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1. INTRODUCTION

My intention in these lectures is to describe the practical lusiness of actually doing
guantum cosmology. That is, | will describe how, in the contet of particular models, one
determines the consequences for the late universe of a givéimeory of initial conditions.

What is the motivation for studying quantum cosmology? One possible motivation
comes from quantum gravity. Cosmological models are simplexamples to which quantum
gravity ideas may be applied. Moreover, the very early univese is perhaps the only
laboratory in which quantum gravity may be tested. A second motivation, and the main
one for the purposes of these lectures, concerns initial cditions in cosmology. Although
the hot big bang model explains some of the features of the obsved universe, there are a
number of features that it did not explain, such as its atness, absence of horizons, and the
origin of the density uctuations required to produce galaxies. The in ationary universe
scenario (Guth, 1981), which involves quantized matter elds on a classical gravitational
background, provided a possible solution to the horizon andatness problems. Moreover,
by assuming that the matter elds start out in a particular qu antum state, the desired
density uctuation spectrum may be obtained.Y However, in the in ationary universe
scenario, the question of initial conditions was largely igiored. Whilst it is certainly true
that, as a result of in ation, the observed universe could have arisen from a much larger
class of initial conditions than in the hot big bang model, it is certainly not true that it
could have arisen fromany initial state { one could choose an initial quantum state for
the matter which did not lead to the correct density perturbation spectrum, and indeed,
one could choose initial conditions for which in ation does not occur. In order to have
a complete explanation of the presently observed state of tb universe, therefore, it is
necessary to face up to the question of initial conditions.

Now, as the evolution of the universe is followed backwardsn time, the curvatures
and densities approach the Planck scale, at which one wouldxpect quantum gravitational
e ects to become important. Quantum cosmology, in which both the matter and gravi-
tational elds are quantized, is therefore the natural framework in which to address the
guestion of initial conditions.

Y For a review, see, for example, Brandenberger (1987, 1989).
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In a sentence, quantum cosmology is the application of quamntm theory to the dy-
namical systems describing closed cosmologies. Historiba the earliest investigations
into quantum cosmology were primarily those of by DeWitt (1967), Misner (1969a, 1969Db,
1969c, 1970, 1972, 1973) and Wheeler (1963, 1968) in the 1860This body of work | shall
refer to as the \old" quantum cosmology, and will not be discussed here. It is discussed in
the articles by MacCallum (1975), Misner (1972) and Ryan (192).

After the initial eorts by the above authors, quantum cosmology went
through a bit of a lull in the 1970's. However, it was re-vitalized in the 1980's, primarily
by Hartle and Hawking (Hartle and Hawking, 1983; Hawking, 1982, 1984a), by Vilenkin
(1984, 1986, 1988) and by Linde (1984a, 1984b, 1984c). Thewere two things that these
authors added to the old approach. Firstly, Hartle and Hawking introduced Euclidean
functional integrals, and used a blend of canonical and pathntegral methods. Secondly,
all of the above authors faced up squarely to the issue of bowary or initial conditions on
the wave function of the universe. It is this modern approachto quantum cosmology that
will be the subject of these lectures.

The central object of interest in quantum cosmology is the wae function of a closed
universe,

[ hij (x); ( x);B] (1:1)

This is the amplitude that the universe contains a three-sufaceB on which the three-metric
is hjj (x) and the matter eld con guration is ( x). From such an amplitude one would
hope to extract various predictions concerning the outcomeof large scale observations. To
x the amplitude (1.1), one rst needs a theory of dynamics, such as general relativity.
From this one can derive an equation analagous to the Schrodger equation, called the
Wheeler-DeWitt equation, which the wave function of the universe must satisfy. The
Wheeler-DeWitt equation will have many solutions, so in order to have any predictive
power, it is necessary to propose a law of initial or boundaryconditions to single out just
one solution. And fnally, one needs some kind of scheme to iaetpret the wave function. So
these are the three elements that go into quantum cosmologydynamics, initial conditions,
interpretation.

One of the most basic observational facts about the universeve observe today is that
it is described by classical laws to a very high degree of pr&ion. Since in quantum
cosmology the universe is taken to be fundamentally quantummechanical in nature, one
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of the most primitive predictions a quantum theory of initia | conditions should make, is
that the universe is approximately classical when it is large. Indeed, what we will typically
nd to be the case is that the wave function indicates the regobns in which space-time
is essentially classical, and those in which it is not. In theregions where spacetime is
essentially classical, we will nd that the wave function is peaked about a set of solutions
to the classical Einstein equations and, as a consequence thfe boundary conditions on
the wave function, this set is a subset of the general solutio. The boundary conditions,
through the wave function, therefore set initial conditions on the classical solutions. We
may then begin to ask whether or not the ner details of the universe we observe, such as the
existence of an in ationary era, are consequences of the cken theory of initial conditions.
In addition, in the approximately classical region, we will recover from the Wheeler-DeWitt
equation the familiar quantum eld theory for the matter el ds on a classical curved
spacetime background. Moreover, we will nd that the boundary conditions on the wave
function of the universe single out a particular choice of vauum state for the matter elds.
We may then ask whether or not the chosen vacuum state is the ggopriate one for the
subsequent emergence of large scale structure.

These remarks will hopefully become clearer as we progresBut in brief, the theme
of these lectures may be summarized as follows. The in atioary universe scenario { and
indeed most other cosmological scenarios { will always depel to some extent on initial
conditions. | would like to try and argue that, within the con text of quantum cosmology,
there exist natural quantum theories of initial or boundary conditions from which the
appropriate initial conditions for in ation and the emerge nce of large scale structure follow.

Throughout the text I will give very few references. An extensive guide to the literature
is contained in Section 13.

2. A SIMPLE EXAMPLE

Rather than begin with the general formalism of quantum cosnology, | am going to
rst consider a simple in ationary universe model. This wil | help clarify some of the rather
vague remarks made above concerning the need for initial calitions. The model will be
treated rather heuristically; the details will be attended to later.
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Consider a universe described by a homogeneous isotropic Bertson-Walker metric
h [
ds?= 2 N2t)dt?+ e? Od 3(k) (2:1)

where 2=2=3m 3)andd (k) is the metric on the spatial sections which have constant
curvature k = 1;0;+1. In quantum cosmology one is generally interested in closd
(k = +1) universes, but for the moment we will retain all three va lues of k. The metric
is described by a single scale factore (). As matter source we will use a homogeneous
minimally coupled scalar eld p? (t) with potential 2 2 2V( ). The Einstein-scalar
action for this system is

74 2 2 #

dtiNe®? =+ = V( )+ ke ? (2:2)

S =
N N 2

NI =

(the full form of the Einstein-scalar action is given in the next section). By varying with
respect to , and N, one may derive the eld equations and constraint, which, ater
some rearrangement, are conveniently written,

._ 1 .
= 3 _ éVO( ) (2:3)

= 22 21v() (2:4)

24 24V( )= ke ? (2:5)

in the gauge N = 1. We will not assume a precise form forV( ), except that it is
of the in ationary type; that is, that for some range of values of , V( ) is large and
iVQ )=V( )j << 1. This is satis ed, for example, for large in chaotic models, with
V()= m? 20r 4 and for near the origin in models with a Coleman-Weinberg
potential. It is important to note that the general solution to the system (2.3)-(2.5) will
involve three arbitrary parameters.

For models in which the potential satis es the above conditions, it is easily seen that
there exist solutions for which — 0 and the potenltial then acts like a cosmological
constant; thus the model undergoes in ation, e eV 2t However, whether or not such
a solution arises is clearly a question ofnitial conditions : one needs to choose the initial
value of _to be small, and one needs to choose the initial value of to be in the region
for which jVq )=V( )j << 1. It is therefore pertinent to ask, to what extent is in atio n
generic in a model of this type?



To address this question, one needs a complete picture of tridassical solutions. Clearly
it would be very di cult to solve the eld equations exactly, even for very simple choices
of V( ). However, one can often obtain useful information using tle qualitative theory
of dynamical systems. The sort of di erential equations oneencounters in cosmology can
frequently be cast in the form

x =ty z); y=o(xy;zin);, z= (2:6)

Eq.(2.6) gives the direction of the solutions at every point(x;y;z:::). By drawing arrows
at a selection of points one may thus construct a complete pitire of the entire family of
trajectories which solve (2.6) without integrating explicitly.

This method may be applied to the eld equations (2.3), (2.4) by writing x = [y = _,
z = (the constraint (2.5) is not normally used so that the three casesk = 0; 1;+1 may be
treated simultaneously). The resulting three-dimensiond phase portrait is, however, rather
di cult to construct. Y Let us therefore make a simpli cation, which is to go straightaway
to a region where the -dependence oV ( ) is negligible. This is like having a massless
scalar eld and a cosmological constant. One then has a two-4thensional system,

X= 3xy, y-= 2x2 y2+V (2:7)

The constraint equation
X2 y2+ V = ke 2 (2:8)

) . . p
simply indicates that the k = 0 solutions are the two curvesy = xZ+ V, the k = +1
solutions lie between these curves and th& = 1 solutions lie outside these curves.

The phase portrait for this two-dimensional system is shownin Fig.1. The point of
particular interest is the point _ = V%, —=0, on the k = 0 curve, because at this point
the model undergoes in ation. This point is an attractor for all the expanding k = 0 and
k = 1 solutions. The k = +1 solutions, however, with which one is primarily concerned
in quantum cosmology, do not all end up on the attractor: if they start out away from
the k = 0 curve with j_j large they recollapse before getting anywhere near the atactor.
In ation occurs, therefore, only for the subset of k = +1 solutions with reasonably small

In the casek = 0, one can eliminate _using the constraint, and the phase portrait becomes
two-dimensional. This has been constructed for various inationary potentials by Belinsky
et al.(1985) and Piran and Williams (1985).
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initial — Furthermore, when V( ) is allowed to vary with , there is also the issue of
su cient in ation. In the massive scalar eld model, for example, even if — 0 initially,
it is known that the universe in ates by the required factor €%° only for initial values of
greater than about 4 (in Planck units) (Hawking, 1984a; Page 1986a).

So this simple model allows one to see quite clearly how the oarence of in ation
depends rather crucially on the initial values of and — Now let us consider the quan-
tization of this model, still proceeding heuristically, to see how quantum cosmology may
shed some light on this issue.

We wish to quantize the dynamical system described by the agon (2.2), for the case
k = +1. We begin by nding the Hamiltonian of the theory. The mom enta conjugate to
and are de ned in the usual way and are given by

- 3 - -3 - :
= : = - 2:9
The canonical Hamiltonian is de ned in the usual way and is gven by
1 h [
He= sNe 3 2+ 2+e8v() & NH (2:10)
The Hamiltonian form of the action is given by
Z h i
S= dt + _ NH (2:11)

This form of the action exposes the fact that the lapse functon N is a Lagrange multiplier
which enforces the constraint
H=0 (2:12)

This is just the phase-space form of the constraint (2.5). Thke constraint indicates the
presence of a symmetry, in this case reparametrization invd@ance, about which we will
have more to say later.

Proceeding naively, we quantize this system by introducinga wave function ( ; ;t )
and asking that it satisfy a time-dependent Schredinger eguation constructed from the
canonical Hamiltonian (2.10):

LCAETR (2 :13)

@t
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To ensure that the symmetry corresponding to the constraint (2.12) be imposed at the
guantum level, we will also ask that the wave function is annhilated by the operator
version of (2.12):

H:%e?’ % %+86V() e =0 (2 :14)
where the momenta in (2.12) have been replaced by operatorssing the usual substitutions.
However, sinceHc = NH, it follows from (2.13) and (2.14) that the wave function is
independent oft; thus the entire dynamics of the wave function is in fact contained in
(2.14) with = (; ). The fact that the wave function does not depend on the time
parameter t explicitly is actually characteristic of parametrized theories such as general
relativity. (2.14) is called the Wheeler-DeWitt equation and is the central equation of

interest in quantum cosmology.

Let us nd some simple solutions to this equation. Let us go toa region for which
iVQ )=V( )j << 1 and look for solutions which do not depend very much on , so we may
ignore the derivative term in (2.14). The problem is then a standard onedimensional
WKB problem in  with a potential U = €% V() €* . Inthe region U << 0, where the
scale factor is small, there are WKB solutions of the form

1
V()
This region, in which the wave function is exponential, is namally regarded as some kind
of tunneling or classically forbidden region. In the regionU >> 0, where the scale factor
is large, there are WKB solutions of the form

(; ) exp @ € v()* (2:15)

[
3V()
This region, in which the wave function is oscillatory, is usually thought of as a classically
allowed region. One can impose boundary conditions in eithreregion, and then match the
solutions in the two regions using the usual WKB matching pracedure.

€ V() 132 (2:16)

() exp

Consider in a little more detail the oscillatory region, including the dependence. Let

us look for solutions of the form = €S, whereS is a rapidly varying function of and

. Inserting this in the Wheeler-DeWitt equation, one nds th at, to leading order, S must
obey the Hamilton-Jacobi equation

% s? N % s? .
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We will assume that some set of boundary conditions are impasd on ; thus a particular
solution of the Hamilton-Jacobi equation (2.17) will be picked out. Compare (2.17) with
the Hamiltonian constraint,

24 24U(; )=0 (2:18)

It invites the identi cation @S @S
= — = = 2:19
@ @ (2:19)

More precisely, one can in fact show that a wave function of tie form S predicts a strong
correlation between coordinates and momenta of the form (29). Furthermore, using the
relationship between velocities and momenta (2.9), and thdact that S obeys the Hamilton-
Jacobi equation (2.17), one may show that (2.19) de nes a setf trajectories in the

plane which are solutions to the classical eld equations ad constraint, (2.3)-(2.5). That

S

is, the wave function € is strongly peaked about a set of solutions to the classical eld

equations.

For a given solution S of the Hamilton-Jacobi equation the rst integral of the el d
equations (2.19) about which the wave function is peaked inglves just two arbitrary pa-
rameters. Recall, however, that the general solution to thefull eld equations (2.3)-(2.5) in-
volved three arbitrary parameters. For given S, therefore, the wave functione'S is strongly
peaked about the two-parameter subset of the three-parareegeneral solution By imposing
boundary conditions on the wave function a particular solution to the Wheeler-DeWitt
equation is picked out, which in the WKB approximation picks out a particular solution
S to the Hamilton-Jacobi equation; this in turn de nes a two-p arameter subset of the
three-parameter general solutions. It is in this way that boundary conditions on the wave
function of the universe e ectively imply initial conditio ns on the classical solutions.

Let us see how this works for the particular solution (2.16). For €2 V >> 1, it is of
the form €S with S %e3 V3. According to the above analysis, this wave function is
peaked about the trajectories de ned by

Vi _ 0 (2:20)

(we could of course have taken the opposite sign fog { this leads to a set of contracting
solutions). EQ.(2.20) integrates to yield

1
eV 2(t to), o = constant (2:21)



Here tg and ( are the two arbitrary constants parametrizing this set of sdutions. The
constant tg is in fact irrelevant, because it is just the origin of unobsevable parameter
time. From (2.20) one may see that the wave function is peakedight on the in ationary
attractor in Fig.1. So this particular wave function picks out the in ationary solutions.

One can actually get a little more out of the wave function in addition to (2.20). The
wave function more generally is of the formC(; )e’S. The €S part, as we have discussed,
shows that the wave function is peaked about a set of trajectdes. These trajectories may
be labeled by the value of the arbitrary constant . The prefactor e ectively provides a
measure on the set of possible values ofy, and may therefore be used to assess the relative
likelihood of in ation. We will describe this in a lot more de tail later.

From this simple model we have learned a few things that are infact quite general.
They are as follows:

1) Classical cosmology needs initial conditions. This is lustrated rather clearly using
the phase-portrait of classical solutions, allowing one tosee what sort of features are
generic, and what sort of features are dependent on a speci choice of initial conditions.

2) In the quantized model, there is a region in which the wave dinction is exponential,
indicating that this region is classically forbidden.Y

3) There is a region in which the wave function is oscillatory indicating that this region
classically allowed. To be precise, the wave function in thescillatory region is strongly
peaked about aset of solutions to the classical eld equations.

4) The set of solutions about which a given WKB wave function s peaked is asubsetof the
general solution to the eld equations. That is, a particular solution to the Wheeler-
DeWitt equation is peaked about a particular subset of the ful set of solutions to
the eld equations. Moreover, the wave function provides a neasure on the classical
trajectories within this set. A general solution to the Wheeler-DeWitt equation would
be peaked about a general solution to the eld equations, so Y simply quantizing the
model one does not necessarily learn anything about initiaconditions. One merely

Y In this particular model, and for the particular solution to the Wheeler-DeWitt equation
we looked at, the classically forbidden region is at small vimes of the scale factor. This
is in accord with the general belief that \quantum gravity e ects become important when
the universe is very small". This is, however, dependent on bundary conditions. There
are other solutions to the Wheeler-DeWitt equation which are oscillatory for small scale
factors. We shall return to this point in Section 6.
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transfers the question of initial conditions on the classial solutions to the question of
boundary conditions on the wave function of the universe. Tohave complete predictive
power, therefore, one needs a quantum theory of boundary calitions.

In connection with the fourth point above, one might ask, have we really improved the
situation with regard to initial conditions by going to the g uantum theory? The answer
is, | believe, yes, for at least two reasons. Firstly, as theismple model above indicates, a
classical description of cosmology is not always valid. In tiempting to impose classical
initial conditions at small three-geometries, therefore,one might be imposing them in a
region in which, from the point of view of the quantum theory, a classical description is
not really appropriate. Secondly, a somewhat more aestheti point. Classically, there is no
obvious reason for choosing one set of initial conditions @r another. No one choice stands
out as being more natural or elegant than any other. In quantum cosmology, however, one
can argue that certain quantum states for the universe have ensiderably more appeal than
others on the grounds of simplicity or naturalness. | will leave this to the reader to judge
for themselves when we come to discuss particular proposalsr quantum theories of initial
conditions.

This ends what has really been an introductory tour of quantum cosmology. In the
following sections, we will go over essentially the same pois but in greater generality and
detail.

