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WHAT IS NONSTANDARD ANALYSIS? 

W. A. J. LUXEMBURG, California Institute of Technology 

1. Introduction. The subject referred to in the title with which we shall deal 
may seem perhaps at first sight to be far removed from the general topic "The 
Foundations of Mathematics" of the Symposium. This relatively new field which 
was created by Abraham Robinson (see [7]) may be looked upon, however, as a 
major contribution to the foundations of analysis. Furthermore, it is another splendid 
example of an application of mathematical logic. 

The development of mathematical analysis by using infinitely small and infinitely 
large numbers has been a subject of constant interest and controversy in the history 
of mathematics. Going back in history we discover that Leibniz was one of the 
strongest advocates of a method involving infiritely small and infinitely large numbers 
in the early stages of the development of the calculus. The reason why the theory 
of infinitesimals gradually fell into disrepute and was replaced later by the E, 5- 
method must be sought in the fact that neither Leibniz nor his successors were able 
to state with sufficient precision just what rules were supposed to govern their system 
of infinitely large and infinitely small numbers. Although Leibniz stated the principle 
that what holds for the finite numbers should also hold for the numbers in the ex- 
tended system, which includes the infinitely small and infinitely large numbers, it 
is not at all clear in his writings what sort of laws about numbers his principle was 
supposed to apply to. 

It was Abraham Robinson's recent discovery, mentioned above, that the notions 
of model theory can clarify the notions of infinitely small and infinitely large. Robin- 
son shows that mathematical analysis can be developed by imbedding the real 
number system R in a proper extension *R of R which possesses in a certain sense 
the same properties as R. It is well known that such an extension *R must be non- 
Archimedean and this is the fact that enabled Robinson to define in *R the infinitely 
small and infinitely large numbers whose existence was taken for granted by Leibniz 
and his followers. From the well-known result that there exist systems of axioms 
for the real number system which are categorical, that is, determine the real number 
systems uniquely up to isomorphism it may seem at first very paradoxical that 
such systems *R exist. This sort of paradox has been one of the main sources of the 
condemnation of the theory of infinitesimals and infinitely large numbers as a tool 
in analysis. The paradox vanishes completely, however, if we follow Robinson's 
idea to restrict the statement "the same properties" to a specified collection of 
properties of R which can be formulated in a specified formal language with the 
appropriate interpretation in R as well as in *R, and in which the classical isomorphism 
theorem for the real number system cannot be formulated. Of course it is at this 
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WHAT IS NONSTANDARD ANALYSIS? 39 

point that model theory comes into play which by means of the compactness prin- 
ciple guarantees the existence of such systems *R. 

There is, however, another way to establish the existence of *R. This method 
is known as the construction of models in the form of ultraproducts. It has the 
advantage that it can be developed within the framework of axiomatic set theory. 
We shall follow this procedure here. Sections 2, 3 and 4 are entirely devoted to a 
discussion of the existence of *R. In our approach we follow very closely the devel- 
opment as given by Abraham Robinson and Elias Zakon in their paper entitled 
A set-theoretical characterization of enlargements and which appeared in [6]. 
In the remaining six sections it is illustrated by means of examples in which sense 
the theory of infinitely small and infinitely large numbers can be used as a tool in 
analysis. The topics which were selected for this purpose include the theory of limits, 
Euler's product formula for the sine, and the existence of functions which are not 
measurable in the sense of Lebesgue. 

The ideas of nonstandard analysis were subsequently successfully applied to 
other branches of mathematics. These developments are not taken up here as they 
are beyond the scope of the present introductory paper. But we like to refer the 
interested reader, who for instance would like to know with what great success 
this method was used by A. Robinson and A. Bernstein to solve the invariant sub- 
space problem for a certain class of bounded operators on a Hilbert space, to Rob- 
inson's book [8] and the papers [1], [2] and [15]. Furthermore, we would like 
to draw the readers' attention to reference [6] which is the Proceedings of the 
International Symposium on Nonstandard Analysis, which was held at the Cali- 
fornia Institute of Technology in 1967. Its contents, consisting of more than twenty 
papers, gives the latest developments in this field. 

Finally, the author would like to state that the present paper is mainly expository 
in nature. It is particularly directed to those mathematicians who would like to get 
acquainted with this new tool in analysis. We do hope, however, that also the spe- 
cialists in the field will find something new and of interest in this paper. 

2. Definition of the structure R and some of its properties. The earlier version 
of nonstandard analysis (see [7] and [3]) rests on the formulation of the properties 
of R which can be formulated in a first order language, which means briefly that 
quantification in the formal language is permitted only on variables ranging over 
real numbers. One need not go far in analysis, however, to realize the need for a 
richer language in which statements containing expressions such as for example 
"For all nonempty sets of natural numbers..." or "There exists a continuous 
function..." can be formulated. In this connection it is also good to observe that 
even some of the axioms of the real number system are outside the language of the 
lower predicate calculus. For example, Dedekind's completion axiom involving 
quantification with respect to ordered pairs of sets (Dedekind cuts) is such an axiom. 
In order to cope with this difficulty we shall use the framework of axiomatic set 
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40 W.A.J. LUXEMBURG [June-July 

theory in terms of which the theory of real numbers can be developed. The formal 
language will be a lower order language whose constants will range over sets and 
numbers. We shall now present this development here in some detail. We shall 
assume that the reader is familiar with the elements of naive set theory and with 
some of the definitions and results concerning the lower predicate calculus. 

Let R denote as usual the set of real numbers. Then we define inductively the sets 

Ro = R and Rn+1 = P(UJn=oRk) (n = 0,1,2, ), where P(X) denotes the set of 

all subsets of X. The union of all the sets Rn, Un,0 Rn is called the superstructure 
on R and will be denoted by A. The elements of A are called the entities of the super- 
structure R. The elements of Ro = R, that is the real numbers, on which the super- 
structure is based are sometimes also referred to as the individuals of A. 

We shall assume that an ordered pair (a, b) is defined in the sense of Kuratowski 
by (a, b) = {{a}, {a, b}} and that n-tuples (a1, ..., an) are defined inductively by 

(a) = a, (a 1, X * *, an) = ((a 1, X * ** an - 1), an). Then it follows immediately that relations 

defined as sets of n-tuples (n = 1,2, ...) are all entities of A. Since the algebraic 
operations of R can be defined in terms of three place relations as follows: ab = c 
if and only if (a, b, c) E P E A and a + b = c if and only if (a, b, c) eS eA and the 
order relation is a binary relation it follows that the axioms and the properties of 
R can be expressed in terms of certain entities of A. The remaining part of this sec- 
tion will now be devoted to making this more precise. 

The entities of Rn - Rn (n _ 1) are called of rank n in A. The individuals 
are given the rank 0. The reader should observe that by means of this definition, 
the empty set gets assigned rank 1. If a E A is not empty, then the rank of a is the 
smallest natural number n such that a E Rn . It is also easy to see that if a1, * , an E A, 
then rank (a 1, * * *, an) = max(rank a 1, * * *, rank an) + 2n. 

Some minor set-theoretical properties of A are collected, for later references, 
in the following lemma. 

LEMMA 2.1. (i) Rp c Rn for all n ? p _ 1. 
(ii) U k =ORk = R nURn for all n _ 1. 
(iii) RkERn+l for all 0 ? k ? n and for all n ? 0. 
(iv) If x Ey eRn (n _ 1), then x eRo U Rn- I. 
(v) If (x1, *', xn) E y E Rp (p ? 1), then x1, *-, xn E Ro u Rp_1 . In particular, 

if an entity D E R is a binary relation, then its domain, dom D = {x: (3y) (x, y) E D4} 
eA, and its range, ran@ = {y:(3x)(x,y)E(}eA. 

Proof. (i) If xeRp, then xc UkP`-Rk, and so x O Ukq=Rkforallq-p-1. 

Hence, X E P(Uq ORk) = Rq + I for all q + 1 ? p . 
(ii) For n > 1, Rn c Rn+I, and so since Ro is disjoint from all Rn (n _ 1) it 

follows that for all n ? 1 we have U n=ORk = Ro URN. 
(iii) Since by (ii) we have that Rk c Ro U R, (0 _ k < n) we obtain that 

RkEP(RoURn) =Rn+ 
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1973] WHAT IS NONSTANDARD ANALYSIS? 41 

(iv) If yeR., (n > 1), then y c Ro UR.1, and so xEy implies that 
x e Ro U Rn-1. 

(v) If (x1, -,xj)eyE Rp (p 1), then (x1, x,x")e R0URp -1. Hence, 
{{X1}, {X1, (X2, -., X)}} E Ro U Rp_ 1 = Ro U P(Ro U Rp_2) implies x1 E Ro U Rp_2 
c Ro U Rp-1, and similarly for the entities x2, * .,x, X. 

The formal language will now be introduced. 
The atomic symbols of L are: (i) The connectives A , v=., , -i, for "and", 

"or", "implies", "if and only if", "not" respectively. (ii) The variables, a countably 
infinite sequence usually denoted by x, y, with or without subscripts. (iii) The 
quantifiers (I -)-existential, and (V -)-universal. (iv) Brackets [ ], used for grouping 
formulas as usual in mathematics. (v) The basic predicate, E read "member of" 
with one open place to the left and to the right of it. (vi) Extra logical constants 
(briefly, constants). This is a set of symbols of which there are enough to be put 
in one-to-one correspondence with the entities of whatever structure may be under 
consideration. This set of constants is usually infinite but fixed. Furthermore, con- 
stants are usually denoted by Roman letters with or without subscripts from the 
beginning of the alphabet, and other symbols such as the numerals 0,1,2, * . 

