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The stability of a finite difference discretization of the time-dependent incompres-
sible Navier—Stokes equations in velocity-pressure formulation is studied. In paticu-
lar, we compare the stability for different pressure boundary conditions in a semiim-
plicit time-integration scheme. where only the viscous term is treated implicitly. The
stability is studied in three different ways: by a normal-mode analysis, by numerical
computation of the amplification factors, and by direct numerical simulation of the
governing equations. All three approaches identify the same pressure boundary con-
dition as the best alternative. This condition implicitly enforces the normal derivative
of the divergence to be zero on the boundary by coupling the normal derivative of the
pressure to the normal component of the curl of the vorticity. Using this boundary
condition, we demonstrate that the time-step is determined only by the convective
term. (© 2001 Academic Press

Key Wordsincompressible Navier—Stokes; velocity-pressure formulation; normal-
mode analysis; chimera grids.

1. INTRODUCTION

We consider the stability of a finite difference discretization of the time-dependent i
compressible Navier—Stokes equations in velocity-pressure formulation. In particular,
are interested in a semi-implicit time-integration scheme, where the convective termis h
dled explicitly and the viscous term is treated implicitly. Similar to a projection metho
[1], the velocity-pressure formulation makes it possible to split the computation of t
pressure from the computation of the velocity. But in order to do so, a boundary conditi
for the pressure must be specified (unless a staggered grid is used [8]). The accura
various alternatives has been studied extensively in the literature [3], but numerical com
tations indicate that the stability is also affected by the specific choice of pressure bounc
condition, in particular for a semi-implicit method. In this paper, we perform a detaile

40

0021-9991/01 $35.00
Copyright(© 2001 by Academic Press
All rights of reproduction in any form reserved.



STABILITY OF PRESSURE BOUNDARY CONDITIONS 41

TABLE |
The Three Pressure Boundary Conditions

p

div—grad — =wn-Vau+n-f
9 on =" +
V.u=0
d
curl—curl a—E:—vn-Vxqu+n~f
coupled V.u=0

study of the stability properties of three different pressure boundary conditions for no-¢
walls.

For a two-dimensional domaifx, y) € 2, the velocity-pressure formulation of the in-
compressible Navier—Stokes equations is

U+ U -VYu+Vp—ovviu=f, t=>0,
VZ2p+Vu-Uug+Vo-uy=V-f, t>0, 1)
u(x, y, 0) = uo(X, y).

Here,u = (u, v)" is the velocity, p is the kinematic pressure (pressure divided by the
constant density), is the constant kinematic viscosity, ahe= (fW, )T is the force
per unit mass. We will focus our effort on no-slip boundaries,

ux,y,t)y=0, (x,y)ea2, t=>0, 2)

and study the pressure boundary conditions stated in Table I, which we derive below.
A boundary condition for the pressure can be obtained by taking the scalar proc
between the momentum equations and the unit normal of the boumdaryn®, n@)T,
On a no-slip boundary, the condition becomes
p 2
%_un~Vu+n-f, X,y) €9, t=>0. 3)
As Strikwerda [11] and Henshaw [5] point out, the pressure boundary condition (3) does
add any new information to the system since the momentum equations already are sati
on the boundary. Thus, using (3) by itself would make the problem underdetermined.
To derive an appropriate boundary condition for the pressure, we consider the ince
pressible Navier—Stokes equations in velocity-divergence formulation:

U+ U-VYu+Vp—vviu=f, t>0,

V.u=0, t>0, (4)
ucx,y, 0) = up(x, y).
It is straightforward to derive (1) from (4), but it is less well known under which circum
stances (4) can be derived from (1), i.e., what conditions make the two systems equiva
For this purpose, we derive an equation for the divergeheeV - u, by taking the diver-

gence of the momentum equations in (1) and enforcing the pressure equation. This re
in a homogeneous convection—diffusion equationsfor

8 +USx +v8y — vV =0, (X,y)eQ, t>0.
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Since (4) require¥ -u = 0 for t > 0, the initial velocity field must also be divergence
free:V - up = 0. Hence, the divergence can only depart from zero if it becomes nonzero
the boundary Q2. Therefore, one alternative for making the velocity-pressure and velocit
divergence formulations equivalent is to enforce

V.-u=0, (X,y) onaQ, t=>0. (5)

In the spatially discretized problem, boundary condition (5) is used to eliminate the gh
point value of the velocity from the right-hand side of the Neumann condition (3). Tt
boundary condition (3), (5) will be referred to as the div—grad condition.