3. THE HAMILTONIAN FORMULATION
OF GENERAL RELATIVITY

We now procede to the general formalism of quantum cosmologyThis begins with
the Hamiltonian formulation of general relativity (Hanson et al., 1976; Misner et al.,1970;
Teitelboim, 1990). One considers a three-surface on whichhe three-metric is hj; , with
some matter eld con guration. We will take the three-surfa ce to be compact, since we
are considering only closed universes. The three-surface embedded in a four-manifold
on which the four-metricis g . This embedding is described by the standard (3+1) form
of the four-metric,

ds?=g dx dx = N2 N;N' di?+2N;dx'dt+ hj dx dx! (3:1)
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whereN and N; are the lapse and shift functions. (Our conventions are; =0;1;2;3 and
i;j =1;2;3). They describe the way in which the choice of coordinatesmone three-surface
is related to the choice on an adjacent three-surface, and artherefore arbitrary.

The action will be taken to be the standard Einstein-Hilbert action coupled to matter,
2 Z Z

_ Mp 4 1 3y 3 :

S— — d X( g)Z(R 2)+2 d XhZK + Smatter (32)

16 M a@m

whereK is the trace of the extrinsic curvature K j; at the boundary @ Mof the four-manifold

M, and is given by
1 @f

Kij = o @+2D(iNj) (3:3)
Here, D; is the covariant derivative in the three-surface. For a scafr eld , the matter
action is 7
Smatter = % d4x( 9)% g @ @+ V() (3:4)
In terms of the (3+1) variables, the action takes the form
m2 £ _h ) i
S= ﬁ d*xdiNhz KjK! K2+3R 2+ Smater (3:5)

In a perfectly standard way, one may derive the Hamiltonian form of the action,
Z h [
S=  xdt hy U+ _ NH N'H; (3:6)

where i and  are the momenta conjugate tohjj and respectively. The Hamiltonian is
a sum of constraints, with the lapseN and shift N i playing the role of lagrange multipliers.
There is the momentum constraint,

Hi= 2Dj | +HMater =g (3:7)

and the Hamiltonian constraint
2
_ 16 i ki Mp, 13 matter _ .
where Gijj is the DeWitt metric and is given by
1
Giji = 5h 2 hichy + hithje hij hyg (3:9)
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These constraints are equivalent, respectively, to the tine-space and time-time components
of the classical Einstein equations. The constraints play acentral role in the canonical
guantization procedure, as we shall see.

The arena in which the classical dynamics takes place is catl superspace, the space of
all three-metrics and matter eld con gurations ( hjj (x); ( x)) on a three-surface’. Super-
space is in nite dimensional, with a nite number of coordinates (hjj (x); ( x)) at every
point x of the three-surface. The DeWitt metric (plus some suitablemetric on the matter
elds) provides a metric on superspace. It has the importantproperty that its signature
is hyperbolic at every point x in the three-surface. The signature of the DeWitt metric is
independent of the signature of spacetime.

4. QUANTIZATION

In the canonical quantization procedure, the quantum stateof the system is represented
by a wave functional [ hj ; ], a functional on superspace. An important feature of this
wave function is that is does not depend explicitly on the coodinate time label t. This
is because the three-surfaces are compact, and thus theirtimsic geometry, speci ed by
the three-metric, xes more-or-less uniquely their relative location in the four-manifold.
Another way of saying essentially the same thing, is to say tht general relativity is an
example of aparametrized theory, which means that \time" is already contained amongs
the dynamical variables describing it, hj; ; .

According to the Dirac quantization procedure, the wave furction is annihilated by the
operator versions of the classical constraints. That is, ifone makes the usual substitutions
for momenta

U (— I (4:1)
h i
one obtains the following equations for . There is the momentum constraint

HizziDj-h—7+H;””atter =0 4 :2)
1)

Y This superspace has nothing to do with the superspace of supgymmetry. Also, earlier au-
thors in quantum cosmology used a di erent de nition of superspace: they de ned it to be
the space of all three-metrics, but factored out by the threedimensional di eomorphisms.
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and the Wheeler-DeWitt equation
H=  Gjq-—-— h2CR 2)+ HMr =g 4 :3)
hij hy
where we have ignored operator ordering problems.

The momentum constraint implies that the wave function is the same for con gurations
(hjj (x); ( x)) that are related by coordinate transformations in the thr ee-surface. To see
this, let us restrict attention to the case of no matter, and consider the e ect of shifting
the argument of the wave function by a di eomorphism in the th ree-surfacex! ! xI i
One has 7

[hij +Dg jpl=1[ hjl+ d**D (4:4)

Dhe
J|
Integrating by parts in the last term, and dropping the bound ary term (since the three-

manifold is compact), one nds that the change in is given by
Z 1 Z

— 3y . D). — 3y .Hi .

= d°x j D;j h—”—z d>x iH (4 :5)
showing that wave functions satisfying (4.2) are unchanged The momentum constraint
(4.2) is therefore the quantum mechanical expression of thévariance of the theory under
three-dimensional di eomorphisms. Similarly, the Wheeler-DeWitt equation (4.3) is con-
nected with the reparametrization invariance of the theory. This is a lot harder to show

and we will not go into it hereY.

The Wheeler-DeWitt equation is a second order hyperbolic fctional di erential equa-
tion describing the dynamical evolution of the wave function in superspace. The part of
the three-metric corresponding to the minus sign in the hypebolic signature, and so to
the \time" part, is the volume of the three-metric, hz. The Wheeler-DeWitt equation will
in general have a vast number of solutions, so in order to havany predictive power we
need boundary conditions to pick out just one solution. This might involve, for example,
giving the value of the wave function at the boundary of supespace.

This was rst shown by Higgs (1958).

The di culty is essentially due to the fact that although wav e functions [ hjj] carry a
representation of the three-dimensional di eomorphism gioup, they do not carry a repre-
sentation of the four-dimensional di eomorphisms. A closdy related fact is that the Poisson
bracket algebra of the constraints is not that of the four-dimensional di eomorphsims. For
a discussion of these issues and their resolution, see Ishaamd Kucha (1985a, 1985b),
Kucha (1986).
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As an alternative to the canonical quantization procedure,one can construct the wave
function using a path integral. In the path integral method, the wave function (or more
precisely, some kind of propagator) is represented by a Euilean functional integral over
a certain class of four-metrics and matter elds, weighted ly e ', wherel is the Euclidean
action of the gravity plus matter system. Formally, one writes

X Z

[ hj; "Bl = Dg D e ! (4:6)

M
The sum is taken over some class of manifolds! for which B is part of their boundary,
and over some class of four-metricg and matter elds which induce the three-metric
fjj and matter eld con guration ~on the three-surface B (see Fig.2.). The sum over
four-manifolds is actually very di cult to de ne in practic e, so one normally considers each
admissable four-manifold separately. The path integral pemits one to construct far more
complicated amplitudes than the wave function for a single tree-surface (Hartle, 1990),
but this is the simplest and most frequently used amplitude, and it is the only one that
will be discussed here.

When the four-manifold has topology R B, the path integral has the explicit form
Z Z
[ hjj;~;B]= DN DhjD [N ] exp( I[g ;] 4 :7)

Here, the delta-functional enforces the gauge- xing condion N- = and is the as-
sociated Faddeev-Popov determinant. The lapse and shifN are unrestricted at the end-
points. The three-metric and matter eld are integrated over a class of paths jj (X; ); ( X; ))
with the restriction that they match the argument of the wave function on the three-surface
B, which may be taken to be the surface = 1. That is,

hij (x;1) = W (x);  (x;1)= T Xx) (4:8)
To complete the speci cation of the class of paths one also rezls to specify the conditions

satis ed at the initial point, =0 say.

The expression, \Euclidean path integral” should be taken wth a very large grain
of salt for the case of gravitational systems. One needs to wk rather hard to give
the expression (4.6) a sensible meaning. In particular, in ddition to the usual issues
associated with de ning a functional integral over elds, one has to deal with the fact that
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the gravitational action is not bounded from below. This means that the path integral
will not converge if one integrates over real Euclidean metics. Convergence is achieved
only by integrating along a complex contour in the space of complex four-metrics. The
sum is therefore over complex metrics and is not even equivaht to a sum over Euclidean
metrics in any sense. Furthermore, there is generally no umgjue contour and the outcome
of evaluating the path integral could depend rather crucialy on which complex contour
one chooses. We will have more to say about this later on.

As we have already noted, the Wheeler-DeWitt equation and monentum constraints,
(4.2), (4.3) are normally thought of as a quantum expressionof invariance under four-
dimensional di eomorphisms. One ought to be able to see the malagous thing in the
path integral, and in fact one can. The wave functions generted by the path integral
(4.7) may formally be shown to satisfy the Wheeler-DeWitt equation and momentum
constraints, providing that the path integral is construct ed in an invariant manner. This
means that the action, measure, and class of paths summed avshould be invariant under
di eomorphisms (Halliwell and Hartle, 1990).

Which solution to the Wheeler-DeWitt equation is generated by the path integral will
depend on how the initial conditions on the paths summed overare chosen, and how the
contour of integration is chosen; thus the question of boundry conditions on the wave
function in canonical quantization appears in the path integral as the question of choosing
a contour and choosing a class of paths. No precise relatiohip is known, however.

Interpretation

To complete this discussion of the general formalism of quaam cosmology, a few words
on interpretation are in order. Hartle has covered the basicideas involved in interpreting
the wave function. Here, | am just going to tell you how | am gong to interpret the wave
function without trying to justify it. The basic idea is that we are going to regard a strong
peak in the wave function, or in a distribution constructed from the wave function, as a
prediction. If no such peaks may be found, then we make no prection. This will be
su cient for our purposes. References to the vast literature on this subject are given in
Section 13.
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5. MINISUPERSPACE { GENERAL THEORY

Since superspace, the con guration space one deals with inugntum cosmology, is
in nite dimensional, the full formalism of quantum cosmology is very di cult to deal with
in practice. In classical cosmology, because the universgpears to be homogeneous and
isotropic on very large scales, one's considerations arertgely restricted to the region of
superspace in the immediate vicinity of homogeneity and istsopy. That is, one begins by
studying homogeneous isotropic (or sometimes anisotropjcmetrics and then goes on to
consider small inhomogeneous perturbations about them. Iquantum cosmology one does
the same. To be precise, one generally begins by consideriagclass of models in which all
but a nite number of degrees of freedom of the metric and mater elds are \frozen" or
\suspended". This is most commonly achieved by restrictingthe elds to be homogeneous.
Such models are known as \minisuperspace” models and are craterized by the fact that
their con guration space, minisuperspace, is nite dimensonal. One is thus dealing with
a problem of quantum mechanics, not of eld theory. A very large proportion of the work
done in quantum cosmology has concentrated on models of thiype.

Clearly in the quantum theory there are considerable di cul ties associated with the
restriction to minisuperspace. Setting most of the eld modes and their momenta to zero
identically violates the uncertainty principle. Moreover, the restriction to minisuperspace
is not known to be part of a systematic approximation to the full theory. At the humblest
level, one can think of minisuperspace models not as some ldnof approximation, but
rather, as toy models which retain certain aspects of the fultheory, whilst avoiding others,
thereby allowing one to study certain features of the full theory in isolation from the rest.
However, in these lectures we are interested in cosmologicaredictions. | am therefore
going to take the stronger point of view that these modelsdo have something to do with the
full theory. In what follows | will therefore try to emphasiz e what aspects of minisuperspace
models may be argued to transcend the restrictions to minisperspace. We will return to
the question of the validity of the minisuperspace \approximation" later on.

The simple model of the previous section was of course a miniperspace model, in
that we restricted the metric and matter eld to be homogeneous and isotropic. More
generally, minisuperspace usually involves the followingin the four-metric (3.1), the lapse
is taken to be homogeneousN = N (t), and the shift is set to zero, N' =0, so that one
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has
ds?=  NZ(t)dt®+ hj (x;t)dx'dx! (5:1)

Most importantly, the three-metric h;; is restricted to be homogeneous, so that it is de-
scribed by a nite number of functions of t, g (t) say, where =0;1;2 (n 1). Some
examples of possible ways in which the three-metric may be stricted are given below.

One could take a Roberston-Walker metric as we did in Sectior®,
hij (x;t)dx'dx) = a%(t)d 3 (5:2)

Here, d % is the metric on the three-sphere, andq = a. One could take an anisotropic
metric with spatial sections of topology S S2,

hij (x;t)dx'dx] = a®(t)dr? + K(t)d 3 (5:3)

Here, d % is the metric on the two-sphere, r is periodically identied, and q = (a;b).
More generally, one could consider Bianchi-type metrics,

hij (x;t)dxldxl = a?(t)(e )jj '] (5:4)

Here, the ' are a basis of one-forms and the consist of the scale factora and the various
components of the matrix , which describe the degree of anisotropy. Many more models
are cited in Section 13.

In terms of the variables describing the (3+ 1) decomposition of the four-metric, (3.1),
the Einstein action with cosmological constant (3.2) is
272 h i

Sthj ;N;N'1= -2 diddnh? KK K2+ 3R 2 (5:5)

On inserting the restricted form of the metric described abwe one generally obtains a

result of the form
Z 4 Z

Sla (IN(I= AN oof @aa U@ L 59)

Here,f (Q) is the reduced version of the DeWitt metric, (3.6), and has hnde nite signature,

( ;+;+;+::). The range of thet integration may be taken to be from 0 to 1 by shifting
t and by scaling the lapse function. The inclusion of matter vaiables, restricted in some
way, also leads to an action of this form, so that theq may include matter variables
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as well as three-metric components. The () part of the signature in the metric always
corresponds to a gravitational variable, however.

Restricting to a metric of the form (5.1) is not the only way of obtaining a minisu-
perspace model. Sometimes it will be convenient to scale thiapse by functions of the
three-metric. Alternatively, one may wish to consider not homogeneous metrics, but in-
homogeneous metrics of a restricted type, such as spheridglsymmetric metrics. Or, one
may wish to use a higher-derivative action in place of (5.5).In that case, the action can
always be reduced to rst order form by the introduction of extra variables (e.g. Q = #,
etc.). One way or another, one always obtains an action of thdorm (5.6). We will there-
fore take this action to be the de ning feature of minisupergpace models. So from here
onwards, our task is to consider the quantization of systemslescribed by an action of the
form (5.6).

The action (5.6) has the form of that for a relativistic point particle moving in a curved
space-time ofn dimensions with a potential. Varying with respect to g one obtains the
eld equations

1d g 1 @UuU
—— = + — +f —=0 5:7
Nat N N2 +4 @q (5:7)
where is the usual Christo el connection constructed from the metric f . Varying
with respect to N one obtains the constraint
1
—f +U(g=0 5:8
N2 14 () (5:8)

These equations describe geodesic motion in minisuperspaevith a forcing term.

It is important to note that the general solution to (5.7), (5 .8) will involve (2n 1)
arbitrary parameters.Y

For consistency, (5.7) and (5.8) ought to be equivalent, regectively, to the 00 and ij
components of the full Einstein equations,

1

R éRg + g = T (5:9)

8_
mg
This is not, however, guaranteed. Inserting an ansatz for tle metric into the action and

then taking variations to derive the minisuperspace eld equations does not necessarily

Y As in the model of Section 2, one of the parameters will bég, the origin of unobservable
parameter time, so e ectively one has (2  2) physically relevant parameters.
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yield the same eld equations as are obtained by inserting tle minisuperspace ansatz
directly into (5.9). Our analysis is therefore restricted to minisuperspace models for which
these two paths to the eld equation give the same result. Ths excludes, for example,
metrics in Bianchi Class B, but does include a su cent number of interesting examples.
When studying minisuperspace models, one should always cble that the acts of taking
variations and inserting an ansatz commute (and also that tre § components of (5.9) are
trivially satis ed).

The Hamiltonian is found in the usual way. One rst de nes canonical momenta

L (5:10)

_@L_
"Ta T N

and the canonical Hamiltonian is

He=pg L=N %f pp + U NH (5:11)

wheref  (Q) is the inverse metric on minisuperspace. The Hamiltonian érm of the action
IS 7 1
S= dt[p g NH] (5:12)
0

This indicates that the lapse function N is a Lagrange multiplier enforcing the Hamiltonian
constraint

H(@ p)=5f PP +U@=0 (5:13)

This is equivalent to the Hamiltonian constraint of the full theory (3.8), integrated over
the spatial hypersurfaces. The momentum constraint, (3.7) is usually satis ed identically
by the minisuperspace ansatz (modulo the above reservati®).

Canonical Quantization

Canonical quantization involves the introduction of a time-independent wave function
( g ) and demanding that it is annihilated by the operator corresponding to the classical
constraint (5.13). This yields the Wheeler-DeWitt equation,

@ _ .
ﬁm,nﬁﬁﬂq)—o (5:14)
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Because the metricf  depends ong there is a non-trivial operator ordering issue in (5.14).
This may be partially resolved by demanding that the quantization procedure is covariant
in minisuperspace;i.e. that is is una ected by eld rede nitions of the three-metri ¢ and
matter elds, q ! & (q ). This narrows down the possible operator orderings to

B = %r 2+ R + u(q) (5:15)

wherer 2 and R are the Laplacian and curvature of the minisuperspace metd f  and
is an arbitrary constant.

The constant may be xed once one recognises that the minisuperspace metr(and
indeed, the full superspace metric (3.9)) is not uniquely dened by the form of the action
or the Hamiltonian, but is xed only up to a conformal factor. Classically the constraint
(5.13) may be multiplied by an arbitrary function of g, 2(q) say, and the constraint is
identical in form but has metric f~ = 2f  and potential U = 2U. The same is true
in the action (5.6) or (5.12) if, in addition to the above rescalings, one also rescales the
laspe function,N ! N = 2N . Clearly the quantum theory should also be insensitive
to such rescalings. This is achieved if the metric dependenpart of the operator (5.15) is
conformally covariant; i.e. if the coe cient s taken to be the conformal coupling

(n 2) :

8n 1) (5:16)
for n 2 (Halliwell, 1988a; Moss, 1988; Misner, 1970). In what fobws, we will be
working almost exclusively in the lowest order semi-classal approximation, for which
these issues of operator ordering are in fact irrelevant. Hweever, | have mentioned this
partially for completeness, but also because one often stuels models in which considerable
simpli cations arise by suitable lapse function rescaling and eld rede nitions, and one
might wonder whether or not these changes of variables a ecthe nal results.

Path Integral Quantization

The wave function may also be obtained using a path integral. To discuss the path
integral, we rst need to discuss the symmetry of the action. The Hamiltonian constraint,
(5.13), indicates the presence of a symmetry, namely reparaetrization invariance. This
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is the left-over of the general covariance of the full theory after the restriction to minisu-
perspace. More precisely, under the transformations

q = (t)fg;Hg p = (Ofp ;Hg N =_(t) (5:17)
it is not di cult to show that the action changes by an amount

1
S= () p%: H i (5:18)

The action is therefore unchanged if the parameter (t) satis es the boundary conditions
(0) =0 = (1). This symmetry may be completey broken by imposing a gaug- xing
condition of the form

G N (p;qg;N)=0 (5:19)

where is an arbitrary function of p ;q ;N.