We shall now assume that the set of constants of L is brought in one-to-one 
correspondence with all the entities of the structure R and we shall from now on 
identify the constants of L with the entities of A so that R is part of L. If such an 
identification has been established, then we refer to A as an L-structure. 

The interpretation of the basic predicate E of L in A will be the membership 
relation of axiomatic set theory. 

From the atomic formulas c e 1l, where the symbols ac and fi may denote con- 
stants and variables, the well-formed formulas (wff)are obtained in successive stages 
by. applying the connectives and quantifiers. At the same time brackets are introduced 
in such a way that the formation of the formula can be unambiguously determined. 
More precisely, if V is an atomic formula, then [V] is a wif, if V, W are wff, then 
[VA W], [V v W], [i V], [V =. W], [V . W] are wff; and if Vis a wff, then [(Vx)V] 
and [(3x) (V)] are wff, where x denotes an arbitrary variable, provided x does not 
already appear in V under the sign of a quantifier. Furthermore, we shall adhere to 
the terminology that in [(Vx)V] and [(3x)V], V is called the scope of the quantifier 
and in all the wff which can be obtained from these by the further repeated appli- 
cations of connectives and quantifiers. A variable x is called free in a wff V if x is 
not in (3x) or (Vx) or in the scope of a quantifier in V. A wif is called a sentence if 
every variable is in the scope of a quantifier, otherwise it is called a predicate. A wff 
V in Lis said to be in prenex normal form, if in the formation of V from atomic 
formulas the quantifiers are applied after the connectives, that is, if the connectives 
are in the scope of all quantifiers. In symbols, V = (qx.) . (qx1)W, where (q ) de- 
notes either (3 ) or (V ) and where W is a wff without quantifiers, is a wff in prenex 
normal form. One of the basic results of the lower predicate calculus states that 
every wff is equivalent to a wff which is in prenex normal form (see [8], p. 10). 
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For our purpose we shall only consider those wif of L which have the property 
that all quantifiers are of the form "(Vx) [[x E A] => ...]" and (3x) [[x E A] A ..]" 
where A is an entity of A and which are called the admissible wff. Thus a wff is ad- 
missible whenever the domain of every quantifier occurring in it is a specific entity 
of A. The set of admissible wff of L will be denoted by K = K(L) and the subset of 
K of all admissible sentences which hold in A will be denoted by Ko = KO(L). 

At this point the reader should do well to observe that all statements in analysis 
dealing with numbers, sets of numbers, relations between numbers, relations between 
sets and numbers, and so on, and which hold in R can be expressed as admissible 
sentences of L which are in Ko. For instance, the sentence of Ko 

(Va) (Vb) (Vc) [a, b, c E R] => [P(a, b, c) z;> P(b, a, c)] 

expresses that R is commutative (P is the constant denoting the three place relation 
of multiplication). 

Any *L-structure *(A) in which the L-structure A can be properly imbedded 
and for which all admissible sentences of A which hold in A with appropriate inter- 
pretation of the symbols in *(R) also hold in *(A) will be called a higher order 
nonstandard model of R. In that case, it turns out that the set *R of individuals 
of *(A) is a totally ordered field of which R is a proper subfield. But *(A) is not the 
superstructure determined by *R. In fact, if A = P(R) is the constant which denotes 
the entity of A of all subsets of R, then under the imbedding of A in *(R) this constant 
will not denote the set of all subsets of *R as might be expected at first, but only 
a subsystem of the power set of *R, and so on. How this all will come about will 
be explained in detail in the next section. 

3. Models of R that are ultrapowers. We begin by recalling some definitions 
and elementary results from the theory of filters. 

Let I denote a nonempty set. By a filter over I we mean a nonempty set I of 
of subsets of I such that the empty set 0 0 X, I is closed under finite intersections, 
and F c G and F e implies GEl-f. In particular I # 0 implies that Id . A 
filter l, is called finer than a filter 12 (12 ?1) whenever F E 12 implies F EJ1. 
This relation orders the set of all filters over I and the filter {I} is its smallest element. 
A filter . is called an ultrafilter whenever it is not properly contained in any other 
filter, that is, the ultrafilters are the maximal elements of the ordered set of filters. 
Concerning ultrafilters we have the following important characterization. A filter I 
is an ultrafilter if and only if for every F c I either F e . or I - F e l . The latter 
statement is easily seen to be equivalent to: If 

n 

U Fiel(Fj cI , i = 1,2, * *,n) 
i=l 

then F1 E I for at least one index i, and so, is itself a characterization of the concept 
of an ultrafilter. 
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A filter f is called 6-incomplete, whenever there exists a sequence F. e f 
(n = 1, 2, ) such that n,X- 1 F. 0 J, and a filter J is called (-complete whenever 
it is not 6-incomplete. A filter J is called free whenever n (F: F E J) = 0. It is 
not known whether 6-complete free ultrafilters exist. This problem is known as 
Ulam's measure problem. It is easy to see, however, that a 6-incomplete ultrafilter 
is free. It follows from the following simple result, the proof of which we leave to 
the reader as an exercise. 

An ultrafilter I' is 6-incomplete if and only if there exists a countable partition 

{In: n = 1, 2, } of the set I over which V is defined such that In 0 ifor all n = 1, 2 . 

From this result in conjunction with Zorn's lemma it follows now also easily 
that on every infinite set there exist plenty of 6-incomplete ultrafilters. For further 
information on filters we refer the reader to the paper of the author: A general 
theory of monads; which appeared in [6]. 

We shall now turn to a description of a structure which is an ultrapower of A. 
Let I be an infinite set, let I& be a 6-incomplete ultrafilter of subsets of I and let 

{I,: n = 1,2, }be a countable partition of I satisfying In 0t I for all n = 1,2, 
which will be kept fixed. 

By RA we denote as usual the set of all mappings of I into A. There exists a 
natural imbedding a -e *a of A into A' defined by *a(i) = a for all i E I, that is 
A is identified in A' by the constant mappings. The undefined basic predicates 
"- " and "e" of R can be extended to RA by means of the following W-dependent 
definitions. 

DSFINITION 3.1. If a,be AR, then a = &b if and only if {i: a(i) = b(i)} -, 

and a eq, b if and only if {i: a(i) E b(i)} cE . 

Since it is an immediate consequence of I e 9 that if a, b e R, then a = b if 
and only if *a =q, *b, and a e b if and only if *a et *b it follows that the relations 
"=qf", and "e," are /-extensions of "=" and "E" of A. For the sake of simplicity 
we shall from now on retain the original notation "=" for "=." and "e" for 

, 

In order to justify the definition we are going to show that for all a, be A 
either a = b or not (a = b)(a # b) holds, and aeb or not (aEb)(a b) holds. 
Since the proof for both cases is the same we shall only verify it for "=". If 
a, b e A', then we set 

U1 = {i: a(i) = b(i)} and U2 = {i: a(i) : b(i)}. 

From Ul U U2 = I e it follows from the basic property of an ultrafilter 
that either U, e I/ and U2 0 9 or U, O 9 and U2 E , that is, by Definition 3.1., 
either a = b or not (a = b) holds. 
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Having justified the definition we can justify further the suggestion that the 
relations "= ", "E" in RA behave like equality and membership of set theory. Since 
the individuals of R are without members but different from 0, that is, set theory 
in A is based on a set of so-called urelements, equality of sets in terms of e should 
read "a = b" if and oaly if a E c and b E c for all c E RI. But this can now be im- 
mediately verified by observing that if a = b and a E c, then 

U1 = {i: a(i) = b(i)} Eck and U2 = {i: a(i) e c(i)} e ' 

implies by the filter properties that U1 l U2 E V, and so i s U1 l U2 implies that 
b(i) e c(i), that is, b e c. Conversely, we have that if a, b E AI, then a E {x: x = a 
and x E A'I} = {a}, implies that b E {a}, that is b = a. That the relation of equality, 
as defined in Definition 3.1, is an equivalence relation is immediately clear. That 
it satisfies the rule of substitution in e, namely, 

(Va)(Vb)(Vc)(Vd)[[aeb]A [a = c]A [b = d]] =- [ced] 

can be verified in the same way by using the properties of W. 
Continuing this process we can show, by using the basic properties of W, that 

one by one the statements which hold in A hold in R' under the defined interpre- 
tation of the basic predicates. We shall of course not follow this procedure but present 
in a general fashion that a certain substructure of A' has the same properties as A. 

For this purpose we shall assume that the elements of RI are identified in a 
one-to-one manner with the constants of a formal language *L. Furthermore, *L 
is assumed to have two basic predicates "=" (equality) and "e" (membership) 
which are identified with the corresponding relations of R'. Thus we obtain an 
*L-structure A' whose set of true sentences depends on t1. A certain substructure 
of our *L-structure will be singled out which we shall show to satisfy, in a certain 
sense, the sentences of Ko. 

In the following lemma, however, we shall first list for later reference, some of 
the basic properties of the imbedding a -+ *a of A into A'. 

LEMMA 3.2. (i) *0 = 0. 
(ii) If a, b E A, then a c b implies *a c *b. 
(iii) If a,beA, then aeb if and only if *ae*b. 
(iv) For all aeR we have *{a} = {*a}. 
(v) If a1,,*-,an"e, then *( U%=1 a1) = U= 1 *ai, *( fl71,ai) = nfl1*a1, 

*{a,,-,an} = {*a,...,*an}, *(a1,,..,an) = (*a,-..,*an), and *(a1 x .. x an) 
*a, X ...X *an 
(vi) For all a,beA we have *(a - b) = *a - *b. 
(vii) If bEAR is a binary relation, then *(domb) = dom*b, *(ranb) = ran*b, 

and for all a E A we have 

*(b(a)) = *{y: (3x)(x e a A (x, y) e b)} = *b(*a) = {y: (3x)(x E *a A (x, y) E *b)}E 
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Proof. We shall only prove (vi) since the proofs of the other statements are similar. 
For these proofs we refer the reader to the proofs of Theorems 7.1 and 7.7. of [3]. 

