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H1
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and Schrödinger type operators on the Euclidean space Rn and the sub-Laplace Schrödinger operators on the

stratified Lie group G.
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1 Introduction

Let (X , d, μ) be an RD-space with a regular Borel measure μ such that all balls defined by the quasi-

metric d have finite and positive measure and are open sets. For any x ∈ X and r > 0, set the ball

B(x, r) = {y ∈ X : d(x, y) < r}. In what follows, for any x, y ∈ X and r ∈ (0,∞), set Vr(x) = μ(B(x, r))

and V (x, y) = μ(B(x, d(x, y))). Also, let T be a bounded operator on Lp(X ) for some p ∈ (1,∞). A

measurable function K(x, y) is called the kernel of T provided that

T (f)(x) =

∫
X
K(x, y)f(y)dμ(y) (1.1)

holds for each continuous function f with compact support, and for almost all x not in the support of f .

In this paper, we consider the commutator

Tb(f)(x) = T (bf)(x)− b(x)Tf(x), x ∈ X , (1.2)

∗Corresponding author
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where b ∈ BMO∞(ρ) (see (1.9)).

It is well known that when T is a Calderón-Zygmund operator, Coifman et al. [10] proved that [b, T ]

is a bounded operator on Lp for 1 < p < ∞ if and only if b ∈ BMO(Rn). See [20,32,37] for the research

development of the commutator Tb on the Euclidean space Rn and [3,11,35] on the spaces of homogeneous

type.

In recent years, the harmonic analysis problems of differential operators (for example, Schrödinger

operators and elliptic operators, and so on) have received many people’s attention. On the one hand, some

scholars pay more attention to the investigation of the Schrödinger operators; see [2,13–15,25,28–30,36]

and their references. Moreover, Yang et al. extended some important problems related to the Schrödinger

operators to the more abstract setting (cf. [39–41]). On the other hand, some scholars concentrated on

the research of other differential operators; see [7, 12, 18, 19, 21–24,27, 38, 42] and their references.

Motivated by [2,15,26,39], in this paper we investigate the Lp estimates and the endpoint estimates for

Tb on the space of the homogeneous type X when the kernel K(x, y) satisfies some conditions related to

the admissible function. Our main results can be used to study the Schrödinger operators and Schrödinger

type operators on R
n and to study the sub-Laplace Schrödinger operators on the stratified Lie group G,

and then to derive some new results including Lemma 4.1 and Corollary 4.2.

The notion of admissible functions on the spaces of homogeneous type was first introduced by Yang

and Zhou in [41]. A positive function ρ on X is called admissible if there exist positive constants C3 and

k0 such that for all x, y ∈ X ,

ρ(y) � C3[ρ(x)]
1

1+k0 [ρ(x) + d(x, y)]
k0

1+k0 . (1.3)

A nontrivial class of admissible function is the well-known reverse Hölder class Bq(X , d, μ). Recall that a

nonnegative function potential U is said to belong to Bq(X , d, μ) with q ∈ (1,∞] if there exists a positive

constant C such that for all balls B,(
1

μ(B)

∫
B

U(y)q dμ(y)

) 1
q

� C

(
1

μ(B)

∫
B

U(y) dμ(y)

)
(1.4)

with usual modification when q = ∞. Following [36] and [39], for all x ∈ X , set

ρ(x)=̇ sup
r>0

{
r :

r2

Vr(x)

∫
B(x,r)

U(y) dy � 1

}
. (1.5)

It follows from Proposition 2.1 in [39] that if the measure U(z)dμ(z) has the doubling property, then ρ as

in (1.5) is an admissible function, where q ∈ (max{1, n2 },∞] with n appearing in (2.3) and U ∈ Bq(X , d, μ).

Let T be an operator defined as in (1.1) with the kernel K(x, y). In this paper, we always assume that

T is a Calderón-Zygmund operator related to the admissible function ρ, that is, T and its kernel K(x, y)

satisfy the following conditions:

(a) T is a bounded operator on L2(X );

(b) For every l there exists a positive constant Cl such that

|K(x, y)| � Cl

(1 + d(x,y)
ρ(x) )lV (x, y)

; (1.6)

(c) For every l there exists a positive constant Cl such that

|K(x, z)−K(y, z)| � Cl

(1 + d(x,z)
ρ(x) )l

d(x, y)δ

V (x, z)d(x, z)δ
, (1.7)

or

|K(z, x)−K(z, y)| � Cl

(1 + d(x,z)
ρ(x) )l

d(x, y)δ

V (x, z)d(x, z)δ
, (1.8)

whenever d(x, y) < 1
2d(x, z), δ ∈ (0, 1].



Liu Y et al. Sci China Math September 2013 Vol. 56 No. 9 1897

Remark 1.1. It follows from [8] that the above operator T is bounded on Lp(X ) for 1 < p < ∞ and

is of weak type (1, 1).

Following [2], we define the class BMOθ(ρ) of locally integrable function b such that

1

μ(B(x, r))

∫
B(x,r)

|b(y)− bB|dμ(y) � C

(
1 +

r

ρ(x)

)θ

, (1.9)

for all x ∈ X and r > 0, where θ > 0 and bB = 1
μ(B)

∫
B b(y)dμ(y). A norm for b ∈ BMOθ(ρ), denoted by

[b]θ is given by the infimum of the constants satisfying (1.9), after identifying functions that differ upon

a constant. If θ = 0 in (1.9), then BMOθ(ρ) is exactly the John-Nirenberg space BMO(X ). Denote

BMO∞(ρ) =
⋃

θ>0BMOθ(ρ). It is easy to see that BMO ⊂ BMOθ(ρ) ⊂ BMOθ′(ρ) for 0 < θ � θ′.
Hence BMO(X ) ⊂ BMO∞(ρ). When X = Rn and ρ is defined as (1.5), Bongioanni et al. [2] gave some

examples to clarify that the space BMO(Rn) is a subspace of BMO∞(ρ). Moreover, it follows from [39]

that BMOρ(X ) is the dual space of H1
ρ(X ). Then by duality we have BMOρ(X ) ⊆ BMO(X ). Therefore,

BMOρ(X ) is also a subspace of BMO∞(ρ).

Now, we are in a position to state our first result.

Theorem 1.2. Let ρ be an admissible function and b ∈ BMO∞(ρ). Assume that T is an operator

satisfying the above conditions (a), (b) and (c). Then, for 1 < p < ∞,

‖Tbf‖Lp(X ) � C[b]θ‖f‖Lp(X ) (1.10)

for all f ∈ Lp(X ), where θ > 0.

To obtain the endpoint estimate for Tb, we need to introduce the Hardy space H1
ρ(X ) defined by the

grand maximal function associated to ρ (see [39] or Subsection 2.2).

Our second result can be stated as follows.

Theorem 1.3. Let ρ be an admissible function and b ∈ BMOθ(ρ) with θ < δ
k0+1 , where k0 appears in

(2.6) and δ appears in (1.7) and (1.8). Assume that T is an operator satisfying the above conditions (a),

(b) and (c). Then, for any λ > 0,

μ({x ∈ X : |Tbf(x)| > λ}) � C[b]θ
λ

‖f‖H1
ρ(X ), ∀f ∈ H1

ρ(X ). (1.11)

Namely, the commutator Tb is bounded from H1
ρ(X ) into L1

weak(X ).