We may now write down the path integral. It has the form
z

(g %= DpDgDN [G] gSPaN (5:20)

where S[p; q; N] is the Hamiltonian form of the action (5.12) and ¢ is the Faddeev-Popov
measure associated with the gauge- xing condition (5.19),and guarantees that the path
integral is independent of the choice of gauge- xing functon G. The integral is taken over
a set of paths @ (t);p (t); N(t)) satisfying the boundary condition q (1) = q gt t =1

with p and N free, and some yet to be speci ed conditions at = 0.

The only really practical gauge to work in is the gaugeN-= 0. Then it may be shown
that g = constant.Y The functional integral over N then reduces to a single ordinary

integration over the constant N. One thus has
Z Z

(qg%= dN Dp Dq &SPaN (5:21)

Eq.(5.21) has a familiar form: it is the integral over all timesN of an ordinary quantum

mechanical propagator, or wave function,
z

(qg%=dN (q ©N) (5:22)

This is easily seen: ¢ is basically the determinant of the operator G= . In the gauge
N_ = 0, this is the operator d?=dt?, which has constant determinant.
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where (q O?N) satis es the time-dependent Schredinger equation with time coordinate
N. From Eq.(5.22), it is readily shown that the wave function generated by the path
integral satis es the Wheeler-DeWitt equation. Suppose weoperate on (5.22) with the
Wheeler-DeWitt operator at q 00 Then, using the fact that the integrand satis es the

Schmdinger equation, one has
z

Boq q 9= dNi%\l: i (q ON) 2 (5:23)

whereN1; N o are the end-points of theN integral, about which we have so far said nothing.
Clearly for the wave function to satisfy the Wheeler-DeWitt equation we have tochoose
the end-points so that the right-hand side of (5.23) vanishe. N is generally integrated
along a contour in the complex plane. This contour is usuallytaken to be in nite, with
(q 0?N) going to zero at the ends, or closed.e. N1 = N». In both of these cases,
the right-hand side of (5.23) vanishes and the wave functionso generated satis es the
Wheeler-DeWitt equation. (In the closed contour case, attention to branch cuts may be
needed.) Note that these ranges are invariant under reparaetrizations of N. They would
not be if the contour had nite end-points and the right-hand side would then not be zero.
This is an illustration of the remarks in Section 4 conceringthe relationship between the
Wheeler-DeWitt equation and the invariance properties of the path integral.

The representation (5.21) of the wave function is of consideble practical value in
that it can actually be used to evaluate the wave function directly. But rst, one normally

rotates to Euclidean time, = it. After integrating out the momenta, the resulting
Euclidean functional integral has the form
Z Z

(a%= dN Dg exp( g ();N]) (5:24)

Here, | is the minisuperspace Euclidean action
Z
1

a ()iN]= “dN L (daa + U@ (5:25)

2N?2

Although the part of this action which corresponds to the matter modes is always positive
de nite, the gravitational part is not. Recall that the mini superspace metric has inde nite
signature, the ( ) part corresponding to the conformal part of the three-metric, so the
kinetic term is inde nite. Also, the potential, which is the integral of 2 SR, is not
positive de nite. So complex integration contours are necssary to give meaning to (5.24).
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Here, however, we will work largely in the lowest order semglassical approximation,
which involves taking the wave function to be (a sum of terms)of the form e 'd, where
| o is the action of the classical solution § ( ); N) satisfying the prescribed boundary
conditions. This solution may in fact be complex, and indeedwill need to be if the wave
function is to be oscillatory. Similarly, when working with the Wheeler-DeWitt equation,
we will work largely in the WKB approximation, in which solut ions of the above type are
sought.

We are now in a position to comment on the validity of the minisuperspace \approx-
imation”. Providing we are su ciently careful in making our minisuperspace ansatz, the
classical solutions ¢ ( );N) will be solutions to the full eld equations, and thus | will
be the action of a solution to the full Einstein equations. The lowest order semi-classical
approximation to the minisuperspace wave function therefee coincides with the lowest
order semi-classical approximation to the wave function ofthe full theory. This means
that minisuperspace does give some indication as to what isajng on in the full theory as
long as we remain close to the lowest order semi-classical pgoximation.

The Probability Measure

Given a wave function ( q ) for a minisuperspace model we need to construct from it
a probability measure with which to make predictions. The question is, which probability
measure do we use? The Wheeler-DeWitt equation is a Klein-Goon type equation. It
therefore has associated with it a conserved current

J=1( Fo) (5:26)

It satis es
r J=0 (5:27)

by virtue of the Wheeler-DeWitt equation. Like the Klein-Go rdon equation, however, the
probability measure constructed from the conserved currehcan suer from di culties
with negative probabilities. For this reason, some authorshave suggested that the correct
measure to use is

dP = j( q )jdV (5:28)
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wheredV is a volume element of minisuperspace. However, this is algwoblematic, in that
one of the coordinatesqg is, in some crude sense, \time", so that (5.28) is the analoga
of interpreting j ( x;t)j2 in ordinary quantum mechanics as the probability of nding t he
particle in the spacetime interval dxdt. One could conceivably make sense out of (5.28),
but not before a careful discussion of the nature of time in odinary quantum mechanicsY

For the moment we will not commit ourselves to either of thesepossibilities, but will
keep each one in mind. We will just look for peaks in the wave faction itself when asking
for predictions. If the peak is su ciently strong, one would expect any sensible measure
constructed from the wave function to have the same peak.

6. CLASSICAL SPACETIME

We have described in the previous section two ways of calculimg the wave function
for minisuperspace models: the Wheeler-DeWitt equation ad the path integral. Before
going on to the evaluation of the wave function, it is appropriate to ask what sort of wave
functions we are hoping to nd. If the wave function is to correctly describe the late
universe, then it must predict that spacetime is classical vinen the universe is large. The
rst question to ask, therefore, is \What, in the context of g uantum cosmology, constitutes
a prediction of classical spacetime?".

There are at least two requirements that must be satis ed bebre a quantum system
may be regarded as classical:

1. The wave function must predict that the canonical variables are strongly correlated
according to classical laws;i.e. the wave function (or some distribution constructed
from it) must be strongly peaked about one or more classical @n gurations

2. The gquantum mechanical interference between distinct sch con gurations should be
negligible; i.e. they should decohere

To exemplify both of these requirements, let us rst conside a simple example from or-
dinary quantum mechanics. There, the most familiar wave furctions for which the rst

Y This line of thought has been pursued by numerous authors, ialuding Caves (1986, 1987),
Hartle (1988b) and Page(1989b).
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requirement is satis ed are coherent states These are single wave packets strongly peaked
about a single classical trajectory,x(t), say. For example, for the simple harmonic oscilla-
tor, the coherent states are of the form

(x;t) = P exp

2
(x_x(0) 61)

On being presented with a solution to the Schrodinger equatn of this type, one might be
tempted to say that it predicts classical behaviour, in that on measuring the position of
the particle at a sequence of times, one would nd it to be folbwing the trajectory x(t).

Suppose, however, one is presented with a solution to the Sm@uinger equation which is a
superposition of many such states:

(X xn(t)?

X .
(x;t) = cne'Pr* exp 5

n

(6:2)

where the x(t) are a set of distinct classical solutions. One might be temfed to say that
this wave function corresponds to classical behaviour, andghat one would nd the patrticle
to be following the classical trajectory xn (t) with probability jcnj2. The problem, however,
is that these wave packets may meet up at some stage in the fute and interfere. One
could not then say that the particle was following a de nite classical trajectory. To ascribe
a de nite classical history to the particle, the interference between distinct states has to
be destroyed. The way in which this may be achieved is a fascating subject in itself, but
we will say little about it here. We will concentrate mainly o n the rst requirement for
classical behaviour.

Turn now to quantum cosmology. One might at rst think that, i n the search for the
emergence of classical behaviour, the natural thing to do thre is to try and construct the
analogue of coherent states. This is rather hard to do, but ha been achieved for certain
simple models. Because the wave function does not depend oimte explicitly, the analogue
of coherent states are wave functions of the form

(g)=¢ @exp fXq) (6:3)

where f (g ) = 0 is the equation of a single classical trajectory in minisuperspace. So in
a two-dimensional model, for example, the wave function wil consist of a sharply peaked
ridge in minisuperspace along a single classical trajectgr
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Wave functions of this type do not arise very naturally in quantum cosmology because
they need very special boundary conditions. However, they d highlight a particular
feature typical of wave functions in quantum cosmology that predict classical spacetime:
they are peaked about an entire history. Moreover, althoughthe original wave function
does not carry a particular label playing the role of time, a rotion of time may emerge for
certain types of wave functions, such as (6.3): it is basicdy the a ne parameter along
the histories about which the wave function is peaked (.e. the distance along the ridge in
the case of (6.3)). So time, and indeed spacetime, are only deed concepts appropriate
to certain regions of con guration spacetime and contingem upon initial conditions. The
decoherence requirement may also be achieved in quantum auoslogy, but this is rather
complicated and will not be covered here.

As we have seen in the simple model of Section 2, the sort of wavfunctions most
commonly arising in quantum cosmology are not of wavepackeform, but are of WKB
form, and may be broadly classi ed as oscillatory, of the fom €S, or exponential, of the
form e !. Itis the oscillatory wave functions that correspond to classical spacetime, whilst
the exponential ones do not. Let us discuss why this is so.

Recall that the way we are interpreting the wave function is to regard a strong peak
in the wave function, or in a distribution constructed from it, as a prediction. Classical
spacetime, therefore, is predicted when the wave functiongr some distribution constructed
from it, becomes strongly peaked about one or more classicabn gurations. How do we
identify such peaks? In the most general case, the wave funicin will be peaked not about
some region of con guration space {eiS is most certainly not { but about some correlation
between coordinates and momenta. Perhaps the most transpant way of identifying such
correlations is to introduce a quantum mechanical distribution function which depends on
both coordinates and momenta,F (p; ). The Wigner function is such a distribution func-
tion, and turns out to be very useful in quantum cosmology foridentifying the correlations
present in a given wave function. However, this would take r#her a long time to explain.
Here | will just report the result that the Wigner function sh ows that (i) a wave function
of the form e ! predicts no correlation between coordinates and momenta, red so cannot
correspond to classical behaviour; and (ii) a wave functiorof the form S predicts a strong
correlation betweenp and q of the form

p === (6:4)



S is generally a solution to the Hamilton-Jacobi equation and as we will demonstrate in
detail below, (6.4) is then a rst integral of the equations of motion. It thus de nes a set
of solutions to the eld equations. A wave function of the form €S, therefore, is normally
thought of a being peaked about not a single classical solutn, but about a set of solutions
to the eld equations. It is in this sense that it corresponds to classical spacetime.

Given the peak about the correlation (6.4) for wave functiors of the form &S it may
now be explicitly veri ed using a canonical transformation. For simplicity consider the
one-dimensional case. A canonical transformation fromg; ) to (p;€&) may be generated
by a generating function Go(q;p):

p= 28 q= O3 (6:5)

In quantum mechanics, the transformation from the wave fundion ( @) to a new wave
function T~p) is given by 7

)= dge ° (g (6:6)

Here, the generating function G(q;p) is not actually quite the same as Gg(q;p) above,
but agrees with it to leading order in Planck's constant. Supose () = €S(®. Then a
transformation to new variables

@s
@q
may be achieved using the generating functiorGo(q;p) = gp+ S(Q). Inserting this in (6.6),
it is easily seen that the wave function as a function ofps of the form

p=p &= ¢ (6:7)

P= (P (6:8)

to leading order. As advertised, it is therefore strongly peked about the con guration
(6.4).

It is sometimes stated that wave functions of the forme ! are not classical because
they correpond to a Euclidean spacetime. It is certainly true that they are not classical,
and it is certainly true that, if the wave function is a WKB sol ution, then | is the action
of a classical Euclidean solution. However, this does not nan that they correspond to
a Euclidean spacetime. In contrast to a wave function of the érm &S, which is peaked
about a set of classical Lorentzian solutions, a wave functin e ! is not peakedabout a set
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of Euclidean solutions. It is not classical quite simply beause it fails to predict classical
correlations between the Lorentzian momentump and its conjugate g.

A much better way of discussing peaks in the wave function, ormore generally, of
discussing predictions arising from a given theory of inital conditions, is to use the path
integral methods described by Hartle in his lectures (Hartke, 1990). Although conceptually
much more satisfactory, they are somewhat cumbersome to usi practice. Moreover,
they have not as yet been applied to any simple examples in queum cosmology. For
the moment it is therefore not inappropriate to employ the rather heuristic but quicker
methods outlined above.

The General Behaviour of the Solutions

Having argued that classical spacetime is predicted, loo$g speaking, when the wave
function is oscillatory, our next task is to determine the regions of con guration space for
which the wave function is oscillatory, and those for which the wave function is exponential.
This will depend to some extent on boundary conditions, whit we have not yet discussed,
but one can get broad indications about the behaviour of the vave function by looking at
the potential in the Wheeler-DeWitt equation So we are constlering the Wheeler-DeWitt
equation

%r2+U(q) (g=0 (6:9)

Here, we have assumed that the curvature term has been absoeld into the potential.

Compare (6.9) with the one-dimensional quantum mechanicaproblem

d2

W+ U(x) (x)=0 (6:10)
In this case, one immediately sees that the wave function is>g@onential in the region
U << 0 and oscillatory in the region U >> 0. The case of (6.9) is more complicated,

however, in that there are n independent variables, and the metric has inde nite signaure.

To investigate this in a little more detail, let us divide the minisuperspace coordinates
q into a single \timelike" coordinate g® andn 1 \spacelike" coordinatesq. Then locally,
the Wheeler-DeWitt equation will have the form

@ @

o @w(q";q) (g=0: (6:11)
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The point now, is that the broad behaviour of the solution will depend not only on the
sign of U, but also, loosely speaking, on whether it is theg®-dependence ofU or the g-
dependence olJ that is most signi cant. More precisely, one has the followng. Consider
the surfaces of constantU in minisuperspace. They may be timelike or spacelike in a
given region. First of all suppose that they are spacelike. Tien in that local region, one
can always perform a \Lorentz" rotation to new coordinates such that U depends only on
the timelike coordinate in that region, U  U(g®). One can then solve approximately by
separation of variables and, assuming one can go su cientlyfar into the regions U > 0,
U < 0 for the potential to dominate the separation constant, the solution will be oscillatory
for U >> 0, exponential for U << 0. Similarly, in regions where the constantU surfaces
are timelike, one may Lorentz-rotate to coordinates for whth the potential depends only
on the spacelike coordinates. The wave function is then odtatory in the region U << 0
and exponential in the regionU >> 0.

The above is only a rather crude way of getting an idea of the bleaviour of the solu-
tions. In particular, the assumptions about the separation constant need to be checked in
particular cases, given the boundary conditions.

One may also determine the broad behaviour of the wave functin by studying the path
integral. In the Euclidean path integral representation of the wave function (5.24), one
considers the propagation amplitude to a nal con guration determined by the argument
of the wave function, from an initial con guration determin ed by the boundary conditions.
In the saddle-point approximation, the wave function is of the form e 'd, where Iy is
the Euclidean action of the classical solution satisfying he above boundary conditions.
Finding | therefore involves the mathematical question of solving tle Einstein equations
as a boundary value problem. If the solution is real, it will have real action, and the wave
function will be exponential. However, it appears to be mostcommonly the case for generic
boundary data that no real Euclidean solution exists, and the only solutions are complex,
with complex action. The wave function will then be oscillatory. The boundary value
problem for the Einstein equations is actually a rather di ¢ ult mathematical problem
about which very little appears to be known, in the general case.

In the minisuperspace case, qualitative information aboutthe nature of the solution
to the boundary value problem is readily obtained by inspectng the Euclidean version
of the constraint equation (5.8). So for example, when lookig for a solution between
xed values of g that are reasonably close together, one can see that the nata of the
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solution depends not only on the sign of the potential, but ako on whether the connecting
trajectory is timelike or spacelike in minisuperspace.

The saddle-point appoximation to the path integral perhaps gives a more reliable indi-
cation than the Wheeler-DeWitt equation as to the broad behaviour of the wave function,
in that the dependence on boundary conditions is more appang.

At this stage it is appropriate to emphasize an important distinction between the
above discussion and tunneling processes in ordinary quamin mechanics or eld theory.
In ordinary quantum mechanics or eld theory, when consideiing tunneling at xed energy,
one has a constraint equation similar to (5.8), but with the important di erence that its
metric is positive de nite. This has the consequence that at xed energy, the con guraton
space is divided up into classically allowed and classicallforbidden regions, and one can
see immediately where they are by inspection of the potentigain the constraint.

By contrast, for gravitational systems, the constraint (5.8) (or more generally, the
Hamiltonian constraint (3.8)) has a metric of inde nite signature. This has the consequence
that con guration space is not divided up into classically allowed and classically forbialen
regions { the constraint alone does not rule out the existene of real Euclidean or real
Lorentzian solutions in a given region of con guration spa@. One can only determine the
nature of the solution (i.e. real Euclidean, real Lorentzian or complex) by solving the
boundary value problem.

Further discussion of complex solutions and related issuemay be found in Gibbons
and Hartle (1989), Halliwell and Hartle (1989) and Halliwell and Louko (1989a, 1989b,
1990).

