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SUMMARY 

In Gresho and Sani (11it. J.  Nlrr?ier.. Mot11otl.v F1lritl.s 1987; 7: 1 1 1 1-1 145; Inco~npr.essibIe Flo119 (in(/ 
the Fi17itc E l~nrer i~  Method, vol. 2. Wiley: New York, 2000) was proposed an important hypothcsis 
regarding the pressure Poisson equation (PPE) for incompressible flow: Stated there but not proven 
was a so-called equivalence theorem (assertion) that statedlasserted that if the Navier-Stokes rnomen- 
tum equation is solved simultaneously with the PPE whose boundary condition (BC) is the Neumann 
condition obtained by applying the normal component of the mornenhim equation on the boundary on 
which the normal component of velocity is specified as a Dirichlet BC, the solution (u,  p) would be 
cxactly the same as if the 'primitive' equations, in which the PPE plus Neumann BC is replaced by 
the usual divergence-free constraint (V  . 11 = 0 ) ,  were solved instead. 

This issi~e is explored in sufficient detail in this paper so as to actually prove the theorem for at least 
some situations. Additionally, like the original/primitive equations that require no BC' for the pressure, 
the new results ~ . s / ~ ~ h l i . s h  t l ~ e  s(r111c tkiri<g when the PPE approach is employed. Copyright 0 2005 John 
Wiley & Sons, Ltd. 
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I .  INTRODUCTION 

O n e  o f  the most  misunderstood aspects o f  inco~npressible  flow has been the boundary 
condition (BC),  i f  any,  for the pressure. While  the pressure in an incompressible flow has 
long been recognized as the Lagrangian constraint variable that enforces the divergence-free 
constraint [ I] ,  i.e. V . u=0,  and  that the pressure Poisson equation (PPE) is a consequencc 
o f  the constraint within the domain,  there has been a great deal of confusion a s  to  the ap- 
propriate BC for  the PPE. In Reference [2], two versions o f  PPE are  considered: one is the 
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so-called consistent pressure Poisson equation (CPPE) where the term vA(V . 1 1 )  is retained, 
and the other is the simplificd pressure Poisson equation (SPPE) where this term is dropped. 
I t  has been almost universally recognized that the BC for SPPE is related to the fact that 
V . M  must vanish on the boundary if the solution and boundary are sufficiently smooth. How- 
ever, the appropriate BC for the CPPE has been elusive and has taken various forms in the 
literature that have mainly been obtained without a detailed analysis. I t  has been described 
as a 'primary difficulty' in Reference [3], an 'open question' in Reference [4] while others 
[2,5,6] have made more definitive statements by resorting to heuristic or semi-rigorous argu- 
ments. The issue is an important one since oftentimes the continuity constraint is replaced by 
the derived PPE to effect either an analytical, or more often, a numerical solution of the tran- 
sient Navier-Stokes equations. For example, this is the case in numerical solutions employing 
a projection or fractional step method. 

A recent article by Rempfer [7] illustrates the confusion in the literature on the pressure BC 
issue. In assessing the PPE with Neu~nann BC he states, '...the resulting set of differential 
equations plus BCs represent an ill-posed problem'. This statement is proven herein to be 
absolutely incorrect. 

The purpose of this paper is to explore this issue in sufficient detail and rigor to actually 
prove the theorem stated herein for at least some situations. In the course of the analysis, 
the difficulties in assigning the proper BC to the pressure field will become apparent and 
also some insight into the generation of seemingly good numerical simulations that utilize an 
improper pressure BC will be obtained. One surprising result of this new analysis is that, like 
the original/primitive equation approach that requires no BC for the pressure, the new results 
show the snlt7e thing when the CPPE approach is employed! 

In order to simplify the analysis, the incompressible Stokes cquations will be considered. 
The same conclusions hold for the Navier-Stokes equations but in general the analysis is 
more restricted and technical. Consider the time dependent, incompressible Stokes equations 
with Cauchy and Dirichlet data in a r/-dimensional domain R with boundary r over the time 
intcrval (0, T): 

Here the cxternal force f ,  the initial velocity field uo and the velocity at the boundary ur are 
given data. Here it is assumed that /?t has the same smoothness required of J' and that 
V .  t1° = O .  