It is worth mentioning that Theorem 1 in [2] is a special case of Theorem 1.2 in this paper and

Theorem 4.1 in [26] is also a special case of Theorem 1.3 in this paper when X = Rn and U ∈ Bq(R
n, |·|, dx)

with q � n. Similar to the case in [2], we can enlarge the class of functions b with respect to the classical

case because the kernels of T have stronger decay and some continuity.

Compared with the proofs in [2] and [26], the proofs of our main results in this paper become more

complicated on the space of the homogeneous type than on the Euclidean space. In particular, our

results can be applied to handle the Schrödinger type operator on R
n and the sub-Laplace Schrödinger

operators on the stratified Lie group G, while they were not investigated in [2] and [26]. Moreover, our

main results can also be applied to handle divergence form elliptic operators plus a positive potential

satisfying the reverse Hölder inequality when their matrix coefficients and potential satisfy a stronger

smoothness condition. Here, we omit the details for this problem.

This paper is organized as follows. In Section 2, we recall some basic facts for the spaces of the

homogeneous type, the admissible function ρ(x) and the Hardy space H1
ρ . Moreover, we give some

lemmas related to BMO spaces BMOθ(ρ). In Section 3, we prove Theorems 1.2 and 1.3. Section 4 gives

some applications of our main results in this paper.

Throughout this paper, the letter C stands for a constant and is not necessarily the same at each

occurrence. By B1 ∼ B2, we mean that there exists a constant C > 1 such that 1
C � B1

B2
� C. Moreover,

for the ball B = B(x, r), we denotes the ball MB by MB = B(x,Mr), where M is a positive constant.
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2 Preliminary lemmas and propositions

In this section, we first recall the spaces of the homogeneous type in the sense of Coifman and Weiss [8,9]

and RD-spaces in [17].

Given a set X , a function d : X ×X → R+
0 is called a quasi-metric on X if the following conditions are

satisfied:

(i) For every x and y in X , d(x, y) � 0 and d(x, y) = 0 if and only if x = y;

(ii) For every x and y in X , d(x, y) = d(y, x);

(iii) There exists a constant K � 1 such that

d(x, y) � K(d(x, z) + d(z, y)) (2.1)

for every x, y and z in X . We shall say that two quasi-metrics d and d′ on X are equivalent if there exist

two positive constants c1 and c2 such that c1d
′(x, y) � d(x, y) � c2d

′(x, y) for all x, y ∈ X . In particular,

equivalent quasi-metrics induce the same topology on X .

Let μ be a regular Borel measure on the σ-algebra of the subsets of X which contains the balls

B(x, r) = {y : d(x, y) < r}. The triple (X , d, μ) is called a space of the homogeneous type if there exists

a positive constant C1 such that for all x ∈ X and r > 0,

μ(B(x, 2r)) � C1μ(B(x, r)) < ∞. (2.2)

Moreover, the triple (X , d, μ) is called an RD-space if there exist constants 0 < κ � n and C2 � 1 such

that for all x ∈ X , 0 < r < diam(X )
2 and 1 � λ < diam(X )

2r ,

(C2)
−1λκμ(B(x, r)) � μ(B(x, λr)) � C2λ

nμ(B(x, r)), (2.3)

where diam(X ) = supx,y∈X d(x, y) and the parameter n is a measure of the dimension of the space.

The following proposition is due to Maćıas and Segovia [33] (see also Theorem 2.3 in [1]).

Proposition 2.1. Let (X , d, μ) be a space of the homogeneous type. Then there exists a quasi-metric

δ on X which is equivalent to d such that, for x ∈ X , 0 < r � 6K3R and y ∈ Bδ(x,R) = {y ∈ X :

δ(x, y) < R}, we have

μ(Bδ(x,R) ∩Bδ(y, r)) � Cμ(Bδ(y, r)), (2.4)

where C > 0 depends only on the constants of the space. Moreover,

δ(x, y) � d(x, y) � 3K2δ(x, y), (2.5)

for every x and y in X . The balls Bδ(x,R) endowed with the restrictions of the quasi-metric δ and the

measure μ become bounded spaces of the homogeneous type with constants K ′ and C1, satisfying (2.1) and

(2.2) respectively, independent of R > 0 and x ∈ X .

Following the above proposition, we can always assume that the balls B in X endowed with the

restrictions of the quasi-metric d and the measure μ become bounded spaces of the homogeneous type

and the balls B always satisfy (2.4) throughout the paper. In addition, we also assume that X is an

RD-space and μ(X ) = ∞.

In particular, we should point out that the results which we cite in [39] are valid even if d is a quasi-

metric instead of metric, see Section 2 in [39].

2.1 Properties of admissible functions

In this subsection, we recall some properties of admissible functions proved in Subsection 2.1 in [39].

Lemma 2.2. Let ρ be an admissible function. Then

(i) for any C̃ > 0, there exists a positive constant C, depending on C̃ > 0, such that if d(x, y) � C̃ρ(x),

then C−1ρ(y) � ρ(x) � Cρ(y);
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(ii) there exists a positive constant C such that for all x, y ∈ X ,

C−1[ρ(x) + d(x, y)] � ρ(y) + d(x, y) � C[ρ(x) + d(x, y)];

(iii) there exists a positive constant C4 such that for all x, y ∈ X ,

ρ(y) � C4[ρ(x)]
1+k0 [ρ(x) + d(x, y)]−k0 .

Using (ii) and (iii) of Lemma 2.2, we immediately obtain the following corollary.

Corollary 2.3. There exists k0 > 0 such that, for any x and y in X ,

C−1ρ(x)

(
1 +

d(x, y)

ρ(x)

)−k0

� ρ(y) � Cρ(x)

(
1 +

d(x, y)

ρ(x)

) k0
k0+1

. (2.6)

A ball B(x, ρ(x)) is called critical. Due to Lemma 2.3 in [39], we have the following covering lemma

on X .

Proposition 2.4. There exists a sequence of points {xk}∞k=1 in X , such that the family of critical balls

Qk = B(xk, ρ(xk)), k � 1, satisfies

(i)
⋃

k Qk = X ;

(ii) there exists N = N(ρ) such that for every k ∈ N, card{j : 4Qj ∩ 4Qk �= ∅} � N.

2.2 Hardy space H1
ρ(X )

The Hardy space H1
ρ(X ), which will be used to obtain the endpoint estimates of the commutators Tb,

was introduced by Yang and Zhou [39].

For this purpose, we first recall the spaces of test functions G(x, r, β, γ) which play an important role

in the theory of functions on a space of the homogeneous type (cf. [16, 17, 39]).

Definition 2.5. Let x ∈ X , r > 0, β ∈ (0, 1] and γ > 0. A function f on X is said to belong to the

space of test functions, G(x, r, β, γ), if there exists a positive constant Cf such that

(i)

|f(y)| � Cf
1

Vr(x) + V (x, y)

[
r

r + d(x, y)

]γ
for all y ∈ X ;

(ii)

|f(y)− f(y′)| � Cf

[
d(y, y′)

r + d(x, y)

]β
1

Vr(x) + V (x, y)

[
r

r + d(x, y)

]γ

for all y, y′ ∈ X satisfying the fact that d(y, y′) � [r+d(x,y)]
2 . Moreover, for any f ∈ G(x, r, β, γ), its norm

is defined by

‖f‖G(x,r,β,γ) ≡ inf{Cf : (i) and (ii) hold}.
Note that G(x, r, β, γ) is a Banach space. Let ε ∈ (0, 1] and β, γ ∈ (0, ε]. Define the space Gε

0(x, r, β, γ)

to be the completion of the set G(x, r, ε, ε) in G(x, r, β, γ). For f ∈ Gε
0(x, r, β, γ), define ‖f‖Gε

0(x,r,β,γ)
=

‖f‖G(x,r,β,γ). Let (Gε
0(x, r, β, γ))

′ be the set of all continuous linear functionals on Gε
0(x, r, β, γ). Through-

out this section, we fix x1 ∈ X and write G(β, γ) = G(x1, 1, β, γ) and (Gε
0(β, γ))

′ = (Gε
0(x1, 1, β, γ))

′.