(vi) If ce*(a-b), then U1 = {i: c(i)ea-b}E ' implies, using U1 c U2 
- {i: c(i) E a}l E that c E *a and using U1 c U3 = {i: c(i) 0 b} E( which, since 
V is an ultrafilter, is equivalent to {i: c(i) E b}l 0 that c 0 *b, and so c E *a - *b. 
For the converse reverse the steps. 

DEFINITION 3.3. An entity a of the *L-structure A' is called internal when- 
ever there exists a natural number n ? 0 such that a c *Rn . An internal entity a 
is called a standard entity whenever there exists an entity b e R such that a = *b. 
All entities which are not internal are called external. 

The set Un>O*Rn of all internal entities is called the ultrapower of A with 
respect to the ultrafilter V and will be denoted by *(R). 

The &-ultrapower of A is usually denoted by ?-prod A but we shall not employ 
this notation in this paper. 

Observe that the mapping a -+ *a of A into A' imbeds A into the substructure 
*(A) of A'. 

The notion of rank extends immediately to the internal entities. An internal 
entity a E *(R) is said to be of rank n (n ? 1) whenever a e *Rn - *Rn+1; and the 
entities of *R = *Ro are said to be of rank 0. The entities of rank 0 are also referred 
to as the individuals of *(A). Again, by means of this definition the empty set *0 
has rank 1. The rank of an internal entity can be further specified. If a is non- 
empty and internal, then a e *Rp for some p > 0, and so, by Definition 3.1, we 
have that U = {i: a(i)eRp}e G. Then U P=o{i: rank s(i) = k} = Ue-/ implies, 
using the fact that O& is an ultrafilter, that there exists exactly one index n such that 
0 ? n < p and U1 = {i: ranks(i) = n}eal(. Then for all i eU1ea? we have 

a(i) c Rn - Rn, and so a e *(Rn-R ) - *Rn - *Rn1 (Lemma 3.2(vi)), that is, 
rank a = n. 

If a = *b, b E A, is a standard entity of *(A), then its rank remains unchanged. 
At this point it seems natural to ask the question whether there are internal 

entities which are not standard. Fortunately, the answer to this question is affirmative 
and as we shall see in the following theorem it is a consequence of the hypothesis 
that the ultrafilter O& is 5-incomplete, a hypothesis which we have not used so far. 

THEOREM 3.5. There exist internal entities which are not standard. In fact, 
if a e A is an entity which has infinitely many elements, then there exists an entity 
b e *a such that b is not standard. 

Proof. Since a is an infinite set there exists a sequence {b": n = 1,2, . .} of 
elements of a such that b. A bm for all n, m = 1, 2, ..* and n : m. Let b be the mapping 
of I into a such that b(i) = bn for all i eIn (n = 1, 2, ..*.). Then b E *a but b is not 
equal to any standard element of *(R), and the proof is complete. 
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The internal entities, defined to be the elements of the special standard sets 
*R., can also be characterized as follows. An entity a is internal if and only if a 
is an element of a standard entity. In order to see this we need only to show that 
if a E *b, b E A, then a is internal. Now from b E A it follows that b e Rn for some n 
which implies that b c Ro u R,;1, and so, by Lemma 3.2(v), a E *b c *Ro u *Rn -1 
implies a e*Ro U *R.-1 which shows that a is internal. In view of Theorem 3.5, 
we may ask the question, what about the nature of the entities which are elements 
of internal entities? The answer is that they are internal, as the following theorem 
shows. The converse, however, is not true. In fact, we shall see later in Section 5 
that a set of internal entities need not be internal. 

THEOREM 3.6. If a E b E *R. (n _ 1), then a E *Rn_, 1 that is, the elements of 
an internal entity are internal. 

Proof. From b e *Rn it follows that U = {i: b(i) c Ro U Rn1} = {i: b(i)eR Rn)} & 
and so for all i E U we have a(i) E Ro U Rn -1 . Hence, by Lemma 3.2(v) and Def- 
inition 3.1, a E *(Ro U Rn -1) = *Ro U *Rn_ 1, and the proof is finished. 

As in the case of the L-structure R we shall call an *L-wff admissible whenever 
all the quantifiers occurring in it are of the form "(Vx) [[x e a] =. ...]" and 
"(3x) [[x e a] A ...]", where a is a constant denoting an entity of AI'. 

An admissible wff of *L is called internal whenever all the constants occurring 
in it denote internal entities. An admissible wff of *L is called standard whenever 
all the constants occurring in it denote standard entities. Thus a standard wff 
is internal. 

The set of all internal sentences of *L will be denoted by *K = *K(*L), and 
the subset of all internal sentences which hold in *(A) will be denoted by *Ko = 

*Ko(*L) 
If V is an admissible wff of L, then its *-transform * V is defined to be that 

standard wff of *L which is obtained from V by replacing in V all the constants, 
say, a 1 *...*, ap, occurring in it, by *a1,, * *ap but leaving the variables and bracket- 
ing unchanged. 

We shall now prove that the *-imbedding has the following important property. 

THEOREM 3.7. Let V = V(x1,...,xp) be an admissible L-wff with the free 
variables xl, , xp, an let A = {(x1,..,xp): (x1,...,xp))ea and V(x1,.,xp)}, 
where a is an arbitrary entity of R. Then A s A and 

*A = {(y, ,Yp): (y1, , y)E *a and *V(yi,.., yP)} . 

Proof. That A e R is trivial. If V= V(x1, ... xp, a,, ..., aq) is atomic, that is, 
V has the form .(xl, ** ,xp, a, ... aql)cEaq or (x1,...,xp_j1,aj,-..,aq) Exp with 
possible permutation of the variables, then the result follows immediately from 
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Definition 3.1. In order to show that the result holds for all wff V of L without quan- 
tifiers we have to show that if it holds for two such wff V and W, then it also holds 
for [V A W] and [n V]. As is well known this will take care of all the logical con- 
nectives. Assume that *A = {(xl, *, xp):(xI, **,xp)e*a and *V(xl, **,xp)}, then 
we have to show that 

*B = {(xl,...,xp): (xl,,..,xp)e*a and -i*V(xl,..*,xp)}, 

where B = a - A. Since, by Lemma 3.2(vi), *B = *a- *A the result follows. 
Assume now that V = V(x 1, I Xp , Yi Yq) and W = W(x1, . , xp,, Z ,Zr) be 
two L-wff without quantifiers for which the result holds, and let 

A = {(xi, ,xp,Yi ,",yq,Zi,*,Zr): (x1I**Ixp,y1i** Iyq,Z Zr) e a and [V A W]}. 

Then A = {(x, , Zr): (X I Z,r)e a and V} ( {(xl,, Zr): (Xi,* ZOr)e a and W} 
implies, by Lemnna 3.2(v), that *A = *{ .. I n*{ } = {(xl , ,Zr): (xI, **, zr)e *a 

and [VA W]}, and so the result holds for all wff without quantifiers. 
For adinissible wff with quantifiers we shall use induction on the number n of 

quantifiers. For n = 0 the result was shown above. Assume now that the result 
holds for all admissible wff with less than or equal n quantifiers. Let V be an ad- 
missible wff with (n + 1)-quantifiers which is written in its prenex normal form 

(qXn+ 1) * .. (qx,)W(x1,** , Xn+ 1, Y,* *, yq), where W has no quantifiers and Y1, *' I Yq 
are the free variables occurring in V. Without loss of generality we may assume that 

(qx.+i) is the existential quantifier (3x.+i) otherwise we consider not V. Let b 
denote the domain of (3x.+ 1). Then since V is admissible, b e A . Let 

B = {((Y1, X Yp), Xn+ ): ((Y1, ', yp), Xn+ 1) e a x b and (qXn) ... (qx1)W} , 

where a E R. Then, by the induction hypothesis and Lemma 3.2(v), we obtain that 

*B {((Y 1, * * * ,yp), Xn + 1): ((Y 1, .*, Yp), Xn + 1) e *a x * b and (qXn) * *(qx,)* W}. 

The domain of the binary relation B is the set 

A = {(y1, * * , yp): (y1, * * , yp) E a and 

(3Xn+ 1) (Xn +1 E b A (qXn) ... (qx1)W)} 

= {(y1, , yp): (y1, , yp) E a and V(y ,...,yX)}. 

The domain of the binary relation *B is, however, the set 

{(y,,**,Yp): (y1,,**,yp) E*a and (3Xn+1)(Xn+1*b A (qXn) ... (qxl)*W)} 

= {(y1,., ,yp):(y1,* ,yp) E*a and *V}. 

Then, by Lemma 3.2(vii), we obtain the desired result that 
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*A = {(y1,.,Yp): (y1,, yp)E)*a and *V}, 

and the proof is finished. 

We are now in a position to prove the Fundamental Theorem about ultrapowers 
which we shall refer to throughout the rest of the paper by F.T. 

THEOREM 3.8. *(Q) is a higher order nonstandard model of A, that is, an ad- 
missible sentence V of K(L) holds in A if and only if *V holds in *(A), and A is 
properly imbedded in *(R). 

