearized around a homogeneous equilibrium  of infinite mass) decays at 

best like  modulo logarithmic corrections, for  ; and like   if  is 

a Gaussian. In order to get an answer to the question, if convergence holds in infinite time for 
the solution of the “full” nonlinear equation there is a mechanism required that would keep 
the distribution function close to the original equilibrium. 

 
This note is about a new proposed Landau theory, based on (distributional Hilbert scale) 
functional spaces and related functional inequalities for the nonlinear transport equation, 
alternatively to the approach in [MoC] establishing exponential Laundau damping in 
analytical regularity built on analytical norms having up to 5 parameters (which is far away 
from any physical meaning).Our alternative approach is based on the results of [CoA], 
incorporating the Hilbert transform concept to define appropriate Hilbert space norms. The 
Galerkin-Ritz method is proposed to calculate corresponding (quasi-optimal) approximation 
solutions, e.g. with underlying boundary elements approximation spaces or trigonometric 
functions approximation spaces ([BrK]). We note that the Hilbert transform is also applied in 
[DeP] for a spectral theory of the linearized Vlasov-poisson equation. 
 

In [CoA] the existence of finite-time singularities for a Burgers type equation 
 

  𝑓𝑡 − 𝑓𝐻 ∙ 𝑓𝑥 = 0 
 

with nonlocal velocity in one space variable is shown. The motivation for the study of that 
equation is its analogy for the 3D Euler equation in vorticy form, having its origin in the CLM-
model (Constatin-Lax-Majda), see also [BrK1]). The proposed function space ,  , is the 

closure of  under the norm  
 

, . 

 

It is straightforward to obtain the following a priori estimate 
 

  

 

which implies local (in time) existence of the Cauchy problem with initial data in Sobolev 
space , which also cannot be justified by corresponding physical 

requirements/meanings.  
 

The above is about a particle dynamics given by the ordinary differential equation  
 
 

 
 

and the equation implies that  is constant along the trajectories.  
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If one changes coordinates to a system of reference in which the maximum is stationary, i.e. 
if one defines to be the trajectory where  reaches its maximum, and 
 

  ,   
 

one obtaines from the equation above the equation 
 

 

resp. 
 

where 
 . 

 

 
 
We note the 
 
 
Theorem of Privalov ([BuP], p. 20):  
 
 

For  let  be a periodic function, then . 

 
 
We propose to apply the distributional Hilbert space concept of this paper to derive model 
adequate a priori estimate for the transport equation. The objective is, that the appropriately 
defined (distributional Hilbert space) norms enable appropriate Landau damping estimates, 
based on “realistic” physical modelling assumptions: 
 

Following the ideas from [BrK1] [BrK3] this first leads to a change from 
 

 

to 
 . 

 

 

We suggest the slightly “weaker” norm 
 

   ,   

 

and a corresponding analysis of a weak  Hilbert space by the wavelet analysis tool 

with (physical) problem adequately defined wavelet related to 
 

   ,     . 

 

With respect to Hölder regularity and fractional diffusion transport equation we refer to [ChD]. 
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Appendix: Boltzmann equation related topics 
 

a. An alternative (Maxwell-) Boltzmann statistics 
 
In quantum statistics the function 
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e
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plays a key role Bose-Einstein statistic, which is about bosons, liquid Helium and Bose-
Einstein condensate. For large energy E  (whereby )(   Ex ) the distribution converge to 

the Boltzmann statistics. The Zeta function representation in the form 
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builds the relationship to the Planck black body radiation law (whereby the total radiation and 
its spectral density is identical). Putting, for instance, 
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this leads to an alternative distribution in the form 
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The Fermi-Dirac statistics and the Bose-Einstein statistics converge for large energies resp. 
large temperatures to the (Maxwell-) Boltzmann statistics. Its density function (see also [AnJ] 
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The cummulative distribution function (which also enables an integral representation of the 
Navier-Stokes equations, [PeR]) is given by 
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The accumulative Boltzmann distribution can be represented in the form 
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is proposed as alternative “Boltzmann” density.  
 