Definition 2.6. Let ε1 ∈ (0, 1], ε2 > 0, ε ∈ (0,min{ε1, ε2}) and ρ be an admissible function. For any

β, γ ∈ (0, ε), f ∈ (G(β, γ))′ and x ∈ X , define the grand maximal function G
(ε,β,γ)
ρ (f) associated to ρ by

G(ε,β,γ)
ρ (f)(x) ≡ sup{|〈f, ϕ〉| : ϕ ∈ Gε

0(β, γ), ‖ϕ‖G(x,r,β,γ) � 1 for some r ∈ (0, ρ(x))}.

Definition 2.7. Let ε ∈ (0, 1], β, γ ∈ (0, ε) and ρ be an admissible function. The Hardy space H1
ρ(X )

associated to ρ is defined by

H1
ρ(X ) ≡ {f ∈ (G(β, γ))′ : ‖f‖H1

ρ(X ) ≡ ‖G(ε,β,γ)
ρ (f)‖L1(X ) < ∞}.
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Definition 2.8. Let 1 < q � ∞. A measurable function a is called a (1, q)ρ-atom associated to the

ball B(x, r) if r < ρ(x) and the following conditions hold:

(i) supp a ⊂ B(x, r) for some x ∈ X and r > 0,

(ii) ‖a‖Lq(X ) � μ(B(x, r))
1
q−1,

(iii) when r < ρ(x)
4 ,

∫
X a(x)dμ(x) = 0.

Definition 2.9. Let ε ∈ (0, 1], β, γ ∈ (0, ε) and q ∈ (1,∞]. The space H1,q
ρ (X ) is defined to be the

set of all f =
∑

j∈N
λjaj in (Gε

0(β, γ))
′, where {aj}j∈N are (1, q)ρ-atoms and {λj}j∈N ⊂ C such that∑

j∈N
|λj | < ∞. For any f ∈ H1,q

ρ (X ), define ‖f‖H1,q
ρ (X ) ≡ inf{∑j∈N

|λj |}, where the infimum is taken

over all the above decompositions of f .

Furthermore, Yang and Zhou [39] gave the atomic decomposition characterization of H1
ρ(X ) which

plays an important role in the proof of our second result.

Proposition 2.10. Let ρ be an admissible function and q ∈ (1,∞]. Then H1
ρ(X ) = H1,q

ρ (X ) with

equivalent norms.

2.3 Some lemmas related to BMO spaces BMOθ(ρ)

Similar to the proofs of Proposition 3 and Lemma 2 in [2], we have the following proposition and lemmas.

Proposition 2.11. Let θ > 0 and 1 � s < ∞. If b ∈ BMOθ(ρ), then(
1

μ(B(x, r))

∫
B(x,r)

|b(y)− bB|sdμ(y)
) 1

s

� C[b]θ

(
1 +

r

ρ(x)

)θ′

, (2.7)

for all B = B(x, r), with x ∈ X and r > 0, where θ′ = (1 + k0)θ and k0 is the constant appearing in (iii)

in Lemma 2.2.

Proof. From the John-Nirenberg inequality on a space of the homogeneous type (see [3] or [5]), given

a ball B0 and g ∈ BMO(B0) we obtain that, for every 1 � s < ∞,(
1

μ(B)

∫
B

|g − gB|sdμ(y)
) 1

s

� C‖g‖BMO(B0), (2.8)

for every ball B ⊆ B0, where the constant C is independent of the ball B0. Therefore, to prove (2.7) we

only need to show the claim: if R � 1 and Q is a critical ball, then we have b ∈ BMO(RQ) and

‖b‖BMO(RQ) � C[b]θ(1 +R)(k0+1)θ. (2.9)

In fact, if (2.9) holds, by using (2.8) we conclude that for any ball B ⊆ RQ,(
1

μ(B)

∫
B

|b− bB|sdμ(y)
) 1

s

� C[b]θ(1 +R)(k0+1)θ. (2.10)

Let B = B(x, r) and Q = B(x, ρ(x)), with x ∈ X and r > 0. If r � ρ(x), we choose R = 1 and apply

(2.10) to get (2.7). In the case r > ρ(x), B = r
ρ(x)Q. Then we apply (2.10) with R = r

ρ(x) which yields

(2.7).

It remains to prove the claim. Let B = B(z, r) ⊂ RQ, with z ∈ X and r > 0. Following (2.6), we have

ρ(x)(1 +R−k0) � ρ(x)

(
1 +

d(z, x)

ρ(x)

)
� Cρ(z).

Then, since r < Rρ(x),
r

ρ(z)
� C

r

ρ(x)
(1 +R)k0 � C(1 +R)k0+1.

From the fact that b ∈ BMOθ(ρ) it follows that

1

μ(B)

∫
B

|b− bB|dμ(y) � C[b]θ(1 +R)(k0+1)θ.
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Lemma 2.12. Let b ∈ BMOθ(ρ), B = B(x0, r) and s � 1. Then

(
1

μ(2kB)

∫
2kB

|b(y)− bB|sdμ(y)
) 1

s

� C[b]θk

(
1 +

2kr

ρ(x0)

)θ′

, (2.11)

for all k ∈ N, with θ′ as in (2.7).

Proof. Due to Proposition 2.11, we have

(
1

μ(2kB)

∫
2kB

|b(y)− bB|sdμ(y)
) 1

s

�
(

1

μ(2kB)

∫
2kB

|b(y)− b2kB|sdμ(y)
) 1

s

+

k∑
j=1

|b2jB − b2j−1B|

� C[b]θ

k∑
j=1

(
1 +

2jr

ρ(x0)

)θ′

� C[b]θk

(
1 +

2kr

ρ(x0)

)θ′

.

We borrow the idea from [2] and define the following maximal function on the space of the homogeneous

type X . Given α > 0, we define the following maximal functions for g ∈ L1
loc(X ) and x ∈ X ,

Mρ,αg(x) = sup
x∈B∈Bρ,α

1

μ(B)

∫
B

|g|,

M 

ρ,αg(x) = sup

x∈B∈Bρ,α

1

μ(B)

∫
B

|g − gB|,

where Bρ,α = {B(y, r) : y ∈ X , r � αρ(y)}.
Also, given a ball Q ⊂ X , for g ∈ L1

loc(Q) and x ∈ Q, we define

MQg(x) = sup
x∈B∈F(Q)

1

μ(B ∩Q)

∫
B

⋂
Q

|g|, (2.12)

and

M 

Qg(x) = sup

x∈B∈F(Q)

1

μ(B ∩Q)

∫
B

⋂
Q

|g − gB|, (2.13)

where F(Q) = {B(y, r) : y ∈ Q, r > 0}.
Lemma 2.13. For 1 < p < ∞, there exist β and γ such that if {Qk}∞k=1 is a sequence of balls as in

Proposition 2.4, then∫
X
|Mρ,β(g)|p � C

(∫
X
|M 


ρ,γ(g)|p +
∑
k

|Qk|
(

1

μ(Qk)

∫
2Qk

|g|
)p)

, (2.14)

for all g ∈ L1
loc(X ).