Proof. Theorem 3.5 tells us that the imbedding a -+ *a of A into *(R) is proper. 
We have to show that if Ve K(L), then Ve Ko if and only if * Ve *K0. If V has no 
quantifiers, then it follows immediately from Definition 3.1. Assume that VYEK 
has the prenex normal form V = (qxn).. (qx1)W, where W has no quantifiers. 
There is no loss in generality to assume that (qXn) is the existential quantifier (3x"). 
Then Ve KO(L) is equivalent to "the set A = {x": xn E a and (qXn- 1) ... (qx,)W} # 0, 
where a is the domain of (3xn). Then, by Theorem 3.7 and Lemma 3.2(i), we see 
that A # 0 is equivalent to *A = {xn: xn e *a and (qxn_1)... (qxl)*W} # *0 
which itself is equivalent to *Ve *Ko, and the proof is finished. 

An important aspect of the method of nonstandard analysis is to use the F.T. 
repeatedly to transform the true statements of A into true statements- about the 
internal entities of *(A). To illustrate this we shall give a number of examples dealing 
with the set theory of A. 

EXAMPLES 3.9. (i). The individuals of A are the "urelements" of the set theory 
of A in the sense that although they are different from the empty set 0 there are 
no entities of A which are elements of individuals. This true statement can be ex- 
pressed by the following infinite list of sentences of Ko. 

(Vx)(Vy)[xeR] A [yeRR] > [iyex], n = 0,1,2,.... 

From the F.T. we conclude that *K0 contains the following list of sentences 

(Vx) (Vy) [xEi*R] A [y E *Rn] > [ Y Ei x], n = 0, 1, 2, 

In words, there are no internal entities which are elements of the individuals 
Of *(A) 

(ii) One of the axioms of set theory states that the union of the elements of a 
set is a set. For the set theory of A this means that Ko contains the following infinite 
list of sentences. 

(Vz) [z E Rj] => (3y) [y E Rn] A (Vx) [x E Rn] => [[x E y] 

.* (3u)[ueRn] A [ueZ] A [xEU]]. 

Thus from the F.T. we have the following result: The union of the elements 
of an internal entity is an internal entity. 
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(iii) The power set axiom of set theory states that for every set there exists a 
set whose elements are the subsets of this set. Thus Ko contains the following infinite 
list of sentences. 

(Vx) Lx e Rj] (3y) [y e R.+I] A (Vz) [z E R] [[z e y] 

[z c x]], n = 1,2, *v. 

Then the F.T. implies that the set of all internal entities which are subsets of 
an internal entity is an internal entity. 

(iv) Lemma 2.1(v) states that the domain and range of every entity of A which 
is a binary relation is an entity of R. This again can be expressed by an infinite list 
of sentences of Ko. 

(Vb) [b e B.] => (3z) [z eR] A (Vx) [x e Rj] => [[x e z] 

(3y) [y e R.] A [(x, y) e b]] 

(n = 3,4,...), where B, denotes the entity of all binary relations of rank < n. 
The F.T. then implies that the domain and range of any internal binary relation 
is internal. 

Another remark which is of importance is that if b e A is a binary relation, then 
any property which b possesses and which can be expressed by sentences of Ko 
also holds for *b. For instance, if b is an order relation or function or equivalence 
relation, then *b is an order relation or function or equivalence relation. If, however, 
b e R wellorders its domain, then *b wellorders its domain in the sense that every 
nonempty internal subset of the domain of *b has a first element. 

(v) From the axioms of set theory it follows that the image of a set under a binary 
relation is a set. Thus in A the following statement holds. If b E A is a binary relation 
and a E A, then {y: (3x)(x E a A (x,y) E b)} E R. We leave it now to the reader to 
show that this statement can be expressed by sentences of Ko. The F.T. tells us 
that the following results holds. 

The image of an internal entity under an internal binary relation is internal. 
In Theorem 3.6 we have shown that the entities of R' which are elements of 

an internal entity are internal, and we remarked that a set of internal entities need 
not be internal (see Section 5). One of the problems in nonstandard analysis is to 
decide whether certain sets of internal entities are internal or not. As we shall see 
in the subsequent sections, one of the methods used to decide such a question in- 
volves F.T., by showing that the set in question violates a certain property which 
it should possess, according to the F.T., if it had been internal. Another useful 
and helpful result in this respect is the following theorem. 

THEOREM 3.10. Let V = V(xl, ..., x.) be an internal wff with the free variables 

.XI -, Xn and let a E *(A) be an internal entity. Then the set {(x1, ..., x): (X1, ,Xn) 

soa and V(xl,...,x")} is internal. 
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Proof. If Vhas no quantifiers, that is, V = V(x1, ***, x", a1, *.., ap), where al1, .,ap 
are the constants occurring in V which by hypothesis, denote internal entitles. Since a 
is internal, it follows immediately that the mapping i -e E(i) = {(x1, ,Xn): 
(x1, ***xn) e a(i) and V(x12 ***, Xn, aI(i), ***, ap(i))} is a mapping of T into Rn for 
some n, and so determines an internal entity which we shall denote by E. Then 
it is easy to see that E = {(x1, ... 2Xn): (x1 .***, xX)c ea and V}. This proves the result 
for internal wfT without quantifiers. For general internal wff we shall use again 
induction on the number of quantifiers. Thus assume that the theorem holds for 
all internal wff with ? n quantifiers. Let V = (qx+ ) ...(qx1)W be an internal 
wif with the free variables Yl, ,yp. There is no loss in generality to assume that 
(qXn+ 1) = (3Xn+l ) with domain be *(R). Since b is internal it follows from the 
induction hypothesis that the binary relation 

B = {((Y1, ...,Yp), Xn+1): ((y1 ...yp),xn+1)e-a x b and 

(qx.) ***(qx 1) W(y 1 2 yp ***X.YXX + 1)} 

is internal, and so, by Example 3.9(iv), its domain 

{(y1,... yp): (y1, ..., yp) a and (3xn+ 1) (qx) ... (qx1)W} 

is internal, and the proof is finished. 

4. The nonstandard real number system *R. The set *R of individuals of the 
'-ultrapower *(R) of the superstructure R, where W is a 6-incomplete ultrafilter, 

has according to the F.T. the same properties as R as far as they can be expressed 
by sentences of Ko. 

Since R is a totally ordered field and since it is easy to see that this can be ex- 
pressed by sentences of Ko it follows that *R is a totally ordered field. The imbedding 
a - *a of R into *R imbeds R into a subfield of *R. In order to simplify our nota- 
tion we shall denote the extensions of the algebraic operation and order when passing 
from R to *R by the same symbols. Thus a + b c in *R means in terms of W 
that {i: a(i) + b(i) = c(i)} et I, and similarly for subtraction and multiplication. 
Furthermore, a ? b in *R means {i: a(i) < b(i)} E /. As an illustration the state- 
ment that the order relation "_ " totally orders R can be expressed by the following 
sentence of Ko 

(Vx)(Vy)[xER A yeR] =>- [x < y] v [x = y] v [x > y], 

and so, as already mentioned above it follows from the F.T. that the extension 
of the order relation to *R totally orders R. 

The unit element e E *R has the property that for all 0 # r E R, *r(*r)l e, 
and so e = * 1, where 1 denotes the real number one. 

The reader will appreciate that we shall simplify our notation further by no 
longer using the *-notation to denote the standard individuals of *R. Thus we 
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shall from now on identify R with the subfield of the standard numbers of *R, and 
we shall feel free to write R a *R. 

The absolute value I r I of a real number r E R defined by I r r whenever 
r > 0 and I r I = -r whenever r < 0 can be considered to be a mapping of R into 
R+ = {r: r e R and r _ 0} the set of all nonnegative real numbers. The constant 
of L denoting this mapping extends by passing from A to *(A) to a mapping *I * I 
of *R into *(R+) which according to the F.T. has the property that *| a I = a 
for all *R 9a ? 0 and *I a j = -a for all *R3 a < 0. Also in this case we shall 
drop the *-notation and write | I to denote the absolute value of a real number 
a E *R. Similarly, we shall write max(a, b) and min(a, b), a, b FE *R, for the extensions 
*max(, ) and *min(, ) of the mappings max(r, s) and min(r, s) of R x R into R 
respectively. 

This liberalization of the notation and some additional notation later on will 
help a great deal to simplify the mechanics of the subject and can hardly be expected 
to cause confusion. 

Let the constant S denote a subset of R. Then on passing to *(R), *S denotes 
a subset of *R which is a standard entity and which by the F.T. has the same prop- 
erties as S as far as they can be expressed by sentences of Ko. More precisely 
the substructure *( ) of *(A), where ? denotes the superstructure defined by S, 
is an ultrapower nonstandard model of S. On the basis of Lemma 3.2(iii) and the 
present notation, we feel free to write S c *S. Furthermore, by Lemma 3.2(v), 
S = *S if and only if S is a finite set. 

If the constant N denotes the set of natural numbers of R, that is, N = {1, 2, ... 
then the standard entity *N denotes a set of numbers of *R which again has the 
same properties as N as far as they can be expressed by sentences of Ko. More 
precisely, *(&;) is an ultrapower higher order nonstandard model of arithmetic. 

From Theorem 3.5 it follows that *R is a proper extension of R, and so, accord- 
ing to a result from algebra to the effect that every Archimedean field is isomorphic 
to a subfield of R, we conclude that *R is non-Archimedean. But *R has the same 
properties as R and R is Archimedean. Let us now examine this apparent paradox. 
The fact that R is Archimedean can be expressed by the following sentence of KO: 

(Vx) [x E- R] => (Vn) [n E- N] => [[nx < 1] ::>[x 
_ 
0]], 

and so, by the F.T., the following statement holds for *R. 

