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Abstract

We present a new theorem on space-time singularities. On
the basis of the Einstein (or Brans-Dicke)theory, and without
using any Cauchy surface assumption, we show (essentially from
the property that gravitation is always attractive) that
singularities will occur if there exists either a compact
spacelike hypersurface or a closed trapped surface or a point
whose past light-cone starts converging again, The first
condition’wou%d be satisifed by any spatially closed universe,
the second by a collapsing star and the third by the observable
portion of our actual universe - as we shall show follows from

observations of the microwave background radiation.
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1. Introduction
The most immediately noticable fact about gravitation is that it always

seems to be attractive., Thus, despite its extreme weskness compared to
electromagnetism, it is nevertheless significant for a large body such as a
star since all the gravitational fields of individual particles add up while
the electrdmagnetic fields cancel each other out. Indeed on an even larger
scale, that of the whole Universe, gravitation dominates over sll other forces.
This attractive character and its r2 dependence maeke gravitation rather a
'dangerous' force since it is potentially unstable: if a star is compressed
slightly, the particles move closer together and so the attractice force between
them will increase. Normally, of course, the repulsive pressure forces would
increase by a somewhat greater amount and so restore balance. However,
Chandrasekhar1 has shown that when a star of greater than 1.5 times the solar
mass exhaﬁsts its nuclear fuel and cools, the pressure forces are insufficient
to resist the gravitational attraction. What then would happen to such a star?
Would it collapse to some sort of singularity or would it happen that the
smallest departure from spherical symmetry would cause different parts not to
fall exactly towards the centre and so miss each other,

In the reverse direction in time a similar'question arises in respect of the
whole Universe: Was there a singularity in the past or did the Universe manage
somehow to pass smoothly from a contracting phase to the present expansion? In
this essay we shall present a new and very general theorem which shows that
_singularities would be expected both in the collapse of a star and at the |
beginning of the expansion of the Universe. This theorem combines and extends
two previous theorems of the authorsz’B. It is based on general relativity as this
the most satisfactory t?eory of grevitation so far proposed but similar results
would probably hold in any relativistic theory in which gravitation is attractive.

4 so long

In particular the theorem applies also to the theory of Bransand Dicke
as gravitation remains attractive.‘(If the gravitational constaent were to change:
sign, as is in principle allowed in the Brans-Dicke theory, this could only occur
via a region where it becomes infinite. In such a region, the presence of any

matter would cause infinite curvatpre).
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2. The Theorem

One might define a space-time singularity as a point at which the metric is
degenerate or at which the curvature is infinite. However, such a point ought not
to be regarded as part of space-time since the known laws of physics could not
hold there. We shall therefore adopt the view that space-time consists only of
points at which the metric is Lorentzian and suitably differentiable (say 02).
We then détect singular points which have been "cut out" by the existence of
incomplete geodesics, This approach is discussed further in references 5 and 6.

2,7,8 to use this criterion for a singularity, it was shown

In the first theorem
that there must exist incomplete null geodesics if

1) The energy-momentum tensor obeys the inequality*
b 1 .V.B.
T,V VvV yEV VT

for any timelike vector Ve,

2) There exists a noncompact spacelike hypersurface H which is a Cauchy surface
(i.e. it intersects every inextendible timelike or null cﬁrve once and once only).
3) There exists a closed trapped surface T(i.e. T is & compact spacelike 2-surface
such that both the 'ingoing' and the 'outgoing' families of null geodesics |
orthogonal to T are converging: see Fig.1).

Condition 1) is a vefy reasonable inequality which is satisfied by all known
forms of matter., It is the condition that gravity should always be attractive.
Condition 3) will be satisfied when a starf collapses inside its Schwarzschild
radius. One would expect stars of greater than 1.5 - 15 solar masses to do this
eventually provided that their angular momemtum is sufficiently small., (This
uncertainty in the mass »imit results from uncertainty as to how much material is
ejected during the collapse process.

The theorem will also hold if condition 3) is replaced by 3’ ):

3' ) There isapoint p such that the divergence of the system of null geodesics
throwgh p changes sign someWhere to the part of p (Fig.2).

* In refs. 2,7,8 the effectively weaker assumption R 131?50, for mull vectors 1%, was
all that was used. This has the advantage that the presence of a cosmological
constant does not affect the discussion. However, it is hard to believe that a non-
zeroxcan produce any qualatively noticeable affects in regions of high curvature.
Here we assume A = O. (Note that,\) O implies that gravitation is not 'always
attractive'). '
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- It is shown in the Appehdix that observations of the cosmic background
radiation indicate that there is indeed enough matter on our past light-cone
to cause it converge again, ‘