7. THE WKB APPROXIMATION

Having considered the general behaviour of the solutions tthe Wheeler-DeWitt equa-
tion, we now go on to nd the solutions more explicitly in the o scillatory region, using the
WKB approximation. This will allow us to be more explicit in s howing that, as we have
already hinted a few times, the correlation (6.4) about whid the wave function is peaked
in the oscillatory region de nes a set of solutions to the clasical eld equations.
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We are interested in solving the Wheeler-DeWitt equation,
n #

ﬁlgr 2+ miu@@ (9=0 (7:1)
For convenience, the Planck massnp has been reinstated, because we are going to use it as
a large parameter in terms of which to do the WKB expansion. (F there is a cosmological
constant in the problem one can sometimes use mp4 as a small parameter to control the
WKB expansion, which has the advantage of being dimensionks.) Normally in the WKB
approximation one looks for solutions that are strictly exponential or oscillatory, of the form
e ! or €S. However, in guantum cosmology one often uses the WheelerdWitt equation
hand-in-hand with the path integral. As noted above, in the saddle-point approximation
to the path integral, one generally nds that the dominating saddle-points are four-metrics
that are not real Euclidean, or real Lorentzian, but complex, with complex action. It is
therefore most appropriate to look for WKB solutions to (7.1) of the form

(9= C(de M@+ om,? (7:2)

where | and C are complex. Inserting (7.2) into (7.1) and equating powersof mp, one
obtains 1
5(r 1)2+ U(g) =0 (7:3)

2rl rC+Cr? =0 (7:4)

Here, r denotes the covariant derivative with respect toq in the metric f , and the
dot product is with respect to this metric. Let us split | into real and imaginary parts,
1 (q) = Ir(g) 1S(g). Then the real and imaginary parts of (7.3) are

%(r IR)?+ %(f S)*+ U(9) =0 (7:5)
rig rS=0 (7:6)

Consider (7.5). We will return later to (7.4) and (7.6). We are interested in wave
functions which correspond to classical spacetime. As we la discussed, to correspond to
classical spacetime, the wave function should be of the forne’S where S is a solution to
the Lorentzian Hamilton-Jacobi equation,

%(r S)2+ U(Q =0 (7:7)
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for then S de nes an ensemble of classical trajectories, as will be stam in detail below.
Evidently from (7.5) this is generally not the case for the S appearing in the wave function
(7.2). However, if the imaginary part of | varies with g much more rapidly than the real
part, i.e. if

ir Sj>> jr IRj (7:8)

then it follows from (7.5) that S will be an approximatesolution to the Lorentzian Hamilton-
Jacobi equation, (7.7). Furthermore, the wave function (72) will then be predominantly
of the form €S and, as we have already argued, it therefore indicates a strg correlation
between coordinates and momenta of the form

_ 2@S

p = mp@—q (7:9)

Now we are in a position to show explicitly that (7.9) de nes a rst integral to the
eld equations. Clearly the momenta p de ned by (7.9) satisfy the constraint (5.13), by
virtue of the Hamilton-Jacobi equation, (7.7). To obtain th e second order eld equation,
di erentiate (7.7) with respect to q . One obtains

1 @s@s, . @s @S . @U_,

Sf. =5 = = 7:10
2’ @q@q @q@q@q @q (7:10)
The form of the second term in (7.10) invites the introduction of a vector
d @S @
—=f —— 7:11
ds @q@q (1)

When operated onq it implies, via (7.9), the usual relationship between velodgties and
momenta, (5.10), provided that s is identi ed with the proper time, ds = Ndt. Using
(7.11) and (7.9), (7.10) may now be written
dp 1 2 @UuU
- + — _f. + —- =
ds 2mz PP T Mgy
The eld equation (5.7) is obtained after use of (5.10) and afer raising the indices using
the minisuperspace metric. We have therefore shown that thewave function (7.12), if

it satis es the condition (7.8), is strongly peaked about a set of solutions to the eld
equations, namely the set de ned by the rst integral (7.9).

0 (7:12)

Now we come to the most important point. For a given Hamilton-Jacobi function S,
the solution to the rst integral (7.9) will involve n arbitrary parameters. Recall, however,
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that the general solution to the full eld equations (5.7), ( 5.8) will involve (2n 1) arbitrary
parameters. The wave function is therefore strongly peakedbout an n-parameter subset
of the (2n  1)-parameter general solution. By imposing boundary condions on the
Wheeler-DeWitt equation a particular wave function is singled out. In the oscillatory
region, this picks out a particular Hamilton-Jacobi function S. This in turn de nes de nes
an n-parameter subset of the (&1 1) parameter general solution. It is in this way that
boundary conditions on the wave function of the universe e etively imply initial conditions
on the classical solutions.

The Measure on the Set of Classical Trajectories

Suppose one now chooses am ( 1)-dimensional surface in minisuperspace as the
beginning of classical evolution. Through (7.9), the wave tinction then e ectively xes the
initial velocities on that surface. However, the wave funcion contains yet more information
than just the initial velocities: it provides a probability measure on the set of classical
trajectories about which the wave function is peaked. To seehow this comes about,
consider the remaining parts of the wave function,C and | . From the assumption, (7.8),
(7.4) may be written

r  jCj*rS =0 (7:13)

Moreover, we can combine this with (7.6) and write

r exp( 2m3IR)iCj’r S =0 (7:14)
This is a current conservation law,
r J=0 (7:15)
where
J exp( 2m3IR)iCj’r S (7:16)

Loosely speaking, (7.15) implies that that the coe cient of r S in (7.16) provides a con-
served measure on the set of classical trajectories about wdhn the WKB wave function is
peaked.

Eq.(7.16) is of course a special case of the Wheeler-DeWittucrent

J=1( vt Fo) (7:17)



which is conserved by virtue of the Wheeler-DeWitt equation (7.1), independently of any
approximation. In suggesting that part of (7.16) provides aconserved probability measure
on the set of classical trajectories, we are therefore aimgnat using the conserved current as
our probability measure. So now it is time to be precise abouthow the conserved current
may successfully used, avoiding the di culties with negative probabilities. The point is
that it may be made to work only in the WKB approximation, alth ough this is probably
su cient for all practical purposes. The following is based primarily on Vilenkin (1989)
(see also Hawking and Page (1986) and Misner (1970, 1972)).

First we show how to construct a conserved measure. Consideat pencil B of the
congruence of classical trajectories with tangent (co)vetor r S, about which the wave
function is peaked. Suppose it intersects anr{ 1)-dimensional surface 1in B\ 1, and
subsequently intersects a second surfacep, in B\ >. Now consider the volumeV of
minisuperspace swept out by the pencil of classical trajecries between the surfaces 1
and . Becauser J =0, one may write

0= dvr J= J dA (7:18)

where dA is the element of area normal to the boundary ofvV. SinceJd dA is non-zero only
on the parts of the boundary of V consisting of the \ends", where the pencilB intersects

1 and o, it follows that
Z Z

J dA= J dA (7:19)
B\ 1 B\ 2

This means that the ux of the pencil of trajectories across a hypersurface is in fact
independent of the hypersurface. It suggests that we may usthe quantity

dP=J d (7 :20)
as a conserved probability measure on the set of classicalajectories with tangent vector
r S, where is some hypersurface that cuts across the ow.

Now we need to consider whether or not this de nition of the probability measure
gives positive probabilities. An intimately related problem is the choice of the surface
in (7.20).

In the case of the Klein-Gordon equation, one takes the surfees to be surfaces
of constant physical time, X9 = constant, and thus attempts to use Jg, the time-like
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component of the current as a probability density. As is weltkknown, however, this may be
negative. This is very signi cant in relativistic quantum m echanics, because it opens the
way to the notion of antiparticles and second quantization.

The analagous thing to do in quantum cosmology would be to tak the surfaces

to be surfaces of constante®, the timelike coordinate on minisuperspace. These would
be surfaces for which the conformal part of the three-metricis constant. Once again one
would nd that the timelike component of J may be negative. However, this does not
have the same signi cance as the Klein-Gordon case. It corsponds to the fact that in
the classical theory one may have both expanding and collajisg universes. It is merely
due to a bad choice of surfaces , and does not oblige one to gmtthird quantization (the
analogue of second quantization). For classical solutions/hich expand and recollapse, the
ow will intersect a surface of constant conformal factor twice, in a di erent direction each
time. What one really needs is a set of surfaces which the ow intersects once and only
once. For then the ux will pass through these surfaces alwag in the same direction and
the probability (7.20) will be positive.

For a typical system in minisuperspace, the trajectories wil generally go backwards
and forwards in all coordinatesq . However, merely by inspection of a typical congruence
of classical paths, it is easy to see that one can always nd aet of surfaces which the
trajectories cross only once and in the same direction. The qobability measure (7.20) will
then remain of the same sign all along the congruence of clasal trajectories (see Fig.3.).

One particularly simple choice that one might at rst think o f are the surfaces of
constant S, which are clearly orthogonal to the congruence of classi¢drajectories. These
do indeed provide a good set of surfaces for substantial regns of minisuperspace. However,
this choice breaks down when the trajectories approach thewface U(qg) = 0. Since both
J and d are proportional to r S, dP is proportional to (r S)2, which vanishes atU = 0
by virtue of the Hamilton-Jacobi equation. But apart from th is restriction there is still
considerable freedom in the choice of surfaces .

So we have seen that a sensible probability measurean be constructed from the
conserved current, by suitable choice of the surfaces . Theimportant point to note,
however, is that it works only in the semi-classical regime when the wave function is of
WKB form (7.2), subject to the condition (7.8).

Some words are in order on how the probability density (7.20)is to be used. It should
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not be thought of as anabsoluteprobability on the entire surface . That is, it cannot be
used to nd the absolute probability that the universe will s tart out at some part of the
surface . Indeed, it is not clear that it is normalizable over a surface stretching right

out to the boundary of superspacej.e. one would not expect to be able to write
Z

J dA=1 (7:21)

unless very special boundary conditions were imposed on thavave function. Rather,
(7.20) should be used to computeconditional probabilities. Such probabilities are used
when answering questions of the type, \Given that the universe starts out in some nite
subsets; of , what is the probabilility that it will start out in the su  bset sg of s1?". This
conditional probability would be given by an expression of he form

R
J dA
P(sgis1) = B (7:22)
s J dA
Each integral is nite because the domains of integrationsg, s1 are nite, and the inte-
grand will typically be bounded on these domains. The theorymakes a prediction when

conditional probabilities of this type are close to zero or me.

Finally, it should be noted that there is a certain element of circularity in our use
of the conserved current as the probability measure. We haveshown that the conserved
current can provide a sensible probability measure in the smi-classical approximation.
Beyond that it seems unlikely that it can be made to work. The problem, however, is that
strictly speaking one really needs a probability measure irthe rst place to say what one
means by \semi-classical", and to say that a given wave fundbn is peaked about a given
con guration. The resolution to this apparent dilemma is to use the measurg j2 dV from
the very beginning, without any kind of approximations, and it is in terms of this that
one dicusses the notion of semiclassical, and the peaking aint classical trajectories. One
may then apply this measure to non-zero volume regions consting of slightly \thickened"
(n 1)-dimensional hypersurfaces intersecting the classicabw. With care, it is then in
fact possible to recover the probability measureJ d discussed above, but only in the
semi-classical approximation.

Let me now summarize this rather lengthy discussion of claseal spacetime and the
WKB approximation. In certain regions of minisuperspace, aad for certain boundary
conditions, the Wheeler-DeWitt equation will have solutions of the WKB form (7.2), for
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which (7.8) holds. These solutions correspond to classicadpacetime in that they are
peaked about the set of solutions to the classical eld equabns satisfying the rst integral

(7.9). These classical solutions consist of a congruence trhjectories in minisuperspace
with tangent vector r S. One may think of the wave function as imposing initial conditions
on the velocities on some hypersurface cutting across the ow of S. In addition, the

guantity J d may be used as a probability measure on this surface; that is it may be
used to compute conditional probabilities that the universe will start out in some region
of the surface .

We will see how this works in detail in an example in the followng sections.

8. BOUNDARY CONDITION PROPOSALS

Throughout the course of these lectures | have tried to emphsize the importance of
boundary or initial conditions in quantum cosmology, although nothing we have done so far
depends on a particular choice of boundary conditions. Now & come to discuss particular
proposals and investigate their consequences.

A quantum theory of initial conditions involves selecting just one wave function of
the universe from amongst the many that the dynamics allows;.e. choosing a particular
solution to the Wheeler-DeWitt equation. Numerous proposds have been made over the
years. As long ago as 1967, DeWitt expressed a hope that matheatical consistency
alone would lead to a unique solution to the Wheeler-DeWitt equation (DeWitt, 1967).
Regretfully such a hope does not appear to have been realizedlore recently, workers in
the eld have contented themselves with o ering proposals notivated by considerations of
simplicity, naturalness, analogies with simple quantum me&hanical sytems etc. Here, we
will concentrate on just two recent proposals that are the mest comprehensive and the most
studied. These are the \no-boundary" proposal of Hartle and Hawking (Hawking 1982,
1984a; Hartle and Hawking, 1983) and the \tunneling" boundary condition due primarily
to Vilenkin and to Linde (Vilenkin, 1982, 1983, 1984, 1985a,1985b, 1986, 1988; Linde,
1984a, 1984b, 1984c).

It should be stated at the outset that all known proposals for boundary conditions
in quantum cosmology may be criticised on the grounds of lackof generality of lack of
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precision, and these two are no exception. The issue of progimg a sensible theory of
initial conditions which completely speci es a unique wavefunction of the universe for all
conceivable situations, is to my mind still an open one.

The No-Boundary Proposal

The no-boundary proposal of Hartle and Hawking is expresseth terms of a Euclidean
path integral. Before stating it, recall that a wave function [ i ; 7; B] satisfying the
Wheeler-DeWitt equation and the momentum constraint may be generated by a path
integral of the form

x Z
[ hj: ™ B]= Dg Dexp( I[g ;] (8 1)
M
The sum is over manifoldsM which have B as part of their boundary, and over metrics
and matter elds (g ;) on M matching the arguments of the wave function on the

three-surfaceB. When M has topologyR B, this path integral has the form
Z Z

[ fjj;~;S]= DN Dh;j D [N 1 exp( Ilg ;] (8 :2)

The lapse and shift N are unrestricted at the end-points. The three-metric and mater
eld are integrated over a class of paths i (x; ); ( x; )) with the restriction that they
match the argument of the wave function on the three-surfaceB, which may be taken to
be the surface = 1. That is,

hij (x;1) = fjj (x);  ( x;1) = T x) (8:3)

To complete the speci cation of the class of paths one also resls to specify the conditions
satis ed at the initial point, =0 say.

The no-boundary proposal of Hartle and Hawking is an essentdilly toplogical statement
about the class of histories summed over. To calculate the nboundary wave function,
ng [fjj ; 75 B], we are instructed to regard the three-surfaceB as the only boundary of a
compact four-manifold M, on which the four-metric is g and induceshj on S, and the
matter eld con guration is and matches the value ~on S. We are then instructed to
peform a path integral of the form (8.1) over all suchg and and over all such M (see
Fig.4.).
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For manifolds of the form R B, the no-boundary proposal in principle tells us what
conditions to impose on the histories {j (x; ); ( x; )) at the initial point =0 in the
path integral (8.2). Loosely speaking, one is to choose inial condition ensuring the closure
of the four-geometry. However, although the four-dimensimal geometric picture of what
is going on here is intuitively very clear, the initial conditions one needs to impose on the
histories in the (3+1) picture are rather subtle. They basically involve setting the initial
three-surface volume,h%, to zero, but also involve conditions on the derivatives of te
remaining components of the three-metric and the matter elds, which have only been
given in certain special casey.

There is a further issue concerning the contour of integratbon. As discussed earlier a
complex contour of integration is necessary if the path intgral is to converge. Although
convergent contours are readily found, convergence aloneoés not lead one automatically to
a unique contour, and the value of the wave function may deped, possibly quite crucially,
on which contour one chooses. The no-boundary proposal doe®t obviously o er any
guidelines as to which contour one should take.

Because of these di culties of precision in de ning the no-boundary wave function, |
am going to allow myself considerable license in my interpration of what this proposal
actually implies for practical calculations.

As far as the closure conditions goes, the following is, | thik, a reasonable approach
to take for practical purposes. The point to note is that one rarely goes beyond the
lowest order semi-classical approximation in quantum cosmlogy. That is, for all practical
purposes, one works with a wave function of the form = e !, wherel is the action of
a (possibly complex) solution to the Euclidean eld equations. The reason one does this is
partly because of the di culty of computing higher order cor rections; but primarily, it is
because our present understanding of quantum gravity is rater poor and if these models
have any range of validity at all, they are unlikely to be valid beyond the lowest order semi-
classical approximation. What this means is that in attempting to apply the no-boundary
proposal, one need only concern oneself with the question ohding initial conditions

Some earlier statements of the Hartle-Hawking proposal als used the word \regular”, i.e.

demanded that the sum be over regular geometries and matterelds. This is surely inap-
propriate because in a functional integral over elds, mostof the con gurations included

in the sum are not even continuous, let alone di erentiable. They may, however, be regular
at the saddle-points, and we will exploit this fact below.
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that correspond to the no-boundary proposal at the classical level. In particular, we are
allowed to impose regularity conditions on the metric and mdter elds. To be precise,
we will impose initial conditions on the histories which ensire that (i) the four-geometry
closes, and (ii) thesaddle-pointsof the functional integral correspond to metrics and matter
elds which are regular solutions to the classical eld equations matching the presribed
data on the bounding three-surfaceB. There is a lot more one could say about this, but
these conditions will be su cient for our purposes. For a more detailed discussion of these
issues see Halliwell and Louko (1990) and Louko (1988Db).

Consider next the contour of integration. Because we will oty be working in the
semiclassical approximation, we do not have to worry about nding convergent contours.
Nevertheless, the contour becomes an issue for us if the stilon to the Einstein equations
satisfying the above boundary conditions is not unique. Forthen the path integral will
have a number of saddle-points, each of which may contributdo the integral an amount
of order e 'ckl, where I'C‘I is the action of the solution corresponding to saddle-pointk.
Without choosing a contour and performing a detailed contou analysis it is unfortunately
not possible to say which saddle-points will generally proide the dominant contributions.
We therefore have no general guidelines to o er here.

We will see how exactly these issues arise in the simple exahepdiscussed below.

We now calculate the no-boundary wave function explicitly for the scalar eld model
described in Section 2. In the gaugd\- = 0, the minisuperspace path integral for the

no-boundary wave function is .

ng(& )= dN  DaD exp( Ifa( ); ( );N])

where| is the Euclidean actio"n for the scalar eld model,

171 a da a> d 3
I = - N — —  t — — + a‘Vv 4
2 o d N2 d N2 d a+av() (8:4)
The Euclidean eld equations may be written,Y
1 d?a 2 d 2
= — V() (8:5)

N2ad 2~ N2 d

Because the path integral representation of the wave functin involves an ordinary integral
over N, not a functional integral, the constraint (8.7) does not immediately follow from
extremizing the action (8.4) with respect to the variables integrated over. Rather, the
saddle-point condition is @I=@N- 0, and one actually obtains the integral over time of

41



1 d? 3dad 1 _
N?a?  Nadd 2V ()70 (8:6)
1 da? a2 d ? ’ _ .

