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1. Inroduction

In the present paper we deal with weak solutions to the three-dimensional Navier–
Stokes equations

∂tv + div (v ⊗ v)−∆ v = f −∇ p, div v = 0

in a bounded domain QT ≡ Ω×]0, T [ of the space R4. In [4] E. Hopf proved
the global existence at least one weak solution v to the first initial boundary
value problem with boundary condition v|∂Ω×[0,T ] = 0 under quite general as-
sumptions on domain Ω, external force f and initial data v|t=0 = a. In [5] his
results were discribed and the class of Hopf’s solutions was introduced. Corre-
sponding definition includes all main properties that essentially were proved by E.
Hopf. More precisely, a velocity field v is called Hopf’s solution if it belongs to
L∞(0, T ;

◦
J(Ω)) ∩ L2(0, T ;

◦
J1

2(Ω)), is continuous in t ∈ [0, T ] in the weak topology
of L2(Ω;R3) and satisfies the integral identity∫

Ω

(v(t)− a) · wdx+
∫

Qt=Ω×]0,t[

(∇ v : ∇w − v ⊗ v : ∇w − f ·w) dxds = 0

for all t ∈ [0, T ] and for all w ∈
◦
J1

2(Ω). No information on the pressure p is

given. Here
◦
J(Ω) is the L2(Ω;R3)-closure of the set of all smooth solenoidal fields
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vanishing near ∂Ω and
◦
J1

2(Ω) is the closure of the same set with respect to the
Dirichlet integral. These solutions have two other properties: they are continuous
at t = 0 with respect to the strong topology of L2(Ω;R3) and for them the energy
inequality ∫

Ω

|v(x, t)|2 dx+ 2
∫
Qt

|∇ v|2 dxds ≤
∫
Ω

|a|2 dx + 2
∫
Qt

f · v dxds

holds for all t ∈ [0, T ]. Here and in what follows it is assumed that a ∈
◦
J(Ω) and

f ∈ L2(0, T ;
◦
J
−1
2 (Ω)).

In [5] (more detailly in [6]) the author expressed her confidence that the class
of Hopf’s solutions is too wide in the sense that the uniqueness theorem is not
valid in it. In [7] this was confirmed by examples. In [5], [6], [16] and others
various conditional theorems on uniqueness and smoothness of Hopf’s solutions
were proved if some additional information about them is known. For example, it
was proved that finiteness of the quantity

ess max
z=(x,t)∈Q′⊂QT

|v(z)|

implies smoothness of v in spatial variables (but not in t!).
In [5] (see the last section of Chapter VI) the following unconditional result was

proved. Supposed that Ω = R3, i.e. the Cauchy problem is considered, and a = 0.
Then any Hopf’s solution has derivatives ∂t v and ∇2 v in L 5

4
(QT ). Moreover,

there is a pressure field p with ∇ p from L 5
4
(QT ) such that the Navier–Stokes

equations are satisfied a.e. in QT . It was remarked there that this statement is
valid for the first initial boundary value problem as well (of course, under relevant
initial data). The proof is based on Lp-estimates for solutions to the nonstationary
Stokes equations. Such estimates were obtained in [5] for the Cauchy problem
and formulated there for the first boundary value problem as the result of K. K.
Golovkin and V. A. Solonnikov. A proof was published in [3], [17]. However, as it
was remarked in [5] this unconditional result is too weak to get uniqueness in the
class of Hopf’s solutions.

Now, let us explain how the exponent 5
4 occurs. For Hopf’s solutions, the

energy norm
|v|QT ≡ ess max

[0,T ]
‖v(t)‖2,Ω + ‖∇v‖2,QT

is finite. On the other hand, for any functions u ∈
◦
W 1

2(Ω), Ω ⊂ R3, or, for any
functions u ∈W 1

2 (Ω) with
∫
Ω
u dx = 0, the multiplicative inequalities

‖u‖q,Ω ≤ β(q)‖∇u‖α2,Ω‖u‖1−α2,Ω (1.1)

are valid with q ∈ [2, 6] and α = 3(1
2−

1
q ). They are very important for investigation

of smoothness of solutions to PDE’s. The first of them were found out specially
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for the investigation of solutions to the Navier–Stokes equations (see [8], [5], [9]
and others). In what follows we often use some consequence of (1.1) for functions
u, belonging to the Sobolev class W 1

2 on balls B(x0, R),

‖u‖q,B(x0,R) ≤ β1(q)
(
‖∇u‖α2,B(x0,R)‖u‖1−α2,B(x0,R) +

1
Rα
‖u‖2,B(x0,R)

)
(1.2)

It is valid for the same values q and α as in inequality (1.1).
With the help of (1.1) it is proved that for all functions v, vanishing on ∂Ω×

[0, T ] or satisfying the identity
∫
Ω
v(x, t) dx = 0 for t ∈]0, T [, the inequality

‖v‖q,r,QT ≡
( T∫

0

‖v(t)‖rq,Ω dt
) 1
r ≤ C1|v|QT (1.3)

holds if
1
r

+
3
2q
≥ 3

4
, r ∈ [2,∞], q ∈ [2, 6].

In turn, with the help of (1.3) one can estimate the nonlinear term (∇ v)v in the
Navier–Stokes equations. More precisely, we have

‖(∇ v)v‖s,l,QT ≤ C2‖∇ v‖2,QT ‖v‖ 2s
2−s ,

2l
2−l ,QT

≤ C3|v|2QT , (1.4)

if s and l satisfy the conditions

1
l

+
3
2s
≥ 2, l ∈ [1, 2], s ∈

[
1,

3
2

]
. (1.5)

In particular, exponents s = l = 5
4 satisfy the last conditions. For this reason they

were taken in [5] to prove that functions |∂tv|, |∇2v| and |∇p| belong to L 5
4
(QT ).

In [2], [11] the theorem on unique solvability of the first initial boundary value
problem for the Stokes system was extended to the case of spaces W 2,1

s,l (QT ) ×
W 1,0
s,l (QT ) with two different exponents s, l ∈]1,∞[. Using this theorem, bound

(1.4) and arguing as in [5], one can make the following conclusion.

Theorem 1.1. Assume that our bounded domain Ω is of class C2. Suppose,
in addition, that f ∈ Ls,l(QT ;R3) with numbers s > 1 and l > 1, satisfying
conditions (1.5). Then any Hopf’s solution to the first initial boundary value
problem for the Navier–Stokes equations has derivatives ∂tv, ∇2v, belonging to
the space Ls,l(Qδ,T ), where Qδ,T ≡ Ω×]δ, T [ with any δ ∈]0, T [. Moreover, there
is a locally summable pressure field p with ∇p ∈ Ls,l(Qδ,T ) such that the Navier–
Stokes equations hold a.e. in QT . The pressure field p itself is an element of
L 3s

3−s ,l
(Qδ,T ) for any δ ∈]0, T [ provided that∫

Ω

p(x, t) dx = 0, t ∈]0, T [.
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Described here additional information about weak Hopf’s solutions is still un-
sufficient to prove the uniqueness theorem but it turns out to be helpful for the
analysis of their partial regularity.

V. Scheffer began to study such regularity for some classes of weak solutions
to the Navier–Stokes equations. He assumed that weak solutions possess some
additional properties. The main one is the so-called local energy inequality. Con-
sidering the case Ω = R3 and f = 0, he proved in [13] that for any solution v and
p, satisfying his additional assumptions, the velocity field v is continuous on an
open subset of QT and the two-dimensional Hausdorff measure of its compliment
is finite. He also showed that among of weak solutions to the Cauchy problem
there exists at least one solution with these additional properties. In [12] Scheffer
studied Leray’s weak solutions v of the three-dimensional Cauchy problem for the
Navier–Stokes equations. He proved that the one-dimensional Hausdorff measure
of the sets S(tk) ⊂ R3 of discontinuities of v is finite. Here tk belongs to so called
Leray’s set of time moments when lim inft→tk−0 ‖∇ v(t)‖2,R3 =∞. In [12] the au-
thor used the invariance of the homogeneous Navier–Stokes equations with respect
to a certain changing variables x, t and functions v, p. In [14] V. Scheffer consid-
ered an other class of weak solutions to the first initial boundary value problem
for the Navier–Stokes equations in a bounded domain Ω, assuming that f = 0.
He proved that among of such weak solutions there exists at least one solution v
such that curl v is continuous on an open subset of QT . He also showed that the
Hausdorff dimension of the compliment of this subset is not more that 5

3 .
These investigations were continuied by L. Caffarelli, R.-V. Kohn and L. Niren-

berg. In [1] they introduced the notion of suitable weak solutions. They call a pair
v and p a suitable weak solution to the Navier–Stokes equations if v has the finite
energy norm, p belongs to the space L 5

4
(QT ), v and p are weak solution to the

Navier–Stokes equations and satisfy the local energy inequality. It was proved
by them that in fact p ∈ L 5

3 ,
5
4
(QT ) at least locally in QT . They showed that if

f ∈ Lq(QT ;R3) with q > 5
2 , then, for any suitable weak solution v and p, there is

an open subset of QT such that v is locally bounded on it and the one-dimensional
parabolic Hausdorff measure of the compliment of this subset is equal to zero. In
the same work they proved that among of weak Hopf’s solutions of the first initial
boundary value problem there exists at least one suitable weak solution v and p
with p ∈ L 5

3 ,
5
4
(QT ). This corresponds to s = l = 5

4 in Theorem 1.1.
In contrast to Scheffer’s method their analysis of regularity is local, i.e. L.