The corresponding entropy for the alternatively proposed Boltzmann density then is given by  
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b. Thermodynamics, Boltzmann thermodynamics and absolute zero 
 
[FeE] 31: A thermodynamical state of a system is not a sharply defined state of the system, 
because it corresponds to a large number of dynamical states. This consideration led to the 
Boltzmann relation 
 

 
 

where  is the (infinite) number of dynamical states that correspond to the given 

thermodynamical state. The value of , and therefore the value of the entropy also, 

depends on the arbitrarily chosen size of the cells by which the phase space is divided of 
which having the same hyper-volume . If the volume of the cells is made vanishing small, 

both  and  become infinite. It can be shown, however, that if we change , is altered 

by a factor. But from the Boltzmann relation it follows that an undetermined factor in gives 

rise to an undetermined additive constant in . Therefore the classical statistical mechanics 

cannot lead to a determination of the entropy constant. This arbitrariness associated with  

can be removed by making use of the principles of quantum theory (providing discrete 
quantum state without making use of the arbitrary division of the phase space into cells). 

According to the Boltzmann relation, the value of  which corresponds to  is  .   
 

Statistically interpreted, therefore, Nernst’s theorem (the third law of thermodynamics) states 
that “to the thermodynamic state of a system at absolute zero there corresponds only one 
dynamical state, namely, the dynamical state of lowest energy compatible with the given 
crystalline structure or state of aggregation of the system”. 
 

Nerst’s theorem applied to solids leads to the entropy of the body at the temperature  in 
the form 
 

 

 

where the thermal capacity at absolute zero needs to be zero, otherwise the integral 

would diverges.  
 

The understanding that the zero state energy is uniquely determined is a miss understanding 
([BrK3]). The value is just determined by the chosen mathematical model, i.e a purely 
mathematical requirement to ensure convergent series and integrals (note: the GRT requires 
differentiable manifolds, whereby only continuous manifolds ae required from a physical 
modelling perspective). The Debye “temperature” constant for the specific heat of solids 

elements is an example in the context of above, leading to the theoretical formula 
 

 

 

We claim that as a consequence of the alternative harmonic quantum oscillator model (i.e. 
the alternative “plasma”/”wave package” state/energy spaces and corresponding continuous 
spectra) there is a challenge on the 3rd thermodynamical law: 
 

“The entropy of every system at absolute zero can always be taken to zero”. 
 

 
Only all orthogonal projection of those states (resp. the corresponding eigenvalues of the 
projection operator) onto the test space  are zero. 
 

We propose an alternative entropy definition and a related closed absolute zero (Hilbert) 
state space in the form 
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c. The Bhatnagar-Gross-Krook (BGK) collision model 
 
 
 [CeC] II, 10: One of the major shortcomings in dealing with the Boltzmann equation is the 
complicated structure of the collision integral. The idea behind a replacement by a collision 
(kinetic) model is that a large amout of detail of the two-body interaction is not likely to 
influence significantly the values of many experimentally measured quantities. That is that 

the fine structure of the collision operator ),( ffQ  can be replaced by a blurred image, based 

upon a simpler operator )( fJ , which retains only the qualitative and average properties of 

the true collision operator. The most widely known collision model is usually called the BGK 
model. The idea behind the BGK model is that the essential features of a collision operator 
are: 
 
the collison model must satisfy 
 

i)   0)(   dfJ   , 4,3,2,1,0 , 
  collision invariants 

 

ii)   0)(log dfJf   (with equality holding iff  is a Maxwellian). 

 
The second property expresses the tendency of the gas to a Maxwellian distribution. The 
simplest way of taking this feature into account seems to assume that the average effect of 

collisions is the change the distribution function )(f  by an amount proportional to the 

departure of f  from a Maxwellian )(  . so, if   is a constant with respect to  , we 

introduce the following collision model 
 

 )()(:)(  ffJ  . 
 

The Maxwellian )( has five disposable scalar parameters  ),,( Tv  according to the 

equations 
2)()( veAf    

11 )2()4(3   RTe    ,   2

3

2

3

)2()
3

4
(



 RTeA  . 

 
The BGK model satisfy ii) and quality applies iff  is a Maxwellian. 
 