Proof. Let Q = B(x0, ρ(x0)) be a critical ball and x, y ∈ Q. Then by (2.6) we have

ρ(y) � C0ρ(x), (2.15)

where the constant C0 depends on the constants C and k0 in (2.6).

Hence, for any x ∈ Q,

Mρ,βg(x) � M2KQ(gχ2KQ)(x), (2.16)

with β = 1
2C2

0
and K is the constant appearing in (2.1).

In fact, for any x ∈ Q and x ∈ B(y, r) with r � βρ(y), we have

d(y, x0) � K(d(y, x) + d(x, x0)) � K(βρ(y) + ρ(x0)) � K(βC0ρ(x) + ρ(x0)) � 2Kρ(x0).
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Therefore, B(y, r) ⊂ F(2KQ) = {B(z, r) : z ∈ 2KQ, r > 0}. Hence, (2.16) holds true.

Also, for x ∈ 2Q,

M 

2KQ(gχ2KQ)(x) � CM 


ρ,12K4(g)(x). (2.17)

In fact, given a ball B = B(y, r) ⊂ F(2KQ), when r > 12K4ρ(x0), it is easy to see that

μ(2KQ) = μ(B ∩ 2KQ).

In other words, B ∩ 2KQ has measure comparable to 2KQ which belongs to Bρ,12K4 . In addition, when

0 < r � 12K4ρ(x0), by using Proposition 2.1, we have

μ(B) � μ(B ∩ 2KQ) � Cμ(B),

where the constant C depends only on the constants of the space X . Hence, μ(B ∩ 2KQ) is comparable

with μ(B). Clearly, B ∈ Bρ,12K4 . All in all, (2.17) holds.

By the decomposition of X in Proposition 2.4, Proposition 3.4 in [35], (2.16) and (2.17), and the fact

that the balls 2Qk are also spaces of the homogeneous type, we obtain∫
X
|Mρ,β(g)|pdμ(y) �

∑
k

∫
Qk

|Mρ,β(g)|pdμ(y)

�
∑
k

∫
Qk

|M2KQk
(gχ2KQk

)|pdμ(y)

� C
∑
k

∫
2Qk

|M 

2KQk

(gχ2KQk
)|pdμ(y) + C

∑
k

μ(2Qk)

(
1

μ(2Qk)

∫
2Qk

|g|
)p

� C
∑
k

∫
2Qk

|M 

ρ,12K4(g)|pdμ(y) + C

∑
k

μ(2Qk)

(
1

μ(2Qk)

∫
2Qk

|g|
)p

� Cκ,n

∫
X
|M 


ρ,12K4(g)|pdμ(y) + Cκ,n

∑
k

μ(Qk)

(
1

μ(Qk)

∫
2Qk

|g|
)p

,

where we have used the finite overlapping property given by Proposition 2.4 in the last inequality and

the constant Cκ,n depending only on the κ, n in (2.3).

3 Proofs of the main results

Firstly, in order to prove Theorem 1.2, we need the following lemmas. As usual, we denote by M the

Hardy-Littlewood maximal function and for f ∈ L1
loc(X ) we denote by Ms the s-maximal function which

is defined as

Msf(x) = sup
r>0

(
1

μ(B(x, r))

∫
B(x,r)

|f(y)|sdμ(y)
) 1

s

.

Lemma 3.1. Let b ∈ BMOθ(ρ). Assume that T is an operator satisfying the above conditions (a),

(b) and (c) in Section 1. Then there exists a constant C such that

1

μ(Q)

∫
Q

|Tbf(y)|dμ(y) � C[b]θ inf
y∈Q

Msf(y),

for all f ∈ Ls
loc(X ) for s > 1 and every ball Q = B(x0, ρ(x0)).

Proof. Let f ∈ Ls(X ) and Q = B(x0, ρ(x0)). Writing Tbf as

Tbf = (b− bQ)Tf − T (f(b− bQ)). (3.1)

Via Hölder’s inequality and Lemma 2.12, we get

1

μ(Q)

∫
Q

|(b− bQ)Tf(y)|dμ(y) �
(

1

μ(Q)

∫
Q

|(b− bQ)|s′dμ(y)
) 1

s′
(

1

μ(Q)

∫
Q

|Tf(y)|sdμ(y)
) 1

s
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� C[b]θ

(
1

μ(Q)

∫
Q

|Tf(y)|sdμ(y)
) 1

s

.

If we write f = f1 + f2 with f1 = fχ2KQ, then

(
1

μ(Q)

∫
Q

|Tf1(y)|sdμ(y)
) 1

s

� C

(
1

μ(Q)

∫
2Q

|f(y)|sdμ(y)
) 1

s

� C inf
y∈Q

Msf(y).

For x ∈ Q, note that ρ(x) ∼ ρ(x0) follows from (i) of Lemma 2.2. And it is easy to see that d(x, z) ∼
d(x0, z) when d(x0, z) � 2ρ(x0). Since d(x, x0) � ρ(x0), there exist constants K1 and K2 such that

μ(B(x0, d(x0, z))) � μ(B(x,K1d(x, z))) � Kn
1 C2μ(B(x, d(x, z))),

and

μ(B(x, d(x, z))) � μ(B(x0,K2d(x0, z))) � Kn
2 C2μ(B(x0, d(x0, z))).

Hence,

V (x0, z) = μ(B(x0, d(x0, z))) ∼ μ(B(x, d(x, z))) = V (x, z).

By using the estimate (1.6) and Hölder’s inequality, we have

|Tf2(x)| =
∣∣∣∣
∫
d(x0,z)>2Kρ(x0)

K(x, z)f(z)dμ(z)

∣∣∣∣
� C

∫
d(x0,z)>2Kρ(x0)

|f(z)|
(1 + d(x,z)

ρ(x) )lV (x, z)
dμ(z)

� C
∑
k�1

2−lk

μ(B(x0, 2kKρ(x0)))

∫
2kKρ(x0)�d(x0,z)<2k+1Kρ(x0)

|f(z)|dμ(z)

� C
∑
k�1

2−lk

μ(B(x0, 2kKρ(x0)))

∫
d(x0,z)<2k+1Kρ(x0)

|f(z)|dμ(z)

� C
∑
k�1

2−lk

(
1

μ(B(x0, 2kKρ(x0)))

∫
d(x0,z)<2k+1Kρ(x0)

|f(z)|sdμ(z)
) 1

s

� C inf
y∈Q

Msf(y).

To deal with the second term of (3.1), we split again f = f1 + f2 with f1 = fχ2KQ.

By using Hölder’s inequality and boundedness of T on Lp(X ), where p < s,

1

μ(Q)

∫
Q

|T ((b− bQ)f1)(y)|dμ(y) �
(

1

μ(Q)

∫
Q

|T ((b− bQ)f1)(y)|pdμ(y)
) 1

p

�
(

1

μ(Q)

∫
2Q

|((b − bQ)f)(y)|pdμ(y)
) 1

p

�
(

1

μ(Q)

∫
Q

|(b− bQ)|ps̃dμ(y)
) 1

ps̃
(

1

μ(Q)

∫
2Q

|f(y)|sdμ(y)
) 1

s

� C[b]θ inf
y∈Q

Msf(y),

where 1
s̃ + p

s = 1, ps̃ > 1 and we have used Proposition 2.11 in the last inequality.