It this seems reasonable to assume that conditions 1) and 3) or 3/ ) are
satisfied, However the weakness of the theorem lies in condition 2) which
requires there to exist a noncompact Cauchy surface. That it should be non-
compact is not much of & restriction since it was shown in reference 3 that there
will be incomplete geodesics in any 'generic' solution which satisfied condition 1)
and which had a compact Cauchy surface¥. However the requirement that there
should exist any global Cauchy surface at all is e Qery strong one. For being
a‘Cauchy surface is a property not of the surface itself but of the whole space-
time in which it is imbedded. Thefe are plenty of solutions known which do not
have Cauchy surfaces. Thus one might feel that this theorem does not indicate
that we must expect singularities in space-time, but merely that global Cauchy
surfaces do no exist in our Universe. To remo&e this weakness we shall present
a new version of the theorem‘%hich does not require existence of a Cauchy surface
This new theorem alsoy shows that .there will be a singularity if the Universe is
spatially closed, that is, if there exists a compact spacelike surface (not
necessarily a Cauchy surface). | | .

The precise statement of the theorem is : Space=time is not timelike and null
geodesically complete if; '

(a2) condition 1) holds.
(b) Every timelike and null geodecis has'a point on it at which

k3[‘é IHﬂ &d [? k £ ] k° kd is nonzero, where k® is the
tangent vector to the geodesic.
(c) There are no closed timelike curves:
(@) One of the three following conditions holds:
(i) condition 3). '
(ii) condition 3').

(iii).There is a compact spacelike hypersurface H, ¢

*_With condition (b) this implies strong causality11.

>

e



L4 -

Condition (b) would be expected to hold in any 'generic' space-time., (It
fails in certain highly special exact solutions, however, but this is not of
interest physically). In the presence of (a), condition (b) will follow if
every timelike geodesic encounters some curvature and every null geodesic contains
a point at which it fails to be directed aloné a principal null direction of the
Weyl tensor. In a physically reasonable solution, the presence of randomly
oriented gravitational field (e.g. radiation) is to be expected. This would

be sufficient to ensure that (b) holds.

3. Proof

We shall give the proof for cases (ii) and (iii) that for (i) is similar to (ii).

For a set S we let IT (S) and J¥ (S) denote the sets of points which can be
reached from S by future directed timelike and nonspacelike curves respectively.

' We define E (s) to be J1 (8) - IH(S). Points of ET(S) will lie on the boundary
of J?'(S) and will be reached from S by null geodesics. All these definitions have
duals in which future is replaced by past and '+' by '-'., We define ct (8) as the-
set of points pé& J+(S) such that J (p)nJHS) is a non-empty compact set on
which strong causality held. We denote by D+(S)'the set of all points q such that
every inextensible' past directed nonspacelike curve through q intersects S.

We shall assume that space-time is timelike and null geodesically complete and
show that this leads to a contradiction with conditions (a), (b), (c) and (a4).
Consider first case (ii). 3—(p) , the boundary of J (p) will be generated by null
geodesic segments which may have a past end-point but which can have a future end-
point only if they pass through p. Near p, in (p) will be generated by the past;
dirggjed null geodesics through p. As condition (a) holds and the past directed
null geodesics  from p start converging again, there would be & point
conjugate to p on every such geodesic within a finite affine distancé from p.
Points on suqh'a geodesic beyond the conjugdte point could be connected to p by a
‘timelike curve and so would lie in the interior of J (p). Thus E (p) would be

compact.
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Let A denote E (p) in case (ii) and H in case (iii). Then in both cases
A = E (A) will be compact. This implies that J “(A) -~ A, if nonempty, will be
generated by null geodesic segments which have no future end-point . Now
consider C (A) which will contain D_(A)S. Suppose g€ C (A)-D (4) exists.

Then there would be an inextendible future directed curve)‘from cL , not meeting A,
Since J¥ (q) n  J7(A) would be compact and strong causaelity holds Awould have to
intersect J (A)-A at some point r., But there would be an inextendible future
directed with geodesic in :I_(A) through r. This would mean that Jt(q)N J7(4)
was not compact. This shows that C (A) equals D-(A).

Figure 3 shows possible forms for C—(A) in the two cases, However, it should
be emphasized that the diagrams a(re meant for illustration only and that there are
other possibilities,

By an argument similar to one in reference 5, C (A) cannot have compact
closure. For if it had, we could cover C (A) with a finite number of local
causality neighbourhoods Bi. Then if p, € J-(A){\EB1 -C -(A)] there would be a
- future directed nonspacelike curve /\' » from p, to A which intersected C7(4) in

some other neighbourhood B.. Continuing ?h:‘is process would exhaust all the

Bi and so lead to a contradiction. %eréj must be an inextendible past
directed nonspacelike curve A  from the compact set A which remains in Cc (4)
since if every such curve left C (A) it would have compact closure. As E (A)”A
is empty in both cases, it is possible to cho@se )\ to be timelike, The boundary
of J+ (/\) will be generated by null geodesic segments which cannot have past end-
- points. By condition (b), each of these segments will therefore have to have &
future end-point as otherwise there would be points of :I+ (/\) which had timelike
segaration. Every inextendible future directed nonspacelike curve from )\ will
inTérsect A. Thus if F denotes the compact set AN 3+ ()\) then BV (F) - F
will consist of those hpoints of :T+ (/\) through which there are null geodesic
generating segments which intersect A to the past. Since each such segment must
have a future end-point, it follows that the set G = FUE+ (F) is compact,"