Caffarelli, R.-V. Kohn and L. Nirenberg proved some criteria for local regularity
of v (more precisely, local boundness). Having them in hands, they established
partial regularity and estimated the Hausdorff dimension of the singular set.

In [10], for f = 0, F.-H. Lin defined suitable weak solutions, assuming that p
belongs to L 3

2
(QT ). This corresponds to s = 9

8 , l = 3
2 in Theorem 1.1.

To guarantee the existence of sutable weak solutions among of weak Hopf’s
solutions one should choose a proper class for the pressure. The choice is described
by Theorem 1.1. It remains to show that in selected class there exists at least one
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solution satisfying the local energy inequality. This could be done with the help of
an appropriate regularization of the initial boundary value problem (for example,
as in [1]).

We are going to use the same class of suitable weak solutions as F.-H. Lin,
i.e., in our considerations it is assumed that p ∈ L 3

2
(QT ). In the case calculations

become shorter. But in the last section we describe changes in our constructions
for the class of suitable weak solutions studied in [1].

The main purpose of the present paper is to prove that, for any suitable solu-
tion v and p, there is an open subset of QT , where the velocity field v is Hölder
continuous in z = (x, t) and show that the one-dimensional Hausdorff measure of
the compliment of this subset is equal to zero. We assume that the external force f
belongs to some parabolic variant of the Morrey space, containig Lq(QT ;R3) with
q > 5

2 . Our considerations are local. More precisely, as in [1] we prove various
criteria whether a point z ∈ QT is regular or not. We call a point z ∈ QT regular
if the velocity feild v is Hölder continuous in some neighborhood of the point z.
It differs from the definition given in [1], where boundness of v is required for
regularity of z. The main criterion coincides with the main one in [1] for local
boundness.

Our proof of the main criterion is splitted into three parts. In the first part
we give a criterion for local Hölder continuity of v, using a blow-up procedure for
a proper excess. This part is similar to the approach developed for investigations
of partial regularity for generalized solutions to elliptic and parabolic systems,
but the equation div v = 0 and the presence of the pressure have required some
special corrections. The methods of this part are applicable to other systems
for divergence free fields, in particular, to the three-dimensional modified Navier–
Stokes equations (see [15]).

In the second part we improve our preliminary criterion with the help of a
special scaling. It was also used in [12], [1], [10] but in a different way. Then,
in the third part, we get the final criterion of local regularity of suitable weak
solutions. In this part we make use of some interesting observations made in [1]
and [10]. It seems to us that our way is shorter than in [1] and more transparent
than in [10].

2. Notation and main results

We denote by M3 the space of all real 3× 3 matrices. Adopting summation over
repeated Latin indices, running from 1 to 3, we shall use the following notation

u · v = uivi, |u| =
√
u · u, u = (ui) ∈ R3, v = (vi) ∈ R3;

A : B = trA∗B = AijBij , |A| =
√
A : A,

A∗ = (Aji), trA = Aii, A = (Aij) ∈M3, B = (Bij) ∈M3;

u⊗ v = (uivj) ∈M3, Au = (Aijuj) ∈ R3, u, v ∈ R3, A ∈M3.
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Let ω be a domain in some finite-dimensional space. We denote by Lm(ω;Rn)
and W l

m(ω;Rn) the known Lebesgue and Sobolev spaces of functions from ω into
Rn. The norm of the space Lm(ω;Rn) is denoted by ‖ · ‖m,ω. If m = 2, then we
use the abbreviation ‖ · ‖ω ≡ ‖ · ‖m,ω.

Let T be a positive parameter, Ω be a domain in Rn. We denote by QT ≡
Ω×]0, T [ the space-time cylinder. Space-time points are denoted by z = (x, t),
z0 = (x0, t0) and etc.

For summable in QT scalar-valued, vector-valued and tensor-valued functions,
we shall use the following differential operators

∂tv =
∂v

∂t
, v,i =

∂v

∂xi
, ∇p = (p,i), ∇u = (ui,j),

div v = vi,i, div τ = (τij,j), ∆u = div∇u,

which are understood in the sense of distributions. Here xi, i = 1, 2, 3, are the
Cartesian coordinates of a point x ∈ R3, and t ∈]0, T [ is a moment of time.

For balls and parabolic cylinders, we shall use the notation

B(x0, R) ≡ {x ∈ R3 ‖ |x− x0| < R}, B(θ) ≡ B(0, θ), B ≡ B(1);

Q(z0, R) ≡ B(x0, R)×]t0 −R2, t0[, Q(θ) ≡ Q(0, θ), Q ≡ Q(1).

Various mean values of summable functions h, p and v are denoted as follows∫
−
t0

t0−R2
h dt ≡ 1

R2

t0∫
t0−R2

h dt,

[p]x0,R(t) ≡
∫
−
B(x0,R)

p(x, t) dx ≡ 1
|B(R)|

∫
B(x0,R)

p(x, t) dx,

(v)z0,R ≡
∫
−
Q(z0,R)

v dz ≡ 1
Q(R)

∫
Q(z0,R)

v dz.

We are going to use a “parabolic” variant of Morrey’s spaces. Given domain ω
in R3 × R and positive number γ, we define the space

M2,γ(ω;R3) ≡
{
f ∈ L2,loc(ω;R3) ‖ cγ(f ;ω) < +∞

}
.

Here

cγ(f ;ω) ≡ sup
{

1
Rγ−2

(∫
−
Q(z,R)

|f |2 dz′
) 1

2 ‖ Q(z,R) b ω, R > 0
}
.

Definition 2.1. Let Ω be a domain in R3 and T be a positive parameter. Suppose
that a function f satisfies the condition

f ∈M2,γ(QT ;R3) (2.1)
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for some positive γ. We say that a pair of functions v and p is a suitable weak
solution to the Navier–Stokes equations in QT if the following three conditions
hold. Fuctions v and p have the properties

v ∈ L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ;W 1
2 (Ω;R3)),

p ∈ L 3
2
(QT ),

}
(2.2)

meet the Navier–Stokes equations

∂tv + div (v ⊗ v)−∆ v = f −∇ p,
div v = 0,

}
(2.3)

in QT (in the sense of distributions) and satisfy the inequality∫
Ω

|v(x, t)|2φ(x, t) dx + 2
∫
Qt

|∇ v|2φdxdt′ ≤

≤
∫
Qt

{
|v|2(∂tφ+ ∆φ) + (|v|2 + 2p)v · ∇φ+ 2f · vφ

}
dx dt′

 (2.4)

for a.a. t ∈ [0, T ] and for all non-negative functions φ ∈ C∞0 (QT ).

Our aim is to prove the following fact.

Theorem 2.2. Let γ be an arbitrary positive constant. Let {Ω, T, f, v, p} be an
arbitrary collection, satisfying Definition 2.1 with this constant γ. There is a
positive number ε∗, depending only on γ, with the following property. Assume that
for a point z0 ∈ QT the inequality

lim
R→0

sup
1
R

∫
Q(z0,R)

|∇v|2 dz < ε∗(γ) (2.5)

holds. Then z0 is a regular point, i.e. the function z 7→ v(z) is Hölder continuous
in some neighborhood of the point z0.

Remark 2.3. It follows from Theorem 2.2 that the one-dimensional parabolic
Hausdorff measure of the set of singular points is equal to zero and thus its
parabolic Hausdorff dimension is not greater than one.

For details we refer the reader to the paper [1].
We shall work with the following functionals:

Y (z0, R; v, p) ≡ Y1(z0, R; v) + Y2(z0, R; p),

Y1(z0, R; v) ≡
(∫
−
Q(z0,R)

|v − (v)z0,R|3 dz
) 1

3
,
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Y2(z0, R; p) ≡ R
(∫
−
Q(z0,R)

|p− [p]x0,R|
3
2 dz

) 2
3
,

Ψ(z0, R; v) ≡ R |(v)z0,R|,

Y (z0, R; v, p) ≡
(∫
−
Q(z0,R)

|v|3 dz
) 1

3
+R

(∫
−
Q(z0,R)

|p| 32 dz
) 2

3
.

The proof of Theorem 2.2 is divided into three parts. At first, we prove Lem-
mata 2.4 and 2.5.

Lemma 2.4. Suppose that numbers θ,M, γ, β are chosen so that

0 < θ ≤ 1
2
, M ≥ 3, 0 < β < γ (2.6)

and fixed. There are positive numbers ε1 and R1, depending on θ,M, γ, β only
and having the following property. For each collection {Ω, T, f, v, p}, satisfying
Definition 2.1 with fixed above number γ, and for each cylinder Q(z0, R), satisfying
the conditions

Q(z0, R) b QT , 0 < R < R1,
Ψ(z0, R; v) < M,

Y (z0, R; v, p) + cγ
(
f ;QT

)
Rβ < ε1,

 (2.7)

the decay estimate

Y (z0, θR; v, p) ≤ c1θα1
(
Y (z0, R; v, p) + cγ

(
f ;QT

)
Rβ
)
, (2.8)

is valid. Here α1 = 2
3 and a positive constant c1 depends on M only.