The nonlinearity of )( fJ is much worse than the nonlinearity of the collision term. In fact the 

latter is simply quadratic in f , while the former contains f  in both the numerator and the 

denominator of an exponential (the   and T  appearing in   are functionals of f ). In other 

words, the collision term can be interpreted as a compact disturbance of the )( fJ  model. 
 

The main advantage in using the BGK model collision term is that for any given problem one 

can deduce integral equations for the macroscopic variables Tv,,  . 
 

If P  is a probability density (  1Pd ), then 
 

  PdPPPH loglog)(  
 

(where d is the volume element in the space M  of the events, whose probability density is  

P ) is a suitable measure of the likelihood of P . In other words, if we take several sP'  “at 

random”, provided positive and normalized, most of them will be close to the probability 

density P  for which )(PH  is minimum.  

 
The latter one enables variational theory concepts. In ([CeC] IV, 10, linear transport) a 
variational principle for the linerarized Boltzmann equation is provided, based on an 
appropriately defined self-adjoint operator with respect to a certain scalar product.  
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d. A wavelet based turbulent signal analysis  

for elementary particles transport kinetics 
 
Plasma is the fourth state of matter, where from general relativity and quantum theory its 
known that all of them are fakes resp. interim specific mathematical model items. Plasma is 
an ionized gas consisting of approximately equal numbers of positively charged ions and 
negatively charged charged electrons. One of the key differentiator to neutral gas is the fact 
that its electrically charged particles are strongly influenced by electric and magnetic fields, 
while neutral gas are not. As a consequence the quantitative fluid/gas behavior as it is 
described by the Euler or the Navier-Stokes equations can not be applied as adequate 
mathematical model. Even this would be possible there is no linkage to the quantitative 
fluid/gas/plasma behavior and its corresponding turbulence behavior as it is described by the 
Euler or the Navier-Stokes equations.The approach in statistical turbulence is about low- and 
high-pass filtering Fourier coefficients analysis which is about a “local Fourier spectrum” 
analysis. As pointed out in [FaM] this is a contradiction in itself, as, either it is non-Fourier, or 
it is nonlocal. The proposal in [BrK1] is about a combination of the wavelet based solution 
concept of [FaM], [FaM1], with a revisited CLM equation model in a physical  2/1H Hilbert 

space framework. The intension is, that this approach enables a turbulent  2/1H signal which 

can be split into two components: coherent bursts and incoherent noise. Additionally the 
model enables a localized Heisenberg uncertainty inequality in the closed (“noise”/”wave 
packages”) subspace 

02/1 HH 
, while the momentum-location commutator vanishes in the 

(coherent bursts) test space 
0H . As a first trial we propose the Morlet wavelet, which is a sin 

wave that is windowed (i.e. mulitiplied point by point) by a Gaussian, having a mean value of 
zero. 
 
We recall a few central symbols/formulas/equalities: 
 

2/2/1 2

)2()( vevF       Maxwellian velocity distribution 

E     electric density 

)(xf     distribution function of electrons 

)0(ˆ0 ff     Fourier transform of initial perturbance in )(xf  

)( fC     collision term (functional of f ) 

H     Hermite polynomials of order   

n     electron density, Fourier-Laplace transform of electron density 

 
The ordinary one-dimensional Boltzmann equation (in natural units) for the single-particle 
distribution function )(xf of the electrons is given by 
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The Fourier-Hermite expansion is given by 
 

 

where 
   and     . 

 
A Galerkin analysis for Schrödinger equation by wavelets is provided in [DaD]. 
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e. Superconductivity, superfluids and condensates 
 

 

[AnJ]: A superconductor is a charged fluid, which is a Bose-condensed state of interacting 
bosons. The degree of freedom of the Ginzburg-Landau theory (varying smoothly in space) 
are two fields 
 

1. complex-valued „order parameter“ field   )()()( rierr
   , defining superconducring 

order, as a fuction of the “superfluid density )(rns


and a complex phase angle )(r


  

2. vector potential, representing the electromagnetic degress of freedom. 
 

