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Abstract. In this paper we study an inequality problem for the evolution

Navier-Stokes type operators related to the model of motion of a viscous incom-
pressible fluid in a bounded domain. The equations are nonlinear Navier-Stokes

ones for the velocity and pressure with non-standard boundary conditions. We
assume the nonslip boundary condition together with a Clarke subdifferential

relation between the pressure and the normal components of the velocity. The

existence of weak solutions to the model is proved by applying the regularized
Galerkin method.

1. Introduction. In this paper we examine a class of hemivariational inequality
problems for the evolution Navier–Stokes operators. The main feature of this class
is a nonmonotone and possibly multivalued boundary condition which is expressed
by the generalized Clarke subdifferential. The motivation for our study comes from
the fluid flow control problems and the flow problems for semipermeable walls and
membranes. More precisely, the problem under consideration describes a model
in which we regulate the boundary orifices in a channel (or a tube) to reduce the
pressure of the fluid on the boundary when the normal velocity reaches a prescribed
value. The multivalued subdifferential boundary condition can be used to model a
control problem when the pressure is regulated by a hydraulic control device.

Considering the nonmonotone character of the multivalued boundary condition,
a convex analysis approach to the problem is not possible. We are naturally lead
to a mathematical model involving the Clarke subdifferential of a locally Lipschitz
superpotential. Such formulation is called a hemivariational inequality and it was
introduced and studied in the early 1980’s by Panagiotopoulos [18, 19]. The hemi-
variational inequalities are natural generalizations of variational inequality problems
and their origin is in nonsmooth mechanics. For the description of origins of hemi-
variational inequalities and the mathematical theory, we refer to Panagiotopoulos
[18], Naniewicz and Panagiotopoulos [17], Goeleven et al. [9] and the references
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therein, for recent results on parabolic and hyperbolic hemivariational inequalities
cf. [12, 13, 14, 16].

The goal of our paper is to extend the main results of Konovalova [10] and
Migórski and Ochal [15] to the case of evolution Navier–Stokes problem. We prove
the existence of solutions for the equations modeling the motion of a viscous in-
compressible fluid. In [10] the dynamic variational inequality for the Navier–Stokes
equation was considered while in [15] the existence of solutions to stationary hemi-
variational inequality has been obtained by a surjectivity argument. In the present
paper we use a Galerkin method for a regularized problem. The regularization
is applied for the nonsmooth superpotential and a solution to the hemivariational
inequality is obtained as a limit of a sequence of solutions to a regularized problem.

The related problems for Navier–Stokes equations with boundary conditions in-
volving the pressure have been considered in Conca et al. [7]. For other flow
problems dealing with semipermeable media as well as for the flow through porous
media, we refer to Panagiotopoulos [18], Naniewicz and Panagiotopoulos [17] (Chap-
ter 5.5.3), Chebotarev [4, 5] and the references therein. We also refer to Selmani
et al. [20] for results on variational inequalities which model the stationary flow of
Bingham fluid with friction. An existence result for Bingham fluids in a laminar
flow in a cylindrical pipe with nonmonotone boundary condition can be found in
[11].

The paper is organized as follows. In Section 2 we recall some notation and
definitions and in Section 3 we formulate the evolution hemivariational inequality
for fluid flow problem. The main result on an evolution inclusion associated with
the hemivariational inequality is given in Section 4.

The preliminary versions of this paper were presented by the second author at the
Sixth AIMS International Conference on Dynamical Systems, Differential Equations
and Applications held in Poitiers, France, June 25–28, 2006 and at the Second
International Conference on Nonsmooth/Nonconvex Mechanics with Applications
in Engineering held in Thessaloniki, Greece, July 7–8, 2006.