(Vx) [x E *R] => (Vn) [n E *N] =>. [[nx < 1] *[x < 0]], 

that is, with the proper interpretation of the constants, *R is Archimedean with 
respect to *N. It is not Archimedean in the sense of the metalanguage, that is, if 
0 < a E *R, then there exists a natural number n in the metalanguage such that 
a + ... + a > 1, n-times + . 

Up till now we have only considered some properties of R and their extensions 
which can be formulated in a lower order language, that is, sentences in which 
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quantification is over numbers only. Let us now examine a few of the higher order 
type properties of R. One of the important higher order properties which R possesses 
and which we have already referred to in the beginning of Section 3 is the so-called 
Dedekind completeness property of R which states that every nonempty subset 
of R which is bounded above has a least upper bound. This statement about R can 
easily be expressed by a sentence of Ko which will contain a universal quantifier 
ranging over subsets of R. Then it follows from the F.T. that *R satisfies a Dedekind 
completeness property of the following kind. 

(4.1) Every nonempty internal subset of *R which is bounded above has a least 
upper bound. 

Since *(N) is a higher order nonstandard model of arithmetic, it follows that 
under the appropriate interpretation of the F.T. the model *(N) satisfies all the 
axioms of Peano. For instance, the principle of induction stating that every nonempty 
set of natural numbers has a first element, being a higher order property of N, has 
to be interpreted in *(N) in the following sense. 

(4.2) Every nonempty internal subset of *N has a first element. 

From Theorem 3.5 it also follows that *N - N # 0. More precisely, we shall 
now show that there exists a natural number o E *N such that I r I < ofor all r e R. 
Indeed, if c(i) = n for all i e I. (n = 1,2,...), where {I"} denotes the partition 
of I such that In s 91 for all n = 1, 2, *, then co is a mapping of I into N with the 
property that for all O < r E N the set {i: co (i) < r} 0 , and so co E *N and I r I < co 
for all r eR. This proves on the basis that 91 is 3-incomplete that *N contains a 
number which is larger than any positive real number, that is a number which could 
be called infinitely large. The reader will find it easy now to appreciate the following 
definition and facts about *R. 

DEFINITION 4.3. A real number a E *R is called finite whenever there exists a 
standard real number 0 < r E R such that I a I < r. A real number a E *R which 
is not finite will be called infinite. 

A real number a e *R is called an infinitesimal or infinitely small whenever 

al < r for all O < re-R. 

The set of all finite real numbers of *R will be denoted by Mo and the set of all 
infinitesimals by M1. 

Observe that R c MO, M1 c Mo and R r) M1 = {0}, that is, 0 ("null") being 
regarded also as an infinitesimal is the only standard infinitesimal. 

A real number a E *R is inqnite if and only if I a l > r for all 0 < r E R. Thus 
the natural number co defined above is infinite. Its reciprocal, however, is an infini- 
tesimal. More generally, a real number 0 # a E *R is an infinitesimal if and only 
if its reciprocal l/a is infinite. 

The finite natural numbers are determined in the following theorem. 
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THEOREM 4.4. A natural number n E *N is finite if and only if n is a standard 
natural number. In symbols, *N Mo= N. 

Proof. It is obvious that N a Mo. If n E *N is finite, then there exists a standard 
real number 0 < r E R such that n < r. However, Ko contains the sentence 

(Vx)[xeN] =- [x ? r] [x = 1] v [x = 2] v..* v[x = p], 

where r and p are constants and p = [r] is the integral part of r. Thus by the F.T. 
we obtain that n = 1 or n = 2 or ... or n = [r], and the proof is complete. 

From Theorem 4.4 it follows that the set of all infinitely large natural numbers 
is given by *N - N. It is not uncustomary to denote infinitely large natural numbers 
by lower case greek letters, such as co, with or without subscripts. 

The mapping r -t [r] of R + into the set N u {0}, where [r] denotes the largest 
nonnegative integer less than or equal to r, extends on passing from R to *(A) to 
a mapping *[ ] of *(R+) into *N U {0}. From the F.T. it follows that for all 
0 ? a e *R, *[a] is the largest nonnegative integer < a. Also in this case we shall 
drop the *-notation and simply write [a] for the integral part of a. 

We shall now turn to a discussion of the properties of the finite numbers of *R. 
It is easy to see that Mo is a subring of *R, and in fact is an integral domain, 

that is, Mo has no divisors of zero. The set of infinitesimals constitutes a subring 
of Mo with the property that if h e M1 and a s Mo, then ah e M1, that is M1 is 
an ideal in Mo. In fact, it is easy to see that M1 is a maximal ideal. Indeed, observe 
that if a E MO and a s Ml , then there exist positive real numbers r1, r2 E R such 
that 0 < r1 < j a I < r2, and so 1/a E Mo shows that any ideal which properly con- 
tains M1 must contain the unit element 1 of Mo and so is all of Mo. 

If a, b E *R and a - b is infinitesimal, then we shall say that b is infinitely close 
to a and we write a = 1b. 

Consider the quotient ring M0/M1. Then since M1 is a maximal ideal in Mo, 
the quotient ring MO/M1 is a field. We claim it is isomorphic to the field of standard 
real numbers. The precise result and details are the subject of the following important 
theorem. 

THEOREM 4.5. The quotient ring MO/M, is order isomorphic to the field R 
of the standard real numbers. 

Proof. First observe that if A is an equivalence class in Mo modulo M1, then A 
cannot contain two different standard real numbers r1 and r2. Indeed, in that case 
r1 -r2 1 = 10, and so r1 # r2 implies by Definition 4.4 that I ri-r2 < I ri-r2 I 

and a contradiction is obtained. This shows that R is a subfield of M0/M1. To 
complete the proof we have to show that to every a E Mo there corresponds a stan- 
dard real number r, which is then unique, such that a - r =1 0. To this end, 
observe that if a E Mo, then the sets D = {r: reR and r < a} and D' = R -D 
define a Dedekind cut (D, D') in R. Let r E R be the real number in R which deter- 
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mines the same cut (D, D'). Then we shall show that a = 1r. If not, then by Definition 
4.4 there exists a positive real number 0 < e E R such that j a - r > E. If a > r, 
then I a-r i > e implies that r + s/2 < a, and contradicts the fact that a and r de- 
termine the same cut. Similarly, if r > a, then r - e/2 > a gives rise to the same 
contradiction. Thus Mo/M1 is order isomorphic to R and the proof is finished. 

The unique ring and order isomorphism of Mo onto R with kernel M1 plays a 
very important role in the theory of infinitely small and infinitely large numbers. 
We shall firmly establish it in the following definition. 

DEFINITION 4.6. The ring and order homomorphism of Mo onto Ro with kernel 
M1 will be called the standard part homomorphism and will be denoted by st. 

In the next theorem, we shall summarize the basic properties of the homomor- 
phism st for later reference. 

THEOREM 4.7. (i) st(a + b) = st(a) + st(b), st(ab) = st(a)st(b) and st(a - b) 
- st(a)-st(b) for all a, b e Mo. 

(ii) If a, b e Mo, then a ? b implies st(a) ? st(b). 
(iii) st(I a I) = f st(a) j , st(max(a, b)) = max(st(a), st(b)) and st(min(a, b)) = 

min(st(a), st(b)) for all a, b e Mo. 
(iv) st(a) = 0 if and only if a ? M1,. 
(v) For all standard reR we have st(r) = r. 
(vi) If a c Mo and st(a) 2 0, then l a l = 1 st(a). 
(vii) For all a, b e Mo we have a =1 b if and only if st(a) = st(b). 

It is now customary to call the equivalence classes of Mo with respect to M1 
the monads. of the standard numbers determined by them. The monads are denoted 
by M(r), r e R. Thus, in particular, ju(0) = M1. 

We shall conclude this section with a number of remarks which are of interest 
in themselves. 

REMARKS. (i) (The standard part operation defined as a limit). The standard 
part operation "st" can also be defined as follows. If a E Mo, then, by Definition 4.4 
and Definition 3.1, there is a set U e- s and a positive standard real number 
O < r e R such that i E U implies I a(i)j < r. Hence, the image of the ultrafilter V 
under the mapping i -+ a(i) of I into R is a basis of a bounded ultrafilter of subsets 
of R, and so, by the local compactness of R, it converges to a unique real number r. 
A simple observation shows that r = st(a). Thus, st(a) = lim&a for all a e Mo. 

(ii) (A nonstandard construction of the real number systems). The proof of 
Theorem 4.5 suggests immediately the following alternative construction of the 
real number system. Let the constant Q of L denote the field of rational numbers. 
Then *(Q) is a higher order nonstandard model of the superstructure Q. Thus the 
set of individuals *Q c *R is a subfield of *R which has the same properties as Q 
as far as they can be expressed by sentences of Ko. From Theorem 3.5 we know that 
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*Q # Q, and in fact *Q contains an element which is larger than any standard real 
number. It is an easy and interesting exercise for the reader to transform the prop- 
erties of Q to *Q. We shall show here only that *Q can be used to define the real 
number system. To this end, we single out the rationals of *Q which are finite, that 
is, q E *Q is finite whenever I q < some positive standard rational number. The 
set of all finite rationals will be denoted by Q0. Observe that Q0 = *Q rn Mo. A 
rational q E *Q is called infinitesimal whenever j q j is smaller than all positive standard 
rationals. The set of all infinitely small rationals will be denoted by Q1. Thus 
Q, = *Q n M1. Then it is easy to see that Q1 is a maximal ideal in the integral 
domain Q0. Thus the quotient ring QoIQ1 is ring and order isomorphic to a field. 
The proof of Theorem 4.5 shows us, however, that this field is isomorphic to the 
field of Dedekind cuts of Q, and so, by definition, Qo/Q1 is isomorphic to the real 
number system. 