The existence of the “order parameter” is postulated by the GLAG theory. It characterizes the 
superconducting state, in the same way as the magnetization does in ferromagnet. It is 
assumed to be some (unspecific) physical quantity, which characterizes the state of the 
system. In the normal state above the critical temperature of the superconductor it is zero, 
below this state it is nonzero. 
 
Referring to the “rotating fluids” concept of [BrK1], and, at the same time, in line with the 
alternative “ground state energy model of the harmonic quantum oscillator” in [BrK3], we 
propose (with test space

0H , state space 
2/1H  and energy space 

2/1H ) 
 

)(:)( rPr 


 ,   

  02/1: HHP , 
2/1 H , 

0H ,  0H  
 

as an appropriately related “order parameter” projection operator. The closed space 

2/10 

  HH could be interpreted as the “plasma (quantum) field” state space (where the 

Heisenberg uncertainty inequality is valid), while 
0H  remains to be the “test space” of 

(measurable) observations, governed by the two self-adjoint ladder operators ([AnJ] 5.2). 
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f. A simple one-dimensional turbulent flow model  
based on the revisited CLM vorticity equation with viscosity term 

 
 
The trilinear form of the non-linear NSE term is antisymmetric. Therefore the energy 

inequality of the NSE with respect to the physical 0H  space does not take into account any 
contribution from the non-linear term. At the same time the regularity of the non-linear term 
cannot be smoother than the linear term. An alternative physical space 

2/1H  is the baseline 

of the unique 3D-NSE solution of this page. 
  

Kolmogorov's turbulence theory is a purely statistical model, based on Brownian motion, 
which describes the qualitative behavior of turbulent flows. There is no linkage to the 
quantitative model of fluid behavior, as it is described by the Euler or Navier-Stokes 
equations. 
 

Kolmogorov's famous 4/5 law is based on an analysis of low- and high-pass filtering Fourier 
coefficients. The physical counterpart to this is about a “local Fourier spectrum” which is 
(according to ([FaM]) nonsensical because, as, either it is non-Fourier, or it is nonlocal.  
 

In Kolmogorov's spectral theory the two central concepts of a turbulent flow are 
homogeneous and isotropic flows (unfortunately they never encounter in nature). A flow is 
homogeneous if there is no “space” gradient in any averaged quantity, i.e. the statistics of 
turbulent flow is not a function of space. A flow is isotropic, if rotation and buoyancy are not 
relevant (they can be neglected) and there is no mean flow. 
 

[FaM1] “The definition of the appropriate “object” that composes a turbulent field is still 
missing. It would enable the study how turbulent dynamics transports these space-scale 
“atoms”, distorts them, and exchanges their energy during the flow evolution. If the 
appropriate “object” has been defined that composes a turbulent field it would enable the 
study how turbulent dynamics transports these space-scale “atoms”, distorts them, and 
exchanges their energy during the flow evolution. …  
 

Turbulent flows have non-zero vorticity and are characterized by a strong three-dimensional 
vortex generation mechanism (vortex stretching). Brownian motion describes the random 
motion of particles suspended in a fluid resulting from their collision with quick atoms or 
molecules in a gas or a liquid. In mathematics it is described by the Wiener process. It is 
related to the normal density function. A Brownian (=red) noise is produced by a Brownian 
motion (i.e. a random walk noise). It is obtained as the integral of a white noise signal. 
 

[FaM1] “The notion of “local spectrum” is antinomic and paradoxical when we consider the 
spectrum as decomposition in terms of wave numbers for as they cannot be defined locally. 
Therefore a “local Fourier spectrum” is nonsensical because, either it is non-Fourier, or it is 
nonlocal. There is no paradox if instead we think in terms of scales rather than wave 
numbers. Using wavelet transform then there can be a space-scale energy be defined with a 
correspondingly defined scale decomposition in the vicinity of location x and a 
correspondingly defined local wavelet energy spectrum.  By integration this defines a local 
energy density and a global wavelet energy spectrum. The global wavelet spectrum can be 
expressed in terms of Fourier energy spectrum. It shows that the global wavelet energy 
spectrum corresponds to the Fourier spectrum smoothed by the wavelet spectrum at each 
scale.     …   … The concept enables the definition of a space-scale Reynolds number, 
where the average velocity is being replaced by the characteristics root mean square velocity 

),Re( xl at scale l and location x. At large scale (i.e. Ll  ) )Re(L coincides with the usual large-

scale Reynolds number, where  )Re(L  is defined as  

 


nR

dxxLL ),Re()Re( .  “ 
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A wavelet series of a function )(xg converges locally to )(xg , even if )(xg  is a distribution as 

long as the order of the distribution does not exceed the regularity of the analyzing wavelet. 
The admissibility condition ensures the validity of the inverse wavelet transform which then is 
valid for all Hilbert scale values. 
 