2. Preliminaries. In this section we introduce the notation and recall some defi-
nitions needed in the sequel.

Let Ω be a domain in R d, d = 2, 3 with regular boundary Γ. Let n denote the
outward unit normal vector to Γ. Given v ∈ H1/2(Γ; R d) we denote by vN and
vT the usual normal and the tangential components of v on the boundary Γ, i.e.
vN = v · n, vT = v − vNn, where v · n =

∑n
i=1 vini.

We introduce the spaces which are needed in the weak formulation of the problem
under consideration. Let

W = {w ∈ C∞(Ω; Rd) : divw = 0 in Ω, wT = 0 on Γ}

and let δ ∈ ( 1
2 , 1). We denote by V , Z and H the closure of W in the norm of

H1(Ω; Rd), Hδ(Ω; Rd) and L2(Ω; Rd), respectively. Then

V ⊂ Z ⊂ H ' H∗ ⊂ Z∗ ⊂ V ∗

with all embeddings being continuous and compact. Denoting by i : V → Z the
embedding injection, by γ : Z → L2(Γ; Rd) and γ0 : H1(Ω; Rd) → H1/2(Γ; Rd) ⊂
L2(Γ; Rd) the trace operators, for all v ∈ V we have γ0v = γ(iv). For simplicity we
omit the notation of the embedding i and we write γ0v = γv for v ∈ V .
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Given a finite time interval (0, T ), we define the spaces

V = L2(0, T ;V ), H = L2(0, T ;H) and W = {w ∈ V : w′ ∈ V∗},
where the time derivative involved in the definition is understood in the sense of
vector valued distributions. We have the following continuous embeddingsW ⊂ V ⊂
H ⊂ V∗. Equipped with the norm ‖v‖W = ‖v‖V + ‖v′‖V∗ the space W becomes a
separable reflexive Banach space. It is well known (cf. e.g. [8]) that the space W
is embedded continuously in C(0, T ;H) (the space of continuous functions on [0, T ]
with values in H), i.e. every element of W, after a possible modification on a set
of measure zero, has a unique continuous representative in C(0, T ;H). Moreover,
since V is embedded compactly in H, then so does W into H (cf. [8]). The inner
products in Hilbert spaces H and H are denoted by 〈·, ·〉H and 〈·, ·〉H, respectively.

We recall the definitions of the generalized directional derivative and the gene-
ralized gradient of Clarke for a locally Lipschitz function f : E → R, where E is a
Banach space (see Clarke [6]). The generalized directional derivative of f at x ∈ E
in the direction v ∈ E, denoted by f0(x; v), is defined by

f0(x; v) = lim sup
y→x, λ↓0

f(y + λv)− f(y)
λ

.

The generalized gradient of f at x, denoted by ∂f(x), is a subset of a dual space
E∗ given by ∂f(x) = {ζ ∈ E∗ : f0(x; v) ≥ 〈ζ, v〉E∗×E for all v ∈ E}. The locally
Lipschitz function f is called regular (in the sense of Clarke) at x ∈ E if for all v ∈ E
the one-sided directional derivative f ′(x; v) exists and satisfies f0(x; v) = f ′(x; v)
for all v ∈ E. It is well known that a locally Lipschitz convex function is regular
(cf. Proposition 2.3.6 of [6]).

3. Problem statement. In this section we formulate the initial–boundary value
problem for the evolution Navier-Stokes equation with a subdifferential boundary
condition.

Let Ω be a bounded simply connected domain in R d, d = 2 or 3 with connected
boundary Γ of class C2. We consider the following system of evolution Navier-Stokes
equations

u′ − ν4u+ (u · ∇)u+∇p = f, ∇ · u = 0 in Q, (1)

u(0) = u0 in Ω. (2)
This system describes an incompressible viscous fluid flow in the domain Ω, where
u = {ui(x, t)}d

i=1 is a velocity, f = {fi(x, t)}d
i=1 is an external forces vector field,

p = p(x, t) is the pressure, ν is a kinematic viscosity of the fluid (Re = 1
ν is

the Reynolds number), t ∈ (0, T ) represents time, u0 is the initial velocity and
Q = Ω × (0, T ). The nonlinear term (u · ∇)u in (1) (often called the convective
term) is a symbolic notation for the vector {

∑d
j=1 uj

∂ui

∂xj
}d

i=1. The divergence free
condition div u = ∇ · u = 0 is the equation for law of mass conservation and it
states that the motion is incompressible.