If I I ~  has zero flux on each connected component of the boundary r,, i.e. J,-, n . i l l ,  =0,  
and if it is in H '  2(r ) '1 ,  it can be extended into fir E H ' ( Q ; ~ ) "  with V . u  = O  and by changing u 
into u - Cr, we come to the case of zero Dirichlet BC. So we can assume that t/,- = 0 without 
loss of generality. 
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PRESSURE BOUNDARY CONDITION 675 

The variational problem associated with ( 1 )-(4) is to find 11 E L2(0, T; V )  satisfying ( 3 )  and 
such that 

where A : B stands for CjiAi iBi ,  and 

If j' E L2(0, T :  H-'(0)") and r is smooth, the problem has a unique solution and there is a 
unique pressure p~ L2(R x (0, T))/R (i.e. up to a constant) such that 

and 

arc in (0, T). (Herein wc employ (5).)  Problem (7)-(8) can also be studied directly with the 
same result. 

Remcrrk I 
If , J ' E  L2(IZ x (0, T))" and u0 E I/, and l- is smooth or if CI is a convex polygon or polyhedron, 
then in addition (see References [8,9]) u E L2(0, T; H2(R)") and p E L2(0, T; H 1 ( 0 ) ) / R .  

2. CONSTSTENT PRESSURE POISSON EQUATION FORMULATIONS 

For numerical reasons, we would like to study the problem where the divergence equation is 
replaced by an equation for the pressure, namely we consider the following CPPE formulation 
(cf. Referenccs [2 ,5] ) :  

However, there were no rigorous mathematical analyses for this formulation and it was not 
completely clear how (I 0 )  should be interpreted mathematically and implen~ented numerically. 
The main purpose of this paper is to give a solid mathematical footing to this formulation, 
which in turn will guide its proper discretization. 
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We consider first the following weak formulation: with , f ' ~  L'(I2 x (0, T))" ri~id 11" E I / ,  NII~ I  
if' I- i.v .sn~oo/li or. if' f 2  is LI ( 'OIII-c.~ l)o/}'qoii 0 1 .  /~oI~~/ie(/i.o/i find u E L' (0. T; H,,'(12)") and 
p E l,'(fl x (0, T ) ) / R  satisfying ( I I ) and ( 12) such that 

Tlic~or'cw~ I 
Problcm ( 13)-( 14) is equivalent to problcm (7)-(8).  

Proof 
Note tliat all integrals arc legitimate and so the fosm~~lation lnakcs sense. Let us show first 
that the solution of (7)-(8)  is solution of (13)-(14). Wc only nced to show tliat (14) is 
satisfied. For this we choose \I = V(/), (1) E H,f (12) in  (7).  It bccomes 

The first term vanishes because of ( 2 )  after intcgration by parts. The second term is a!so zcro 
by (2)  becausc I ~ C L I :  GVr/) = r[(V . u)A(b - V . (riAc/)) + V . (VV(/, . u)]. The last two terms 
arc intcgratcd by parts and (14)  is f'c~~nd. 

Let us show now tliat the solution ol'(13)-( 14) is solution of (7)-(8).  To do this, wc use 
(15)  again but integrated by parts in the other direction. Then i t  is found that 

Now by ( 14) and an integration by parts in tlie first tern of ( 16) wc find 

which implies ,I;, (V  . I/)(/ = const. a.e. in (0. T) .  Finally, since i t  is zcro at / = 0. V . u = 0. L 

Rc/i/(~i.li 2 
It is probably possible to prove directly tliat (13)-( 14) has a solution; howcvel-, i t  is si~nplcr 
to show, as we have done. that i t  has a solution because (7)-(8)  has and any solution of one 
is solution of tlie othcr, and that i t  has only one solution becausc if it had more than one, 
then that would contradict the i~niqueness of solution of (7)-(8). 