Lemma 2.5. Let numbers θ,M, γ, β, β1 be taken so that

M ≥ 3, 0 < β1 ≤ β < γ, 0 < β1 < α1, (2.9)

0 < θ ≤ 1
2
, c1(M)θ

α1−β1
2 ≤ 1. (2.10)

and fixed. Assume that we are given an arbitrary collection {Ω, T, f, v, p}, satisfy-
ing Definition 2.1 with above fixed γ, and an arbitrary cylinder Q(z0, R), satisfying
the conditions

Q(z0, R) b QT , 0 < R < R1(θ,M, γ, β),

Ψ(z0, R; v) < M
2 ,

Y (z0, R; v, p) + cγR
β<ε1 =ε1(θ,M, γ, β, β1) =

=
(
1−θ

α1−β1
2
)

min
{ε1

2
,
θ

5
3 (1−θβ1)
R1

M

2

}
,


(2.11)
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where cγ ≡ cγ(f ;QT ), and ε1, R1 are numbers of Lemma 2.4. Then, for any
k = 0, 1, 2, . . . , the inequalities

Ψ(z0, θ
kR; v) < M,

Y (z0, θ
kR; v, p) + cγ (θkR)β < ε1,

Y (z0, θ
k+1R; v, p) ≤ θ(k+1)β1(1− θ

α1−β1
2 )−1

(
Y (z0, R; v, p) + cγ R

β
)
 (2.12)

hold.

From Lemma 2.5 we deduce some auxilary criterion of local regularity and
complete the first part of the proof of Theorem 2.2.

Proposition 2.8. Let {Ω, T, f, v, p} be an arbitrary collection, satisfying Defini-
tion 2.1 with a given number γ > 0. There are numbers ε0 and R0, depending on γ
only and having the following property. Suppose that for a point z0 the conditions

Q(z0, R) b QT , 0 < R < R0(γ),

Y (z0, R; v, p) + cγ(f ;QT )R
γ
2 < ε0(γ)

}
(2.13)

hold. Then the function z 7→ v(z) is Hölder continuous in some neighborhood of
the point z0, i.e. z0 is a regular point.

Remark 2.7. The exponent of the Hölder continuity with respect to the parabolic
metrics

d(z, z′) ≡ |x− x′|+ |t− t′| 12

can be taken, for instance, as 1
2 min{α1, γ}.

The second part of the proof of Theorem 2.2 is based upon a special invari-
ant structure of the Navier–Stokes equations that leads to some improvements of
Proposition 2.6. As a result, we have the following criterion of local regularity.

Proposition 2.8. Let {Ω, T, f, v, p} be an arbitrary collection, satisfying Defini-
tion 2.1 with a given numbers γ > 0. Suppose that z0 ∈ QT and

lim inf
R→0

RY (z0, R; v, p) < ε0(γ) ≡ ε0(γ)R0(γ)
8

. (2.14)

Then z0 is a regular point.

In the last part of the proof of Theorem 2.2 we show how the main result follows
from Proposition 2.8.

Proposition 2.9. Let {Ω, T, f, v, p} be an arbitrary collection, satisfying Defini-
tion 2.1 with a given numbers γ > 0. Then there is a number ε∗, depending on γ
only, such that (2.5) implies (2.14).
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3. Proof of Theorem 2.2. Part I

Proof of Lemma 2.4. The lemma is proved by contradiction. So, assume that
there are numbers θ,M, γ, β, satisfying conditions (2.7), sequences of collections
{Ωm, Tm, fm, vm, pm}∞m=1, satisfying Definition 2.1 with the constant γ, and cylin-
ders {Q(zm, Rm)}∞m=1 such that:

Q(zm, Rm) b QmTm ≡ Ωm×]0, Tm[, Rm → 0,

Y (zm, Rm; vm, pm) + dmR
β
m ≡ εm → 0,

Y (zm, θRm; vm, pm) ≥ c1θα1εm,

 (3.1)

as m→ +∞. Here dm ≡ cγ(fm;QmTm) and constants c1 and α1 will be chosen in
an appropriate way to obtain the contradiction. We now consider the scaling

x− xm = Rmy, x ∈ B(xm, Rm), y ∈ B ≡ B(0, 1);
t− tm = R2

ms, t ∈]tm −R2
m, tm[, s ∈]−1, 0[;

wm(e) = (vm(z)− (vm)zm,Rm)ε−1
m , qm(e) = (pm(z)− [pm]xm,Rm(t))ε−1

m Rm,

gm(e) = fm(z), e = (y, s) ∈ Q ≡ B×]−1, 0[,

and get after changing the variables

εm∇ywm(e) = ∇xvm(z)Rm, εm∇2
yw

m(e) = ∇2
xv
m(z)R2

m,

εm∂sw
m(e) = ∂tv

m(z)R2
m, εm∇yqm(e) = ∇xpm(z)R2

m,

(wm),1 = 0, [qm],1(s) = 0, s ∈]−1, 0[,
1
εm

Y1(zm, θRm; vm) = Zm1 (θ) ≡
(∫
−
Q(θ)
|wm − (wm),θ|3 de

) 1
3
,

1
εm

Y2(zm, θRm; pm) = Zm2 (θ) ≡ θ
(∫
−
Q(θ)
|qm − [qm],θ|

3
2 de

) 2
3
,

Zm(θ) ≡ Zm1 (θ) + Zm2 (θ) ≥ c1θα1 ,

Zm(1) =
(∫
−
Q

|wm|3 de
) 1

3

+
(∫
−
Q

|qm| 32 de
) 2

3

+
dmR

β
m

εm
= 1.

 (3.2)

Here and in what follows we abbreviate

(v),θ = (v)0,θ, [p],θ = [p]0,θ.

Next, changing the varaibles in the integral identity, corresponding to (2.3),
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gives us the relation∫
Q

(
− wm · ∂su− wm ·∆u

)
de =

=
∫
Q

{
(wm ⊗Rmam) : ∇u+ εmRm(wm ⊗ wm) : ∇u+

+qmdiv u
}
de+

R2
m

εm

∫
Q

gm · u de, am ≡ (vm)zm,Rm .


(3.3)

It is valid for all u ∈ C∞0 (Q;R3).
By (3.2), after passing to subsequences (still denoted by the same symbols) it

may be assumed that:

wm ⇀ w in L3(Q;R3),

qm ⇀ q in L 3
2
(Q;R3),

(w),1 = 0, [q],1(s) = 0, s ∈]−1, 0[.

 (3.4)

Let us introduce functionals

Z(θ) ≡ Z1(θ) + Z2(θ), Z1(θ) ≡
(∫
−
Q(θ)
|w − (w),θ |3 de

) 1
3
,

Z2(θ) ≡ θ
(∫
−
Q(θ)
|q − [q],θ|

3
2 de

) 2
3
.

We see now, by (3.2) and (3.4), that:

Z(1) =
(∫
−
Q

|w|3 de
) 1

3
+
(∫
−
Q

|q| 32 de
) 2

3 ≤ 1. (3.5)

According to the definition of the quantity dm and (3.2) we have

R2
m

εm

(∫
−
Q

|gm|2 de
) 1

2
=
R2
m

εm

(∫
−
Q(zm,Rm)

|fm|2 dz
) 1

2 ≤

≤ dmR
γ−2
m

εm
R2
m =

dmR
β
m

εm
Rγ−βm ≤ Rγ−βm → 0

 (3.6)

as m→ +∞. Since
|Rmam| = Ψ(zm, Rm; vm) < M, (3.7)

without loss of generality it may be assumed that:

Rmam → b in R3 and |b| ≤M. (3.8)

So, it follows from (3.3)–(3.6) and (3.8) that functions w and p satisfy the linear
system of PDE’s with constant coefficients

∂sw + div (w ⊗ b)−∆w = −∇ q,
divw = 0

}
in Q (3.9)
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in the sense of distributions. The same arguments as in the case of the Stokes
system allow us to claim that w is Hölder continuous in the closure of the cylinder
Q(1

2 ) and, moreover, the estimate

|w(e)− w(e′)| ≤ c31(M)(|y − y′|+ |s− s′| 13 )

holds for any e ∈ Q(1
2 ) and any e′ ∈ Q(1

2 ). The latter leads to the bound

Z1(θ) ≤ c32(M)θ
2
3 . (3.10)

Now let us discuss compactness of the sequence {wm}∞m=1. For any function

u ∈ C1
0 (0, T ;

◦
W 2

2(B;R3)), we derive from (3.3) the estimate (see (3.2), (3.7) and
(3.6))

−
∫
Q

wm · ∂s u de =
∫
Q

{
wm ·∆u+ (wm ⊗Rmam) : ∇u+ qmdiv u+

+εmRm(wm ⊗ wm) : ∇u+
R2
m

εm
gm · u

}
de ≤

≤ c33(M)‖u‖L3(0,T ;W2
2 (B;R3)).