Following the papers of Konovalova [10] and Chebotarev [4, 5] in order to give
the variational formulation of (1)-(2), it is convienient to rewrite the problem in
the standard Lamb form. Applying the well-known formulas of vector analysis, we
have an equivalent form of this problem:

u′ − ν rot rotu+ rotu× u+∇p̃ = f in Q, (3)

div u = 0 in Q, u(0) = u0 in Ω, (4)
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where p̃ = p+ 1
2 |u|

2 denotes the total head of the fluid (called also a total pressure
or a Bernoulli pressure). In what follows we assume that on the boundary Γ the
tangential components of the velocity vector are prescribed and without loss of
generality we put them equal to zero (the nonslip condition):

uT = u− uN n = 0 on Γ× (0, T ). (5)

Furthermore, we suppose the following subdifferential boundary condition

p̃(x, t) ∈ ∂j(x, t, uN (x, t)) on Γ× (0, T ), (6)

where j : Γ× (0, T )×R → R is a given superpotential function which is locally Lip-
schitz in the third variable and ∂j stands for the Clarke subdifferential of j(x, t, ·).

We introduce the operators which are needed in the weak formulation of the
problem (3)-(6). Let us define the operators A : V → V ∗ and B[ · ] : V → V ∗ by

〈Au, v〉 = ν

∫
Ω

rotu · rot v dx, (7)

〈B(u, v), w〉 =
∫

Ω

(rotu× v) · w dx, B[v] = B(v, v) (8)

for u, v, w ∈ V . It is known (cf. [15]) that in the case the domain Ω is simply

connected, the bilinear form ((u, v))V =
∫

Ω

rotu · rot v dx generates a norm in V ,

‖u‖V = ((u, u))1/2
V which is equivalent to the H1(Ω; Rd)-norm. Hence, it is clear

that the operator A is coercive with a constant α > 0.
Assuming sufficient regularity of the functions involved in the problem, multi-

plying (3) by v ∈ V and applying the Green formula, we obtain

〈u′(t) +Au(t) +B[u(t)], v〉+
∫

Γ

p̃ vN dσ(x) = 〈F (t), v〉 a.e. t ∈ (0, T ), (9)

where 〈F (t), v〉 =
∫

Ω

f(t) · v dx. From the relation (6) and the definition of the

Clarke subdifferential we have∫
Γ

p̃(x, t) vN (x) dσ(x) ≤
∫

Γ

j0(x, t, uN (x, t); vN (x)) dσ(x), (10)

where j0(x, t, ξ; η) denotes the generalized directional derivative of j(x, t, ·) at the
point ξ ∈ R in the direction η ∈ R.

From (9) and (10) we deduce the following weak formulation of the problem
which is a hemivariational inequality: find u ∈ W such that

〈u′(t) +Au(t) +B[u(t)], v〉+
∫

Γ

j0(x, t, uN (x, t); vN (x)) dσ(x)

≥ 〈F (t), v〉 for all v ∈ V, a.e. t ∈ (0, T )
u(0) = u0.

(11)

We observe that since W ⊂ C(0, T ;H) continuously the initial condition u(0) makes
sense in H.