While the div—grad condition works fine in an explicit scheme (see Henshaw [5]), it do
not perform as well in our proposed semi-implicit method. Here, we have observed that
time-step needs to be much smaller than what a von Neumann analysis indicates in ¢
for the scheme to be stable.

As an alternative to the Dirichlet condition (5), we can make the velocity-divergen:
and velocity-pressure formulations equivalent by prescribing the normal derivative of 1
divergence to be zero on the boundary:

a6
%:n-vszo, (X,y) onaQ, t=>0. (6)

By using the identity
Au=V(V-u)—VxVxu,
the termn - Au in the pressure boundary condition (3) can be written
Nn-AU=n-Vs—n-(V xV x U).

Hence, we can build the conditi@s/an = 0 into the pressure boundary condition (3) by
enforcing

8lo=—vn~(V><V><u)—|—n~f, (X,y) e o2, t>0. (7

an

We will call this the curl—curl condition. This boundary condition has been used befor
see for example Karniadaket al.[7], who studied the accuracy of split velocity-pressure
methods in the context of spectral element discretizations. However, no analysis of
stability was supplied.

A third, more expensive, alternative is to solve the pressure equation together with
momentum equations. Then, no explicit boundary condition for the pressure is needed a
suffices to enforce (5), i.e., the divergence of the velocity to be zero on the boundary. We
this the coupled condition. We remark that this approach defies the basic motivation for u
the velocity-pressure formulation since it requires the pressure and momentum equat
to be solved simultaneously. If one is willing to do that, one could instead consider solvi
the Navier—Stokes equations in velocity-divergence formulation; see Strikwerda [12]
example.

To analyze the stability of the three aforementioned boundary conditions, we consi
Stokes equations in velocity-pressure formulation. Even though this problem lacks
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nonlinear convective term in Navier—Stokes equations, it retains the difficulty of maki
the velocity-pressure and the velocity-divergence formulations equivalent, i.e., enforc
the divergence of the velocity to be zero on the boundary.

The remainder of the paper is organized as follows. In Section 2, we perform a norn
mode analysis to study the stability of the semidiscrete Stokes equations for a half-pl
problem where time is left continuous. Here all three boundary conditions are showr
satisfy the eigenvalue condition, which is necessary for stability. In Section 3, we extend
normal-mode analysis to the fully discrete case, where the backwards Euler method is |
to discretize time. Even though this method is only first-order accurate in time, it clea
demonstrates the stability properties of the various boundary conditions. We show that
div—grad condition yields an unstable scheme for time-steps Ch?, whereh is the grid
size andC is a constant. The other two boundary conditions satisfy the necessary Godun
Ryabenkii condition [4] for allAt > 0. We proceed in Section 4 by numerically computing
the amplification factors for a periodic channel domain. First, we consider Stokes equatit
where the theoretical results for the backwards Euler method are confirmed. We cont
by studying the linearized Navier—Stokes equations, where the viscous term is han
implicitly and the convective term explicitly. Again, the div—grad condition is shown ti
have inferior stability properties compared with the other two boundary conditions. Final
in Section 5, we apply the theory to compute unsteady flow around circular cylinders."
perform the calculations on an overlapping grid with a second-order accurate semi-imp
time-integration scheme. Both the div—grad and the curl—curl conditions are tested as we
a simple homogeneous Neumann condition for the pressure. We conclude that the stal
of the div—grad condition is inferior, and that the accuracy of the simple homogenec
Neumann condition is poor, compared to the curl—curl condition (7).