It says that:

{∂swm}∞m=1 is bounded in L 3
2
(0, T ; (

◦
W

2
2(B;R3))′). (3.11)

Energy inequality (2.4) for vm and qm gives the following relation∫
B

|wm(y, s)|2φ(y, s) dy + 2
∫

B×]−1,s[

|∇wm|2φdy ds′ ≤

≤
∫

B×]−1,s[

{
|wm|2(∂s φ+ ∆φ) +Rm|wm|2(am + εmw

m) · ∇φ+

+qmwm · ∇φ+
R2
m

εm
gm · wmφ

}
dy ds′.


(3.12)

Inequality (3.12) holds for a.a. s ∈]−1, 0[ and for all non-negative functions φ ∈
C∞0 (Q). Recalling (3.2), (3.6) and (3.7), we deduce from (3.12) the estimate

ess sup
s∈]−( 3

4 )2,0[
‖wm(s)‖2B( 3

4 ) + ‖∇wm‖2Q( 3
4 ) ≤ c34(M). (3.13)

Bound (3.13) together with the known multiplicative inequality yields another
important estimate

‖wm‖ 10
3 ,Q( 3

4 ) ≤ c′34(M). (3.14)

Now, by (3.11), (3.13) and (3.14), a subsequence (still denoted by the same symbol)
exists such that:

wm → w in L3(Q(
3
4

);R3) (3.15)
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and, therefore,

Zm1 (θ)→ Z1(θ).

But then (3.2) and (3.10) imply the estimate

c1θ
α1 ≤ limm→+∞ Zm1 (θ) + lim infm→+∞ Zm2 (θ) ≤
≤ c32(M)θ

2
3 + lim infm→+∞ Zm2 (θ).

}
(3.16)

Let us insert u = χ∇ q, where q ∈ C∞0 (B) and χ ∈ C∞0 (0, 1), into (3.3). Then,

by arbitrariness of χ, by divwm = 0 and by the definition of the space
◦
W 2

3(B), we
obtain the identity

R2
m

εm

∫
B

gm(y, s) : ∇q(y)dy+Rmεm
∫
B

wm(y, s)⊗ wm(y, s) : ∇2q(y)dy=

= −
∫
B

qm(y, s)∆ q(y) dy.

 (3.17)

It is valid for a.a. s ∈]−1, 0[ and for all q ∈
◦
W 2

3(B).
One may represent the pressure qm as the sum

qm = qm1 + qm2 .

Here qm1 (s) satisfies the identity

R2
m

εm

∫
B

gm(y, s) : ∇q(y) dy+Rmεm
∫
B

wm(y, s)⊗ wm(y, s) : ∇2q(y) dy =

= −
∫
B

qm1 (y, s)∆ q(y) dy

 (3.18)

for all q ∈W 2
3 (B) ∩

◦
W 1

3(B) and the function y 7→ qm2 (y, s) is harmonic in B, i.e.

∆qm2 (s) = 0 in B. (3.19)

It is known that for the solution of the boundary value problem

∆ q(s) = |qm1 (s)| 12 sign{qm1 (s)} in B,

q(s) = 0 on ∂ B,

}
(3.20)

the estimate

‖q(s)‖3,B + ‖∇q(s)‖3,B + ‖∇2q(s)‖3,B ≤ c35‖qm1 (s)‖
1
2
3
2 ,B

(3.21)

holds. Here c35 is an absolute positive constant. Now, let us insert this q(s) into
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identity (3.18). Then relations (3.20) and bound (3.21) give the inequalities

‖qm1 ‖ 3
2 ,Q
≤ c′35

[
Rmεm

(∫
−
Q

|wm|3de
) 2

3

+
R2
m

εm

(∫
−
Q

|gm| 32 de
) 2

3
]

≤
(

see (3.2) and (3.6)
)
≤

≤ c′35

[
Rmεm +Rγ−βm

]
→ 0 as m→ +∞.


(3.22)

Next, we have

Zm2 (θ) ≤ θ
[(∫
−
Q(θ)
|qm1 − [qm1 ],θ|

3
2 de
) 2

3
+
(∫
−
Q(θ)
|qm2 − [qm2 ],θ|

3
2 de
) 2

3
]
.

By (3.22),

lim sup
m→∞

Zm2 (θ) ≤ lim sup
m→∞

θ
(∫
−
Q(θ)
|qm2 − [qm2 ],θ|

3
2 de
) 2

3
.

Combining the last inequality with (3.16), we get

c1θ
α1 ≤ c32(M)θ

2
3 + lim sup

m→∞
θ
(∫
−
Q(θ)
|qm2 − [qm2 ],θ|

3
2 de
) 2

3
. (3.23)

Harmonicity of the function y 7→ qm2 (y, s) (see (3.19)) leads to the estimates

|qm2 (y, s)− [qm2 ],θ(s)| =
∣∣∣∫−

B(θ)

(
qm2 (y, s)− qm2 (y′, s)

)
dy′
∣∣∣ ≤

≤ θ‖∇ qm2 (s)‖∞,B( 1
2 ) ≤ c36θ‖qm2 (s)‖ 3

2 ,B
,

where c36 is an absolute positive constant. So, we have

θ

(∫
−
Q(θ)
|qm2 − [qm2 ],θ|

3
2 de

) 2
3

≤ c′36θ

(
θ3+ 3

2

θ5

0∫
−1

‖qm2 (s)‖ 3
2 ds

) 2
3

≤

≤ c′36θ
2
3 ‖qm2 ‖ 3

2 ,Q
≤ c′′36θ

2
3

(
‖qm‖ 3

2 ,Q
+ ‖qm1 ‖ 3

2 ,Q

)
≤

≤
(

see (3.2) and (3.22)
)
≤ c37θ

2
3 .


(3.24)

Here c37 is an absolute positive constant. Now from (3.23) and (3.24) we conclude
that:

c1θ
α1 ≤ (c32(M) + c37)θ

2
3 .

To obtain the contradiction it is enough to take

c1(M) = 2(c32(M) + c37), α1 =
2
3
.

Lemma 2.4 is proved.
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Now let us establish a simple relation between functionals Ψ and Y1. For
0 < θ < 1, we have

|(v)z0,R − (v)z0,θR| ≤
1
θ

5
3
Y1(z0, R; v).

But then

|(v)z0,θkR| ≤ |(v)z0,R|+
1
θ

5
3

k−1∑
i=0

Y1(z0, θ
iR; v)

and, therefore,

Ψ(z0, θ
kR; v) ≤ θkR

θ
5
3

k−1∑
i=0

Y1(z0, θ
iR; v) + θkΨ(z0, R; v). (3.25)

Proof of Lemma 2.5. The lemma is proved by induction on k. Suppose first that
k = 0. We have

Y (z0, R; v, p) + cγR
β < ε1 ≤ (1− θ 1

2 (α1−β1))
ε1

2
< ε1.

So, all conditions of Lemma 2.4 are fulfilled and thus we obtain

Y (z0, θR; v, p) ≤ θ
1
2 (α1+β1)(c1θ

1
2 (α1−β1))

(
Y (z0, R; v, p) + cγR

β
)
≤

≤
(
see (2.10)

)
≤ θ 1

2 (α1+β1)
(
Y (z0, R; v, p) + cγR

β
)
.

Hence, for k = 0, all statements (2.12) of the lemma are proved.
Now we assume that, for s = 0, 1, . . . , k, the following inequalities hold

Ψ(z0, θ
sR; v) < M,

Y (z0, θ
sR; v, p) + cγ (θsR)β < ε1,

Y (z0, θ
s+1R; v, p) ≤ θ(s+1)β1

(
1− θ

α1−β1
2
)−1(

Y (z0, R; v, p) + cγ R
β
)
.

 (3.26)

By (3.25),

Ψ(z0, θ
k+1R; v) ≤ θk+1R

θ
5
3

k∑
i=0

Y1(z0, θ
iR; v) + θk+1Ψ(z0, R; v) <

<
R1

θ
5
3

1
1− θβ1

ε1

1− θ α1−β1
2

+
M

2
≤

≤ R1

θ
5
3

1
1− θβ1

1

1− θ
α1−β1

2

(
1−θ

α1−β1
2
)θ 5

3 (1− θβ1)
R1

M

2
+
M

2
= M.
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The third relation in (3.26) and (2.11) yield

Y (z0, θ
k+1R; v, p) + cγ (θk+1R)β ≤

≤ θ(k+1)β1

1− θ α1−β1
2

(
Y (z0, R; v, p) + cγ R

β
)

+ cγ (θk+1R)β ≤

≤ (β1 ≤ β, 0 < θ < 1) ≤

≤ θ(k+1)β1

(
Y (z0, R; v, p) + cγ R

β

1− θ
α1−β1

2

+ cγ R
β

)
≤

≤ θ(k+1)β12
Y (z0, R; v, p) + cγ R

β

1− θ α1−β1
2

< ε1.