Based on the re-revisited generalized CLM equation with viscosity term ([MaA] 5.2) we 
propose a turbulent flow model which allows non-stationary random functions with finite 
variance and related spectrum ([FrU] (4.54)) with respect to the 2/1H energy norm.  

   
If the solution of the Euler equation is smooth then the solution to the slightly viscous NSE 
with same initial data is also smooth. Adding diffusion to the CLM model it makes the solution 
less regular [MuA]. As a consequence of this the CLM model lost most of the interest in the 
context of NSE analysis. In [MuA] a nonlocal diffusion term is proposed removing this 
drawback. The modification goes along with a reduced regularity of the “dissipation” term 
resulting in a reduced “energy” Hilbert scale of Hilbert scale factor -1/2. As this modification 
did not modify in same manner the non-linear term this leads to an unbalanced energy 
equation. As the non-linear term governs the dissipative term in case of turbulence, this is an 
argument to reject current revisited CLM model with viscosity term ([DeS], [MuA], [OkH], 
[SaT], [SaT1]). At the same time those suggested modifications being applied in same 
manner  to the linear term would fit to the Stieltjes integral based Kolmogorov theory [ShA], 
as well as to the conceptual idea of this paper (i.e. an 2/1H  energy inner product enabling 

an energy inequality which does not exclude any information from the non-linear term). 
Combining both conceptual ideas provides a functional analytical common framework ([BrK], 
[BrK3]) for a statistical fluid mechanics theory ([MoA]), a statistics of gases and highly 
turbulent fluid flows [HoE].  
 
The building concept of the revisited generalized CLM model is therefore as follows: we 
consider periodic boundary condition and assume that the initial condition of   is symmetric 
with respect to the origin ([SaT1]). We propose a weak   2/1H  variation representation of 

the extended Schochet-CLM model ([ScS]) in the form  
 

  2/12/12/1 ),(),(),(   vHvv xx   , 
2/1 Hv . 

 
With the notation of [BrK] this representation is equivalent to 
 

     02/10 ),(),(),( vHAvHvA    ,   2/1 HwHv . 

 
Taken into account that the Hilbert transform is an isometry on all Hilbert scales and that 

  vvH 2  and putting   HH :  this can be reformulation in the form 

 

   2/12/12/1 ),(),(),(   wHHwwH   , 
2/1 Hw . 

 
From [MaA] we recall the identity 
 

   222   HHH  

 
leading to  
 

2/1

22

2/1 ),(
2

1
),(   ww HH   , 

2/1 Hw . 
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The left hand side of the variation representations above is reflecting to current revisited 
proposals of the CLM model, while now the right hand side of the variation equation shows a 
modified non-linear CLM model operator (as the domain has changed). 
 
In [SaT1] for periodic boundary conditions the Fourier (spectral) representation of the non-
linear term    xAH    is given, whereby   denotes the vorticity and H  the Hilbert 

transform operator. The spectral method analysis of the equation above follows the same 
way leading to: 
 

)(
1

1







n

k

knknn n      ,   
2

)0( n
n

A
     ,    00   

whereby 





1

)sin()0,( nxAx n . 

 
Following the concept of [FaM] the turbulent  2/1H -signal can be split into two contributions: 

coherent bursts, corresponding to that part of the signal which can be compressed in a 0H

wavelet basis, plus incoherent noise, corresponding to that part of the signal which cannot be 
compressed in a  0H wavelet basis, but in the  2/1H wavelet basis. For the 1n  periodic case 

the later one corresponds to the alternative zero-state energy model of the harmonic 
quantum oscillator. 
 