For the remaining term, via the estimate (1.6), Hölder’s inequality, and Lemma 2.12, we have

|T [f2(b− bQ)](x)| =
∣∣∣∣
∫
d(x0,z)>2ρ(x0)

K(x, z)[f2(b− bQ)](z)dμ(z)

∣∣∣∣
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� C

∫
d(x0,z)>2ρ(x0)

|[f2(b− bQ)](z)|
(1 + d(x,z)

ρ(x) )lV (x, z)
dμ(z)

� C
∑
k�1

2−lk

μ(B(x0, 2kρ(x0)))

∫
2kρ(x0)�d(x0,z)<2k+1ρ(x0)

|[f2(b− bQ)](z)|dμ(z)

� C
∑
k�1

2−lk

μ(B(x0, 2kρ(x0)))

∫
d(x0,z)<2k+1ρ(x0)

|[f2(b− bQ)](z)|dμ(z)

� C
∑
k�1

2−lk

(
1

μ(B(x0, 2kρ(x0)))

∫
d(x0,z)<2k+1ρ(x0)

|f(z)|sdμ(z)
) 1

s

×
(

1

μ(B(x0, 2kρ(x0)))

∫
d(x0,z)<2k+1ρ(x0)

|b− bQ|s′dμ(z)
) 1

s′

� C
∑
k�1

2−lk+θ′kk[b]θ inf
y∈Q

Msf(y)

� C inf
y∈Q

Msf(y),

where 1
s + 1

s′ = 1 and l is large enough. Therefore, this completes the proof.

Remark 3.2. Similarly, we can conclude that the above lemma also holds if the critical ball Q is

replaced by 2Q.

Lemma 3.3. Let b ∈ BMOθ(ρ). Assume that the kernel K(x, y) of T satisfies the estimate (1.7).

Then there exists a constant C such that∫
(2B)c

|K(x, z)−K(y, z)||b(z)− bB||f(z)|dμ(z) � C[b]θ inf
y∈B

Msf(y),

for all f ∈ Ls
loc(X ) for s > 1 and x, y ∈ B = B(x0, r), with r < γρ(x0), where γ � 1.

Proof. Denote Q = B(x0, γρ(x0)). Note that ρ(x) ∼ ρ(x0) and d(x, z) ∼ d(x0, z). Similarly,

V (x0, z) = μ(B(x0, d(x0, z))) ∼ μ(B(x, d(x, z))) = V (x, z).

By using (1.7), we have∫
(2B)c

|K(x, z)−K(y, z)||b(z)− bB||f(z)|dμ(z)

� Crδ
∫
Q\2B

|f(z)||b(z)− bB|
V (x0, z)d(x0, z)δ

dμ(z) + Crδρ(x0)
l

∫
Qc

|f(z)||b(z)− bB|
V (x0, z)d(x0, z)δ+l

dμ(z)

= I1 + I2.

For I1, by Hölder’s inequality and Lemma 2.12, we have

I1 �
j0∑
j=2

2−jδ

μ(B(x0, 2jr))

∫
2jB

|f(z)||b(z)− bB|dμ(z)

� C

j0∑
j=2

2−jδj[b]θ

(
1 +

2jr

ρ(x0)

)θ′

inf
y∈B

Msf(y)

� C

∞∑
j=2

2−jδj[b]θ inf
y∈B

Msf(y)

� C[b]θ inf
y∈B

Msf(y),

where j0 is the least integer such that 2j0 � γρ(x0)
r .
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To deal with I2, we use Lemma 2.12 and choose l > θ′ to derive

I2 � Cρ(x0)
l

rl

∞∑
j=j0−1

2−j(δ+l)

μ(B(x0, 2jr))

∫
2jB

|f(z)||b(z)− bB|dμ(z)

� C

2

ρ(x0)
l

rl

∞∑
j=j0

2−j(δ+l)j[b]θ

(
1 +

2jr

ρ(x0)

)θ′

inf
y∈B

Msf(y)

� C

∞∑
j=j0

j2−jδ

(
ρ(x0)

2jr

)l−θ′

[b]θ inf
y∈B

Msf(y)

� C[b]θ inf
y∈B

Msf(y),

where we have used the fact that ρ(x0)
2jr � 1

γ when j � j0.

Proof of Theorem 1.2. We start with a function f ∈ Lp(X ) for 1 < p < ∞. Let 1 < s < p. By Lemmas

2.13 and 3.1 and Remark 3.2, we have

‖Tbf‖pLp �
∫
X
|Mρ,β(Tbf)(x)|pdμ(x)

� C

∫
X
|M 


ρ,γ(Tbf)(x)|pdμ(x) + C
∑
k

|Qk|
(

1

μ(Qk)

∫
2Qk

|Tbf(x)|dμ(x)
)p

� C

∫
X
|M 


ρ,γ(Tbf)(x)|pdμ(x) + C[b]pθ

∑
k

∫
2Qk

|Msf(x)|pdμ(x)

� C

∫
X
|M 


ρ,γ(Tbf)(x)|pdμ(x) + C[b]pθ‖f‖pLp,

where we have used the finite overlapping property given by Proposition 2.4 and the boundedness of Ms

in Lp(X ) for s < p.

Next, we consider the term
∫
X |M 


ρ,γ(Tbf)(x)|pdμ(x). Our goal is to find a pointwise estimate of

M 

ρ,γ(Tbf)(x). Let x ∈ X and B = B(x0, r), with r < γρ(x0) such that x ∈ B. If f = f1 + f2, with

f1 = fχ2KB, then we write

Tbf = (b− bB)Tf − T (f1(b− bB))− T (f2(b− bB)). (3.2)

Therefore, we need to control the mean oscillation on B of each term that we call J1, J2 and J3. By

Hölder’s inequality and Proposition 2.11, we obtain

J1 � 2

μ(B)

∫
B

|(b− bB)Tf(x)|dμ(x)

� C

(
2

μ(B)

∫
B

|b− bB|s′dμ(x)
) 1

s′
(

1

μ(B)

∫
B

|Tf(x)|sdμ(x)
) 1

s

� C[b]θMs(Tf)(x)

since r
ρ(x0)

< γ.

To estimate J2, let 1 < s̃ < s. Then,

J2 � 2

μ(B)

∫
B

|T [(b− bB)f1](x)|dμ(x)

� C

(
1

μ(B)

∫
B

|T [(b− bB)f1](x)|s̃dμ(x)
) 1

s̃

� C

(
1

μ(B)

∫
B

|(b− bB)f1(x)|s̃dμ(x)
) 1

s̃
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� C

(
1

μ(B)

∫
B

|b− bB|vdμ(x)
) 1

v
(

1

μ(B)

∫
B

|f(x)|sdμ(x)
) 1

s

� C[b]θMs(f)(x),

where v = ss̃
s−s̃ .

For J3, by Lemma 3.3 we obtain

J3 � C
1

μ(B)2

∫
B

∫
B

|T (f2(b− bB))(u)− T (f2(b− bB))(y)dμ(u)dμ(y)

� C
1

μ(B)2

∫
B

∫
B

∫
(2B)c

|K(u, z)−K(y, z)||b(z)− bB||f(z)|dμ(z)dμ(u)dμ(y)

� C[b]θMsf(x).

Therefore,

|M 

ρ,γ(Tbf)(x)| � C[b]θ(MsTf(x) +Msf(x)),

which gives the desired result.