(iii) (The nonstandard complex number system). Within the framework of 
axiomatic set theory the complex number system C may be regarded as a subtheory 

of the theory of the superstructure R x R determined by R x R. The algebraic 
operations of addition and multiplication are denoted by constants which correspond 

to certain six-place relations; and so *(R x R) may be looked upor. as a higher order 
non-standard model of the complex number system. 

It is advisable also in this case to employ the familiar notation z = x + iy for 
complex numbers, where now x, y e *R and i2 = -1. The set *C = *R x *R of 
the extended complex number system has of course the same properties as C, and 
so is, in particular, a field. If z1 = x1 + iy1 and Z2 = X2 + iy2, then also in *C 
we have 

Z1 + Z2 = x1 + X2 + i(yl + Y2) and Z1z2 = (Xlx2 -Y1Y2) + i(x1y2 + X2Y1) 

Furthermore, z = x + iy, then x is called the real part of z and y is called the imag- 
inary part of z. A complex number z = x + iy is finite whenever x and y are 
finite, otherwise it is infinite. If x and y are both infinitely small, then z = x + iy 
is called an infinitely small complex number. From Theorem 4.6 it follows that every 
finite complex number is infinitely close to a unique standard complex number. 
For further details concerning nonstandard complex function theory we refer the 
reader to [8] and [10]. 

5. Definitions and properties of some external entities. We pointed out that the 
converse of Theorem 3.6 need not hold, that is, a set of internal entities need not 
be internal. In the preceding section we introduced a number of sets of individuals, 
namely, the set of all infinitely large natural numbers *N - N, the set of finite 
numbers Mo, the set of infinitesimals M1, and the monads ,u(r), r e R. It is now 
natural to ask the question whether these sets are internal or not? To decide this 
we shall use the following procedure. We assume the set in question is internal and 
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then show that it violates a property which it should have possessed on the basis 
of the assumption that it is internal and the F.T. The details are contained in the 
following theorem. 

THEOREM 5.1. The nonempty sets *N - N, MO, MI, /(r) (r e R), and the set 
of infinitely large real numbers *R. = *R- MO are all external. 

Proof. Assume that *N - N is internal. Then since *N - N # 0 (Theorem 3.5) 
we have by (4.2) that *N - N has a first element, say, coo. But the set of infinitely 
large natural numbers does not have a first element. Indeed, if co e *N - N, then 
k + 1 < o for all k E N implies that o - 1 E *N - N, and so c0 -1 < coo shows that 
*N - N has no first element. Thus *N - N is external. 

Assume that the set M1 is internal. Since M1 # 0 and h E M1 implies j h j < 1 
it follows from (4.1) that M1 has a least upperbound, say, a0 . From 0 E M, it fol- 
lows that ao ? 0. Furthermore, ao # M1 since M1 contains elements other than 0. 
But then a0/2 is also a least upper bound of M1 and a contradiction is obtained, 
and so M1 is external. 

Similarly on the basis of (4.1) we can show that Mo is external. We leave it to 
the reader as an exercise. 

If *Roo = *R- MO is internal, then also MO = *R-*R,, is internal, and a 
contradiction is obtained. Thus *R, is external. 

Since the translation mappings of *R are internal (check this) it follows imme- 
diately froin p(0) is external that g(r) = ,u(O) + r(r E R) is external. This completes 
the proof. 

REMARKS. (i) If D a M1 is internal and nonempty, then according to (4.1) it 
has a least upper bound. The above proof shows that this least upper bound is an 
infinitesimal. Similarly, the least upper bound of a nonempty internal set of finite 
numbers is finite. The greatest lower bound of a nonempty internal set of infinite 
numbers is of course infinite. 

(ii) The standard part operation is a mapping of Mo onto R. It, is, however, 
not an internal mapping. Indeed, if it were internal, then according to Example 
3.9(v) its domain Mo would have to be internal which contradicts the preceding 
theorem, and we conclude that the standard part operation is an external operation. 

Let A E A be infinite. Then according to Theorem 3.5 the set of all the nonstandard 
entities of *A is not empty. More precisely, we have the following result. 

THEOREM 5.2. If A s A, then the set *A - {*a: a e A} of all the nonstandard 
elements of *A is either empty or external, and in the latter case the set {*a: a c A} 
is also external. 

Proof. If A Ef A, then *A - {*a: a e A} = 0 if and only if A is finite. (Theorem 
3.5 and Lemma 3.2(v)). Assume therefore that A is infinite. Then there is a one-to-one 
mapping f of a subset of A onto the set N = {1, 2, *--} . If B = *A -{*a: a E A} is 
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internal, then Brn dom(*f) is internal also (Theorem 3.10). Hence, by Example 
3.9(v), we have that *N - N = *f(B (w dom *f) is internal which contradicts Theorem 
5.1 and the proof is finished. 

Although the preceding theorem shows that the set of nonstandard elements 
of the extension of an infinite set of A is external there are plenty of internal sets 
whose eletnents are all internal entities which are not standard. Indeed, if w E *N - N, 
then the set {co} is internal but its element is not a standard entity. More generally 
any finite set of internal entities which are not standard is internal. This statement 
can be generalized as follows. We begin with a definition. 

DEFINITION 5.3. A set D of internal entities of *(R) is called *-.finite whenever 
there exists a natural number o e *N - N and an internal one-to-one mapping 
of D onto the internal set {1,2, . ,wo}. In that case, we shall say that the internal 
cardinal of D is co or shortly that D has c-elements. 

If D is *-finite, then it is clear that its external cardinal is at least as big as No. 
Concerning *-finite sets we have the following result. 

THEOREM 5.4. Every *-finite set of internal entities is internal. A *-finite set 
of real numbers has a largest and a smallest element. 

Proof. Since, by Example 3.9(iv), the domain of an internal function is internal 
it follows immediately from Definition 5.3 that a *-finite set is internal. 

If D is a *-finite set of real numbers, then from the sentence of Ko stating that 
every finite set of real numbers of R has a largest and a smallest element it follows 
from the F.T. that every *-finite set of real numbers in *R has a largest and a smallest 
element. This completes the proof. 

REMARK. If the internal set D is *-finite, then it must contain at least one internal 
entity which is not standard, and so at least externally infinitely many of those. 
This can be shown as follows. If the entities of D are all standard, then there exists 
a standard set As A such that D - {*a: a E A} (use first part of Theorem 3.6). Since 
the cardinal of A is infinite it follows from Theorem 5.2 that the set D = {*a: a E A} 
is external, and so a contradiction is obtained. 

6. The theory of limits. As a first example and also for later reference we shall 
illustrate what kind of effect the theory of infinitely small and infinitely large numbers 
has on the theory of limits. 

We recall that a (standard) sequence {s,: n = 1,2, .} can be regarded as a 
mapping of N into R, and so being a subset of N x R it is an entity of A which we 
shall denote for obvious reasons by s. On passing from A to *(R) the entity s extends 
to an entity *s which according to the F.T. and Lemma 3.2 (vii) is a mapping of 
*N into *R. Furthermore, for all finite n E N we have *sn=s, as follows from the 
fact that *(ran s) - ran *s and the convention of dropping the *-notation for indi- 
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viduals. The standard sequence *s in *(R) has the same properties as the sequence s 
as far as they can be expressed by sentences of Ko. With this fundamental principle 
in mind w% shall now prove the following theoreins. 

THEOREM 6.1. A sequence {sn: n = 1,2, *.*} in R is bounded if and only if 
*s is finite for all infinitely large natural numbers co E *N - N. 

Proof. This follows immediately from the remark following Theorem 5.1 to 
the effect that the least upper bound of an internal set of finite numbers is finite. 
Hence, if (ran *s) c MUo, then ? *Sn I ! a for all n E *N and some a e MO, that is, 

Sn st(a) for all n e N, and the proof is finished. 
In the classical sense a seq uence {Sn: n = 1,2, . } is said to be convergent with 

limit s if and only if 

(*) (Vs)[O<sER] > (3x)[xeN] A(Vy)[yeN A X ! y] = S [ -s -sI <8]. 

In nonstandard analysis this is expressed in a more intuitive fashion as follows. 

THEOREM 6.2. Let {Sn: n = 1,2, ...} be a sequence of numbers of R, and let 
sER. Then limn+oosSn = S if and only if *s, = 1s for all co E *N- N. 

Proof. Assume first that limn son = s. Then from the sentence (*) of Ko the 
following is a sentence of Ko. 

(Vx)[xeN A x > n] =- Is -sI < s, where s > 0 and neN 

are constants. Thus the following *L-sentence holds. 

(Vx)[x e *N A x > n] = s - -sI <6. 

In particular, for all co E *N - N we have that I -s j <6. The latter statement 
holds, however, for all E > 0, that is, *s,, = 1 s for all co E *N-N. 

In order to see that the condition is sufficient we observe that if 6 is a constant 
denoting a positive number of R, the following sentence holds in *(Rj). 

(3y)[ye*N] A (Vx)[xe*N A y < x] > I*s,-sS < S. 

Indeed, we need to take for y only an infinitely large natural number. Observe 
now that this sentence is the *-transform of the sentence 

(3y)[yeN] v (Vx)[xeN A y <x] => Is - sj < 6, 

and so by F.T. holds in A. This means that there is an index no e N such that 

Is -s I < E for all n > no. Since this holds for all E > O we obtain that limn-oosn = s 
and the proof is finished. 

The condition *s, = ls for all co E *N - N is equivalent to st(*s.) = s for all 
coE*N - N. 
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Theoremn 6.2 also tells us immediately that if the limit exists it is unique. Further- 
more, Theorem 6.1 shows that every convergent sequence is bounded. 