The integral (8.4) is taken over a class of paths &( ); ( );N) satisfying the nal
condition
al)=+ @)= " (8:8)

and a set of initial conditions determined by the no-boundary proposal, discussed below.
The constant N is integrated along a closed or in nite contour in the complex plane and

is not restricted by the boundary conditions. We are intereged only in the semi-classical
approximation to the above path integral, in which the wave function is taken to be of the

form

(~a; ) =exp( Iq(a ") (8:9)

(or possibly a sum of wave functions of this form). Herelg(&; ") is the action of the
solution to the Euclidean eld equations (a( ); ( );N), which satis es the nal condition
(8.5) and, in accordance with the above interpretation of the no-boundary proposal, is
regular and respects the closure condition.

Consider, then, the important issue of determining the initial conditions on the paths
that correspond to the closure condition and ensure that thesolution is regular. Consider
rst a( ). The Euclidean four-metric is

ds?= N2d 2+ a%( )d 3 (8:10)

We want the four-geometry to close o in a regular way. Imagine making the three-sphere
boundary smaller and smaller. Then eventually we will be abé to smoothly close it o with
at space. Compare, therefore, (8.10) with the metric on at space in spherical coordinates

ds?= dr?+r?d 3 (8:11)

(8.7). The form of (8.7) as written is obtained once one realies that the integrand is
in fact constant, by virtue of the other two eld equations, h ence the integral sign may
be dropped. However, writing the constraint with the integral over time highlights the
fact that the eld equations and constraint contain two func tions and one constants worth
of information. This is precisely the right amount of inform ation to determine the two
functions (a( ); ( )) and the constant N in terms of the boundary data.
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From this, one may see that for (8.10) to close o in a regular vay asa! 0, we must have
a() N; as 0] (8:12)

This suggests that the conditions that must be satised at =0 are

. 1lda,. _ .
a(0)=0; Wd_(o)_l (8:13)

(8.13) are the conditions that are often stated in the literature. However, this is in
general too many conditions. In general, we would not expecto be able to nd a classical
solution satisfying the boundary data of xed a on the nal surface, xed a on the initial
surfaceand and xed da=d on the initial surface. We might of course be able to do this at
the classical level, for certain special choices of boundardata, but such conditions could
not be elevated to quantum boundary conditions on the full pah integral. One of these
condition must be dropped. Since the main requirement is thathe geometry closes, let us
drop the condition on the derivative and keep the condition that a(0) = 0. On the face of
it, this seems to allow the possibility that the four-geometry may not close o in a regular
fashion. Consider, however, the constraint equation (8.7) It implies that if the solution is
to be regular, then da=d ! 1 asa! 0. The regularity condition is therefore recovered
when the constraint equation holds. This guarantees that tre saddle-points will indeed be
regular four-geometries, if we only imposea(0) = 0.

Now consider the scalar eld ( ). Consider the equation it satis es, (8.6). It is not

di cult to see that if the solution is to be regular as a! 0, then ( ) must satisfy the
initial condition

3—(0) =0 (8:14)

So the sole content of the no-boundary proposal, for this moel, is the initial condition
(8.14) and the condition a(0) = 0.

Our task is now to solve the eld equations (8.5)-(8.7) for the solution (a( ), ( ),
N), subject to the boundary conditions (8.9), (8.14) and a(0) = 0, and then calculate the
actionY of the solution.

Y The action (8.4) is the appropriate one whena and are xed on both boundaries. If
one wants to X instead derivatives of the elds on the boundary, as (8.14) requires, then
(8.4) must have the appropriate boundary terms added. The corect boundary term does
in fact vanish in the case under consideration here, althoul this is a point that generally
needs to be treated quite carefully.
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For de niteness, let us assume that the potential V( ) is of the chaotic type (i.e. U-
shaped) and let us go to the large region at which jV&Vj << 1. Itis not di cult to see
that the approximate solution to the scalar eld equation (8.6), subject to the boundary
conditions (8.8), (8.14), is

() ~ (8:15)

Similarly, the approximate solution to the second order egation for a( ), (8.5), satisfying
the boundary conditions a(0) =0, a(l) =4, is

asin(V%N )
—_— (8:16)
sin(V2N)
Finally, we insert (8.15), (8.16) into the constraint (8.7) to obtain a purely algebraicequa-
tion for the lapse, N. It is

sin?(VZN) = a2V (8:17)
There are an in nite number of solutions to this equation. If &2V < 1, they are real, and
are conveniently written

1
N=N, —
2

(n+ %) cos L(av?) (8:18)

wheren = 0; 1; 2;:: and cos 1(av%) lies in its principal range, (0; =2). For the
moment, we setn = 0. We will return later to the signi cance of the other value s of n.

With n = 0, the solution for the lapse inserted into the solution for a( ), (8.16), now
reads 1 h

a() —sin =

2: 2

We now have the complete solution to the eld equations subjet to the above boundary

conditions. It is (8.15), (8.19), together with the solution for the lapse (8.18). The action

of the solution is readily calculated. It is

[
cos L(av?) (8:19)

- 1 vy TP 8:20
e 22V () (8:20)

It is not di cult to see that these two solutions represent th e three-sphere boundary being
closed o with sections of four-sphere. As expected, the aobn is negative. The ( )=(+)
sign corresponds to the three-sphere being closed of by lesisan/more than half of a
four-sphere. The classical solution is therefore not unige.
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Because the classical solution is not unique, we are faced tithe problem of which
solution to take in the semi-classical approximation to the wave function. Naively, one
might note that the (+) saddle-point has most negative action, and will therefore provide
the dominant contribution. However, as brie y mentioned earlier, this depends on the
contour of integration. One can only say that the (+) saddle-point provides the dominant
contribution if the chosen integration contour in the path i ntegral may be distorted into
a steepest-descent contour along which the (+) saddle-poinis the global maximum. In
their original paper, Hartle and Hawking (1983) gave heurigic arguments, based on the
conformal rotation, which suggest that the contour was suchthat it could not be distorted
to pass through the (+) saddle-point and was in fact dominated by the (-) saddle-point. For
the moment let us accept these arguments. They thus obtainedhe following semi-classical
expression for the no-boundary wave function:

nB(a, ) exp Tl() 1 1 a2V() (8:21)

(where we have dropped the tildes, to avoid the notation becming too cumbersome).
(8.21) is indeed an approximate solution to the Wheeler-DeVitt equation for the model,
(2.14), in the region a2V ( ) < 1. Using the WKB matching procedure, it is readily shown
that the corresponding solution in the regiona?V( ) > 1 is

2 3=2
a?v() 1 2 (8:22)

1 1
ne (& ) exp V() cos V()

This completes the calculation of the no-boundary wave funtion.Y

Some further remarks are in order. First, the contour of integration. The path integral
for the no-boundary wave function as discussed above has twsaddle-points, and Hartle
and Hawking argued that it is the saddle-point correspondirg to less than half a four-
sphere that provides the dominant contribution. However, their heuristic argument is not,
in my opinion, totally convincing.

A more detailed analysis of this situation by myself and Jorma Louko exposed the as-
sumptions that Hartle and Hawking implicitly made to arrive at the above answer (Halliwell
and Louko, 1989a). By a suitable choice of variables, and by @arking with a cosmological

The reader familiar with the literature will note that this i s not the derivation given by
Hartle and Hawking (1983). However, | have presented it in ths way to emphasize certain
points which will be discussed in what follows.
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constant instead of a scalar eld, we were able to evaluate te minisuperspace path inte-
gral for this model exactly. In particular, we were able to de¢ermine convergent contours
explicitly for the model, and thus see whether or not certainsaddle-points did or did not
yield the dominant contribution to the path integral. What w e found is that there are a
number of inequivalent contours along which the path integral converges, each dominated
by di erent saddle-points, and thus leading to di erent for ms for the wave function. No one
contour was obviously preferred. In particular, the no-boundary proposal did not indicate
which contour one was supposed to take. A contour yielding tlie above form for the wave
function could be found, but it was not obvious why one shouldtake that particular one.
So the essential conclusion here is that the no-boundary prmosal as it stands does not x
the wave function uniquely. There are, so to speak, many no-bundary wave functions,
each corresponding to a di erent choice of contour. The wavefunction is therefore only
xed uniquely after one has put in some extra information xing the contour.

As an example, in the simple model above one couldle ne the no-boundary wave
function to be as de ned by Hartle and Hawking, with the additional piece of information
that one is to take the contour dominated by the less-than-hdf saddle-point. A more
general statement is however not currently available. A posible approach to this problem
is that of Halliwell and Hartle (1989), which involved restricting the possible contours on
the grounds of mathematical consistency and physical prediions.

The second issue that deserves further comment is the equatn for the lapse, (8.17),
and there are a number of points to be made here. Firstly, we aosidered onlya?V (") < 1,
so that the solution was real. One may allowa?V (™) > 1, in which caseN, the scale
factor (8.16) and the action become complex { the action is esentially (8.20) with a2V ()
continued into the range a?V (™) > 1. Complex saddle-points are generally expected in
this sort of problem. Indeed, they are essential if the wave dnction is to be oscillatory,
and thus predict classical spacetime. Secondly, we resttied to the solutions with n = 0.
What is the signi cance of the other solutions? Consider rst the case of n positive.
It is not dicult to see that for values of n > 0, the solution (8.16) undergoes many
oscillations. More precisely,az, which appears in the metric, expands to a maximum size
and then \bounces" each time it reaches zero. The geometricipture of these saddle-points
is therefore of linear chains of contiguous spheres (Halliall and Myers, 1989; Klebanov et
al., 1989).

What about the saddle-points with n < 0? These saddle-points have negative lapse.
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Because the action changes sign undex ! N, the action of these saddle-points has
the \wrong" sign. However, these saddle-points are otherwse identical to the ones with
positive lapse { their four-metrics are the same. Moreoverthey have a perfectly legitimate
place as saddle-points of the path integral. They are not aréfacts of this model. They
arise because the action, by virtue of the presence of th8 g factor, is double-valued in
the space of complex four-metrics. Carrying the metric oncearound the branch point
returns one to a physically identical solution to the Einstein equations, but with action
of the opposite sign. So to every physically signi cant soldion there correspondstwo
saddle-points. Because one has to integrate over complex tmies for convergence, both
saddle-points are candidate contributants to the path integral.

So nally it seems sensible to ask, why did we not include any bthese extra saddle-
points, i.e. n = 1; 2;::, in the calculation of the no-boundary wave function? The
answer is that one can, by a suitable choice of contour. Howey, the saddle-points with N
negative (or more generally, with Re(IO g) negative), lead to di culties with the recovery
of quantum eld theory in curved spacetime if they dominate the path integral, because
a normally positive matter action will become negative de nite on the gravitational back-
ground corresponding to such a saddle-point. For this reasg the contour should not be
chosen in such a way that it is dominated by a negativeN saddle-point (Halliwell and
Hartle, 1989). This leaves the saddle-points withn = 0; 1; 2; 3::. The saddle-points corre-
sponding to the linear chains of spheresn = 1;2;:: may contribute with a suitable choice
of contour, but one could exclude them by taking the de nition of the no-boundary wave
function o ered above (i.e demand that the contour be dominated by the saddle-point
corresponding to less than half of a four-sphere).

These issue involving the contour are still very much up in the air, and | would regard
the question of choosing a sensible contour for the no-bouradty wave function as at this
moment an open one.

The Tunneling Boundary Condition

The other proposal we will consider here is the so-called \taneling" boundary con-
dition advocated primarily by Vilenkin (1982, 1983, 1984, 1985a, 1985b, 1986, 1988) and
Linde (1984a, 1984b, 1984c). | will concentrate on Vilenkits formulation, which is the
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most comprehensive. The tunneling boundary condition attenpts to draw most strongly
the analogy between the quantum creation of the universe andunneling in ordinary quan-
tum mechanics. Vilenkin has o ered various formulations of this boundary condition, not
all of which are obviously equivalent. The most detailed is tie \outgoing modes" formu-
lation, which we now discuss (Vilenkin, 1988).

The outgoing modes statement of the tunneling boundary condion proposal is a state-
ment about the behaviour of the solutions to the Wheeler-DeWitt equation at the boundary
of superspace. In brief, the idea is as follows. In a manner atagous to that in which
solutions to the Klein-Gordon equation are classi ed as pogive or negative frequency,
Vilenkin attempts to classify the solutions to the Wheeler-DeWitt equation as \ingoing"
or \outgoing" at the boundary. The proposal is then that the w ave function should consist
solely of outgoing modes at the parts of the boundary of supepace which correspond to
singular four-geometries. A regularity condition, that b e everywhere bounded, is also
imposed.

This is perhaps a little vague, so let us discuss it more carefly. First, consider the
nature of the boundary of superspace. The boundary of supepace will generally consist
of con gurations which are in some sense singularge.g. hz will be zero or innite, or
guantities such as , or (@) 2 may be in nite. However, this does not necessarily mean
that a four-geometry which has that three-geometry as a slie is singular. For example,h%
vanishes at the north and south pole of a four-sphere, but thefour-geometry is perfectly
regular. Let us therefore divide the boundary of superspacento two regions. The rst
region consists of three-geometries having singularitiesittributable to the slicing of a
regular four-geometry. That is, there exists a regular Eucideany four-geometry of which
the singular three-geometry is a slice. Call these parts ofte boundary non-singular.
The second part of the boundary is what remains, and will be réerred to as the singular
boundary. This part of the boundary doescorrespond to singularities of the four-geometry.
A more detailed mathematical discussion of this point can begiven, using Morse theory,
but the above is su cient for our purposes.

Now let us discuss the notion of ingoing and outgoing modes. dutions to the Klein-
Gordon equation of relativistic quantum mechanics may be epanded in terms of mode

Y The description \Euclidean" was not given explicitly in Vil enkin (1988), but it appears to
have been tacitly assumed there and elsewhere

48



functions €P X, and these modes may be classi ed as positive or negative fjgency, with
respect to the timelike Killing vector i@=@t More precisely, the mode solutions are
eigenfunctions of this Killing vector and the classi cation depends on the sign of the
eigenvalue. The positive and negative frequency modes maylso be characterized by the
sign of Jg, the timelike component of the conserved current

J=—-( r r); r J=0 (8:23)

One might hope to do an analagous thing for the Wheeler-DeWit equation. In the
general case, one meets with an immediate di culty. This is that to say what one means
by positive and negative frequency on the whole of superspac¢ one needs a timelike Killing
vector. However, it is a mathematical property of superspae that it has has no Killing
vectors at all, so positive and negative frequency modes cawot in general be de ned
(Kucha, 1981).

Despite this obstruction, one can still make considerable pogress by restricting at-
tention to certain approximate forms for the wave function, or by restricting attention to
certain regions of superspace, such as close to the bounda®ne is, for example, primar-
ily interested in the solution in the oscillatory region. Th ere, one expects solutions to the
Wheeler-DeWitt equation of the form

X .
= Cne'=n (8:24)
n
where the S are solutions to the Hamilton-Jacobi equation. The current for the mode
CneiS” is
Jn= j Cnjér Sn (8:26)
This mode is thus de ned to be outgoing at the boundary if r Sp points outward there.

If the wave function is not oscillatory in the neighbourhood of the boundary, then the
de nition of outgoing modes is more problematic, if not impossible.

Now let us give a more precise statement of Vilenkin's outgaig modes proposal for
the tunneling wave function, T:

7 Is the solution to the Wheeler-DeWitt equation that is everywhere bounded and
consists solely of outgoing modes at singular boundaries etiperspace.
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Despite the apparent vagueness in its de nition, and the obgsuction of principle to
making it more general, the Vilenkin outgoing modes form of te tunneling boundary
condition appears in simple minisuperspace models to be initively reasonably clear, and
it has been quite successful in de ning a unique solution to he Wheeler-DeWitt equation.

Now let us calculate the tunneling wave function, using the d&ove proposal, for the
scalar eld model. The Wheeler-DeWitt equation may be writt en

G 1@

@8 a’@?
The minisuperspace for this model is the two-dimensional spce with coordinates @; ),
withO <a< 1, 1 < < 1. The only non-singular part of the boundary isa =10
with nite. The rest is singular, and consists of con gurations with one or both of a
and innite. Writing a = e , minisuperspace, which is now just at two-dimensional
Minkowski space, is conveniently represented on the usualomformal diagram. The non-

+atv() a (a )=0 (8:27)

singular boundary is mapped to the single pointi , past timelike in nity. The remaining
singular part of the boundary is mapped tol , future and past null in nity, and i%;i*,
spacelike and future timelike in nity (see Fig.5.). The basic idea of the outgoing modes
prescription is that probability ux is injected into super space ati with nite and
a=0, and ows out of superspace across the singular boundare

We will again work in the region for which the scalar eld potential depends only
very slowly on . So provisionally we impose the restrictionjV &Vj << 1, although this
condition will be revised below. Next, note that as a goes to zero, the coe cient of
the second derivative with respect to in (8.27) blows up. If, as the boundary conditions
demand, we are to get a regular solution, it seems reasonable insist that ( a; ) becomes
independent of for small a. We will therefore neglect the second derivative with respet
to in (8.27).

Consider rst the solution in the oscillatory region, a2V( ) > 1. The WKB solutions
are proportional to €S, or e 'S, whereS=(a2v( ) 1)32=3V( ). The rst has proba-
bility ux J r S, pointing back towardsi , the second hasl r S, pointing outwards
away fromi . The latter, if evolved in the forward direction would eventually reach the
singular boundary at which it would be outgoing. The former, however, corresponds to
the time reverse of this so is ingoing at the boundary. This mans that the outgoing
modes prescription implies that only an outgoing wave shoud be present in the classically
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allowed region, so the wave function should be proportionato e IS This implies that the
tunneling wave function in the oscillatory region is of the form

| .
T@ ) A()exp SV'—() av() 1 (8:30)

Here we have included, as we may, the slowly varying -dependent factor A( ). It turns
out that this needs to be included to ensure that the solutionis regular.

By the WKB matching procedure, one may determine the solutian corresponding to
(8.30) in the exponential region,a?V( ) < 1. Itis

1 2 3=2
(@ ) A()exp T() 1 a%Vv()
=2

. 5 3
IA( )exp 1 a°Vv() (8:31)

1
v()
The second term is exponentially smaller than the rst, so may be neglected. Now consider
what happens to the solution asa goes to zero. For regularity, we need@ =@ ! 0 as

a! 0. This can only be achieved by choosing the functiorA( ) to be

‘ -

A( )=exp (8:32)

3V

~—

)

With this choice, 1 e 2@ for small a, which is regular for all values of .