Taking into account the last two inequalities, we observe that the cylinder
Q(z0, θ

k+1R) satisfies all conditions of Lemma 2.4 and, therefore,

Y (z0, θ
k+2R; v, p) ≤ θ

1
2 (α1+β1)

(
Y (z0, θ

k+1R; v, p) + cγ (θk+1R)β
)
≤

≤ θ
1
2 (α1+β1)(θ(k+1)β1

Y (z0, R; v, p) + cγ R
β

1− θ α1−β1
2

+ cγ (θk+1R)β
)
≤

≤ θ
1
2 (α1+β1)θ(k+1)β1

(Y (z0, R; v, p) + cγ R
β

1− θ
α1−β1

2

+ cγ R
β
)

=

= θ(k+2)β1θ
α1−β1

2

(Y (z0, R; v, p) + cγ R
β

1− θ α1−β1
2

+ cγ R
β
)
<

< θ(k+2)β1
1

1− θ α1−β1
2

(
Y (z0, R; v, p) + cγ R

β
)
.

Lemma 2.5 is proved.

Let us formulate two consequences of Lemma 2.5.

Lemma 3.1. Suppose that all conditions of Lemma 2.5 hold. Then a positive
constant c38 = c38(θ, β1) exists such that

Y (z0, ρ; v, p) ≤ c38

( ρ
R

)β1(
Y (z0, R; v, p) + cγ R

β
)

(3.27)

for all ρ ∈]0, R].

Proof. For an arbitrary number ρ ∈]0, R], we choose a non-negative integer k so
that:

θk+1 <
ρ

R
≤ θk,
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where θ is the number of Lemma 2.5. Then we have

Y (z0, ρ; v, p) ≤
(∫
−
Q(z0,ρ)

|v − (v)z0,θkR|3 dz
) 1

3
+

+|(v)z0,θkR − (v)z0,ρ|+ ρ
(∫
−
Q(z0,ρ)

|p− [p]x0,θkR|
3
2 dz

) 2
3

+

+ρ
(∫
−
Q(z0,ρ)

|[p]x0,θkR − [p]x0,ρ|
3
2 dz

) 2
3 ≤

≤ c′38(θ)Y (z0, θ
kR; v, p) ≤

(
see (2.12)

)
≤

≤ c′38(θ)θkβ1
1

1− θ 1
2 (α1−β1)

(
Y (z0, R; v, p) + cγ R

β
)
≤

≤ c′38(θ)
(1
θ

ρ

R

)β1 1
1− θ 1

2 (α1−β1)

(
Y (z0, R; v, p) + cγ R

β
)
.

Lemma 3.1 is proved.

Lemma 3.2. Let {Ω, T, f, v, p} be an arbitrary collection, satisfying Definition 2.1
with a given number γ > 0. There are positive numbers ε0, R0 and c39, depending
on γ only and having the following property. Suppose that for a point z0 conditions
(2.13) are fulfilled. Then

Y (z0, ρ; v, p) ≤ c39

( ρ
R

)β1(γ)
(3.28)

for all ρ ∈]0, R]. Here β1(γ) = 1
2 min{α1, γ}.

Proof. We let

M = 3, β = β(γ) =
γ

2
, θ = θ(γ) = min

{1
2
, c1(3)−

2
α1−β1

}
.

Obviously, numbers θ(γ),M = 3, β(γ), β1(γ) satisfy all conditions (2.9), (2.10) for
each γ > 0.

We also have two simple inequalities

Ψ(z0, R; v) ≤ R
(∫
−
Q(z0,R)

|v|3 dz
) 1

3 ≤ RY (z0, R; v, p) (3.29)

and
Y (z0, R; v, p) ≤ 2Y (z0, R; v, p). (3.30)

Now, let

R0(γ) ≡ R1(θ(γ), 3, γ, β(γ)),

ε0(γ) ≡ 1
2

min
{ 3
R0(γ)

, ε1
(
θ(γ), 3, γ, β(γ), β1(γ)

)}
,

c39(γ) ≡ 2 c38
(
θ(γ), β1(γ)

)
ε0(γ).

 (3.31)
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Assume that conditions (2.13) hold. Then from (3.29)–(3.31) it follows that

Ψ(z0, R; v) < R0 Y (z0, R; v, p) < R0 ε0 <
3
2

and

Y (z0, R; v, p) + cγ R
β(γ) ≤ 2

(
Y (z0, R; v, p) + cγ R

β(γ)
)
<

< 2 ε0(γ) ≤ ε1(θ(γ), 3, γ, β(γ), β1(γ)).

So, the set {Ω, T, f, v, p}, numbers γ, θ(γ), M = 3, β(γ) and β1(γ) satisfy all
conditions of Lemma 3.1 and, by (3.27), we get

Y (z0, ρ; v, p) ≤ c38(θ(γ), β1(γ))
( ρ
R

)β1(γ)(
Y (z0, R; v, p) + cγ R

β(γ)) ≤
≤ c38(θ(γ), β1(γ))

( ρ
R

)β1(γ)(
2Y (z0, R; v, p) + cγ R

β(γ)
)
≤

≤ c38(θ(γ), β1(γ))
( ρ
R

)β1(γ)
2 ε0(γ).

Lemma 3.2 is proved.

Proof of Proposition 2.6. Since the function z 7→ Y (z0, R; v, p) is continuous, a
neighborhood O(z0) of the point z0 exists such that

Q(z,R) b QT , 0 < R < R0(γ),

Y (z,R; v, p) + cγ(f ;QT )Rβ(γ) < ε0(γ)

for all z ∈ O(z0). By Lemma 3.2,

Y (z, ρ; v, p) ≤ c39(γ)
( ρ
R

)β1(γ)

for all ρ ∈]0, R] and for all z ∈ O(z0). A parabolic version of the Campanato
criterion completes the proof of Proposition 2.6. Proposition 2.6 is proved.

4. Proof of Theorem 2.2. Part II

It is easy to see that Proposition 2.8 follows from Proposition 4.1.

Proposition 4.1. Let {Ω, T, f, v, p} be an arbitrary collection, satisfying Defini-
tion 2.1 with a given number γ > 0. Let ε0(γ) and R0(γ) be numbers of Proposition
2.6. Suppose that, for a point z0, the conditions

Q̃(z0, 2R) ≡ B(x0, 2R)×]t0 − (2R)2, t0 + (2R)2[b QT ,

0 < R <
1
2
R0(γ),

2R
R0(γ)

[
Y (z,R; v, p) + cγ(f ;QT )R

γ
2
]
< ε0(γ)

 (4.1)
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hold. Then z0 is a regular point.

Proof. Let us change the variables in the following way

y =
x− x0

τ
, s =

t− t0
τ2 +R2

0(γ), τ ≡ 2R
R0(γ)

< 1,

vτ (e) = τv(z), pτ (e) = τ2p(z), fτ (e) = τ3f(z),

where z = (x, t), e = (y, s). As a result, we have:

z0 ↔ e0, B(x0, 2R)↔ B(R0(γ)), Q(z0, R)↔ Q(e0,
1
2R0(γ)),

Q̃(z0, 2R)↔ Q̂(γ) ≡ B(R0(γ))×]0, 2R2
0(γ)[,

}
(4.2)

where e0 = (0, R2
0(γ));

∂s v
τ (e) = τ3∂tv(z), ∇y vτ (e) = τ2∇x v(z),

∇2
y v

τ (e) = τ3∇2
x v(z), ∇y pτ (e) = τ3∇x p(z).

It is easy to see that vτ and pτ have the properties

vτ ∈ L∞(0, 2R2
0(γ);L2(B(R0(γ));R3)),

vτ ∈ L2(0, 2R2
0(γ);W 1

2 (B(R0(γ));R3)),

pτ ∈ L 3
2
(Q̂(γ)),

 (4.3)

satisfy the equations

∂s v
τ (e) + divy vτ ⊗ vτ −∆y v

τ = fτ −∇y pτ ,
divy vτ = 0,

}
(4.4)

in Q̂(γ) and the local energy inequality∫
B(R0(γ))

|vτ (y, s)|2 φ(y, s) dy + 2
∫

B(R0(γ))×]0,s[

φ |∇y vτ |2 dy ds′ ≤

≤
∫

B(R0(γ))×]0,s[

{
|vτ |2(∂s φ+ ∆φ) + (|vτ |2 + 2 pτ )vτ · ∇y φ+

+2fτ · vτφ
}
dy ds′


(4.5)

for a.a. s ∈]0, 2R2
0(γ)[ and for all non-negative functions φ ∈ C∞0 (Q̂(γ)).

Now, let us show that:

cγ(fτ ; Q̂(γ)) ≤ τγ+1cγ(f ;QT ). (4.6)

By the definition,

cγ(fτ ; Q̂(γ)) ≡ sup
{

1
rγ−2

(∫
−
Q(e,r)

|fτ |2 de′
) 1

2 ‖ Q(e, r) b Q̂(γ), r > 0
}
,
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where
Q(e, r) =

{
e′ = (y′, s′) ‖ |y − y′| < r, −r2 < s′ − s < 0

}
.