EXAMPLES 6.3. (i) If one wishes to show that lim"., n = 1, then set 
Sn= /n- 1 (n = 1, 2,...) and observe that 

n = (1 +>s) = k (;k) - (2)sn for all n = ,2,.... 

Hence, 0 ? S_ S 21/(n-1) for all n > 1, and so, also 0 ! 
*Sm * s2/(m-1) 

for 
all 1 < me *N. In particular if co wE *N - N is infinitely large, then 0 _ *s, < V2/(co-1) 
and V21(cw -1)eMl implies that *s. = 1O, and so, by Theorem 6.2, lim"+o,sn = O, 
and the proof is finished. 

(ii) (Algebra of limits). The usual rules for calculating with limits are now easily 
obtained. For, if lim sn = s and limtn = t, then *(s + t)., = *s. + *t.. =1 s + t for 
all o E *N - N and so limn,O(sn + tn) = s + t . Similarly, st(*(st),,) = st(*sW,*t,) = 
st(*s,)st(*t,) = st for all co w *N - N shows that liMn, . sntn = st. In the same way 
one shows that if t # 0, then limn-oo s/tn = slt. 

(iii) It is well known that if limn . sn = s, then 

lim Si + "'+ Sn =S 

The proof of this result in nonstandard analysis reads as follows. From liMn,,Sn = S 
it follows first of all that for some 0 < r E R, I *sn -s < r for all n e *N (Theo- 
rem 6.1) and*sn -s = 10 for all n E *N-N. Now let c) E *N-N and let0 =I ,/wq]. 
Then the following simple estimation gives the required result: 

*S1 + + *S) I*S1-S + + I*SOSI 1 
_ s < 

S 

+ I*So0+ sI + + I *S. - SI 

r + (co92 ) max(f*sn-SI CO< n ? c) =X0, 

by Theorem 5.4. 
Cauchy's criterion for convergence in analysis takes on the following form. 

THEOREM 6.4. A sequence {sn: n = 1,2, ..} of real numbers of R is convergent 
if and only if *s,, = 1 *s., for all , co' E *N- N. 

Proof. From Cauchy's criterion I sn - | < s for all n, m sufficiently large it 
follows as in the proof of Theorem 6.2 that the condition is necessary. In order to 
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prove that the condition is sufficient we have only to show in view of Theorem 6.2 
that *s, is finite for all o E *N - N. To this end, assume that there exists an infinitely 
large natural number coo *N - N such that *s.0 is infinite. We define now the 
following set A = {n: *N and | S. I < 1J of natural numbers. From Theorem 
3.10 it follows that A is internal. Furthermore, by hypothesis *N - N c A. If 
n e N is finite, then |*s* I j*So - *S,n + I *sn I E MO shows that n 0 A, and so 
A = *N - N Contradicting tfie fact that *N - N is not internal (Theorem 5.1), 
and so *s,, is finite for all o E *N - N, and the proof is finished. 

REMARK. The above proof shows also that an infinite sequence {sn: n = 1,2, --} 
is bounded if and only if *s,- S... is finite for all co, c' E *N - N. 

The following result of A. Robinson (see [9]) concerning internal sequences 
will be used in Section 9. 

THEOREM 6.5. Let {an: n e *N} be an internal sequence of real numbers such 
that an is infinitely small for allfinite ne N. Then there exists an infinitely large 
natural number cowe*N-N such that an = 1o for all n < co. 

Proof. Consider the internal sequence {nan: n e *N} and let A = {n: n e *N 
and Vk[ke*N A k ? n] => kIakI < 1}. Then, by Theorem 3.10, A is internal. 
Since the hypothesis a"= 1 0 for all finite n e N implies nan= 1 0 for all finite n E N 
it follows that N c A. Since, by Theorem 5.2, the set N is external and since A is 
internal, A - N :3 0. Hence, there exists an infinitely large natural number 0o E A. 
Then for all infinitely large n < co the condition n I an _ 1 implies that 
0 ; I an I < 1/n = I 0, and the proof is finished. 

7. Sequences that are asymnptotically linear. A standard sequence of real numbers 
{sn: n = 1, 2, **} is called asymptotically linear whenever there exists a real constant 
a E R such that sn = nu + o(n), n E N. 

A now classical result of Polya and Szeg6 states if a sequence {sn: n = 1,2, .. 
is almost additive, that is, there exists a constant s such that I s+m -Sn -Sm I S 

for all n, m = 1,2,--, then {sn} is asymptotically linear. 
As another illustration of the use of infinitely small and infinitely large numbers 

we shall prove here in a nonstandard fashion the following slightly more general 
result. 

THEOREM 7.1. Let {sn: n = 1, 2, .--} be a standard sequence of real numbers 
for which there exist constants p, s such that 0 <p < 1 and I sn+m - Sn - Sm 
? s(nP + mP) for all n, m = 1, 2, . .. Then there exists a constant a E R such that 

I Sn - nu ? _ snP/(1 -2P- ') for all n = 1, 2, * .. In particular, {sn} is. asymptotically 
linear. 

Proof. From the hypothesis it follows immediately that for all k = 1,2, 
and for all n = 1,2,... we have 
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(7.2) 2 S < snPI --2-) 

Then it follows from the F.T. that, by passing to *(R), (7.2) holds for all k, n E *N. 
In particular, if k = co e *N - N is infinitely large, then 

(7.3) *s | snP1- 2- for all ne*N 

Since 0 < p < 1, and o is infinitely large, 2(P-1)' is infinitely small, and so 
for all finite n we see that *s21n/2u is finite. Let 

an = 22s nne*N. 

Then the internal sequence {an: n E *N} satisfies, by hypothesis, the condition that 

Ian+ m- an - am j _ s 2P- 1))(nP + mP) for all n, m E *N. Since an is finite for all 
finite n E N we obtain by setting tn = St(an), n e N, that I tm - tn - tm = 0, that 
is, tn = nti = n a, n = 1,2,---. Finally, if we take standard parts in (7.3) keeping 
n finite we obtain that Sn - na < snP/( -2P- 1), and the proof is finished. 

8. Continuity and differentiability. Let f be a real-valued function of a real variable 
which is defined on an open interval a < x < b of R. On passing to *(A) the function 
f extends to a function *f whose domain of definition is the open interval a < x < b, 
x E *R and with values in *R. Furthermore, we have to keep in mind that the F.T. 
implies that *f satisfies in *(R) all the properties of f as far as they can be expressed 
by sentences of Ko. 

For instance, if for some a < x0 < b, limxoff(x) = I holds, then the following 
sentence belongs to K0. 

(VE)[0 < EeR] (3B6)[0 < 6eR] A (Vx)[xcR A 0 < Ix-xoI < 6] 

=> [If(X)-l | < E] - 

Using the same methods as in the proof of Theorem 6.1 we obtain immediately 
the following result. 

THEOREM 8.1. limx,xf(x) = I if and only if *f(xo + h) =1 lforall 0 # heM1. 
In particular,f is continuous at xo if and only if *f(xo + h) = 1f(xo)for all h E M1, 
that is, equivalently, st(*f(a) = f(st(a)) for all a E *R such that st(a) = xo. 

The derivative of f at x0 exists if and only if 

lim f(xo + h) - 
f(xo) 

Y-+o h 

exists. Thus, by Theorem 8.1, f is differentiable at x0 if and only if there exists a con- 
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stant I eR such that 

*f(xo + h) - *f(xo) 
h 

for all 0 : h e M. As we might have expected the derivative of a differentiable 
function is the standard part of the quotient of infinitesimals 

Af *f(x + Ax) - f(x) 
Ax Ax 

where Ax # 0 denotes an infinitesimal. 
If f is differentiable at x0, then f is continuous at x0, Indeed, from 

*f(xo + h) -f(xo) =I h f'(xO) for all 0 # heM1 it follows, using hl =1 0, that 

*f(xo + h)-f(xo) = I 0 for all h E M1. 
A real function f defined on an arbitrary interval is uniformly continuous when- 

ever for every 0 < ? E R there exists a constant 0 < 6 E R such that I f(x) - f(y) I <e 
for all x, y E domf and x -y I < 3. In passing to *(R) we obtain immediately the 
following criterion for uniform continuity. 

THEOREM 8.2. Let f be a real function of a real variable. Then f is uniformly 
continuous if and only if *f(a) = 1 *f(b) for all a, b e dom *f and a = 1 b. 

From the above results the following famous theorem of Heine can now be 
obtained immediately. 

THEOREM 8.3. (Heine). Let f be a real function of a real variable defined on 
the bounded and closed interval x1 < x _ x2, X1, X2 e R. Iff is continuous, then 
f is uniformly continuous. 

Proof. Let a,be*R satisfy x1 < a,b ? X2 and a =1 b. Then a,b Mo and 
x = st(a) = st(b) satisfies x1 < x < x22. Since f is continuous we have, by Theorem 
8.1, that *f(a) =I1f(x) =I *f(b), and so *f(a) =- *f(b), that is, by Theorem 8.2, 
f is uniformly continuous, and the proof is finished. 

For a more detailed account of the theory of real functions of a real variable in 
non-standard analysis we refer the reader to [3] and [8]. 

9. Euler's product for the sine function. On passing from A to *(A), the ele- 
mentary functions of the calculus such as the functions log x, ex, sin x, cosx, and 
so on, extend to functions defined in *R and which have the same properties as their 
standard counterpart as far as they can be expressed by sentences of Ko. In order 
to simplify the notation we shall not use the *-notation to denote the extensions 
of the elementary functions. Thus, for instance, in place of writing *(sin) (x), x E *R, 
we simply write sin x, x E *R. For a discussion of the elementary functions of *(A) 
we refer the reader to [3]. 
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One of the many beautiful formulas which were discovered by Euler is the so- 
called product formula for the sine-function. By this we mean the following formula. 