Y{e then use similar arguments to those above t;) show that 5+(G) is noncompact
and that there is an inextensible timelike curvemwhich remains in D+(G). There
will be points q €\ end r €pm such r € I+(q). Thus there will be a curve a which
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is inextensible in both future and past directions and which remains in

D (F) UD*I(G). Let a, and b, be sequences of points on a N fF(F) and a AT (F)
respectively such that any compact segment of a contains & finite number of each
sequence, For each.value of i there will be a timelike geodesic segment'x i

of maximum length between ai and biS. Fach X'i will intersect the compact set F.
Thus there will be a q€ F which is a limit of Xi N F and a nonspacelike
direction at q which is a limit of the directions of the Y ;e Let ¥ be the
inextendible geodesic through q with this direction. It will remain in Df(F)UD"'(G)
both in the future and in the past. By condition (b), there will be conjugate
points x and yofy. As the positions of conjugate points on a geodesic are
determined by an integral of the curvature along the geodesic, they can be

chosen as a continuous function of the position of the intersection of the

geodesic with F and of the direction at ¥, Thus if U and V are any neighbourhood
of x and y respectively, thgre will be some yi:which intersects U and V and which
contains conjugaég points xi and y'. But this is impossible9 as Xi is supposed to
be a geodesic segment of maximum length between a; and bi + This establishes the
desired contradiction whichshows that the original assumption that space-time is

- timelike and null geodesically complete must be false,

(




Appendix

We wish|to show that there is sufficient matter on o/gipast light-cone
| . :
" to cause it to start converging again. A sufficient conditionor this to be so is

that there should be a distance R such that along every past directed null

geodesic from us,

bo
2 81G K2 b
. 3 C2 b K dr > 1 (1)
- R
a gzé

In this integral, K = ar is the tangént vector to the null geodesic and T is
an affine parameter  on thenull geodesic normalised so that at is, r = O and KaUa= %
where U® is the past directed uniti timelike vector representing the local standard
of rest, -

In a forthcoming paper1o, it is shown that, with certain assumptions,
oservations of the microwave background radiation indicate that not only do the
past directed null geodesics from us stait converging again but so also do the timelike:
ones, As we are concerned only with the null geodesics, the assumptions we shall
need will be weaker.

The observations show that between the wavelengths of 20 cm and 2mum the
background radiation is isotropic to within 10/0 and has the spectrum of a Black
body at 2.70K. We shall assumeAthat this black body spectrum indicates not that
the radiation was neces;arily created with this form, but that it has been
thermalised by repeated,scatteriﬁg. Thus there much be sufficient matter on each
past directed null geodesic from us to make the optical depth large in that direction.
We shall show that this matter %i 1 be sufficient to cause the inequality I to be

satisfied,
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The smallest ratio of density to opacity at these wavelengths will be
obtained if the matter consists of ionised hydrogen in which case there would be

scattering by free electrons. The optical depth would be

joa_[ P ck® U dr ‘ (11)

o ! y
where (~ is the Thomson scattering cross-section, m is the mass of g hydrogen
atom, f is the density of the ionised gas and % is the local velocity of the
gas. The red-shift 2 of the gas is given by (CK°U* - 1). We assume that this
increases down out past-light cone. As galaxies are observed with red-shifts of
0.46 mostof the scattering must occur at red-shifts greater than this. (In fact
if the quasais really are at cosmological distancés, the scattering must occur ait
red—shifts of‘greater than 2)., With a Hubble constant of 100 km, /% sec./
Megaparsec, & red-shift of 0,46 corresponds to a distance of about 3 X 1027cms.

Teking R to be this distance, the contribution of the gas density to the integral

1. S;FP 2 K 2 r
1.8 R(DC(Ua)d

while the optical depth of gas at red-shifts greater than 0,46 is

in I is

"

. o0
4 FCKaU;'dr
: R




As C K‘éL Ua will be greater than 1.46 for r greater than R, it can be seen

that the inequality I will be sa@isfied at an optical depth of about 1.6, If

the optical depth of the Universe were less than this one would not expect a

black body spectrum as the photons would not suffer sufficient collisions to
thermalise thém. Even if the radiation were to be created with a black body
spectrum, what one would see would be a dilute 'grey' body spectrum which could
agree with the observations between 20 cms. and 2 cms but which would not fit thosg

at 9 mm and 2 mm., Thus we can be fairly certain that condition 5'5 is satisfied
in the observed Universe.
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