The spectral analysis above is also linked to the solution framework of [BrK4]. The Hilbert 
transform of the Gaussian is the Dawson function, which is norm equivalent to the Gaussian 
due to the related property of the Hilbert transform. Therefore a Dawson basis function based 
Hilbert space framework enables an alternative statistical hydromechanics: 
 
Let )(xf resp. )(xfH

 denote the Gaussian function resp. its Hilbert transform   )()( xfHxfH   with 

 

  



 




 dy
yx

yv
yd

yx

yv
xvH

yx

)(1)(1
lim:)(

0 




   . 

 

 Then it holds 1)0(ˆ f  resp. 0)0(ˆ Hf  , )(xfH
 is up to a constant identical with the Dawson 

function and )(xf and )(xfH
 are norm-equivalent, i.e. 

 

),(),( wfwf H     ),(0  Hw . 

 
We further note the following properties of the Hilbert transform: 
 

   )0(ˆ)(
1

)( udyyuxuHxxH  





   and    0),( 0 Huu  for 
2, LHuu  . 

 
It is proven by the insertion of a new variable yxz   for the term 

 

  






















 dyyuxuxHdzzxudz
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zxxu
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zxuzx
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The Gaussian function is not a wavelet, as it does not fulfill the admissibility condition, but its 
first derivative and )(xfH

 do.  When considering )(xf   in a   2/1H (physical) Hilbert space 

framework the following identities hold true: 
 

0002/1 ),(),(),(),( wfwfwfAwf H 


    ),(0  Hw . 

 
In other words, a Fourier synthesis (and a probability analysis) in a 0H Hilbert space 

framework can be transformed into a wavelet analysis (“white noise” signal appropriate, 
([VoR]))  2/1H Hilbert space framework. 

 
The corresponding central “distributional” functions in case of the 2 periodic function are 

given by the identities [BrK4]: 
 

)2,0()sin(
)cos(

)
2

sin(2ln()
2

cot(
2

1 #

1 









  Hnx
n

nx

dx

dx

dx

dx

nn

. 

 
We note that the Hilbert transform of a wavelet is again a wavelet ([WeJ]) and that the Hilbert 
transform is an isomorphism on any Hilbert scale

H .  

 
[FaM]: “The turbulent regime develops when the non-linear term of the NSE strongly 
dominates the linear term. Superposition principle holds no more for non-linear phenomena. 
Therefore turbulent flows cannot be decomposed as a sum of independent subsystems that 
can be separately studied. A wavelet representation allows analyzing the dynamics in both 
space and scale, retaining those degrees of freedom which are essential to compute the flow 
evolution”. 
 
[MeM]: “Methods based on wavelet (Galerkin) expansions in 2L framework face the issue 

that in Galerkin methods the degrees of freedom are the expansion coefficients of a set of 
basis functions and these expansion coefficients are not in physical space (means in wavelet 
space). First map wavelet space to physical space, compute non-linear term in physical 
space and then back to wavelet space, is not very practical”. 
 
The Galerkin method based on wavelet expansion requires (ongoing) mappings between 
wavelet and physical space (during computing process) in case both spaces are different. 
This is the case for most of current (weak) variation PDE representations in a 2L Hilbert 

space framework ([MeM]).  
 
The proposed  2/1H  (weak) physical space concept enables identical wavelet and physical 

Hilbert spaces, while at the same time enabling the full power of Galerkin method computing 
non-linear terms in this (newly) physical space. This leads back to the "solution" section of 
this page with the weak NSE solution of the corresponding weak NSE representation in the 

 2/1H  Hilbert space and the ( 0H based) physical principles of quantum theory [HeW]. 
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g. Statistical Thermodynamics, 
E. Schrödinger’s view [ScE] 

 
 
There is, essentially, only one problem in statistical thermodynamics: the distribution of a 

given amount of energy E  over N  identical systems. Or perhaps better: to determine the 

distribution of an assembly of N  identical systems over the possible states in which this 

assembly can find itself, given that the energy of the assembly is a constant E . The idea is 
that there is weak interaction between them, so weak that the energy of interaction can be 
disregarded, that one can speak of the “private” energy of every one of them and that the 

sum of their “private” energies has to equal E .  …. 
 