2. THE SEMIDISCRETE CASE

As a model for the incompressible Navier—Stokes equations, we consider Stokes e
tions. In this section we leave time continuous, but discretize by second-order accu
centered divided differences in space. We will study the semiinfinite domairD for
2r-periodic functions inx. A uniform Cartesian grid is employed with the step size
Ax = Ay =h = 2r/N. The grid points are given by; =(j —Dh, j =1,2,..., N;

Yk = (k—1h,k=0,1,2,.... We denote a grid function by, x = f(x;, yk) and define
the one-sided and centered divided difference operators by

D},l_ fj,k = fl’k+1Any'k, DX fj,k = D_{ fj,k—l’ Dg = %(D}(_ + DX),
and corresponding expressions for the divided difference operatorsxadinection.

At y = 0, we impose the no-slip boundary conditiarix, O, t) = 0. For the pressure,
we will examine the three aforementioned boundary conditions. After discretization, t
coupled condition becomes

DJv=0, y=0. (8)
The div—grad condition is given by

{Dgp = DIDv,

=0,
Dyv =0, Y
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which can be written

Dip= %Div, y=0.
Finally, the curl—curl condition is
D{p=—-DDu, y=0.
For convenience, we write all pressure boundary conditions in the form
A9DIp=B%u, y=0, 9)

for g = 1,2, or 3. The coupled condition ha&® = 0 and Bu = DJv; the div—grad
condition corresponds t&® = 1 andB®u = 2DYv. Finally, the curl—curl condition has
A® =1 andB®u = DXDJu.
With this notation, the discretized Stokes equations are (omitting the grid point index
U+ D§p = DX D*u+ DD u+ f@,
v+ D§p = DXD*v+ DIDYv+ ¥,
DXDXp+DYDYp=D§f" +DJf® := P,
u(x,0,t) = 0, (10)
A9DJIp(x,0,t) = BPu(x,0,t), q=1,2,0r3
uex,y,0) =0,
p(x,y,0) =0.

Note that the assumption of homogeneous initial data is not a restriction but is motivatec
the use of the Laplace transform method to analyze the stability. A problem with inhomo
neous initial datai(x, y, 0) = uUp(X, y) can be transformed to a problem with homogeneou:
initial data by the change of variablésx, y, t) = u(x, y, t) — qt)uo(X, y), whereq(t) is
a smooth function witty(0) = 1.

We denote the discrete Fourier transform of a grid funcfigx;, yy) that is 2r-periodic
in the x-direction by

1 N-1 . .
f(Xj, V) = o Z f(w, k) expliwx;).
w=0

To analyze the stability, we Fourier-transform the solution indtarection and Laplace-
transform in time. The dual variableswfx, y, t) andp(x, y, t) are denoted by(w, Y, S)
and p(w, Y, S), respectively. The transformed counterpart of (10) is

. . )

si + 'Hsin(wh)f) = — 5 sif(h/2)0+ DYDY + £,
4 R

sd+ DIp = —t3 sirf(wh/2)d + DYDY% + f®,

4 . e
—ﬁsmz(wh/Z)p—i- DIDYp= P,
U(w,0,s) =0,
ADD!p(w,0,5) = B9G(w,0,5), q=1,2,0r3.
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Here B@ is the Fourier-transformed counterpart®f . We consider the wave numbers
w=0,1,..., N — 1, which correspond to a complete set of eigenfuncti@f$ on the
grid.

It is shown in Gustafssoet al. [4] that the stability properties of (10) are closely related
to the eigenvalue problem

i 4
S0+ 'ﬁ Sin(wh)p = — si?(wh/2)0 + DY DY,
. A . )

sb+ D§p = ~tz sirf(wh/2)? + DY DY?,

4
—r3 sirf(wh/2)p+ DYDY p =0, (11)
U(w,0,s) =0,
A9DYp(w,0,5) = B9((w,0,5), q=1,20r3.

We calls an eigenvalue if there is a nontrivial solution of (11) with boundgehorm.

Several stability definitions for difference approximations are possible and we refer
[4] for a discussion. Clearly, the solution cannot be stable if there is an eigenvalue w
N(s) > 0, since it would correspond to an exponential growth in time of the original var
ables. Norm estimates in terms of the original variables can often be obtained if there ar
eigenvaluesifii(s) > 0forthe Fourier—Laplace transformed problem (see [4]), but we pos
pone this analysis to a subsequent paper. Here, we will only check if there are eigenvalu
NR(s) > 0.