We should now check that all this is consistent with the appraimation of neglecting
the second derivative with respect to in the Wheeler-DeWitt equation. Inserting the
approximate solution with A( ) given by (8.32) into (8.27), it may be shown that the
solution is valid in the region for which jVY{ )j <<a 2. If a®V( ) < 1, this is actually
an improvement on the original condition, jV%Vj << 1. In particular, it means that the
solution is valid for arbitrarily rapid dependence of the potential on  as a goes to zero.
This would not have been true had we not multiplied the wave function by (8.32). So the

revised restriction under which our approximations are vald is

h i
iV )i << max jv( )j;a 2 (8:33)

The nal expression for the tunneling wave function is given by

1@ ) exp Tl() 11 adv()

for a?v()<1 (8:34)
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T(@; ) exp exp aZV( ) 1 for a2V( )> 1 (8:35)

[
V() V()
This completes the calculation of the tunneling wave functon.

Mention should also be made of an alternative, not so well-kown version of the tun-
neling boundary condition, also due to Vilenkin. This is that the wave function is given
by a Lorentzian path integral over geometrzies which close o in the past,

7= Dg e's (8:36)

where S is the Lorentzian action. The phrase \close o in the past” is taken to mean
that the histories summed over have vanishing initial threevolume, and also that the lapse
function in the path integral (4.7) (or (5.21)) is integrate d not over an in nite range, but
over a half-in nite range, from 0 to 1 . The wave function thus calculated is then not
quite a solution to the Wheeler-DeWitt equation, but is a Green function of the Wheeler-
DeWitt operator; i.e. one obtains a delta-function on the right-hand side of Eq.(523),
although this delta-function is pushed to the boundary of syerspace wherehz = 0. This
is in keeping with the idea that the tunneling wave function involves probability ux being
injected into superspace at the non-singular boundary. It ems reasonable to interpret this
proposal as being essentially the same as the no-boundary gosal, in which a particular
choice for the contour is made. Namely, that the contour is clesen to be the complex
contour which may be distorted to lie along the real Lorentzian axis. It is not obviously
equivalent to the outgoing modes version of the tunneling poposal, however, and actually
fails to coincide precisely in some models (Halliwell and Loko, 1990).

Linde's version of the tunneling proposal (Linde, 1984a, 184b, 1984c) also appears to
involve a Lorentzian path integral as a starting point. Because the usual Wick rotation to
Euclidean time leads to a minus sign in front of the kinetic term for the scale factor in the
action, Linde proposed that the Wick rotation should be performed in the \wrong" direc-
tion. It may be argued that this involves choosing the lapse ontour to be the distortion
into the region Re(N) < 0 of the contour running up the positive imaginary axis (Halliwell
and Louko, 1989a, 1990). This proposal is therefore idental to Vilenkin's path integral
version of the tunneling proposal.

Finally, an interesting point. Vilenkin observed that the f ull Wheeler-DeWitt equation
is invariant under the transformation

hiy ! € hij; V() ! el V() (8 :37)
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That is, given a solution [ hj; ], a second solution may be generated from it using the
above transformation. In particular, Vilenkin noticed tha t the no-boundary and tunneling
wave functions for the scalar eld minisuperspace model areelated by this transformation:

NB = T(V! el Vvial €72 (8:38)

(to see this explicitly one has to use the Airy functions of whch (8.34) and (8.35) are
asymptotic forms). The possible signi cance of this obsersation is the following: as | have
tried to emphasize, there are considerable di culties of precision and generality in the
de nitions of the no-boundary and tunneling wave functions. If, however, one succeeded
in de ning one of these wave functions in a much more precise, more generahwy then the
other could be de ned by the transformation (8.37).

9. NO-BOUNDARY VS. TUNNELING

Let us now compare the no-boundary and tunneling wave funcins. For convenience
we record their explicit forms in the oscillatory region, in a range of for which V( )
is slowly varying. To be de nite, let us take the potential V( ) to be of the chaotic
in ationary type. Let us introduce

1 3=2

S= B a?v() 1 2 (9:1)
The tunneling wave function is
T exp 3V71() e S (9:2)
The no-boundary wave function is
U .
NB  €xp +3V7() e °+e (9:3)

There are two di erences. The rst is that the no-boundary wave function is real, being
a sum of a WKB component and its complex conjugate, whilst theVilenkin wave func-
tion consists of just one WKB componentY If one component corresponds to expanding

Y The fact that the no-boundary wave function is real correspads to the fact that it is in a
sense CPT invariant, and has implications for the arrow of time in cosmology (Hawking,
1985; Page, 1985).
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solutions, then the other corresponds to collapsing solutins, although it is not possible to
say which one is which. It may be argued that these componentbave negligible interfer-
ence, so each component may be considered separately (Ha#ill, 1989b). One may thus
compare a single component of the no-boundary wave functionvith the Vilenkin wave

function.

The second, and more important di erence, is the sign di erence in the prefactor.
Both wave functions are peaked about the same set of solutianto the eld equations,
namely those satisfying the rst integral p = r S, with S given by (9.1). As we have
shown, these solutions are initially in ationary, with a(t) eV%t, (1) o0 = constant.
These solutions may be labeled by their initial values of , . Although all the solutions
undergo somein ation, the amount by which they in ate depends on (. For example, if
the potential is V( )= m?2 2, then su cient in ation is obtained only for values of @ in
excess of about 4 (in Planck units) (Hawking, 1984a; Page, Bba).

To see which initial values of are most favoured by each wave function, we need to
study the measure on the set of pathsJ d. Because the trajectories have — 0, J
points largely in the a direction. A suitable choice of surfaces is therefore surfices of
constant a, at least locally. The probability measure is thus given by

dP=J d exp 3\/72() d (9:4)

(with (+) for the no-boundary wave function, () for the tunneling wave function). With
this measure, we now have to ask the right questions. As dis@sed previously, we cannot
take this to be an absolute measure on the initial values of . Rather, it should be thought
of as a conditional probability measure. So we must rst decde what conditions to impose;
that is, in what range of values of are we to ask for predictions?

First of all consider what happens if is very small initially, close to zero (for conve-
nience, we restrict attention to positive in what follows). Universes starting out with a
very small initial value of  will very rapidly reach a small maximum size and then rec-
ollapse in a short period of time. One would not expect large cale structure and indeed,
observers, to exist in such universes. It therefore seemsasonable to impose the condition
that the universe expands out to a \reasonable" size. This issomewhat vague, but what
it means is that we restrict attention to initial values of  greater than some exceedingly
small value in, say. This restriction has the consequence that the no-bouthary (+)

54



measure (9.4) is now bounded (it was previously unbounded at = 0) and it is peaked

Now consider very large values of . For a chaotic potential at least, as becomes
very large the scalar eld energy densityV( ) will approach the Planck energy density,
V() 1. If minisuperspace models are to have any validity at all, i seems unlikely that
they can be trusted in the range of for which V( ) > 1. So our second condition is
to ask for predictions only in the region < p, where V( p) = 1. For the potential
V( )= m? 2, m is normally taken to be about 10 4, so  10%

Our task is now to ask for predictions with the condition that the initial value of
lies in the range min < < p. For a chaotic potential, there will be a value of in this
range, larger than nn, call it g, for which su cient in ation is achieved if o> g,
and it is not achieved if o< ¢yf. For the massive scalar eld, ¢, 4. A pertinent
question to ask, therefore is this: \What is the probability that o > g,¢, given that

min < 0< p?"Itis given, using (9.4), by the following expression.

R 2
. @)

P(o> sufl mn< 0< p)=R 5

(

v (9:5)
p_n d exp gy

mi

)

This is e ectively the probability of su cient in ation.

It is reasonably easy to see the result of evaluating (9.5) bynerely looking at the plot of
the two probability distributions, exp Tz() (see Fig.6.). Consider rst the tunneling
wave function (). The integrand becomes very small as approaches i, and it is clear
that by far the largest contribution to the integral in the de nominator comes from the
region > ;. One therefore hasP 1, and su cient in ation is a prediction of the
tunneling wave function.

Now consider the no-boundary wave function (+). The integrand diverges as ap-
proaches zero, but is cut 0 by qin. If, as we are assuming, min IS very small, the
main contribution to the integral in the denominator will co me from the region very close
t0  min- One therefore hasP << 1 for the no-boundary wave function, and su cient
in ation is not a prediction.

The above conclusion about the no-boundary wave function isot the one reached
by Hawking and Page in their analysis (Hawking and Page, 1986 They concluded that
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su cient in ation has probability unity. The di erence wit  h the analysis given here (which

is based on that of Vilenkin (1989)), is that Hawking and Pagedid not restrictto < .

For > p, theintegrands in (9.4) level o to 1, thus although inthe range mjn < < 1

the integrands in the denominator are strongly peaked at 4, the contribution to the

integral from this region is overwhelmingly outweighed by that from very large values of
. (9.4) would therefore yield the value 1 for both wave functons.

A new aspect to the no-boundary/tunneling debate was recerlly exposed by Grishchuk
and Rozhansky (1989) (see also Grishchuk and Rozhansky (188. They asked whether
the above calculation of the no-boundary wave function, wheh involves the approximate
solutions to the classical Euclidean eld equations for thescalar eld model, is really valid
down to close to zero. The conclusion they came to is that they are notand that the
above expression for the no-boundary wave function makes sse only in the range > :
for some critical value of ,  which they estimated. Although less than ¢,;, is much
greater than ,in , the lower bound we imposed to ensure that the universe expaied to a
\reasonable" size. The value of is model-dependent. For the massive scalar eld model

1.

Their conclusion was reached by giving a more careful treatrant of the motion of the
scalar eld, which was taken to be approximately constant in the above analysis. For large
, jV&Vj << 1, and the Euclidean solution for a( ) is given approximately by (8.19).
The trajectories start at a = 0 with some value of , expand, and then turn around and
recollapse. In particular, along the curvea?V ( ) = 1, neighbouring Euclidean trajectories
intersect { they form a caustic. Because the real Euclidean trajectories dominating the
path cannot reach immediately beyond the caustic,i.e. into the region a?2v( ) > 1, a
complex solution is necessary in order to get there. This meass that the wave function
becomes oscillatory in this region. Suppose however, onellimvs the caustic to smaller
values of . It departs from the curve a2V ( ) =1, and in fact has a singularity at =
breaking into two branches there. This seems to invalidate he form of the wave function
used above, and in fact, Grishchuk and Rozhansky claimed thait implies that the wave
function fails to predict the emergence of any real Lorentzan trajectories for <

Moreover, their analysis also applies, they claim, to the tunneling wave function.

What this all means is that the conditions used above in the céculation of the prob-
ability of su cient in ation should be replaced by the condi tions < < p. Most
importantly the region very close to = in, in which the no-boundary and tunneling
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wave function di er most severely, is excised. This has the onsequence that the predic-
tions of these two wave functions are not as di erent as prewusly believed. Although
the predictions of the tunneling wavefunction are little a ected by this result, for the no-
boundary wave function it is now not so obvious that P << 1. In particular, what one
would hope to nd is that > gquf - This would have the consequence thatll the clas-
sical Lorentzian solutions the wave function correspondsd have su cient in ation; thus

su cient in ation would be predicted with probability 1, ir  respective of whether an upper
cut-o is imposed. The value of is, however, model dependent, and a model for which

> o Is yet to be foundY

This is an interesting development which deserves further tsidy.

10. BEYOND MINISUPERSPACE

For most of these lectures, we have largely concentrated onhe application of the
formalism of quantum cosmology to minisuperspace models. Aese models, with the ap-
propriate boundary conditions, have been reasonably sucssful { in predicting in ation,
for example. However, the universe we see today is not exagtidescribed by the homoge-
neous metrics of the type considered in minisuperspace molde There are local deviations
from homogeneity because matter is clumped into galaxies ahother large scale struc-
tures. In conventional galaxy formation scenarios, this lage scale structure can arise as a
result of small density perturbations = 10 4 in an otherwise homogeneous universe
at very early times. The hot big bang model o ered no explanation as to the origin of
these perturbations, but had to assume them as initial condiions. The in ationary uni-
verse scenario shed considerable light on the situation byh®wing that they could have
arisen from pre-in ationary quantum uctuations in the sca lar eld hugely ampli ed by
in ation. To be more precise, the density uctuations in in ationary universe models are
calculated from a quantity of the form h0j 2j0i, using standard methods of quantum eld
theory in a curved (usually de Sitter-like) spacetime. However, a point that was not em-
phasized in the early studies of this problem is that the formand magnitude of the density

More detailed calculations with the massive scalar eld mocl, for which 1 and
suf 4 indicate that the previous conclusions (.e. pre-Grishchuk-Rozhansky) concering

the probability of in ation are in fact largely una ected (J .Fort, private communication).
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uctuations calculated in this way depend rather crucially on the particular vacuum state
jOi one uses, and in most curved spacetimes, there is no unique tnaal choice. Since this
is clearly a question of initial conditions, one would expetto gain new insight into this
issue from the perspective of quantum cosmology. It is thed®re of considerable interest to
go beyond minisuperspace to the full, in nite dimensional siperspace. It would of course
be very dicult to do this in full generality, but for the purp oses of describing density
uctuations and gravitational waves, it is su cient consid er linearized uctuations about
a homogeneous isotropic minisuperspace background. This the subject of this section.

We will nd that there are two things that come out of this. Fir stly, we will see that in
the semi-classical limit, quantum cosmology reduces to théamiliar formalism of quantum
eld theory for the uctuations on a classical minisuperspace background. Secondly, the
boundary conditions on the wave function of the universe imgpy a particular choice of
vacuum state for the quantum elds.

Quantum Field Theory in Curved Spacetime

Before going on to study perturbations about minisuperspae in quantum cosmology,
let us begin by reviewing some basic aspects of quantum eldheory in curved spacetime
(see, for example, Birrell and Davies (1982)). For de niteress, let us consider scalar eld

theory described by the action .
[

1 p__h
Sm= 3 d*x" g (@ 2+ m? ? (10:1)

This theory is normally quantized in the Heisenberg picture in a given background by
introducing a set of mode functionsuy(x;t) satisfying a wave equation of the form

O m? ug(x;t) =0 (10:2)
The eld operator “is then expanded in terms of these mode functions
X
T x:t) = AU (X t) + ’aBk/uk(x;t) (10:3)
k

where aﬁ’ and &, are the usual creation and annihilation operators. The vacum state is
then de ned to be the state jOi for which

8,j0i =0 (10:4)
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The vacuum state is determined by the choice of mode functios uy.

In Minkowski space, there is a unique vacuum state which is imariant under the
Poincare group, and so is the agreed vacuum state for all inéal observers. However,
in an arbitrary curved spacetime, there is no unique vacuum tate. Any expectation value
will generally depend rather crucially on the particular choice of state.

There is another perhaps less familiar way of doing quantum eld theory in curved
spacetime which is closer to quantum cosmology than the Heenberg picture outlined
above. This is the functional Schrodinger picture (Branderberger, 1984; Burges, 1984;,
Floreanini et al., 1987; Freese et al., 1985; Guth and Pi, 198 Ratra, 1985). This picture
is based very much on the (3 + 1) decomposition we also used fogquantum cosmology
earlier. The (3 + 1) form of the scalar eld action (10.1) (in t he gaugeN' = 0) is

1 z 1 2 #
— 3 i = j 2 2 :
Sm = > d°xdtNh 2 N2 h' @ @ m (10:5)
De ning canonical momenta in the usual way, one readily derives the Hamiltonian
1 z N . i
Hm=3 dxNh2 h ' 2+hl@ @+ m? 2 (10:6)

In the functional Scmedinger quantization, the quantum st ate of the scalar eld is repre-
sented by a wave functional m[( x);t], a functional of the eld con guration ( x) on the
surfacet = constant. The evolution of the quantum state is governed by the functonal
Schredinger equation

i@= Hm m (10:7)

where the operator appearing on the right-hand side is the Hamiltonian (10.6) with the
momenta replaced by operators in the usual way,

x)! | (10:8)

( x)

There are two di erences between the representation of stats in the two picture out-
lined above. Firstly, Heisenberg picture states are timeddependent, whereas Schredinger
picture states are not (at least, in the at space case { in cuved backgrounds Heisenberg
states may acquire time-dependence through the gravitatioal eld). They are related by

Z
i sizexp i dtHMY | i (10:9)
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Secondly, the Schredinger picture states are representedt each moment of time by wave
functionals [( x)] rather than abstract Hilbert space elementsj i. The relationship
between these two is found by introducing a complete set ofeld states j ( x)i, de ned to
be the eigenstates of the eld operator“at a moment of time

"TOx)= (X)) () (10:10)

The wave functionals [( x)] are then de ned to be the coe cients in the expansion of

the abstract Hilbert space elements in terms of the completeset of eld states:
Z

jsi= D(x)j(x)ih(x) si
Z
D (x)j(x)i s[(x)] (10:11)

The question of choosing a vacuum statg0i in the Heisenberg picture becomes the
guestion of choosing a solution to the functional Schredirger equation (10.7) in the func-
tional Schmdinger picture.

With these preliminaries in mind, let us now turn to perturba tions about minisuper-
space.

Inhomogeneous Perturbations about Minisuperspace

Now we will study inhomogeneous perturbations about minisgperspace. We primarily
follow Halliwell (1987b), Halliwell and Hawking (1985), and Hartle (1986), but many more
references are given in Section 13. To see how this works, i isimplest to consider a
particular example. Namely, we will consider perturbations about the scalar eld model
considered earlier. There, the minisuperspace ansatz inlwed writing

hj =€ i (xD= ()

N(x;t) = No(t): N(x;t)=0 (10:12)
where j; is the metric on the unit three-sphere. To go beyond this pertirbatively we
write

hj=e §+ 4 5(xn= O+ )
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N (x;t) = No(t)+ N (x;t) (10:13)

and in addition, we allow non-zeroNi(x;t), which is regarded as a small perturbation.
The easiest way to deal with the inhomogeneous perturbatios is to expand in harmonics
on the three-sphere. So, for example, one writes the scalareld perturbation as

X
= Fam QR (X) (10:14)
nim

where Q['  are three-sphere harmonics. They satisfy
Im
©) Ql, = (n* 1)QM (10:15)

where ®) is the Laplacian on the three-sphere. The sum in (10.14) exdudes the homoge-
neous mode,n = 1. The details of this expansion are not important in what follows, and
may be found in Halliwell and Hawking (1985).