We have proved that the hemivariational inequality (11) is derived from (3)-(6).
The following shows that in some sense the converse statement also holds.
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Remark 1. If u ∈ W is a solution to the hemivariational inequality (11) and u
is sufficiently smooth, then there exists a distribution p̃ such that the conditions
(3) and (6) hold. Indeed, since u ∈ W from the definition of V we have div u = 0
in Q and uT = 0 on Γ × (0, T ). Let us now take v = ±w, where w ∈ V ∩
C∞0 (Ω; R d) in (11). Since w is arbitrary and j0(x, t, uN (x, t); 0) = 0, we obtain
〈u′(t) +Au(t) +B[u(t)], w〉 = 〈F (t), w〉 for a.e. t ∈ (0, T ). From Proposition 1.1 in
Chapter I of Temam [21] it follows that u′(t) +Au(t) +B[u(t)] +∇p̃(t) = F (t) for
a.e. t ∈ (0, T ) which implies (3). Next let v ∈ V . Multiplying the last equation by
v and integrating by parts over Ω we get

〈u′(t) +Au(t) +B[u(t)], v〉+
∫

Γ

p̃(x, t) vN (x) dσ(x) = 〈F (t), v〉 a.e. t ∈ (0, T ).

Comparing this equality with (11), we have∫
Γ

(
j0(x, t, uN (x, t); vN (x))− p̃(x, t) vN (x)

)
dσ(x) ≥ 0

for every v ∈ V and a.e. t ∈ (0, T ). Arguing as in Proposition 3.3.1 of Pana-
giotopoulos [18], we deduce j0(x, t, uN (x, t); vN (x)) ≥ p̃(x, t) vN (x) on Γ × (0, T ).
This shows that the subdifferential condition (6) holds.

Remark 2. The condition (6) arises in the problem of motion of a fluid through
a channel or a tube. The fluid pumped into Ω can leave the tube at the boundary
orifices while a device can change the sizes of the latter. In this problem we regulate
the normal velocity of the fluid on the boundary to reduce the total pressure on Γ.
For instance, we consider the boundary condition (6) with

∂j(x, t, s) = h(x, t)×



0 if s < 0
c

a
s if 0 < s < a

[b, c] if s = a
b

aσ
sσ if s > a,

where h ∈ L∞(Γ× (0, T )), a > 0, 0 ≤ b < c and 0 ≤ σ ≤ 1. The condition uN > 0
is interpreted as the outflow of the fluid through the boundary. If uN ∈ (0, a)
the orifices on the boundary allow the fluid to infiltrate outside the tube. When
the velocity increases so does the total pressure, say, linearly from the value 0 to
the value c. If uN reaches the value a, a mechanism opens the orifices wider and
allows the fluid to pass through Γ. Therefore the pressure drops to a value b and
we may assume that p̃ = c1(uN )σ + c2 for uN > a with suitable constants c1 and
c2. Moreover, in (6) we allow j to depend on the variable (x, t) ∈ Γ× (0, T ) which
means that the subdifferential boundary condition can be of different character on
different parts of Γ at different time instances. For other examples, see Example 18
in [15].

4. An existence result. The goal of this section is to give a result on the exis-
tence of weak solutions to the problem (11). We associate with the hemivariational
inequality (11) the following problem{

u′(t) +Au(t) +B[u(t)] + ∂j(x, t, uN (x, t)) 3 f(t) a.e. t ∈ (0, T )
u(0) = u0.

(12)
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Definition 1. A function u ∈ W is said to be a solution to (12) if there exists
ξ ∈ L2(0, T ;L2(Γ)) such that

〈u′(t) +Au(t) +B[u(t)], v〉+ (ξ(t), vN )L2(Γ) = 〈f(t), v〉

for all v ∈ V and a.e. t ∈ (0, T ), ξ(x, t) ∈ ∂j(x, t, uN (x, t)) a.e. on Γ × (0, T ) and
u(0) = u0.

Remark 3. From the definition of the Clarke subdifferential, it follows that every
solution to (12) is also a solution to (11).

In what follows we restrict the analysis to superpotential j which is independent
of (x, t) and which subdifferential is obtained by ”filling in the gaps” procedure.
Let β ∈ L∞loc(R). For every ε > 0 and t ∈ R, we define

β
ε
(t) = ess inf

|s−t|≤ε
β(s), βε(t) = ess sup

|s−t|≤ε

β(s).