 “To determine the distribution” .. mean in principle to make oneself familiar with any possible 
distribution-of-the-energy (or state-of-the-assembly) …. is (always the same) the 
mathematical problem; we shall (soon) present its general solution, from which in the case of 
every particular kind of system enery particular classification that may be desirable can be 
found as a special case: 
 
But there are two different attitudes as regards the physical application of the mathematical 
result. …  
 

The older and more naïve application is to N  actually exsiting physical systems in actual 

physical interaction with each other, e.g. gas molecules or electrons or Planck oscillators or 

degrees of freedom (“ether oscillators”) of a “hohlraum”. The N  of them together represent 

the actual physical system under consideration. This original point of view is associated with 
the names of Maxwell, Boltzmann and others. 
 
But it suffices only dealing with a very restricted class of physical systems – virtually only with 
gases. It is not applicable to a system which does not consist of a great number of identical 
constituents with “private” energies. … 
 
Hence a second point of view …  has been developed. It has a particular beauty of its own, is 
applicable quite generally to every physical system, and has some advantages to be 

mentioned forthwith. Here the N  identical systems are mental copies of the one system 

under consideration – of the one macroscopic device that is actually erected on our 
laboratory table. Now what on earth could it mean, physically, to distribute a given amount of 

energy E  over these N  mental copies? The idea is, in my view, that you can, of course, 

imagine that you really had N  copies of your system, that they really were in “weak 

interaction” with each other, but isolated from the rest of the world. Fixing your attention on 

one of them, you find it in a peculiar kind of “heat-bath” which consists of the 1N  others. 

 
Now you have, on the one hand, the experience that in thermodynamical equilibrium the 
behavior of a physical which you place in a heat-bath is always the same whatever be the 
nature of the heat-bath that keeps it at constant temperature, provided, of course, that the 
bath is chemically neutral towards your system, i.e. that there is nothing else but heat 
exchange between them. On the other hand, the statistical calculations do not refer to the 
mechanism of interaction: they only assume that it is “purely mechanical”, that it does not 
affect the nature of the single systems (e.g. that it never blows them to pieces), but merely 
transfers energy from one to the other. 
 

These considerations suggest that we may regard the behavior of any one of those N  

systems as describing the one actually existing system when placed in a heat-bath of given 

temperature. Moreover, since N  systems are alikely and number similar conditions, we can 
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then obviously, from their simultaneous statistics, judge of the probability of finding our 
system, when placed in a heat-bath of given temperature, in one or other of its private states. 
Hence all questions concerning the system in a heat-bath can be answered. … 
 
The advantage consists not only in the general applicability, but also in the following two 
points: 
 

i) N  can be made arbitrarily large. In fact, in case of doubt, we always mean 

Nlim   (… Stirling’s formula for !N  ) 

 
ii) No question about the individuality of the members of the assembly can ever arise 

– as it does, according to the “new statistics”, with particles. Our systems are 
macroscopic systems, which we could, in principle, furnish with labels. Thus two 
states of the assembly differing by system No. 6 and system No. 13 having 
exchanged their roles are, of course, to be counted as different states, while the 
same may not be true when two similar atoms within system No. 6 have 
exchanged their roles; … 

 
Remark: The approach in [BrK5] with the proposed quantum state Hilbert space given by 
 





  002/100 HHHxxx    
 

fulfills the same “advantages” points i), ii) above, while the (compactly embedded, (!) ) 
subspace 

2/10  HH ”covers” the statistically relevant (measurable) macroscopic world 

and its related orthogonal space 

0H ”covers” the “particle-interaction-world. The “heat-bath-

room” of given temperature is in line with the corresponding domain of the alternatively 

proposed Schrödinger operator, given by 

1H of the corresponding energy space 
 

 112/1
)(

1 HHHH
c

. 