Proof of Theorem 1.3. For f ∈ H1
ρ(X ), we can write f =

∑∞
j=−∞ λjaj , where each aj is a (1, q)ρ-atom

and
∑∞

j=−∞ |λj | � 2‖f‖H1
ρ
. Suppose that supp aj ⊆ Bj = B(xj , rj) with rj < ρ(xj). Write

Tbf(x) =
∞∑

j=−∞
λj(b(x) − bBj )Taj(x)χ8Bj (x) +

∑
j:rj� ρ(xj )

4

λj(b(x) − bBj )Taj(x)χ(8Bj)c(x)

+
∑

j:rj<
ρ(xj )

4

λj(b(x) − bBj )Taj(x)χ(8Bj)c(x) − T

( ∞∑
j=−∞

λj(b− bBj )aj

)
(x)

= A1(x) +A2(x) +A3(x) +A4(x).

Using Hölder’s inequality, (Lq, Lq)-boundedness of T and Proposition 2.11,

‖(b(x)− bB)Taj(x)χ8Bj (x)‖L1(X ) �
(∫

8Bj

|b(x) − bB|q′dμ(x)
) 1

q′
‖Taj‖Lq

�
(∫

8Bj

|b(x) − bB|q′dμ(x)
) 1

q′
‖aj‖Lq

�
(

1

μ(Bj)

∫
8Bj

|b(x)− bB|q′dμ(x)
) 1

q′

� C[b]θ,

since rj < ρ(xj).

When considering the term A2(x), we note that ρ(xj) > rj � ρ(xj)
4 . Then

‖(b(x)− bBj )Taj(x)χ(8Bj )c(x)‖L1(X )

� C

∫
Bj

|aj(y)|dμ(y)
{∫

d(x,xj)�8rj

|K(x, y)||b(x) − bBj |dμ(x)
}
.

Note that d(x, xj) ∼ d(x, y) and

(
1 +

d(x, y)

ρ(x)

)
� C

(
1 +

d(x, xj)

ρ(x)

)
� C

(
1 +

d(x, xj)

ρ(xj)

) 1
k0+1

.

Moreover, V (x, y) ∼ V (x, xj). Then by Lemma 2.12 and the estimate (1.6),∫
d(x,xj)�8rj

|K(x, y)||b(x)− bBj |dμ(x)
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� C
∞∑
k=1

∫
2k+3rj�d(x,xj)<2k+4rj

Cl(
1 + d(x, xj) ρ(xj)−1

) l
l0+1

1

V (x, xj)
|b(x)− bBj |dμ(x)

� C

∞∑
k=1

2
− (k+1)l

l0+1
1

V (x, 2k+3rj)

∫
d(x,xj)<2k+4rj

|b− bBj |dμ(x)

� C
∞∑
k=1

2−
(k+1)l
l0+1

C22
n

V (x, 2k+4rj)

∫
d(x,xj)<2k+4rj

|b− bBj |dμ(x)

� C

∞∑
k=1

2−
(k+1)l
l0+1 [b]θk

(
1 +

2k+4rj
ρ(xj)

)(k0+1)θ

� C[b]θ,

where l is large enough. Therefore,

‖(b(x)− bBj )Taj(x)χ(8Bj)c(x)‖L1(X ) � C[b]θ.

For A3, it follows from the vanishing condition of aj and (1.8) that

‖(b(x)− bBj )Taj(x)χ(8Bj )c(x)‖L1(X )

� C

∫
Bj

|aj(y)|dμ(y)
{∫

d(x,xj)�8rj

|K(x, y)−K(x, xj)||b(x) − bBj |dμ(x)
}

� C

∫
Bj

|aj(y)|dμ(y)
∞∑
k=1

∫
2k+3rj�d(x,xj)<2k+4rj

Cl

(1 + d(x, xj) ρ(xj)−1)
l

l0+1

× d(xj , y)
δ|b(x)− bBj |

V (x, xj)d(x, xj)δ
dμ(x)

� C
∞∑
k=1

2−(k+3)δ 1

V (x, 2k+3rj)

∫
d(x,xj)<2k+4rj

|b− bBj |dμ(x)

� C

∞∑
k=1

2−(k+3)δ C22
n

V (x, 2k+4rj)

∫
d(x,xj)<2k+4rj

|b− bBj |dμ(x)

� C

∞∑
k=1

2−(k+3)δ[b]θk

(
1 +

2k+4rj
ρ(xj)

)(k0+1)θ

� C

∞∑
k=1

2−(k+3)δ+(k+2)(k0+1)θ[b]θk

� C[b]θ,

where we have used the fact δ > (k0 + 1)θ.

Thus, we obtain∣∣∣∣
{
x ∈ X : |Ai(x)| > λ

4

}∣∣∣∣ � C

λ
‖Ai(x)‖L1 � C[b]θ

λ

∞∑
j=−∞

|λj |, i = 1, 2, 3.

Note that

‖(b− bBj )aj‖L1 �
(∫

Bj

|b(x)− bB|q′dμ(x)
) 1

q′
‖aj‖Lq

�
(

1

μ(Bj)

∫
Bj

|b(x)− bB|q′dμ(x)
) 1

q′

� C[b]θ

(
1 +

rj
ρ(xj)

)θ′
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� C[b]θ,

where rj < ρ(xj)

By the weak (1, 1)-boundedness of T , we get

∣∣∣∣
{
x ∈ R

n : |A4(x)| > λ

4

}∣∣∣∣ � C

λ

∥∥∥∥
∞∑

j=−∞
λj(b− b(xj)aj

∥∥∥∥
L1

� C[b]θ
λ

∞∑
j=−∞

|λj |.

Therefore,

∣∣∣∣
{
x ∈ R

n : |[b, T ]f(x)| > λ

4

}∣∣∣∣ � C

4∑
i=1

∣∣∣∣
{
x ∈ R

n : |Ai(x)| > λ

4

}∣∣∣∣ � C[b]θ
λ

∞∑
j=−∞

|λj | � C[b]θ
λ

‖f‖H1
ρ
.

This completes the proof of Theorem 1.3.

4 Some applications

In this section, we present several applications of Theorems 1.2 and 1.3.

4.1 Schrödinger operators and Schrödinger type operators on R
n

Let n � 3 and R
n be the n-dimensional Euclidean space endowed with the Euclidean norm | · | and the

Lebesgue measure dx. The metric d induced by the Euclidean norm | · | is given by d(x, y) = |x − y| for
any x, y ∈ Rn. Clearly, (Rn, | · |, dx) is an RD-space. Denote the Laplace operator

∑n
j=1

∂2

∂x2
j
on Rn by Δ.

It is easy to check that the balls B in R
n endowed with the restrictions of the metric d and the Lebesgue

measure dx become bounded spaces of the homogeneous type. Hence, Rn satisfies the assumption on the

RD-space X .

Let q > n
2 and U ∈ Bq(R

n, | · |, dx), where Bq(R
n, | · |, dx) is the reverse Hölder class as in Section 1. And

let L1 = −Δ+ U be the Schrödinger operator and L2 = (−Δ)2 + U2 be the Schrödinger type operator.

At this time, the Hardy space H1,∞
ρ (X ) is exactly the space H1

L1
(Rn) established by Dziubański and

Zienkiewicz in [13] and H1
L1
(Rn) = H1

L2
(Rn) (see Theorem 1.1 in [6]), where ρ defined in (1.5) is an

admissible function.