Inserting the above ansatz into the Einstein-scalar action and expanding to quadratic
order in the perturbations, one obtains a result of the form

Slg ;1= Sola ;Nol+ Sala ;No; jj; : N;N 1] (10:16)

where as before, we usg to denote the minisuperspace coordinates.Sg is the original
minisuperspace action andS; is the action of the perturbations, and is quadratic in them.
The total Hamiltonian following from (10.16) is then found t o be of the form

Z
Hr = No Ho+ dH

z z
+ AN (OH )+ BN (x)H;(x) (10:17)

From this one may see that rst of all, there is a non-trivial m omentum constraint at every
point x in the three-surface
Hi(x)=0 (10:18)

It is linear in the perturbations. Secondly, the Hamiltonian constraint has split into two
parts. There is a part linear in the perturbations, at each pant x of the three-surface,

Hey(x)=0 (10:19)
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and there is a part consisting of the original minisuperspae Hamiltonian plus a term

guadratic in the perturbations integrated over the three-surface:
Z

Ho+ dHp Ho+ Hz=0 (10:20)

Quantization procedes by introducing a wave function (g ; jj; ) and insisting that
it be annihilated by the operator versions of the constraints, (10.18)-(10.20). The procedure
is complicated by the fact that, in addition to the invarianc e under reparametrizations
present in the minisuperspace case, the perturbations inMge gauge degree of freedom.
There are numerous ways of dealing with this. For example, tle gauge degrees of freedom
for the perturbations generated by (10.18) and (10.19) may le xed classically, and the
constraints solved for the physical degrees of freedom of ¢ perturbations. This then
leaves only the constraint (10.20), which now depends onlymthe minisuperspace variable
and the unconstrained physical degrees of freedom of the met and matter perturbations.
One way or another, (10.20) ends up being the most important quation, and it is this
that we now concentrate on.

A useful example to bear in mind is the case of purely scalar & perturbations about a
purely gravitational background consisting of a RobertsorWalker metric with scale factor
e . Then the Hamiltonian H» is given by
X 1_ 3 @

e -
2 @ﬁlm

after expansion in harmonics.

#

+(m2® +(n? 1)e* )f? (10:21)

Ho = nlm

nim

The Wheeler-DeWitt equation resulting from (10.20) is of the form
n #

L2, m2U(g)+ Hy, (1 q;)=0 (10 :22)
For convenience, we will consider only scalar eld perturbdions , but what follows is
equally applicable to the case of gravitational wave pertubations. The operatorr operates
only on g , not on the perturbations. We are interested in the solution to the Wheeler-
DeWitt equation in the region of superspace where the minisperspace variablesq are
approximately classical, but the perturbations may be quartum mechanical. We therefore
look for solutions of the form

(a;)=exp im3So(q)+ iS1(d) (qg;)+ O(my2) (10:23)
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where Sp(q) is real,Y but S; and may be complex. Inserting (10.23) into (10.22), and
equating powers of the Planck mass, one obtains the followm At lowest order, once again
one gets the Hamilton-Jacobi equation forSy,

%(r Sg)?+ U(q)=0: (10:24)

This shows that, to lowest order in m%, the wave function (10.23) is, as in the minisu-
perspace case, peaked about the ensemble of solutions to thiassical eld equations with
Hamilton-Jacobi function Sp. It is convenient to introduce the tangent vector to these
classical solutions,

@@t= rSo r (10:25)
At the next order, one obtains the equation:
FSo r Sy Iér 25y =irSp r  Ho (10:26)

This is one equation for the two unknownsS; and , so there is the freedom to impose
some restrictions on them. We are anticipating that the will be matter wave functionals

for the scalar eld . Let us therefore introduce an inner pro duct between matter wave
functionals, at each point of minis%perspace,q :

(15 2= D(x) 1(a;( x)) 2(a; ( x)) (10:27)

Note that this involves an integral only over ( x) and not over the minisuperspace variables
g . This is acceptable because we expect the appropriate mattevave functionals to be
normalizable in the matter modes. We do not, however, expectany part of the wave
function to be normalizable in the large, minisuperspace mdes, so we do not attempt to
introduce an inner product involving an integral over q . Using the freedom available in

, let us demand that g

dt
That is, the norm of is preserved along the classical minisuperspace trajecti@s. This
seems like a reasonable restriction if we are to recover quarm eld theory for matter.

We may therefore take (; )= 1. Di erentiating out (10.28), it is readily seen that

e. . ;@ (10:29)

i@t’ @t

Y As in Section 7, we could also allow a slowly varying exponeil prefactor, but this may
be absorbed into the de nition of S;

(; )=0 (10:28)
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and hence that this quantity is real.

Armed with this information, let us now return to (10.26). Ta king the inner product of
(10.26) with , and making the reasonable assumption that the perturbation Hamiltonian
H- is hermitian in the above inner product, we quickly discoverthat, apart from the
the left-hand side must be real. Its imaginary part must therefore vanish,

1
rSo r (ImSy) 2S5 =0 (10:30)

If we write C = exp( ImS}), then C is the usual real minisuperspace WKB prefactor,
obeying (6.26), and is una ected by the perturbations.

Subtracting (10.30) from (10.26), and using the de nition (10.25), one obtains the
following equation for

@ _ @ .
o= M2t giResy (10:31)

Finally, by writing ~ = &ReSt | we discover that

obeys the functional
Schredinger equation along the classical trajectories inminisuperspace about which the

wave function is peaked:

i %t= Hy™~ (10:32)

This derivation may be concisely summarized as follows: theNVKB solution to the
Wheeler-DeWitt equation (10.22) is of the form

(g;)= C(q)emeS@ ~(q;) (10 :33)

where Sg(Q) is a solution to the Hamilton-Jacobi equation, indicating that the wave func-
tion to leading order is peaked about a set of classical trajetories, C(q) is the usual
unperturbed WKB prefactor, and ~ satis es the functional Schedinger equation (10.32)
along the classical trajectories about which the wave fundbn is peaked.

What we have shown, therefore, is that the Wheeler-DeWitt eqiation reduces, in the
semi-classical limit, to the familiar formalism of quantum eld theory for the uctuations
in a xed classical background. This shows that quantum cosmology is consistent with
the standard approach, which involves quantum eld theory on a xed background. See
Section 13 for references to the large number of papers on #hissue.
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11. VACUUM STATES FROM QUANTUM COSMOLOGY

We have shown that quantum cosmology reduces, in the semi-assical limit, to the
formalism of quantum eld theory for the matter modes in a xe d curved spacetime back-
ground. So far we have therefore done little new, except to deonstrate consistency with
that we already know. However, there is a bonus. Boundary coditions on the wave func-
tion de ne a particular solution to the Wheeler-DeWitt equa tion of the form (10.33), where
~is a solution to the functional Schmdinger equation for the perturbations. This means
that boundary conditions on the wave function of the universe will pick out a particular
solution to the functional Schredinger equation; that is, they de ne a particular vaccum
state for matter, with which to do quantum eld theory.

The natural question to ask now, is what is the nature of the vacuum state picked
out by the no-boundary and tunneling boundary conditions in a given background? The
background of particular interest as far as in ation is concerned is de Sitter space, or
spacetimes that are very nearly de Sitter. For that backgrownd it may be shown that
the vacuum state de ned by both of these proposals is a vacuunstate known as the
\Euclidean" or \Bunch-Davies" vacuum. This is the vacuum st ate that is often assumed
when calculating density uctuations, and leads to a reasormble spectrum for the emergence
of large scale structure.

Before seeing exactly how the above proposals de ne this vacm state, let us rst
explain how it is de ned.Y

De Sitter-Invariant Vacua

Minkowski space has as its isometry group the 10 parameter Rocare group. There
is a vacuum which is invariant under this group, and thus is the agreed vacuum for all
inertial observers. It is unique, up to trivial Bogoliubov t ransformations. The isometry
group of de Sitter space, which also has 10 parameters, is thie Sitter group, SO(4; 1).
In choosing vacuum states with which to do quantum eld theory in de Sitter space, it is
therefore natural to seek vacua invariant under the de Sitte group.

Y For a useful discussion of de Sitter-invariant vacua, see Aén (1985), and references therein.
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A convenient way of characterizing vacua is through the symnetric two-point function
inastatej i:
G (xy)=hiji((x)(y)+ (y)(x)i (11:1)
The state j i is then said to be de Sitter invariant if the two-point functi on depends onx
and y only through (X;y), the geodesic distance betweex and vy:

G (xy)=1 () (11:2)

Using the fact that obeys the Klein-Gordon equation, a second order ordinary di erential
equation for f ( ) is readily derived. From it, it may be shown that there is not just one
de Sitter-invariant vacuum, but there is a one-parameter family of inequivalent de Sitter-
invariant vacua.

For this one-parameter family, the function f ( ) generally has two poles: one whery
is on the light-cone ofx, the other wheny is on the light cone ofx, the point in de Sitter
space antipodal tox. However, amongst the one-parameter family, there is one nmber
for which f () has just one pole, wheny is on the light-cone ofx. This member is called
the \Euclidean" or \Bunch-Davies" vacuum, and has the nicest analytic properties. As
mentioned above, it is this one that is always used in calculaons of density uctations in
in ationary universe models.

There is another equivalent way of characterizing the Eucldean vacuum that will be
most convenient for our purposes. This is a de nition in terms of a particular choice of
mode functions. Suppose we expand the scalar eld operatomiterms of a set of modes

functions fupm (X;t)g, say,
X

/( X;t) = Unim (X D)@nim + Ugim (X;t)a¥|m

(11:3)
nim
The vacuum state jOi corresponding to this particular choice of mode functions $ de ned
by
4hmlJoi =0 (11:4)

To de ne the Euclidean vacuum, one rst chooses the mode funtons

Unim (X; ) = Yn(t)Qjm (X) (11:5)

where the anm(x) are three-sphere harmonics, and theyn(t) satisfy the equation

2

38, . N 1+m2
Yn ;MD a2

yn =0 (11:6)
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Here, a(t) = H lcoshHt) is the scale factor for de Sitter space. The normalization b
the yn(t) is xed through the Wronskian condition

i
yn¥a  Yn¥n = 3 (11:7)

The Euclidean section of de Sitter space is the four-sphereand may be obtained by
writing t = i( ), which turns a(t) = H lcoshHt)into a( )= H 1sin(H ). The
Euclidean vacuum is then de ned by the requirement that the yn(t) are regular on the
Euclidean section. Theyn(t) actually become real on the Euclidean section, so one may
equivalently demand that the y,(t) are regular there.

There is a third possible way of dicussing de Sitter-invariat vacua, which is conceptu-
ally the most transparent way. This is to explicitly constru ct the de Sitter generators and
demand that the state be annihilated by them, but we will not consider this here (Burges,
1984; Floreanini et al., 1986).

The No-Boundary Vacuum State

Now let us explicitly calculate the matter state wave functional for a massive minimally
coupled scalar eld in a de Sitter background, using the no-toundary proposal. We follow
La amme (1987a). We regard all the modes of the scalar eld, ncluding the homogeneous
mode, as perturbations on a homogeneous isotropic backgrad with scale factor a(t),
driven by a cosmological constant. The no-boundary wave fuation is given by a path

integral of the form
Z

NB (& ) = Dg Dexp Iglg ] Imlg ;] (11:8)

In the saddle-point approximation to the integral over metrics, this leads to an expression
of the form 7

ng(®&7 exp Iglg ]| Dexp Imlg ;] (11.9)
whereg is the saddle-point metric. WhenaH < 1,g s real and is the metric on the
section of four-sphere closing o a three-sphere of radiua. WhenaH > 1,g is complex,

and corresponds to a section of de Sitter space with minimumadius a matched onto half
a four-sphere at its maximum radius.
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Comparing (11.9) with (10.23), one may see that the matter wae functionals are given
by the path integral 7

[6T= Dexp Imlg ;] (11:10)
The no-boundary proposal implies that the integral over matter modes is over elds ( x; )
that match T x) on the three-sphere boundary. As in Section 8, we shall denmal that the

saddle-point of the functional integral over in (11.10) co rresponds to aregular solution
to the scalar eld equation on the given background geometry

The scalar eld is most easily handled by expanding in threesphere harmonics
X n
(x; )= fam()Qm(x) (11:11)
nim

In terms of the coe cients f,m,( ), the Euclidean action is

7 " #
R R 3 1 dym 2, n® 1 5
Imfa( ); ]= > OdNa N2 d + 2 m f fim
nim
X
Inim[@( ) frim] (11:12)
nim
The Euclidean eld equations are
+ ———0 N +m* fom =0 (11:13)

d2 ad d a2
Here, a( ); N is the solution to the eld equation and constraint for the background sat-

sifying a(0) = 0, a(1) = -a. Explicitly,

a( )= Hisin(NH ); N cos 1(aH) (11:14)

L
H 2

The solutions to (11.13) may be written down explicitly in terms of hypergeometric
functions, although this is not necessary for our purposes.They are regular everywhere,
with the possible exception of the region near = 0. In thisregion, a( ) N , anditis

easily shown that the solutions to (11.13) behave like " 1, or " 1. Clearly only one of
these is regular. It may be picked out by imposing the initial condition

faim(@©)=0; for n=2;3;::;; and dt(gl‘ﬁ(O):O; for n=1: (11:15)
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These are the initial conditions on the histories implied bythe no-boundary proposal. The
histories also satisfy the nal condition

faim (1) = fam (11:16)

Because the modes decouple, we may write

Y
[&; T x)] = nim (& frim) (11:17)
nim

From (11.10) it then follows that
Z

(&:fym)= Dfyme 'mm (11:18)

Becausel ,n, is quadratic in the scalar eld modes, the path integral (11.18) may be
evaluated exactly to yield an expression of the form

(& fim) = Anm@exp  Tnm (& fam) (11:19)

Here, I yim (&; fim ) is the action of the solution to the Euclidean eld equations satisfying
the boundary conditions (11.15), (11.16). Let us denote ths solution by gn( ). It is
independent ofl; m, because the eld and equations and boundary conditions are Then
it is readily shown that

1
2

1
a3( Ygn( )20 =%a3f‘§|m 1 don (11:20)

[ a;fT = —
nim ( nlm) d 0 On d 1

The matter wave functional de ned by the no-boundary proposal is therefore given by
(11.18), with

1 1d
aim (& Thim) = Anm (@) exp a3 — o0 (11:21)
2 On d =1

The key point to note is that it involves the expression gy=¢,, evaluated at the upper
end-point, where the gnh( ) are solutions to the eld equations which are regular on the
Euclidean section.

We now need to show that this matter wave functional correspmds to the Euclidean
vacuum state de ned above. This basically involves determmning what the vacuum state
jOi de ned by (11.4) looks like in the functional Schredinger picture. To this end, rst
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compare the expansions (11.3) and (11.11) of the scalar eld Turning (11.11) into an
operator, one may therefore write

frim (1) = Yn(©)2nm + Y&, (11:22)

The momentum operator conjugate to this is

“nim (1) = a?’fﬁnlm = asln(t)anlm + aSYn(t)a%m (11:23)

(11.22) and (11.33) are readily inverted to yield
8nim = 1Yn agyéf/\nlm “nim (11:24)

n

By inserting a complete set of eld statesfj f ,j,ig in (11.4), we thus obtain the following
equation for the vacuum state m (faim) h frmloi:

3¥n . @ _ :
a=f Al (fhim) =0 (11:25)
Vi nim @Fllm nim\! nim
It is readily solved to yield _
[
om = exp a2 (11:26)
Yn

This, therefore, is the Euclidean vacuum in the functional hredinger picture. Going to
the Euclidean section, one thus obtains

_ 1 31dyn,> :
nim = €Xp Ea %d—nf nim (12:27)

The equivalence of (11.27) and (11.21) immediately followdrom the de nition of the

Euclidean vacuum, which is that the yn, and hence they,, are solutions to the eld
equations which are regular on the Euclidean section. This @ampletes the demonstration
that the vacuum state de ned by the no-boundary proposal is the de Sitter-invariant
Euclidean vacuum.

A more heuristic argument for the de Sitter invariance of the no-boundary matter wave
functionals may also be given. This argument shows that the @ Sitter invariance is an
inevitable consequence of the very geometrical nature of #h no-boundary proposal, and is
therefore true of most types of matter elds (D'Eath and Hall iwell, 1987).

Suppose one asks for the quantum state of the matter eld on ahree-sphere of radius
a<H 1 The no-boundary state is de ned by a path integral of the form (11.10). One
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sums over all matter elds regular on the section of four-splere interior to the three-sphere
which match the prescribed data on the three-sphere boundat The resulting state will
depend on the geometry only through the radius of the three-ghere, and not on its intrinsic
location or orientation on the four-sphere. One thus has thefreedom to move the three-
sphere around on the four-sphere without changing the quanim state { at each location
one is summing over exactly the same eld con gurations to dene it. These di erent
locations are related to each other by the isometry group of he four-sphere,SO(5). It
follows that the state is SO(5)-invariant on the Euclidean section. On continuation back
to the Lorentzian section, one thus nds that the state is invariant under SO(4;1), the
de Sitter group; that is, the state is de Sitter invariant. This argument may be made
mathematically precise, although we will not go into that here.

It may be shown that the tunneling wave function picks out the same vacuum state.
This follows essentially from the imposition of a regularity requirement on the matter wave
functionals (Vachaspati, 1989; Vachaspati and Vilenkin, ©88; Vilenkin, 1988).

12. SUMMARY

The purpose of these lectures has been to describe the routeoin a quantum theory
of cosmological boundary conditions to a classical univeeswith the potential for evolving
into one similar to that in which we live.

We began in Section 2 with a brief introductory tour of quantum cosmology by way of
a simple example. This simple model illustrated the need fora quantum theory of initial
conditions. The general formalism of quantum cosmology wabrie y outlined in Sections 3
and 4. The full theory is very di cult to handle in practice, s o in Section 5, we restricted to
the case of minisuperspace models. The canonical and pathtegral formalism for minisu-
perspace models was described. In Section 6, we discussee@ tmost important prediction
a quantum theory of cosmology should make { the emergence ofassical spacetime. The
emergence of classical spacetime is very much contingent droundary conditions on the
wave function, and occurs only in particular regions of conguration space. These ideas
were further developed in Section 7, in which the WKB approximation was described.
Wave functions of oscillatory WKB form correspond to classcal spacetime in that they
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are peaked about a set of classical solutions to the Einsteirquations. Moreover, this
set of solutions is a subset of the general solution; thus bawdary conditions on the wave
function of the universe e ectively imply initial conditio ns on the set of classical solutions.
We discussed the way in which the wave function may be used toanstruct a measure on
this set of classical solutions.