 
The second section of [ScE] is concerned with the method of the most probable distribution, 
allowing infinite numbers of identical systems over their energy levels. We briefly sketch the 
central mathematical idea of chapter II: 
 

for an assembly of N  identical systems the nature of any of them is described by its possible 

state by enumerating them with labels ,..,...3,2,1 l  In a quantum-mechanical system those 

states are to be described by the eigenvalues of a complete set of commuting variables. The 

eigenvalues of the energy in these states are called ,...,...,, 21 l  so that ll  1 . In a 

“classical system” the schema can also be applied, when the states will have to be described 

as cells in phase-space ),( kk qp  of equal volume – whether infinitesimal in all directions or not 

– at any rate such that the energy does not vary appreciable within the cell. The considered 
model parameters are  

State No.  ,......3,2,1 l  

Energy   ,...,..., 21 l  

Occupation No.  ,...,..., 21 l  

 

The number of single states belonging to this class is 
 

,...!!...!

!

21 l

N
P


  . 

 

The set of numbers must comply with the conditions 

 

 sN     ,    slE  . 
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 “In this form the result is wholly unsurveyable. … For N  large, but finite, the assumption is 

only approximately true. Indeed, in the application to the Boltzmann case, the distributions 
with occupation numbers deviating from the “maximum set” must not be entirely disregarded. 
They give information on the thermodynamic fluctuations of the Boltzmann system, when 

kept at constant energy E , i.e. in perfect heat isolation. … 
 
Now the fluctuations of a system in a heat bath at constant temperature are much more 
easily obtained directly from the Gibbs point of view.” 
We choose the logarithm of  
 

,...!!...!

!

21 l

N
P


  

 

as the function whose maximum we are determine, taking care of the accessory conditions in 

the usual way by Lagrange multipliers,   and  , seeking the unconditional maximum of 
 

 
l l

lllP log  

leading to 





l

leN
    ,    




l

l
leE

 . 

Calling NEU /:  the average share of energy of one system, the whole result is given by 
 

)log(












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indicates the distribution of the N  systems over their energy levels. 

 
Chapter IV provides three examples, which are 
 

i) Free mass-point (ideal monatomic gas) 
 

       tconsTkLVkLZk tanlog
2

3
loglog      for L  atoms 

 

       kLT
T

TU
2

32 



    ,   

V

kL
Tp   

 
 

ii) Planck oscillator 
 

       2log)
2

log(sinh()log(log )2/1( k
x

kekZk lh     ,  

        with   :)/()(:  hkThx  

12 )/( 


kTe
U



  

 
 

iii) Fermi oscillator 
 

       )1log(log / kTekZk   

       
1)/( 


kTe

U



. 
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We also briefly sketch the corresponding mathematical approach for the n-particle problem 
([ScE] chapter VII): 
 

The sum-over-state of the considered n-particle problem is given by 
 

 
s

ss

n

n
eZ

  

 

where ,...2,1, sns denote the numbers of particles on level ,...2,1, ss , kT/1:  and the 

levels l is given by 

 ssj n  . 

 

For the Bose-Einstein gas and Fermi-Dirac gas the values admitted for every sn are 
 

i) ,....4,3,2,1,0sn      Bose-Einstein gas 

 

ii) 1,0sn   Fermi-Dirac gas 

 
 
Putting 

sezs


  

thus 

.......321

321
s

s

n

s

nn

n

n
zzzzZ    

 
This results into 

 
i) 


s

szZ 1)1(      Bose-Einstein gas 

 
ii)  

s

szZ )1(  Fermi-Dirac gas 

 
which is combined into the following formula 

 


s

szZ 1)1(   . 

In case the condition 
 

 snn  

 
is imposed, this formula is not yet the final result. For a glance at the original form 
 

.......321

321
s

s

n

s

nn

n

n
zzzzZ    

indicates that one have to select from  
 

.......321

321
s

s

n

s

nn

n

n
zzzzZ    

 

only the terms homogeneous of order n  in all the sz . That is most conveniently done by the 

method of the residue integral.  
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Putting 
 

 
s

szf 1)1(:)(   

 

the correct  is rigorously represented by the following integral: 
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




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1  . 

 

The corresponding analysis leads to 
 

i) 1)1
1

(  seN



 

ii) 
s

senfnZ )1log(log)(logloglog
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1
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The related thermodynamic parameters are given by 
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At the end this leads to a “thermodynamic potential” in the form 
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