For
Q(z, τr) =

{
z′ = (x′, t′) ‖ |x− x′| < τr, −τ2r2 < t′ − t < 0

}
,

we have

Q(z, τr)↔ Q(e, r), z = (x, t), e = (y, s), Q(z, τr) b Q̃(z0, 2R),

and, therefore,

1
rγ−2

(∫
−
Q(e,r)

|fτ |2 de′
) 1

2
=

1
rγ−2

(∫
−
Q(z,τr)

|τ3f |2 dz′
) 1

2 ≤

≤ τγ+1 1
(τr)γ−2

(∫
−
Q(z,τr)

|f |2 dz′
) 1

2 ≤ τγ+1cγ(f ;QT ).

So, as it follows from (4.3)–(4.6), the set {B(R0(γ)), 2R2
0(γ), fτ , vτ , pτ} satisfies

Definition 2.1 with the given positive γ > 0.
It is easy to check that:

Y
(
e0,

1
2
R0(γ); vτ , pτ

)
= τ Y (z0, R; v, p).

The latter together with (4.6) implies the inequalities

Y
(
e0,

1
2
R0(γ); vτ , pτ

)
+ cγ(fτ ; Q̂(γ))

(R0(γ)
2

)γ
2 ≤

≤ τ
[
Y (z0, R; v, p) + τγcγ(f ;QT )

(R0(γ)
2

)γ
2
]

=

= τ
[
Y (z0, R; v, p) + τ

γ
2 cγ(f ;QT )R

γ
2

]
< ε0(γ).

Since Q(e0,
1
2R0(γ)) b Q̂(γ), 1

2R0(γ) < R0(γ), we see that the set {B(R0(γ)),
2R2

0(γ), fτ , vτ , pτ}, the point e0 and the number 1
2R0(γ) satisfy conditions (2.13).

But then Proposition 2.6 says that the function e 7→ vτ (e) is Hölder continuous
in some neighborhood of the point e0. Making inverse changing the variables, we
obtain that z0 is a regular point. Proposition 4.1 is proved.

5. Proof of Theorem 2.2. Part III

The general line of our considerations in this section is the same as in Section
3 of [10]. It is based on bounds (5.1), (5.2) and (5.5). Inequality (5.1) concerns
arbitrary functions and is proved with the help of well known embedding theorems
only. It is in [1] and in [10] as well. We give here its proof only for the reader
convenience. For f = 0, inequality (5.2) and estimate (5.5) of the present paper
follow from inequalities of (3.18) and (3.19), presented in [10]. Here we give the
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complete proof of (5.2) and (5.5). We would like to remark that our proof of (5.5)
uses a decomposition of the pressure which differs from decompositions proposed
in [1] and [10]. It seems to us that our decomposition of p is more convenient. The
proof of Propostion 2.9 is standard but requires some calculations.

As in [10], for suitable weak solution v and p, we define the following functionals

A(r) ≡ sup
t0−r2≤t≤t0

1
r

∫
B(x0,r)

|v(x, t)|2 dx, E(r) ≡ 1
r

∫
Q(z0,r)

|∇ v|2 dz,

C(r) ≡ 1
r2

∫
Q(z0,r)

|v|3 dz, D(r) ≡ 1
r2

∫
Q(z0,r)

|p| 32 dz.

We have assumed that Q(z0, r) b QT .
We start with the proof of two auxilary lemmata.

Lemma 5.1. Assume that Q(z0, ρ) b QT . Then

C(r) ≤ c51

[(r
ρ

)3
A

3
2 (ρ) +

(ρ
r

)3
A

3
4 (ρ)E

3
4 (ρ)

]
(5.1)

for all 0 < r ≤ ρ. Here c51 is an absolute positive constant.

Lemma 5.2. Assume that Q(z0, R) b QT . Then

A(R2 ) +E(R2 ) ≤ c52

[
C

2
3 (R) + C

1
3 (R)D

2
3 (R)+

+A
1
2 (R)C

1
3 (R)E

1
2 (R) + c2γR

2(γ+1)
]
,

 (5.2)

where cγ ≡ cγ(f ;QT ) and c52 is an absolute positive constant.

Proof of Lemma 5.1. We have∫
B(x0,r)

|v|2 dx =
∫

B(x0,r)

(
|v|2 − [|v|2]x0,ρ

)
dx+

∫
B(x0,r)

[|v|2]x0,ρ dx ≤

≤
∫

B(x0,ρ)

∣∣∣|v|2 − [|v|2]x0,ρ

∣∣∣ dx+
(r
ρ

)3
∫

B(x0,ρ)

|v|2 dx.

By the Poincaré–Sobolev inequality,∫
B(x0,ρ)

∣∣∣|v|2 − [|v|2]x0,ρ

∣∣∣ dx ≤ c53ρ

∫
B(x0,ρ)

|∇ v| |v| dx,
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where c53 is an absolute positive constant. So, we get

∫
B(x0,r)

|v|2 dx ≤ c53ρ

( ∫
B(x0,ρ)

|∇ v|2 dx
) 1

2
( ∫
B(x0,ρ)

|v|2 dx
) 1

2

+

+
(r
ρ

)3
∫

B(x0,ρ)

|v|2 dx ≤

≤ c53ρ
3
2A

1
2 (ρ)

( ∫
B(x0,ρ)

|v|2 dx
) 1

2

+
(r
ρ

)3
ρA(ρ).


(5.3)

Using the known multiplicative inequality, one can obtain

∫
B(x0,r)

|v|3 dx ≤ c54

[( ∫
B(x0,r)

|∇ v|2 dx
) 3

4
( ∫
B(x0,r)

|v|2 dx
) 3

4

+

+
1
r

3
2

( ∫
B(x0,r)

|v|2 dx
) 3

2
]
≤
(

see (5.3)
)
≤

≤ c54

{
ρ

3
4A

3
4 (ρ)

( ∫
B(x0,r)

|∇ v|2 dx
) 3

4

+

+
1
r

3
2

[
c53ρ

3
2A

1
2 (ρ)

( ∫
B(x0,ρ)

|∇ v|2 dx
) 1

2

+

+
(
r

ρ

)3

ρA(ρ)
] 3

2
}
≤

≤ c55

{(
r

ρ

)3

A
3
2 (ρ) +

( ∫
B(x0,ρ)

|∇ v|2 dx
) 3

4
[
ρ

3
4 +

ρ
9
4

r
3
2

]
A

3
4 (ρ)

}
.

Next, we integrate the last relation in t on ]t0 − r2, t0[ and establish

∫
Q(z0,r)

|v|3 dz ≤ c55

{
r2
(
r

ρ

)3

A
3
2 (ρ)+

[
ρ

3
4 +

ρ
9
4

r
3
2

]
A

3
4 (ρ)

t0∫
t0−r2

dt

( ∫
B(x0,ρ)

|∇ v|2 dx
) 3

4
}
≤
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≤ c55

{
r2
(
r

ρ

)3

A
3
2 (ρ) +

+
[
ρ

3
4 +

ρ
9
4

r
3
2

]
A

3
4 (ρ)r

1
2

( ∫
Q(z0,ρ)

|∇ v|2 dz
) 3

4
}
≤

≤ c55

{
r2
(
r

ρ

)3

A
3
2 (ρ) +

[
ρ

3
4 +

ρ
9
4

r
3
2

]
A

3
4 (ρ)r

1
2E

3
4 (ρ) ρ

3
4

}
.

It remains to remark that[
ρ

3
4 +

ρ
9
4

r
3
2

]
r

1
2 ρ

3
4 =

[(ρ
r

) 3
2

+
(ρ
r

)3]
r2 ≤ 2

(ρ
r

)3
r2

and complete the proof of Lemma 5.1.

Proof of Lemma 5.2. Let us consider (2.4) for t = t0 and for a cut-off function φ,
having the properties:

φ ≡ 0 in Qt0 \Q(z0, R),

0 ≤ φ ≤ 1 in QT , φ ≡ 1 in Q(z0,
R

2
),

|∇φ| < c56

R
, |∂t φ|+ |∇2 φ| < c56

R2 in Qt0 .

Then (2.4) gives:

A
(R

2

)
+ 2E

(R
2

)
≤ c57

{
1
R3

∫
Q(z0,R)

|v|2 dz +
1
R2

∫
Q(z0,R)

∣∣∣|v|2 − [|v|2]x0,R

∣∣∣ |v| dz +

+
1
R2

( ∫
Q(z0,R)

|p| 32 dz
) 2

3
( ∫
Q(z0,R)

|v|3 dz
) 1

3

+

+
1
R

( ∫
Q(z0,R)

|f |2 dz
) 1

2
( ∫
Q(z0,R)

|v|2 dz
) 1

2
}
.

Since

1
R3

∫
Q(z0,R)

|v|2 dz ≤ c′57C
2
3 (R),
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we obtain

A
(R

2

)
+ 2E

(R
2

)
≤ c′′57

{
C

2
3 (R) + C

1
3 (R)D

2
3 (R) +R

∫
Q(z0,R)

|f |2 dz+

+
1
R2

∫
Q(z0,R)

∣∣∣|v|2 − [|v|2]x0,R

∣∣∣ |v| dz} ≤
≤ c58

{
C

2
3 (R) + C

1
3 (R)D

2
3 (R) + c2γR

2(γ+1)+

+ 1
R2

∫
Q(z0,R)

∣∣∣|v|2 − [|v|2]x0,R

∣∣∣ |v| dz}.