R~11icii.k 3 
If the term ?,[I is discretizcd by (ri"' ' - u")/(St and thc schemc is made implicit (Euler or 
Crank-Nicolson/t~.npezoid r ~ ~ l c )  the salnc proof works on thc semi-discrctc problcm. 
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PRESSURE BOUNDARY CONDITION 677 

We now present an alternative weak formulation of (9)-(12), which is Inore suitable for 
numerical implementation. Let (.;) be the inner product of L2(12)". We define 

with the inner product 

((11, p ) ;  ( ~ . , q ) ) ~  = (VLI, Vti) + (j7,q) + (-\'A11 + Vj?, -\*Au + Vq) (19) 

I t  is clear that 

is an induced norm in X. We first show that X is coniplete under the above norm, and 
therefore, X is a Hilbert space. Indeed, Let (I/,,, p,,,) be a Cauchy sequence in X. Thus, 
u,,~ + 11 in H:(12)", p,,, + p in L i (R)  and -\,A11,,, + Vp,,, + \v in L2(12)". On the other 
hand, -\~AI/,,, + -\,A11 in H-'(12)" (the dual of H,'(R)") and Vp,,, + Vp in H- ' (0)"  and 
therefore, 

Since the limit is unique, we derive that -19Azl + Vp= C V .  Hence wc have (~i, ,~, p,,,) + (11, p) 
in X. 

Rt'~?io/.k 4 
Note that 

and / /  < C llVj)IIH-l (see Refcrence [lo]). Hence, 

2 I 2  lIl(~1, p)lll := ( 1 1 ~ 1 1 1 1 ~ ~  + ll-~*Azl + VplI(.:) 

is a norm of X equivalent to Il(u, p)lIx 

Thus, an alternative weak formulation for (9)-(12) is 
For , f ~  L2(0  x (0, T))L'  and ZI" E V,  find (11, p )  E L2(0,  T; X )  such that 

d 
I~--(VU, Vo) + (-vAl/ + Vj?, -\SAC + Vq) = ( f ,  -vAr + Vq), V(ti,q) E X d t 
111,,(, = 11° 

Note that by taking 1>=0 in the above formulation, we find 

(-\lAll + of?, Vq) = (./', Vq), vq E ~ ' ( 0 )  

which is a weak form of (10). 

Tlteormz 2 
Problem (7)-(8) is equivalent to problem (21). 

Copyright 0 2005 John Wiley & Sons. Ltd. 



P/.oof' 
I f  u E H,l( f l )"  and z - E  H,I(S!)" is S L I C J ~  that thcrc exists L/ E Li(12) with ( I \ ,  y )  E X ,  thcn 

Now if ( u ,  p)  is a solution of (7)-(S), then if ,/'E L2(S2 x (0, T ) ) ,  then 

i l l  
- E L ~ ( ~ ~ , ( O , T ) ~ ' ,  ( L / , ~ ) E X  
i/ 

almost evcrywhere in ( 0 ,  T). Thcreforc, taking the inner product of 

i l l  
- -  \ ,a~/ + vp - , I .  = o 
i l  

with -\)At. + Vq for ( r : , ~ / )  E X yields 

(The scalar products can be split bccause thc three terms bclong to L2(12) allnost everywhere 
in ( 0 .  T). )  But 

since V , 21 = 0 .  Therefore, ( 2  1 ) is recovered. 
Conversely, if for any L/ E Lo(12) one chooses 1 . t  lf,l(12)" such that 

i.e. (13, y )  E X ,  then 

sincc V . I /  = 0 .  Then 

for V ( r ,  y) E X .  But when ( I . ,  y )  spans X ,  -19Ar. + Vil spans all L2(C2)". Therefore, 

if (1 = YAY 

Copyright C 2005 John Wiley gi Sons, Ltd. Iri!. J .  N~it~rc,r.. iLIc//1. Flliicl.\. 2006; 50:073-682 



PRESSURE BOUNDARY CONDITION 

which leads to (7)  and (8).  

Renitrr.k 5 
One ]nay prove the existence and uniqueness of the solution for problein (21 ) directly. Indeed, 
considering the following time-discretized backward Euler scheme ( n  3 0): 

By taking (c, q )  = ( u n '  ', ) in ( 2 5 ) ,  we have the following energy identity: 

Hence, the existence and uniqueness of (un+',  put') satisfying (32) is a direct consequence 
of the Lax-Milgram Theorem. Thc corresponding result for the time-continuous problem can 
bc established by letting A/ + 0. Wc lcave the details to the intcrestcd rcaders. 