(9.1) sinz = z Z=1 - k2 32) zis complex. 

Nowadays this representation for the sine function belongs to that part of function 
theory that studies the behavior of entire functions whenever its zeros are given. 
There one learns that the quotient of the functions on the left and right-hand side 
of (9.1) is a function of the form ef, where f is entire. The whole problem is then 
to determine f, and, in fact, to show that f = 0 in the case of the sine function. 
There are many proofs known for this result. Some of the proofs are even elementary. 
But all of these proofs are somewhat artificial in the sense that they rely on some 
analytical trick. It is therefore not without interest to examine how Euler proved 
his formula. As far as the author knows, Euler's original proof is contained in his 
book Introductio ad Analysin Infinitorum which appeared in 1748. It runs as fol- 
lows. The mathematical expressions such as "infinitely large" and "infinitely close" 
which occur in it are Euler's and not the author's. 

For infinitely large values of n we have 

(9.2) 2 sinhx = 1 + x 

We are now going to factorize the polynomial occurring on the right-hand side 
of (9.2), by observing that an_ b- = (a-b)(a-e1b)...(a-en lb), where 1, 

**-, e,1 are the nth roots of unity. Now combine the pairs of complex conjugate 
roots to obtain the real quadratic polynomials 

I2kiri \ ( 2kiri 2k7r 
a- bexp ) \-bexp - _ = a2 +b2-2abcos-, 

and so, since a2 + b2 = 2 + (2X2/n2) and 2ab = 2 - (2x2/n 2), we obtain 

2 ( -cos-) + 2 (1 + cosL-) j-= 4sin2-( 1 + )). 
n n n2n n2 tan2(k7t/n) 

It follows that the polynomial is divisible by x and for all values of k = 1,2.., 
by 1 + {x2/n2 tan2(k7c/n)}. Since n is infinitely large this factor is infinitely close to 
1 + (x2/k2it2). Furthermore, it is easy to see that the coefficient of x is equal to 2, 
and so we obtain that 

(9.3) sinhx = x H 1 + k272 

Finally, by applying it for x = iz, the required formula is obtained. 
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The reader who has read this far will agree with the author that Euler's proof 
is a typical example of the way infinitely large and infinitely small numbers were 
used with great success in the early stages of the development of the calculus. It 
is, however, no wonder that the inability to give the theory of infinitely large and 
infinitely small numbers a firm foundation led to the unacceptibility of such proofs. 
Of course, it is no problem at all with the methods of nonstandard analysis to 
make Euler's proof precise. 

From Theorem 6.1 it follows that for all standard x E R and for all infinitely large 
natural numbers co E *N - N we have 

(9.4) 2sinhx =1 S1 +() 1 ) 

Factorizing the polynomial as before leads to the formula. 

/ aV"m / a M 4m/2 [(m-1)/2] k7\ [(m-1)/2J( a2 

(9.5) l1 + mJ -1 mJ = -m 
- 

I? sin 2J a= 
Y. 1 + 

nk m m m k=1 M k=1 ~~m2tan 2- 
m 

for all a E *R and for all m E *N, and where [(m - 1)/2] as in Section 4 denotes the 
largest natural numb.r ? (m - 1)/2. Dividing by a 4 0 and letting a = 0 shows that 

4m/2 [(m- 1)/2] kit 
(9.6) H sin2- = 2 for all me*N. 

m k=1 m 

Thus we obtain finally that 

X co X c) [(c)- 1)/2]1 X2 
(9.7) 1 + - o ) _ 2x 1l 1 + w02 tan2(kir/w)) 

or all x E R and for all co E *N - N. 
We shall now prove the following lemma. 

LEMMA 9.8. If xeR is standard, then for all infinitely large coe*N-N 
we have 

([t k ( C2 tan2 (k/co)) ) k= 
1 (+ k27r2) 

Proof. Since for all x E R, the infinite product fikJ U (1 + x2/k2ir2) is con- 
vergent it follows from Theorem 6.1 that 

(9.9) H (1 + k2X2) = [ ( 
T21/2 + 

for all x e R and for all o E *N-N. 
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Since Co2 tan2 (k/co) > k2r2 for all 1 ? k ? [(co -1)/2] we obtain that 

log 1 + k2)- log (1 + 2t(k/ 0, for all xeR. 

From Theorem 3.10 it follows that the following sequence is internal 

(9.10)og= ( 1 +(- log ) (1 +2n N/n)) a dxeR. 

If n is finite, then, by Theorem 8.1, the continuity of the log-function and n/co = 10, 
it follows that 

log(1 + 
w02tan2(k/c)) =1 log ( + k27r2) xR, 

and so 11n = 1 0 for all finite n E N. Then it follows from Theorem 6.5 that there 
exists an infinitely large natural number v g [(co - 1)/2] such that nn =1 0 for all 
n < v. 

Observing that 

log (1 + 2tan(k I)) > 0 for all 1 ? k ?; [(as-1)/2], 

we obtain that 

[((X- 1)/2] x(2 [(0o-1)/2] x2 
0 S [((o-1)/2] ! nv + l2 log 1 + . 1 log ( + -2-2 

k=v+l \kr k=v+l 2r/ 

From Cauchy's criterion in the form of Theorem 6.4 it follows, however, that 
1[(w)-1)/2J log(1 + (x2/k2nt2)) =10 for all x e R, and so we obtain that q(w - 1)/2] = I ?. 

Finally, the lemma follows from the continuity of the log-function. 
In order to complete the proof observe that from (9.4) and (9.7) it follows that 

for all standard xe R we have 

[(w-1)/2] x 2 

sinhx =1x Hl (1 + 2tan2(k7r/) c*N N, 

and so by taking standard parts using Lemma (9.9) we obtain finally that 

sinhx = x H (1 + X) for all x e R. 
k=1 \ ki-r1 

From the latter formula the product formula can be obtained by using the 
uniqueness theorem for analytic functions. In this connection it is not without 
interest to remark that a slight extension of the argument presented above will give 

This content downloaded from 217.233.11.182 on Sat, 8 Jun 2013 17:42:36 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


66 W.A.J. LUXEMBURG [June-July 

the result for all complex z : ? knr, k = 0, 1, 2, * . We shall leave it to the reader 
to verify this. 

10. Nonmeasurable functions. In this final section of the present paper we 
shall present a simple example of a function which is not measurable in the sense 
of Lebesgue. The construction or rather the definition of the example will be based 
on the theory of infinitely large and infinitely small numbers. 

In a previous paper [5], the present author already defined such a function. 
It involved some nontrivial properties of the sine-function in *R. We shall follow 
here another idea. 

Let co E *N - N be an infinitely large natural number. Then by Theorem 3.10 
the following function is internal. 

(10.1) +(x) = [2x] - 2[2-'x], xe*R. 

The internal function 4 is obviously periodic modulo one. It can also be defined 
as the coth coefficient of the dyadic expansion of x - [x] (x E *R), and so it takes 
on only the values 0 and 1. 

By f we shall denote the restriction of 4 to the set of standard real numbers R 
of *R. Then the following result holds. 

THEOREM 10.2. The real function f(x) = [2'x] - 2[2' 'x], x e R, is not 
measurable in the sense of Lebesgue. 

Proof. Observe that f has the following properties. (i) For every (standard) 
dyadic number d, 0 < d _ 1, f(d) = 0. (ii) Every dyadic number d, 0 < d < 1, 
is a period off, that is, f(x + d) =f(x) for all x E R . (iii) For all x, 0 ? x < 1, 
we havef(1 - x) = 1 - f(x) provided x is not dyadic. (i) and (ii) follow immediately 
from the fact that since co is infinitely large, 2 "d and 2 '-d are natural numbers 
for all standard dyadic numbers d, 0 < d < 1. (iii) follows from the fact that f(x) 
is the coth coefficient of the dyadic expansion of x in *R. We shall now assume 
that f is a measurable function. We shall have to use the following well-known 
result. 

(10.3) A measurable function which has arbitrarily small periods is equal 
to a constant almost everywhere. 

From the assumption that f is measurable, property (ii) of f, (10.3), and the fact 
that f takes on only the values 0 and 1 it follows that f = 0 a.e. or f = 1 a.e. 

Let A = {x: 0 ? x ? 1 and f(x) < 1/2}. Then A is a measurable set, and the 
characteristic function of A has all the dyadic number as periods, and so, by (10.3), 
m(A) = 0 or m(A) = 1, where m denotes the Lebesgue measure. Consider now 
also the set B = {x: 0 < x ? 1 and f(x) > i}. Then properties (ii) and (iii) of f 
imply that if x is not dyadic 0 < x < 1, then x e A if and only if 1-x -e B. Thus 
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the set Ao of non-dyadic points of A and the set Bo of nondyadic points of B are 
symmetric with respect to the point 1/2. Since the set of dyadic points is countable 
its Lebesgue measure is zero and so m(A) = m(AO) = m(BO) = m(B). Then 
AO ) Bo = 0, m(Ao U BO) < 1, m(A0) = m(BO) and m(A0) = 0 or m(A0) = 1 
imply that m(A0) = m(BO) = 0. Hence, f(x) = 1/2 a.e., which contradicts the fact 
that f does not take on the value 1/2. We conclude that f is not measurable in the 
sense of Lebesgue and the proof is finished. 

Work on this paper was also supported in part by Grant No. GP-7691 from the National Science 
Foundation. 
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