(5.4)

For the last term on the right-hand side of (5.4), one can get

S ≡
∫

Q(z0,R)

∣∣∣|v|2 − [|v|2]x0,R

∣∣∣ |v| dz ≤
≤

t0∫
t0−R2

dt
( ∫
B(x0,R)

∣∣∣|v|2 − [|v|2]x0,R

∣∣∣ 3
2
dx
) 2

3
( ∫
B(x0,R)

|v|3 dx
) 1

3
.

By the Poincaré–Sobolev inequality,( ∫
B(x0,R)

∣∣∣|v|2 − [|v|2]x0,R

∣∣∣ 3
2
dx

) 2
3

≤ c59

∫
B(x0,R)

|∇ v| |v| dx

and, therefore,

S ≤ c59

t0∫
t0−R2

dt

( ∫
B(x0,R)

|∇ v|2 dx
) 1

2
( ∫
B(x0,R)

|v|2 dx
) 1

2
( ∫
B(x0,R)

|v|3 dx
) 1

3

≤

≤ c59R
1
2A

1
2 (R)

t0∫
t0−R2

dt

( ∫
B(x0,R)

|∇ v|2 dx
) 1

2
( ∫
B(x0,R)

|v|3 dx
) 1

3

≤

≤ c59R
1
2A

1
2 (R)

( ∫
Q(z0,R)

|v|3 dz
) 1

3
( t0∫
t0−R2

dt

( ∫
B(x0,R)

|∇ v|2 dx
) 3

4
) 2

3

≤

≤ c59R
1
2 + 2

3A
1
2 (R)C

1
3 (R)R

1
3

( ∫
Q(z0,R)

|∇ v|2 dz
) 1

2

≤

≤ c59R
2A

1
2 (R)C

1
3 (R)E

1
2 (R).

Now, (5.2) follows from (5.4), Hölder’s inequality and from the last relation.
Lemma 5.2 is proved.
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It remains to find out an estimate for the pressure.

Lemma 5.3. Suppose that Q(z0, ρ) b QT . Then

D(r) ≤ c510

[ r
ρ
D(ρ) +

(ρ
r

)2(
A

3
4 (ρ)E

3
4 (ρ) + c

3
2
γ ρ

3
2 (γ+1)

)]
(5.5)

for all r ∈]0, ρ]. Here c510 is an absolute positive constant.

Proof. Arguing as in the proof of Lemma 2.4, we obtain the following identity for
the pressure∫

B(x0,ρ)

p(x, s)∆ q(x) dx =
∫

B(x0,ρ)

(
v(x, s) ⊗ v(x, s)− τ(s)

)
: ∇2 q(x) dx +

+
∫

B(x0,ρ)

f(x, s) · ∇ q(x) dx

for all q ∈
◦
W 2

3(B(x0, ρ)) and for a.a. s ∈]0, T [. Here

τ(s) ≡ [v ⊗ v]x0,ρ(s).

We consider the decomposition

p = p1 + p2, (5.6)

where ∫
B(x0,ρ)

p1∆ q dx =
∫

B(x0,ρ)

(
v ⊗ v − τ

)
: ∇2 q dx+

∫
B(x0,ρ)

f · ∇ q dx (5.7)

for all q ∈W 2
3(B(x0, ρ)) ∩

◦
W 1

3(B(x0, ρ)), and

∆ p2 = 0 in B(x0, ρ). (5.8)

Let us choose a test function q = q0 ∈W 2
3(B(x0, ρ)) ∩

◦
W 1

3(B(x0, ρ)) in
(5.8) so that:

∆ q0 = |p1|
1
2 signp1 in B(x0, ρ).

As it is known the function q0 satisfies the following estimate( ∫
B(x0,ρ)

|∇2 q0|3 dx
) 1

3
+

1
ρ

( ∫
B(x0,ρ)

|∇ q0|3 dx
) 1

3
+

+
1
ρ2

( ∫
B(x0,ρ)

|q0|3 dx
) 1

3 ≤ c511

( ∫
B(x0,ρ)

|p1|
3
2 dx

) 1
3
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with an absolute positive constant c511. From the last two relations and from (5.7)
it is easy to obtain the inequality( ∫

B(x0,ρ)

|p1|
3
2 dx

) 2
3 ≤ c512

[( ∫
B(x0,ρ)

|v ⊗ v − τ | 32 dx
) 2

3
+ ρ
( ∫
B(x0,ρ)

|f | 32 dx
) 2

3
]
.

It yields( ∫
B(x0,ρ)

|p1|
3
2 dx

) 2
3 ≤ c′512

[ ∫
B(x0,ρ)

|∇ v| |v| dx+ ρ
( ∫
B(x0,ρ)

|f | 32 dx
) 2

3
]
≤

≤ c′′512

[( ∫
B(x0,ρ)

|v|2 dx
) 1

2
( ∫
B(x0,ρ)

|∇ v|2 dx
) 1

2
+

+ρ3
(∫
−
B(x0,ρ)

|f | 32 dx
) 2

3
]
≤

≤ c′′512

[
ρ

1
2A

1
2 (ρ)

( ∫
B(x0,ρ)

|∇ v|2 dx
) 1

2
+ ρ3

(∫
−
B(x0,ρ)

|f |2 dx
) 1

2
]
.

The integration in t gives:∫
Q(z0,ρ)

|p1|
3
2 dz ≤ c513

[
ρ

3
4A

3
4 (ρ)

t0∫
t0−ρ2

dt
( ∫
B(x0,ρ)

|∇ v|2 dx
) 3

4
+

+ρ
9
2

t0∫
t0−ρ2

dt
(∫
−
B(x0,ρ)

|f |2 dx
) 3

4
]
≤

≤ c′513

[
ρ2A

3
4 (ρ)E

3
4 (ρ) + ρ

9
2 +2
(∫
−
Q(z0,ρ)

|f |2 dz
) 3

4
]
≤

≤ c′513ρ
2
[
A

3
4 (ρ)E

3
4 (ρ) + c

3
2
γ ρ

3
2 (γ+1)

]
.



(5.9)

From (5.6) and (5.9) it follows that:∫
Q(z0,ρ)

|p2|
3
2 dz ≤ c514ρ

2
[
D(ρ) +A

3
4 (ρ)E

3
4 (ρ) + c

3
2
γ ρ

3
2 (γ+1)

]
. (5.10)

Since p2 is harmonic in B(x0, ρ), we have the estimate

1
r3

∫
B(x0,r)

|p2|
3
2 dx ≤ c515

1
ρ3

∫
B(x0,ρ)

|p2|
3
2 dx

with an absolute positive constant c515 and, therefore,
1
r3

∫
Q(z0,r)

|p2|
3
2 dz ≤ c515

1
ρ3

∫
Q(z0,ρ)

|p2|
3
2 dz. (5.11)
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So,

D(r) ≤ c516

[
1
r2

∫
Q(z0,R)

|p1|
3
2 dz +

1
r2

∫
Q(z0,R)

|p2|
3
2 dz

]
≤

≤
(
see (5.9)–(5.11)

)
≤

≤ c′516

[(ρ
r

)2(
A

3
4 (ρ)E

3
4 (ρ) + c

3
2
γ ρ

3
2 (γ+1)

)
+

+
r

ρ

(
D(ρ) +A

3
4 (ρ)E

3
4 (ρ) + c

3
2
γ ρ

3
2 (γ+1)

)]
.

The latter leads to (5.5). Lemma 5.3 is proved.

Proof of Proposition 2.9. First we introduce

E(R) ≡ A 3
2 (R) +D2(R).

Let θ ∈]0, 1[ and Q(z0, ρ) b QT . We shall fix numbers θ and ρ later.
For R = θρ, by (5.2),

A
(1

2
θρ
)
≤ c52

[
C

2
3 (θρ) + C

1
3 (θρ)D

2
3 (θρ) +

+A
1
2 (θρ)C

1
3 (θρ)E

1
2 (θρ) + c2γ(θρ)2γ+2

]
and thus

A
3
2

(1
2
θρ
)
≤ c517

[
C(θρ) + C

1
2 (θρ)D(θρ)+

+A
3
4 (θρ)C

1
2 (θρ)E

3
4 (θρ) + c3γ(θρ)3(γ+1)

]
≤

≤ c′517

[
C(θρ) +A

3
2 (θρ)E

3
2 (θρ) +D2(θρ) + c3γρ

3(γ+1)
]
.