For t fixed, β
ε

is an increasing function of ε and βε is decreasing in ε. Let

β(t) = lim
ε→0+

β
ε
(t), β(t) = lim

ε→0+
βε(t)

and let β̂ : R → 2R be a multifunction defined by

β̂(t) = [β(t), β(t)] for all t ∈ R,

i.e. β̂(t) is represented by the interval with the initial and end points given by β(t)
and β(t), respectively. Roughly speaking β̂(t) results from β by filling in the gaps at
points where β is discontinuous. From Chang [3] we know that a locally Lipschitz
function j : R → R can be determinated up to an additive constant by the relation

j(t) =
∫ t

0

β(s) ds for all t ∈ R

such that ∂j(t) ⊂ β̂(t) for all t ∈ R. If moreover, the limits β(t± 0) exist for every
t ∈ R, then ∂j(t) = β̂(t) for t ∈ R.

Remark 4. The above construction can be also repeated for a function β =
β(x, t, r), β : Γ× (0, T )×R → R which is locally essentially bounded in r ∈ R, satis-
fies a measurability hypothesis with respect to (x, t) ∈ Γ× (0, T ), and |β(x, t, r)| ≤
c0(1 + |r|σ) for a.e. (x, t) ∈ Γ× (0, T ), for all t ∈ R with c0 > 0 and 0 ≤ σ ≤ 1, cf.
e.g. Section 1.2.3 of [9] and [12].

We admit the following hypothesis.

H(β) : β ∈ L∞loc(R) is such that the left and right limits β(t± 0) exist for
every t ∈ R and it verifies the growth condition |β(t)| ≤ c0(1 + |t|σ)
for all t ∈ R with c0 > 0 and 0 ≤ σ ≤ 1.

Theorem 1. Let the operators A and B be given by (7) and (8), respectively and
let the function β satisfy H(β), f ∈ V∗ and u0 ∈ H. If H(β) holds with σ = 1, we
suppose additionally that α > 2

√
2c0‖γ‖2. Then the problem (12) admits a solution.

Proof. The existence of solution to (12) will be proved by applying the Galerkin
method to a regularized problem. First we introduce the regularization βn of β. We
choose a mollifier % ∈ C∞0 ((−1, 1)), % ≥ 0 and

∫
R %(s) ds = 1 and define %n : R → R
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by %n(s) = n%(ns) for s ∈ R and n ∈ N. We consider βn : R → R defined by the
convolution

βn(t) =
∫

R
%n(s)β(t− s) ds for t ∈ R.

It is easy to show that βn is continuous for all n ∈ N and it satisfies the same growth
condition as β for all n ∈ N.

Let {ϕ1, ϕ2, . . .} be a basis in V , i.e. {ϕi} forms an at most countable sequence
of elements of V , finitely many ϕ1, . . . , ϕn are linearly independent and V =

⋃
n Vn

with Vn = span{ϕ1, . . . , ϕn}. Since V is separable the existence of such a basis is
guaranted. Moreover, the family {Vn} of finite dimensional subspaces of V satisfies

∀ v ∈ V ∃ {vn}, vn ∈ Vn such that vn → v in V, as n→∞.

Let {u0n} be such that u0n ∈ Vn for n ∈ N and

u0n → u0 in H, as n→∞.

We consider the following regularized Galerkin system of finite dimensional diffe-
rential equations associated with (12):


find un ∈ L2(0, T ;Vn) such that u′n ∈ L2(0, T ;Vn) and
〈u′n(t) +Aun(t) +B[un(t)], vn〉+ (βn(unN (t)), vnN )L2(Γ) = 〈f(t), vn〉

for a.e. t ∈ (0, T ) and all vn ∈ Vn

un(0) = u0n.