When X = Rn, we will give three typical examples of Calderón-Zygmund operators T related to the

admissible functions though we can give many other examples of T .

Case 1. Let T = Liγ
1 , γ ∈ R. Following Theorem 0.4 in [36], we know that Liγ

1 is bounded on Lp(Rn)

for 1 < p < ∞. Also, the kernel K(x, y) of Liγ
1 satisfies (1.6) of Condition (b) in Section 1 by using

(4.3) in [36]. We conclude from Theorem 2.7, (4.2) and the proof of Theorem 0.4 in [36] that the kernel

K(x, y) of Liγ
1 satisfies (1.7) and (1.8) of Condition (c) in Section 1. Therefore, the operator Liγ

1 satisfies

the assumptions of Theorems 1.2 and 1.3.

Case 2. Assume q � n. Let T = ∇L− 1
2

1 . Following Theorem 0.8 in [36], we know that ∇L− 1
2

1 is

bounded on Lp(Rn) for 1 < p < ∞. Also, the kernel K(x, y) of ∇L− 1
2

1 satisfies (1.6) of Condition (b)

in Section 1 by using (6.5) in [36]. Finally, we conclude from Theorem 2.7, Remark 4.9, (5.3) and the

proof of Theorem 0.8 in [36] that the kernel K(x, y) of ∇L− 1
2

1 satisfies (1.7) and (1.8) of Condition (c) in

Section 1. Therefore, the operator ∇L− 1
2

1 satisfies the assumptions of Theorems 1.2 and 1.3.

Case 3. Assume U ∈ B2n(R
n, | · |, dx) or U ∈ Bn

2
(Rn, | · |, dx) and there exists a constant C such that

U(x) � Cρ(x)−2. Let T = ∇2L− 1
2

2 . Following Theorem 3 in [30], we conclude that ∇2L− 1
2

2 is bounded

on Lp(Rn) for 1 < p < ∞. Also, the kernels K(x, y) of ∇2L− 1
2

2 satisfy (1.6) of Condition (b) and (1.7)

and (1.8) of Condition (c) in Section 1 by using Theorems 5 and 6 and Equality (9) in [30]. Therefore,

the operator ∇2L− 1
2

2 satisfies the assumptions of Theorems 1.2 and 1.3.
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4.2 Sub-Laplace Schrödinger operators on stratified Lie groups

Let G be a stratified Lie group and g be its Lie algebra. Namely, it is nilpotent, connected and simply

connected, and its Lie algebra g admits a vector space decomposition g = V1 ⊕ · · · ⊕ Vm such that

[V1, Vk] = Vk+1 for 1 � k < m and [V1, Vm] = 0. Let X = {X1, . . . , Xd1} be left invariant fields on

G satisfying the Hörmander condition. Namely, X , together with their commutators of order � m,

generates the tangent space of G at each point of G. And assume that G is a Lie group with underlying

manifold R
n for some positive integer n. G inherits dilations from g: if g ∈ G and r > 0, we write

rx = (rd1x
1
, . . . , rdnx

n
), (4.1)

where 1 � d1 � · · · � dn. The map x → rx is an automorphism of G.

Denote by 0 the unit of G and let ◦ be the group law of G. The left (or right) Haar measure on G is

simply dx = dx
1
· · · dx

n
, which is the Lebesgue measure on g. For any measurable set E ⊆ G, denote by

|E| the measure of E. Let dc be the Carnot-Carathéodory (control) metric on G associated to X . The

ball of radius δ0 centered at x is written by

B(x, δ0) = {y ∈ G : dc(x, y) < δ0}.

It follows from Section 5.4 in [39] that (G, dc, μ) is an RD-space.

We fix a homogeneous norm function | · | on G which is smooth away from 0. Thus, |rx| = r|x| for
all x ∈ G, r > 0, |x−1| = |x| for all x ∈ G, and |x| > 0 if x �= 0. The homogeneous norm induces a

quasi-metric d which is defined by d(x, y) := |x−1y|. The Carnot-Caratheodory metric dc is equivalent to

the quasi-metric d. In fact, from the results of Nagel et al. in [34], we have that there exists a constant

a = a(G) > 1 such that for any x, y ∈ G,

a−1dc(x, y) � d(x, y) � adc(x, y). (4.2)

An important feature of both metrics d and dc is that these distances and thus the associated metric

balls are left-invariant. Hence, |B(x, δ0)| ∼ δQ0 for any δ0 > 0.

It follows from Lemma 4.2 in [4] that the balls B in G endowed with the restrictions of the metric d

and the Lebesgue measure dx become bounded spaces of the homogeneous type. Hence, G satisfies the

assumption on the RD-space X in this paper.

In this section, we always assume q � Q
2 and U ∈ Bq(G, dc, μ), where Bq(G, dc, μ) is the reverse Holder

class as in Section 1 and the number Q =
∑m

j=1 j(dimVj) is called the homogeneous dimension of G. At

this time ρ defined in (1.5) is an admissible function.

The sub-Laplacian is given by ΔG = −∑d1

j=1 X
2
j . The gradient operator ∇G is denoted by ∇G =

(X1, . . . , Xd1). Note that ΔG = ∇G · ∇G. Let L1 = ΔG + U be the Schrödinger operator. At this time,

the Hardy space H1,∞
ρ (X ) is exactly the space H1

L1
(G) established by Lin et al. in [28]. Next, we will give

one typical example of Calderón-Zygmund operator T related to the admissible functions when X = G.

Case 1. Let q � Q. Let Γ(x, y, λ) be the fundamental solution of ΔG + U + λ with λ ∈ [0,∞).

Let T = ∇GL− 1
2

1 , where

∇GL− 1
2

1 f(x) =

∫
G

K(x, y)f(y)dy, (4.3)

and

K(x, y) =
1

π

∫ ∞

0

λ− 1
2∇G,xΓ(x, y, λ)dλ. (4.4)

Next, we only need to show that T = ∇GL− 1
2

1 satisfies Conditions (a), (b) and (c).

We conclude from Theorem C in [25] that∇GL− 1
2

1 is bounded on L2(G), that is, it satisfies Condition (a).

Using (5.2) in [25] and (4.4), we conclude that the kernel K(x, y) of ∇GL− 1
2

1 satisfies (1.6), that is,

|K(x, y)| � C

(1 + dc(x,y)
ρ(x) )ldc(x, y)Q

.
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We give the following lemma before we prove that the kernel K(x, y) of ∇GL− 1
2

1 satisfies Condition (c)

in Section 1.

Lemma 4.1. If U ∈ Bq(G, dc, μ) for some q � Q and ΔGu+ (U + λ)u = 0 in B0(x0, 2R), then(∫
B(x0,R)

|∇2
Gu(x)|q

) 1
q

� CR
Q
q −2(1 +Rρ(x0)

−1))l0 sup
B(x0,2R)

|u(x)|.

Proof. Lemma 3.2 in [25] implies the existence of the following cut-off function.