Rcmurk 6 
The scheme (32) provides a stabilized formulation for the generalized Stokes problen~ (with 
i u l i t  replaced by xzi in ( I ) ) ,  i.e. the inf-sup condition is satisfied for any pair of velocity- 
pressure approxiination space such that (32) inakes sense. Thus, (32) is very suitable in 
practice for solving time-dependent Stokcs (or Navier-Stokes) equations or generalized Stokes 
equations. However, i t  cannot be applied to standard stationary Stokes or Navier-Stokes equa- 
tions since i t  will not lead to a divergcnce-free solution. 

3. DISCUSSION 

In the above, we have focused on the consistent pressure Poisson fornlulation, i.e. (10). In 
practice, the following simplified pressure Poisson formulation (SPPE) has also been fre- 
quently used: 

Copyright 0 2005 John Wiley 6r Sons. Ltd. 



It can bc easily shown tliat tlic above formulation is equivalent to ( 1  )-(2). tvitli or without 
the term i l i ' i t .  Note that tlic BC T .  111, = 0  is csscntial but is difllicult to implcmcnt in 
practice (c.g. ct: the 'inllucncc matrix' teclinicluc [5]). 

R(~IIIL/I./~ 7 
This PPE problem helps to cuplain thc so-calletl 'PPE paradox' in Refcrcncc [2. 13. 5001. 

Now the question of the prcssurc BC' for the CPPE can be addressed rigorously. In particular. 
is it  

or (where 11 denotes the outward pointing normal on 1 ' )  

or anotlicr since tlicsc and other alternatives have hccn proposed in References [2,3.5,  1 1 .  121. 
Tlic answer now is clcar that iloiic of tliesc BC is necessaly, contrary to the SPPE for~nulation 
(34)-(38). (Both of the proofs presented above establish that a unique solution exists without 
spccilyiny any pressure DC: in particular. the fo~.ni~~lation (0 )  (12). sliown to be equivalent 
to ( 1  ) - ( 4 ) .  docs not contain any pl-cssurc BC.) 

Rcnlcll,l, 8 
In the lnorc gcncral casc. ~ ~ s i n y  (4).  the tcrni -11. Y(;rll i t )  rnilst be addcd to tlic right-hand 
side of (40) .  

We now focus on ( 3 9 )  and ( 4 0 )  wliicli otlcn appear in the l i tcrat~~rc;  wlictlicr cithcr or both 
are satisfied is simply a mattel- o f  tlic regularity of the solution. Such regularity would require 
thc boundary, tlic initial condition, and thc forcing function to be sutliciently smootli (scc, 
c.g. Rcfcrcnce 11 I ] ) .  While sonic liavc argued tliat the Ncumann-type HC ( 4 0 )  is ~iaturally 
contained in thc basic continuum formulation, and imposing it in  tlic conti~iuum Ihrmulntion 
( 9 ) - ( 1 2 )  may impose a regularity that is not possible and t l i ~ ~ s  favour (39).  i t  is clcar fi-om 
our analysis that both ~ z l i l l  bc satisfied by a smooth enough solution. For cxamplc, tliat (40 )  
is satisfied by a smooth enough solution follows directly from (22)  by integration by parts. 
Ilcncc, cithcr can preserve thc divcrgcncc-free condition if the solution is sniootli enough, and 
in this casc, the one liscd dcl?cnds 011 wliicli is more convenient fat- the solution tcc l in iq~~e 
~~t i l izcd.  T17c o i~ i .~ . id i i~< /  i .~ .s /~/ t  i.s t11c1t (1 ~ / I I~ ( / I IC  ,so/~~tioii  to (9)- (12)  ~.vi.sl,s II .I ' / / I~LI/  iliipo,si~~q 
o11j p~.c>.vsr/~.c~ RC'. This gcncral result was obtained licrcin by using both an ultra weal< forniu- 
lation and a weak for~nulation, but it must rclnain valid for any solution; smoother solutions 
can posscss additional properties such as (39)  01. (40). Another interesting question tliat arises 
is \vhctIier one can employ a different Ncumnnn condition. i.e. a difl'crcnt right-hand side 
in (40)  such as, for example, zero or cvcn an arbitrary Diriclilct condition. These conditions 
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have been proposed/utilized in certain numerical solution techniques in the literature and have 
yielded seemingly good results (see, for c.g. Reference [13]). Our analysis suggests that in 
fact it is possible for a discrete solution to seem reasonable but in general a non-smooth 
pressure field exhibiting a boundary layer would probably develop as the mesh is refined if, 
for example, a pressure BC other than (39) or (40) is used. 