(13)

Substitution of un(t) =
∑n

k=1 ckn(t)ϕk gives an initial value problem for a system
of first order ordinary differential equations for ckn(·), k = 1, . . . , n. Its solvability
on some interval [0, tn) follows from the Caratheodory theorem. Then, this solution
can be extended on the closed interval [0, T ] by using the a priori estimates below
(cf. also [11]).

Next, we obtain estimates on the sequence {un} of solutions to (13). Choosing
un(t) as a test function in (13), using the coercivity of A, properties of B (cf. Section
4 of [15]) and the Young inequality, we have

1
2
d

dt
|un(t)|2H + α‖un(t)‖2V + (βn(unN (t)), unN (t))L2(Γ) ≤

α

2
‖un(t)‖2V +

2
α
‖f(t)‖2V ∗

for a.e. t ∈ (0, T ). Integrating over (0, t), we get

1
2
|un(t)|2H − 1

2
|u0n|2H +

α

2

∫ t

0

‖un(s)‖2V ds+
∫ t

0

(βn(unN (s)), unN (s))L2(Γ) ds

≤ 2
α
‖f‖2V∗ for all t ∈ [0, T ].

(14)
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From the estimate |βn(s)| ≤ c0(1 + |s|σ) for s ∈ R and the continuity of the trace
operator, we have

‖βn(unN (t))‖2L2(Γ) =
∫

Γ

|βn(unN (x, t))|2 dΓ(x)

≤ 2c20

∫
Γ

(1 + |unN (x, t)|2σ) dΓ(x)

≤ 2c20

∫
Γ

(1 + |un(x, t)|2σ
Rd) dΓ(x)

≤ 2c20m(Γ) + 2c20m(Γ)1−σ‖un(t)‖2σ
L2(Γ;Rd)

≤ 2c20m(Γ) + 2c20m(Γ)1−σ‖γ‖2σ ‖un(t)‖2σ
V ,

where ‖γ‖ = ‖γ‖L(V,L2(Γ;Rd)). Hence, we have

‖βn(unN )‖2L2(0,t;L2(Γ)) =
∫ t

0

‖βn(unN (s))‖2L2(Γ) ds

≤ 2c20 tm(Γ) + 2c20‖γ‖2σ m(Γ)1−σ t1−σ‖un‖2σ
L2(0,t;V )

for t ∈ [0, T ] and consequently

‖βn(unN )‖L2(0,t;L2(Γ)) ≤ c1 + c2‖un‖σ
L2(0,t;V ) for t ∈ [0, T ] (15)

with c1 = c0
√

2 tm(Γ) and c2 = c0‖γ‖σ
√

2(tm(Γ))1−σ. We also calculate

|
∫ t

0

(βn(unN (s)), unN (s))L2(Γ) ds| ≤
∫ t

0

‖βn(unN (s))‖L2(Γ)‖unN (s)‖L2(Γ) ds

≤ ‖βn(unN )‖L2(0,t;L2(Γ)) ‖unN‖L2(0,t;L2(Γ))

≤
(
c1 + c2‖un‖σ

L2(0,t;V )

)
‖γ‖ ‖un‖L2(0,t;V ).

Inserting the latter to (14), we have

1
2
|un(t)|2H +

α

2
‖un‖2L2(0,t;V ) ds ≤

1
2
|u0n|2H +

2
α
‖f‖2V∗ + c1‖γ‖ ‖un‖L2(0,t;V ) + c2‖γ‖ ‖un‖σ+1

L2(0,t;V )

for all t ∈ [0, T ]. If 0 ≤ σ < 1, then {un} remains in a bounded subset of L2(0, T ;V ).
If σ = 1, then {un} is also bounded in L2(0, T ;V ) provided α > 2

√
2c0‖γ‖2. Fur-

thermore, we deduce that {un} is bounded in L∞(0, T ;H), so passing to a subse-
quence, if necessary, we have

un → u weakly in V and weakly−∗ in L∞(0, T ;H),

where u ∈ V ∩ L∞(0, T ;H).
The basic problem is now to get the weak convergence of the nonlinear term

B[un]. For the case d = 2, we obtain from Temam [21] that

‖B[un]‖V∗ ≤ c4‖un‖L∞(0,T ;H) ‖un‖V with c4 > 0.