Let φ ∈ C∞
c (B(x0, 2R)) such that φ ≡ 1 on B(x0,

R
C2 ), 0 < φ � 1, |∇Gφ| � CR−1 and |∇2

G
φ| � CR−2,

where C � 1 is a constant in Lemma 3.2 in [25]. Then

u(x)φ(x) =

∫
G

Γ0(x, y, λ)(ΔG + λ)(uφ)(y) dy

=

∫
G

Γ0(x, y, λ)(U(y)u(y)φ(y) + 2∇Gu(y) · ∇Gφ(y) + u(y)ΔGφ(y)) dy

=

∫
G

Γ0(x, y, λ)(U(y)u(y)φ(y) + u(y)ΔGφ(y)) dy

+ 2

∫
G

u(y)∇G,yΓ0(x, y, λ) · ∇Gφ(y)dy. (4.5)

By using Theorem 4.1 in [25], we immediately obtain that ΔG(ΔG + λ)−1 is bounded on Lp(G) for all p,

1 < p < ∞ and ∇2
G
(ΔG)

−1 is a Calderón–Zygmund operator. Therefore, ∇2
G
(−ΔG + λ)−1 is bounded on

Lp(G) for all p, 1 < p < ∞. Using (4.5) and (3.9) and (3.10) in [25] we have, for x ∈ B(x0, R),

|∇2
Gu(x)| � |∇2

G

(
ΔG + λ

)−1
(Uuφ)(x)| + C

RQ+2

∫
B(x0,2R)

|u(y)| dy.

Therefore (∫
B(x0,R)

|∇2
Gu(x)|q dx

) 1
q

� C sup
B(x0,2R)

|u(x)|
((∫

B(x0,2R)

U(x)q dx

) 1
q

+R
Q
q −2

)

� CR
Q
q −2 sup

B(x0,2R)

|u(x)|
(

1

RQ−2

∫
B(x0,2R)

U(x) dx + 1

)

� CR
Q
q −2(1 +Rρ(x0)

−1)l0 sup
B(x0,2R)

|u(x)|,

where we have used Lemma 2.8 in [25].

In a similar manner to prove Lemma 4.1 via the fractional integral theorem on the stratified Lie group,

we have the following corollary.

Corollary 4.2. If U ∈ Bq(G, dc, μ) for some Q > q � Q
2 and ΔGu+(U + λ)u = 0 in B0(x0, 2R), then

(∫
B(x0,R)

|∇Gu(x)|t
) 1

t

� CR
Q
q −2(1 +Rρ(x0)

−1))l0 sup
B(x0,2R)

|u(x)|,

where 1
t = 1

q − 1
Q .

Now we are in a position to give the proof the kernel K(x, y) of ∇GL− 1
2

1 satisfying Condition (c).

We fix x0, y0 ∈ G and ξ ∈ G. Let R = dc(x0,y0)
4 and u(x) = Γ(x, y0, λ). Assume that dc(0, ξ) < R

2 .

Then

|K(x0 ◦ ξ, y0)−K(x0, y0)| � 1

π

∫ ∞

0

|λ|− 1
2 |∇G,xΓ(x0 ◦ ξ, y0, λ)−∇G,xΓ(x0, y0, λ)|dλ.

By using Theorem 1.1 in [31] and Lemma 4.1, we have

|∇G,xΓ(x0 ◦ ξ, y0, λ)−∇G,xΓ(x0, y0, λ)| � dc(0, ξ)
1−Q

q

(∫
B(x0,2R)

|∇2
GΓ(x, y0, λ)|qdx

) 1
q
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� Cdc(0, ξ)
1−Q

q

(∫
B(x0,2R)

|∇2
Gu(x)|q dx

) 1
q

� C

(
dc(0, ξ)

R

)1−Q
q 1

R
(1 +Rρ(x0)

−1)l0 sup
B(x0,2R)

|Γ(x, y0, λ)|

� C

(
dc(0, ξ)

R

)1−Q
q 1

RQ−1
(1 +Rρ(x0)

−1)−l+l0(1 + λ
1
2R)−l

� C

(1 + λ
1
2R)l(1 +Rρ(x0)−1)l−l0

Cdc(0, ξ)
δ

dc(x0, y0)Q+δ
,

where δ = 1− Q
q > 0 and we choose l large enough. Then

|K(x0 ◦ ξ, y0)−K(x0, y0)| � C

(1 + dc(x0, y0) ρ(x0)−1)l
Cdc(0, ξ)

δ

dc(x0, y0)Q+δ
.

(1.7) is proved for dc(0, ξ) <
dc(x0,y0)

2 , and similarly, we prove that (1.8) is valid for dc(0, ξ) <
dc(x0,y0)

2 .

The proof is complete.

Therefore, the operator ∇GL− 1
2

1 satisfies the assumptions of Theorems 1.2 and 1.3. The main results

in this paper are valid for ∇GL− 1
2

1 .

Case 2. Let q � Q
2 and T = Liγ

1 , γ ∈ R. Because L1 is a self-adjoint and positive operator on L2(G),

then it has a spectral resolution

L1 =

∫ ∞

0

λdEL1λ,

where EL1λ are the spectral projection. For any γ ∈ R, then we have

Liγ
1 =

∫ ∞

0

λiγdEL1λ.

By the spectral theory we immediately conclude that Liγ
1 is bounded on L2(G). Namely, it satisfies

Condition (a) in Section 1. Moreover, we can define Liγ
1 in another form as follows,

Liγ
1 f(x) =

∫
G

K(x, y)f(y)dy, (4.6)

and

K(x, y) =
1

π

∫ ∞

0

λiγΓ(x, y, λ)dλ. (4.7)

It follows from (1.10) in [25] that the kernel K(x, y) of Liγ
1 satisfies Condition (b) in Section 1.

Finally, we show that the kernel K(x, y) of Liγ
1 satisfies Condition (c) in Section 1. We fix x0, y0 ∈ G

and ξ ∈ G. Let R = dc(x0,y0)
4 and u(x) = Γ(x, y0, λ). Assume that dc(0, ξ) <

R
2 . Then

|K(x0 ◦ ξ, y0)−K(x0, y0)| � 1

π

∫ ∞

0

|λiγ ||Γ(x0 ◦ ξ, y0, λ)− Γ(x0, y0, λ)|dλ.

By using Theorem 1.1 in [31] and Corollary 4.2, we have

|Γ(x0 ◦ ξ, y0, λ)− Γ(x0, y0, λ)| � dc(0, ξ)
1−Q

t

(∫
B(x0,2R)

|∇GΓ(x, y0, λ)|tdx
) 1

t

� Cdc(0, ξ)
1−Q

t

(∫
B(x0,2R)

|∇Gu(x)|t dx
) 1

t

� C

(
dc(0, ξ)

R

)2−Q
q 1

R
(1 +Rρ(x0)

−1)l0 sup
B(x0,2R)

|Γ(x, y0, λ)|
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� C

(
dc(0, ξ)

R

)2−Q
q 1

RQ−2
(1 +Rρ(x0)

−1)−l+l0(1 + λ
1
2R)−l

� C

(1 + λ
1
2R)l(1 +Rρ(x0)−1)l−l0

Cdc(0, ξ)
δ

dc(x0, y0)Q+δ
,

where δ = 2− Q
q > 0. Then

|K(x0 ◦ ξ, y0)−K(x0, y0)| � C

(1 + dc(x0, y0)ρ(x0)−1)l
Cdc(0, ξ)

δ

dc(x0, y0)Q+δ
.

(1.7) is proved for

dc(0, ξ) <
dc(x0, y0)

2
,

and similarly, we can prove that (1.8) is valid for

dc(0, ξ) <
dc(x0, y0)

2
.

The proof is complete.

Therefore, the operator Liγ
1 satisfies the assumptions of Theorems 1.2 and 1.3. The main results in

this paper are valid for Liγ
1 .
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