3.2. Fouiz of' the pr~.s.rr~rc) Poi.~.soli ocluutiolr 

In many numerical schemes for the transient Navier-Stokes equations, the governing equations 
employ a PPE as the basis of the algorithm. For example, projection schemes or fractional 
step schemes are such schemcs [2,7, 12, 131. Then the qi~cstion arises as to whether terms 
such as vA(V . 11) containing V . u should be retained since 77 . u = O is included in the 
original continuum formulation, and thus vanishcs. Howcver, in the formulation of nunierical 
algorithms for solving such problems, this question must be carefully addressed. Contrary to 
some numerical schemes, i t  is shown here that i t  is essential to ~.c>tain the term. Unless the 
velocity is pro-jectcd onto the space of divergence-free velocity fields at each time step, the 
solution of the SPPE scheme will not lead to a divergence-free velocity field and thercforc 
will not be a solution of thc incompressible Navier-Stokes equations. This projection is built- 
in to the CPPE form but not the SPPE form of the PPE. Thus, the SPPE fo~mulation without 
the BC V . ul, = O  can lead to solutions which are not divergence fi-ee, i.e. do not represent 
incompressible flows [2]. Finally, it is noteworthy that the continuum formulation (9)-(12) 
can be recast into the following form by setting cj = p - rV . 11: 

11 = uO in R x {0} (43 

This fol-mulation can also be shown to be equivalent to (7)-(8) by slightly modifying the 
proofs presented above. I t  also has the property that the belocity is pro-jected onto the space 
of divergence-frce velocity fields at cach time step and hence this formulation is a form that 
is equivalent to the fortnulation employing the CPPE. Note again that for a smooth enough 
solution, the solution will satisfy (39) and (40). 

4. CONCLUDING REMARKS 

In spite of what has been shown above, we (PMG and RLS) feel somewhat 'obligated' to 
return briefly to the issue of the Neumann BC, (40), for the PPE--especially in  light of the 
fact some do use this BC for the PPE-both at I = 0  (to determine the initial pressure) and 
for I > 0 (to augment their analysis) (see Refcrcnce [I I]). 

We do this by simply verbally summarizing what was presented in detail in  References 
[ 2 , 5 ] ,  viz.: Whenever the discrete PPE is gencratcd f?om a consistent (but low order, using 
C0 approximations with finite elcments or low-order finite differences) discretization of the 

Copyright 8 2005 John Wiley & Sons. Ltd. Iril. J. iV~mior. ,\,lofl~. F111icl.s 2006: 50:673-082 



682 R. L. SANl GT  AL. 

NSE's. ( 1  ) and (2).  with BC (4). which rc~/ l i i r . e .~  (among other things) that the incompressibil- 
ity constraint, (2).  be applied on the boundary-as well of course inside the domain-the re- 
sulting (so-called) CPPE, whcn examined closely at any boundary point, will always converge 
( h  + 0) to (40). Thus, such a consistent approximation will actually enforce, discretcly, hotli 
(39) and (40). 

Finally, we takc this opportunity to correct an error in References [ 2 , 5 ] ,  wherc it is stated 
that setting n . u = n . 111 is eq~~ivalcnt  to setting V . 11 = 0 on T. This is not true and now we 
believe and asscrt that a vcry important aspect of incompressible flow is the requirement that 
V .  z/=0 in 12 + r and for all t 2 0. (Incompressibility is omnipotent!) 

We are grateful to V. Girault for some important contributions. Additional uscful input was provided 
by D. Grifiths, W. Hcnshaw, A. Peterson and A. Hindmarsh. 
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