Hence, exploiting (13), (15) and the boundedness of A, we obtain that {u′n} is
bounded in V∗. Thus, by passing to a next subsequence, if necessary, it follows

u′n → u′ weakly in W with u ∈ W.
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Using the facts that W ⊂ C(0, T ;H) continuously, W ⊂ H compactly and W ⊂
L2(0, T ;L2(Γ; Rd)) compactly, we have u ∈ C(0, T ;H) and

un → u in H, γun → γu in L2(0, T ;L2(Γ; Rd)).

Since un → u weakly in V and in H, analogously as in Ahmed [1], we have B[un] →
B[u] weakly in V∗. We remark that if d = 3 the convergence of B[un] → B[u]
weakly in V∗ is more difficult to obtain. In this case we proceed as in the proof of
Theorem 1 in Ahmed [1] employing a compactness embedding theorem.

From (15) we may suppose

βn(unN ) → ξ weakly in L2(0, T ;L2(Γ)) with ξ ∈ L2(0, T ;L2(Γ)).

Since the mapping W 3 w 7→ w(0) ∈ H is linear and continuous, we have un(0) →
u(0) weakly in H, which together with u0n → u0 in H entails u(0) = u0.

Let ψ ∈ C∞0 (0, T ) and v ∈ V . Then, there exists {vn}, vn ∈ Vn such that vn → v
in V , as n → ∞. Denoting Ψn(x, t) = ψ(t)vn(x) and Ψ(x, t) = ψ(t)v(x), we have
Ψn → Ψ in W. From (13), it follows∫ T

0

〈u′n(t) +Aun(t) +B[un(t)],Ψn(t)〉 dt+
∫ T

0

(βn(unN (t)),ΨnN (t))L2(Γ) dt

=
∫ T

0

〈f(t),Ψn(t)〉 dt.

Using the above convergences, letting n→∞, we obtain∫ T

0

〈u′(t) +Au(t) +B[u(t)], v〉ψ(t) dt+
∫ T

0

(ξ(t), vN )L2(Γ) ψ(t) dt

=
∫ T

0

〈f(t), v〉ψ(t) dt.

Since ψ is arbitrary, we deduce that

〈u′(t) +Au(t) +B[u(t)], v〉+ (ξ(t), vN )L2(Γ) = 〈f(t), v〉

for a.e. t ∈ (0, T ) and for all v ∈ V .
It remains to prove that ξ(x, t) ∈ β̂(uN (t)) on Γ × (0, T ). We apply the con-

vergence theorem of Aubin and Cellina [2] to the multifunction ∂j. First, we
observe that ∂j : R → 2R is upper semicontinuous. Next, since γun → γu in
L2(0, T ;L2(Γ; Rd)), we obtain unN → uN in L2(0, T ;L2(Γ)) and consequently

unN (x, t) → uN (x, t) a.e. (x, t) ∈ Γ× (0, T ).

By the definition of β̂, we deduce that for a.e. (x, t) ∈ Γ × (0, T ) and for every
neighborhood N of zero in R2, there exists n0 = n0(x, t,N ) ∈ N such that

(unN (x, t), βn(unN (x, t))) ∈ Gr ∂j +N for all n ≥ n0.

From the convergences

unN (x, t) → uN (x, t) for a.e. (x, t) ∈ Γ× (0, T ),

βn(unN ) → ξ weakly in L2(0, T ;L2(Γ)),
we have

ξ(x, t) ∈ conv ∂j(uN (x, t)) = ∂j(uN (x, t)) for a.e. (x, t) ∈ Γ× (0, T ),

which completes the proof.
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