 (5.12)

We also have from (5.1) and from (5.5) for r = θρ that:

C(θρ) ≤ c51

[
θ3A

3
2 (ρ) +

1
θ3A

3
4 (ρ)E

3
4 (ρ)

]
(5.13)

and
D(θρ) ≤ c510

[
θD(ρ) +

1
θ2A

3
4 (ρ)E

3
4 (ρ) +

1
θ2 c

3
2
γ ρ

3
2 (γ+1)

]
. (5.14)

Obviously,

A(θρ) ≤ 1
θ
A(ρ), E(θρ) ≤ 1

θ
E(ρ). (5.15)

Combining (5.12)–(5.15), we obtain the estimate

A
3
2

(1
2
θρ
)
≤ c518

[
θ2D2(ρ) + θ3A

3
2 (ρ) +

1
θ3A

3
4 (ρ)E

3
4 (ρ)+

+
( 1
θ3 +

1
θ4

)
A

3
2 (ρ)E

3
2 (ρ) +

(
1 +

1
θ4

)
c3γρ

3(γ+1)
]
.

 (5.16)
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On the other hand, relation (5.5) for r = 1
2θρ implies

D
(1

2
θρ
)
≤ c510

[θ
2
D(ρ) +

(2
θ

)2
A

3
4 (ρ)E

3
4 (ρ) +

(2
θ

)2
c

3
2
γ ρ

3
2 (γ+1)

]
. (5.17)

Taking into account that θ ∈]0, 1[, we derive from (5.16) and (5.17) the inequality

E
(1

2
θρ
)
≤ c519

[
θ2D2(ρ) +

(
θ3 +

1
θ4E

3
2 (ρ)

)
A

3
2 (ρ)+

+
1
θ3A

3
4 (ρ)E

3
4 (ρ) +

1
θ4 c

3
γρ

3(γ+1)
]
≤

≤ c520

[
θ2D2(ρ) +

(
θ3 +

1
θ4E

3
2 (ρ)

)
A

3
2 (ρ)+

+
1
θ9E

3
2 (ρ) +

1
θ4 c

3
γρ

3(γ+1)
]
,


(5.18)

where c520 is an absolute positive constant. Without loss of generality we may
assume that c520 ≥ 1. It is easy to check that

ρY (z0, ρ; v, p) ≤ c521

(
C(ρ) + E(ρ)

) 1
3
, (5.19)

where c521 is an absolute positive constant.
Now, let us choose a number θ ∈]0, 1[ so that

c520θ
2 ≤ 1

4
(5.20)

and fix it. Having this number θ, we define ε∗by the identity

ε∗(γ) ≡ 1
2

min
{( θ9

4c520

) 2
3
,
( ε0(γ)θ3

2c521(4c521)
1
3

)2[
2c51

(2
θ

)3
+ 1
]− 2

3
}
. (5.21)

Then one may fix a positive number ρ0 = ρ0(θ, z0, f, γ) via condition (2.5) so that

Q(z0, ρ0) b QT , E(ρ) ≤ 2ε∗,
c3γρ

3(γ+1)

θ4 ≤ (2ε∗)
3
2

θ9 (5.22)

for all ρ ∈]0, ρ0]. By (5.18), (5.20)–(5.22), we have the inequality

E
(1

2
θρ
)
≤ 1

2
E(ρ) + 2c520

1
θ9 (2ε∗)

3
2 . (5.23)

It is valid for some fixed θ ∈]0, 1[ (see (5.20)) and for all ρ ∈]0, ρ0(θ, z0, f, γ)]. Let
θ1 = θ

2 and ρ = ρ0
2 . Iterating (5.23), we see that

E(θk+1
1 ρ) ≤ 1

2k+1 E(ρ) +
1
2k

k∑
i=0

2i 2c520
1
θ9 (2ε∗)

3
2 =

=
1

2k+1 E(ρ) +
2k+1 − 1

2k
2c520

1
θ9 (2ε∗)

3
2 ≤ (5.24)

≤ 1
2k+1 E(ρ) + 4c520

1
θ9 (2ε∗)

3
2
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for all natural numbers k. By (5.1) and (5.24),

C(θk+1
1 ρ) ≤ c51

[
θ3

1A
3
2 (θk1ρ) +

1
θ3

1
A

3
4 (θk1ρ)E

3
4 (θk1ρ)

]
≤

≤ c51

[
θ3

1

( 1
2k
E(ρ) + 4c520

1
θ9 (2ε∗)

3
2

)
+ (5.25)

+
1
θ3

1

( 1
2k
E(ρ) + 4c520

1
θ9 (2ε∗)

3
2

) 1
2
(2ε∗)

3
4

]
.

But then, according to (5.19) and (5.25), we have

lim sup
k→∞

θk1ρ Y (z0, θ
k
1ρ; v, p) ≤ c521

{
c51

[
θ3

1

(
4c520

1
θ9 (2ε∗)

3
2

)
+

+
1
θ3

1

(
4c520

1
θ9 (2ε∗)

3
2

) 1
2
(2ε∗)

3
4

]
+

+4c520
1
θ9 (2ε∗)

3
2

} 1
3 ≤

≤ c521
(4c520)

1
3 (2ε∗)

1
2

θ3

[
c51

(
θ3

1 +
1
θ3

1

)
+ 1
] 1

3 ≤

≤ c521
(4c520)

1
3 (2ε∗)

1
2

θ3

[
2c51

(1
θ

)3
+ 1
] 1

3 ≤

≤ ε0(γ)
2

< ε0(γ).

Proposition 2.9 is proved.

6. Other definitions of suitable weak solutions

Now we are going to explain how to work with suitable weak solutions introduced
in [1].

Definition 6.1. Let Ω be a domain in R3 and T be a positive parameter. Suppose
that a fuction f satisfies condition (2.1) for some positive γ. We say that a pair
of functions v and p is a suitable weak solution to the Navier–Stokes equations in
QT if they have the properties

v ∈ L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ;W 1
2 (Ω;R3)),

p ∈ L 5
4
(0, T ;L 5

3
(Ω)),

and satisfy (2.3), (2.4).

For this solution, we have the same main result.

Theorem 6.2. Let γ be an arbitrary positive constant. Let {Ω, T, f, v, p} be an
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arbitrary collection, satisfying Definition 6.1 with this constant γ. Assume that
for a point z0 ∈ QT condition (2.5) holds. Then z0 is a regular point.

Theorem 6.2 is proved in the same way as Theorem 2.2. Corresponding changes
to be made are as follows. First of all we introduce new functionals:

Y1(z0, R; v) ≡ Y11(z0, R; v) + Y12(z0, R; v),

Y11(z0, R; v) ≡
(∫
−
Q(z0,R)

|v − (v)z0,R|3 dz
) 1

3
,

Y12(z0, R; v) ≡
(∫
−
t0

t0−R2
dt
(∫
−
B(x0,R)

|v − (v)z0,R|
5
2 dx

)2) 1
5
,

Y2(z0, R; p) ≡ R
(∫
−
t0

t0−R2
dt
(∫
−
B(x0,R)

|p− [p]z0,R|
5
3 dx

) 3
4
) 4

5
,

Y (z0, R; v, p) ≡
(∫
−
Q(z0,R)

|v|3 dz
) 1

3
+
(∫
−
t0

t0−R2
dt
(∫
−
B(x0,R)

|v| 52 dx
)2) 1

5
+

+R
(∫
−
t0

t0−R2
dt
(∫
−
B(x0,R)

|p| 53 dx
) 3

4
) 4

5
.

D̃(R) ≡ 1
R

7
4

t0∫
t0−R2

( ∫
B(x0,R)

|p| 53 dx
) 3

4
,

G(R) ≡ 1
R3

t0∫
t0−R2

( ∫
B(x0,R)

|v| 52 dx
)2
,

Ẽ(R) ≡ A 5
4 (R) + D̃2(R).

Then Lemmata 2.4, 2.5, 3.1, 3.2 and Propositions 2.6, 2.8, 4.1 remain to be valid
with α1 = 2

5 and with Definition 6.1 instead of Definition 2.1. To prove Proposition
2.9 we use the following statements instead of Lemmata 5.1, 5.2 and 5.3.

Lemma 6.3. Assume that Q(z0, ρ) b QT . Then

C(r) ≤ c61

[(r
ρ

)3
A

3
2 (ρ) +

(ρ
r

)3
A

3
4 (ρ)E

3
4 (ρ)

]
,

G(r) ≤ c61

[(r
ρ

) 7
2
A

5
2 (ρ) +

(ρ
r

) 9
2
(
A

7
4 (ρ)E

3
4 (ρ) +A

3
2 (ρ)E(ρ)

)]
for all 0 < r ≤ ρ. Here c61 is an absolute positive constant.
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Lemma 6.4. Assume that Q(z0, R) b QT . Then

A
(R

2

)
+E

(R
2

)
≤ c62

[
C

2
3 (R) + D̃

4
5 (R)G

1
5 (R) +A(R)E(R) + c2γR

2(γ+1)],
where cγ ≡ cγ(f ;QT ) and c62 is an absolute positive constant.

Lemma 6.5. Suppose that Q(z0, ρ) b QT . Then

D̃(r) ≤ c63

[(r
ρ

) 1
2
D̃(ρ) +

(ρ
r

) 7
4
(
A

1
2 (ρ)E

3
4 (ρ)+

+A
5
8 (ρ)E

5
8 (ρ) + c

5
4
γ ρ

5
4 (γ+1)

)]
for all r ∈]0, ρ]. Here c63 is an absolute positive constant.
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