In Section 8, certain boundary condition proposals were degibed { the no-boundary
proposal of Hartle and Hawking, and the tunneling boundary ondition of Linde and of
Vilenkin. Each of these proposals su ers from imprecision o lack of generality, although
with a certain amount of license, each may be successfully ad to calculate wave functions
in simple models. We calculated the no-boundary and tunnehg wave functions for the
scalar eld model introduced in Section 2. These wave functons were compared in Section
9. The two wave functions are peaked about the same set of claigal solutions, but they
give rather di erent measures on this set of solutions. In paticular, they may give very
di erent values for the likelihood of su cient in ation. Th e comparison of these two wave
functions was inconclusive, but this merely re ects the fa¢ that no consensus of opinion
has yet emerged.

In Sections 10 and 11 we described how one goes beyond minigugpace by considering
inhomogeneous perturbations. There are two things that cone out of this. First, one nds
that in the limit in which gravity becomes classical, one re@vers quantum eld theory
for the perturbations in a xed classical gravitational background. Secondly, boundary
conditions on the wave function of the universe are found toiinply a particular choice of
vacuum state for the perturbations. In particular, in the ca se of a de Sitter background, the
no-boundary and tunneling proposals pick out the de Sitterinvariant Euclidean vacuum.
The density perturbations arising from this particular choice are of the correct form for
the subsequent emergence of large scale structure.

Finally, I would like to emphasize the rather open-ended natire of many of the issues in
guantum cosmology covered in these lectures. One might gehe impression from reading
the literature on the subject that certain aspects of the eld are complete and neatly
tied up beyond criticism. In my opinion this is most certainly not the case, and | have
tried to indicate areas of di culty at the appropriate point s throughout the text. There
is, | believe, considerable scope for development and impvement in many parts of the
eld. For example, the methods used in quantum cosmology to gtract predictions from
the wave function, as described in Section 6, are rather cruel and it would be much more
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satisfying to apply methods such as those described by Ham in his lectures (Hartle, 1990).
Another example concerns the use of the path integral in quatum cosmology. Although
the role it plays is supposedly very central, especially inlhe formulation of the no-boundary
proposal, it is | think reasonable to say that, with but a few exceptions, its use in quantum
cosmology has been for the most part rather heuristic. A morecareful approach using the

path integral in a serious way would very desirable. Furture investigation of these and
other issues is likely to be very pro table.
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13. A GUIDE TO THE LITERATURE

General

Some of the earlier works in the eld of quantum cosmology intude those of DeWitt
(1967), Misner (1969a, 1969b, 1969c, 1970, 1972, 1973) andh@éler (1963, 1968). Early
reviews are those of MacCallum (1975), Misner (1972) and Rya (1972). More recent
introductory or review accounts are those of Fang and Ru ni ( 1987), Fang and Wu (1986),

Halliwell (1988b), Hartle (1985d, 1986), Hawking (1984b),Linde (1989a, 1989b), Narlikar
and Padmanabhan (1986) and Page (1986a).
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Minisuperspace Models

The literature contains a vast number of papers on minisupespace. Models withscalar
elds have been considerd by Blyth and Isham (1975), del Campo and Néenkin (1989b),
Carow and Watamura (1985), Christodoulakis and Zanelli (184b), Esposito and Platania
(1988), Fakir (1989), Gibbons and Grishchuk (1988), Gonzaz-Diaz (1985), Hartle and
Hawking (1983), Hawking (1984a), Hawking and Wu (1985), Mos and Wright (1984),
Page (1989a), Poletti (1989), Pollock (1988a), Yokoyama etl. (1988) and Zhuk (1988).
The scalar eld model of Section 2 is described in, for exam@, Hawking (1984a) and Page
(19864a).

Anisotropic  minisuperspace models are considered in the papers by Amstamski
(1985), Ashtekar and Pullin (1990), Berger (1975, 1982, 198 1985, 1988, 1989), Berger
and Vogeli (1985), Bergamini and Giampieri (1989), del Camp and Vilenkin (1989a),
Duncan and Jensen (1988), Fang and Mo (1987), Furusawa (1986Halliwell and Louko
(1990), Hawking and Luttrell (1984), Hussain (1987, 1988),Kodama (1988b), La amme
(1987b), La amme and Shellard (1987), Louko (1987a, 1987b1988a), Louko and Ruback
(1989), Louko and Vachaspati (1988), Matsuki and Berger (189), Misner (1969c, 1973),
Moss and Wright (1985) and Schleich (1988).

The extension to Kaluza-Klein theories has been considered by Beciu (1985), Bleyer
at al. (1989), Carow-Watamura et al. (1987), Halliwell (1986, 1987a), Hu and Wu (1984,
1985, 1986), Ivashchuk et al.(1989), Lonsdale (1986), Mater and Mezzacappa (1986),
Okada and Yoshimura (1986), Pollock (1986), Shen (1989a), W (1984, 1985a, 1985b,
1985c) and Wudka (1987a).

In these lectures we concentrated on Einstein gravity. Minsuperspace models involving
higher derivative  actions have been studied by Coule and Mijc (1988), Hawkirg (1987a),
Hawking and Luttrell (1984b), Horowitz (1985), Hosoya (1989), Mijc et al. (1989), Pollock
(1986, 1988b, 1989b) and Vilenkin (1985a).

Other minisuperspace models not obviously falling into anyof the above categories
include those of Brown (1989), Li and Feng (1987), Liu and Huag (1988), Mo and Fang
(1988) and Wudka (1987b).

The question of the validity of minisuperspace, when considered as an approximation
to the full theory, has been addressed by Kucha and Ryan (186, 1989).
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Inhomogeneous Peturbations about Minisuperspace

Perturbative models of the type described in Section 10 havéeen studied by Anini
(1989a, 1989b), Banks et al.(1985), D'Eath and Halliwell (B87), Fischler et al. (1985),
Halliwell and Hawking (1985), Morris (1988), Ratra (1989), Rubakov (1984), Shirai and
Wada (1988), Vachaspati and Vilenkin (1988), Vilenkin (1988) and Wada (1986, 1986c,
1987).

An important feature of this type of model is the derivation of the
Schiedinger equation  from the Wheeler-DeWitt equation and the emergence ofjuan-
tum eld theory in curved spacetime This sort of issue has been considered by Banks
(1985), Brout (1987), Brout et al. (1987), Brout and Venturi (1989), DeWitt (1967), Hal-
liwell (1987c), Halliwell and Hawking (1985), La amme (1987a), Lapchinsky and Rubakov
(1979), Vachaspati (1989) and Wada (1987).

In Section 10 we only derived the dynamics of the perturbatim modes on a minisu-
perspace background. However, one can go one step furtherah that and ask how the
perturbation modes react back on the minisuperspace backgund. In principle, one may
thus attempt to derive the semi-classical Einstein equations . This area seems to be
somewhat confused, and no completely clear derivation hasey been given. The rele-
vant papers are those of Brout (1987), Brout et al. (1987), Bout and Venturi (1989),
Castagnino et al. (1988), Halliwell (1987b), Hartle (1986) Padmanabhan (1989a), Pad-
manabhan (1989c), Padmanabhan and Singh (1988) and Singh drPadmanabhan (1989).

Black Holes and Spherically Symmetric Systems

One is normally interested in cosmological models, but sphécally symmetric systems,
including black holes have been studied by Allen (1987), Fag and Li (1986), La amme
(1987b), Nagai (1989), Nambu and Sasaki (1988) and Rodriggeet al. (1989). The
connection between the path integral for the no-boundary wae function and that for
the partition function for a black hole in a box is discussed ly Halliwell and Louko (1990).
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Quantum Cosmology and String Theory

String-inspired models have been studied by Enqvist et al. 1987, 1989), Gonzalez-Diaz
(1988), Lonsdale and Moss (1987) and Pollock (1989a, 1989b)he formal resemblances
between quantum cosmology and string theory have been expted by Birmingham and
Torre (1987), Luckock et al. (1988) and Matsuki and Berger (B89).

Fermionic Matter and Supersymmety

Most papers involve bosonic matter sources, but the inclugin of fermions and su-
persymmetric aspects have been studied by Christodoulakignd Papadopoulos (1988),
Christodoulakis and Zanelli (1984b), D'Eath and Halliwell (1987), D'Eath and Hughes
(1988), Elitzur et al. (1986), Furlong and Pagels (1987), Iikam and Nelson (1974), Macias
et al. (1987), Shen (1989b) and Shen and Tan (1989).

Interpretation

The rather basic interpretation mentioned in Section 4 (that we regard a strong peak
in the wave function as a prediction) comes from Hartle (198, Geroch (1984) and Wada
(1988a). Other relevant papers include those of Barbour andSmolin (1989), Barrow and
Tipler (1986), DeWitt and Graham (1973), Drees (1987), Ellis et al. (1989), Everett (1957),
Gell-Mann and Hartle (1989), Halliwell (1987b, 1989b), Hatle (1988a, 1988b, 1988c, 1990),
Kazama and Nakayama (1985), Markov and Mukhanov (1988), Tiger (1986, 1987), Wald
and Unruh (1988), Vilenkin (1989) and Wada (1986a, 1988b).

The decoherence requirement discussed in Section 6, for quantum cosmologyhas
been considered by Calzetta (1989), Fukuyama and Morikawa 1989), Gell-Mann and
Hartle (1989), Halliwell (1989b), Joos (1986), Kiefer (198, 1988, 1989a, 1989c), Mellor
(1989), Padmanabhan (1989b), Morikawa (1989) and Zeh (19861988, 1989a, 1989hb).
Further discussions of this and related issues are those oftH(1989) (which also includes
extensive references on statistical e ects) and Kandrup (988).

Decoherence as considered in the above references involthe notion of diagonaliza-
tion of a reduced density matrix. Density matrices in quantum cosmology have been
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considered in a somewhat di erent context by Hawking (19871, Page (1986b).

For more general discussions of decoherence in quantum megtics, see Gell-Mann and
Hartle (1990), Joos and Zeh (1985), Unruh and Zurek (1989) ath Zurek (1981, 1982).

In an attempt to see how classical behaviour emerges, some twors have constructed
wavepacket solutions to the Wheeler-DeWitt equation, including Kiefer (1988, 1989d),
Kazama and Nakayama (1985) and Wada (1985).

The rst requirement for classical behaviour discussed in $ction 6 (peaking about
classical con gurations) was discussed using th&Vigner function by Halliwell (1987b),
Kodama (1988a) and Singh and Padmanabhan (1989). Use of the Wnher function in this
way has been criticised by Anderson (1990). A somewhat di eent approach using the
Wigner function is that of Calzetta and Hu (1989).

The Issue of Time

Various authors have addressed the issue of time in quantumasmology and quantum
gravity more generally. The sorts of question one is intereed in are along the following
lines: Does the theory possess an intrinsic time? If it does at, can one quantize it?
Does time emerge from a theory that has no time in it to start with ? Many of these
guestions are discussed by Banks (1985), Brout (1987), Brdwet al. (1987), Brout and
Venturi (1989), Brown and York (1989), Castagnino (1989), Englert (1989), Fukuyama and
Kamimura (1988), Fukuyama and Morikawa (1989), Greensite (989a, 1989b), Halliwell
(1989a), Hartle (1988a, 1988b, 1988c, 1990), Jacobson (M8Kucha (1989), Sorkin (1987,
1989) and Unruh and Wald (1988).

A related issue is the connection of the cosmologicarrow of time with the thermo-
dynamic arrow in quantum cosmology. This has been studied byrukuyama and Morikawa
(1989), Hawking (1985), Page (1984, 1985), Qadir (1987), Wia (1989) and Zeh (1986,
1988, 1989a, 1989b).

Path Integrals and the Wheeler-DeWitt Equation

The explicit construction of the path integral for the wave function of the universe
and the derivation of the associated Wheeler-DeWitt equaton have been considered by
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Barvinsky (1986), Barvinsky and Ponomariov (1986), Barvinsky (1987), Halliwell (1988),
Halliwell and Hartle (1990), Teitelboim (1980, 1982, 1983a1983b, 1983c) and Woodard
(1989). The detailed construction of the path integral descibed in Section 4 (Eq. (4.7)) is
described by Teitelboim (1982, 1983a). The discussion of #gnminisuperspace path integral
in Section 5 is based on Halliwell (1988).

The issue of nding complex contours to make the Euclidean path integral converge
has been studied by Gibbons, Hawking and Perry (1978), Hallvell and Hartle (1989),
Halliwell and Louko (1989a, 1989b, 1990), Halliwell and Myes (1989), Hartle (1984, 1989),
Hartle and Schleich (1987), Mazur and Mottola (1989) and Scleich (1985, 1987, 1989).

Other papers involving path integrals are those of Arisue etal. (1987), Berger (1985),
Berger and Vogeli (1985), Duncan and Jensen (1988), Farhi @89), Giddings (1990), Ha-
jicek (1986a, 1986b), Hartle (1984, 1988a, 1988b, 1988c),0uko (1988a, 1988b, 1988c,
1988d), Narlikar and Padmanabhan (1983) and Suen and Young1(989).

Quantization Methods and Superspace

One most commonly uses the Dirac quantization procedure in gantum cosmology,
in which one takes the wave function to be annihilated by the gerator versions of the
constraints. However, one could in principle use the ADM (or reduction) method, in
which one solves the constraints classical before quantizg. The connections between
these methods for systems like gravity has been consideredy bAshtekar and Horowitz
(1982), Gotay (1986), Gotay and Demaret (1983), Gotay and Ienberg (1980), Hajicek
(1989), Isenberg and Gotay (1981) and Kaup and Vitello (197

The properties of superspace and quantization methods in it have been discussed
by DeWitt (1970), Fisher (1970), Giulini (1989), Isham (1976), and Kucha (1981). The
article by Kucha also contains a useful guide to the literature on canonical quantization.

Topological Aspects

Goncharov and Bytsenko (1985, 1987), Gurzadyan and Kochagn (1989), Li Miao
(1986), Mkrtchyan (1986), and Starobinsky and Zel'dovich (1984), considered the possi-
bilities of non-trivial topologies in quantum creation of t he universe. Other interesting
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toplogical aspects of the no-boundary proposal have been neidered by Hartle and Witt
(1988) (see also Louko and Ruback (1989)).

Singularities

Numerous authors have been interested in singularities in gantum cosmology and
their possible avoidance, including La amme and Shellard (987), Lemos (1987), Louko
(1987a), Narlikar (1983, 1984) and Smith and Bergman (1988)

Boundary Condition Proposals

We concentrated exclusively on the boundary condition promsals of Hartle and Hawk-
ing (Hartle and Hawking, 1983; Hawking 1982, 1984a), Linde 1984a, 1984b, 1984c) and
Vilenkin (1982, 1983, 1984, 1985b, 1986, 1988), but there athers (see for example, Suen
and Young (1989)).

Quantum Creation of the Universe

Some of the older papers on quantum creation of the universera those of Atkatz and
Pagels (1982), Brout, Englert and Gunzig (1978, 1979), Brotj Englert and Spindel (1979),
Casher and Englert (1981), Gott (1982) and Tryon (1973). Vaious aspects of the quantum
creation of the universe as a tunneling event have been expled by Goncharov et al. (1987),
Grishchuk (1987), Grishchuk and Sidorov (1988, 1989), Grischuk and Zel'dovich (1982),
Lavrelashvili, Rubakov, Serebryakov and Tinyakov (1989), Lavrelashvili, Rubakov, and
Tinyakov (1985), Rubakov (1984) and Rubakov and Tinyakov (1988).

Measures

The measure coming from gquantum cosmology on sets of in atinary solutions, and
also classical measures, have been studied Gibbons et al.987) and Hawking and Page
(1986, 1988). Gibbons and Grishchuk (1988) introduced a mesaire on the set of solutions
to the Wheeler-DeWitt equation.
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Operator Ordering

The issue of operator ordering in the Wheeler-DeWitt equaton has been studied in
minisuperspace by Halliwell (1988), Misner (1972) and Mos1988). More generally, see
Christodoulakis and Zanelli (1986a, 1986b, 1987), Friedma and Jack (1988), Hawking
and Page (1986) and Tsamis and Woodard (1987).

Creating a Universe in the Laboratory

The possibility of quantum creation of an in ationary unive rse in the laboratory has
bee studied by Farhi et al. (1989) and Fischler et al. (1989).See also Hiscock (1987) and
Sato et al. (1982).

Miscellaneous

Regge calculus minisuperspace models have been studied by Hartle (1985a9&5b,
1985c, 1989). In (2+1) dimensions, gravity becomes esseatly quantum mechanical. This
has been studied from a quantum cosmology viewpoint by Hos@/and Nakao (1989) and
Martinec (1984). Considerable simpli cations appear to ocur in general relativity using
the Ashtekar variables  (Ashtekar, 1987). Their application to cosmologies has bee
considerd by Ashtekar and Pullin (1990), Hussain and Smolin1989) and Kodama (1988b).
The relationship between the wave function of the universe ad the stochastic approach
to in ation have been studied by Goncharov et al. (1987), Gorcharov and Linde (1986)
and Mijc (1988a, 1988b, 1989). Many classical cosmologgexhibit chaos. Quantization of
such cosmologies has been studied by Berger (1989) and Fuayga (1986). Finally, mention
should be made of the extensive contributions of Narlikar, Rdmanabhan and collaborators,
much of which concentrates on quantization of the conformalpart of the metric, including
Narlikar (1981, 1983, 1984), Padmanabhan (1981, 1982a, 128, 1983a, 1983b, 1983c,
1983d, 1983e, 1983f, 1984a, 1984b, 1985a, 1985b, 1986, 19888), Padmanabhan and
Narlikar (1981, 1982), Padmanabhan et al. (1989), Singh andPadmanabhan (1987).
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Fig.1: The phase portrait of the system (2.7)

Fig.2: A pictorial representation of the histories summed over in the calculation of the

wave function \Il[}_t,'j, 3].



Fig.8: The integral curves of the current J (the bold lines) and some possible choices for
hypersurfacs ¥ (the dashed lines). Ty ts a bad choice because the flow of J intersects L

more than once. L9 is a good choice because the flow intersects it once and only once.
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Fig.4: A pictorial representation of the class of histories summed over in the calculation

of the no-boundary wave function.