The pressure equation in (11) is solvedfiyy) = Pe*Y, wherea > 0 satisfies

. ah . [ wh
S|nh<2)_ sm(z). (12)
Insertingp into (11) yields
R 4  S(wh\\ . i _ w
DIDYG— <s+ 2 S|n2<2)> 0= sin(wh)Pe™®Y, (13)
4 oh 1
ypYs _ I e T Nt —ay
DYDY (s+ = sm2< > )) ) - sinh(awh)Pe™Y. (14)

The homogeneous part of these equations is the same and is solug@/by= e #Y, where
B is the solution of

%sinkﬁ(%‘) =s+ % sin2<w—2h>, N(B) > 0. (15)

The particular solution has the forip (y) = Ae™*Y. Inserting this expression into (13) and
identifying the coefficients yields

B L sin(wh) P ——i—sin( P
~ Asintah/2) — (s+ &sif@h/2)  hs
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Enforcing the boundary conditiagi(w, 0, s) = 0 gives the solution to (11):

i P sin(wh)

0 — —ay _ o BY

ay) = hs (e e ™), (16)

f,(y) — PLh(ah)(e—ay _ e—ﬁyL (17)
hs

P(y) = Pe®. (18)

The remaining coefficier® must be determined by the last equation in (11) and we procee
by analyzing the various cases.

2.1. The Coupled Condition

The boundary conditioD}?(w, 0, s) = 0 gives

(19)

pSinhah) /sinhgh)  sinhah) _
hs < h  h >_.

Forw = 0, which corresponds @ = 0, there is a nontrivial solutioP. This corresponds
to the undetermined constant in the pressure which can be fixed by enforcing the mes
the pressure to be zero. We proceed by studying 0 and introduce

1. .
q(s) = g(smh(ﬂ(S)h) — sinh(ah)). (20)

An example of the functioq(s) is shown in Fig. 1. We have

LEMMA 2.1. The function gs) satisfies @s) # 0 for 9i(s) > 0.

0 1 2 3 4 5 6 7 8 9 10

FIG. 1. The functionq(s) for real-valueds for the casen = 15, w = 1.
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Proof. From the definition of3(s),

. BN h2s ., wh
smh( 5 )_ T—i—smz(?).

Hence, the double angle formula yields

sinh(gh) = 2sinh(Bh/2)1/1 + sint?(Bh/2)

= 2\/h2s/4 + sir(wh/2)\/1+ h?s/4 + si(why2). 21)

Further,a = B(0), soq(s) can only be zero if
sinh(8(s)h) = sinh(«h).

Inserting the double angle formulas gives

h’s . h’s . _ .
<4 + SInz(wh/2)> (1 +5 S|r12(a)h/2)) = sirf(wh/2)(1 + sirf(wh/2)),

which has one root a = 0 and one a$ = —4(1 + 2 sirf(wh/2))/ h?. However, at = 0,
the denominator ofj(s) is also zero. By using I'Hospital’s rule, we get

_ dg coshah)h?

| =h 0Oh) — =

mae cosHBOM ds|so  4sinh@h/2)\/1+ sintf(ah/2)
_ coshahh? h2

~ 2sinheh) ~ 2tanhah)’ (22)

Henceq(s) > 0 for all (s) > 0. This proves the lemma.

We conclude that the system (11) with the boundary condibfi(w, 0, s) = 0 does
not have any eigenvalues#xs) > 0.

In subsequent sections, we will need the following lemma.

LEMMA 2.2. The function @s) satisfiesy(q(s)) = 0if and only ifJ(s) = 0.

Proof. If the imaginary part ofg(s) is zero,q(s) must be real-valued; so there is a
real-valued constar@@ such that

q(s) = é (sinhl(B(s)h) — sinh(xh)) = C.
Hence,
(sinh(h) + Cs)? = sinP(B(s)h).

After inserting the expressions farand8(s), we get

42
C?s? + 4Cssin(wh/2)1/1 + sirf(wh/2) = hTS + h?s(1 + 2 sirf(wh/2)).

One root iss = 0, and sinceC is real-valued, the other root is also real-valued. Hence, a
solutions ofJ(q(s)) = 0 have3(s) = 0. This proves the lemma.
We also have
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LEMMA 2.3. The imaginary part of ¢s) is negative forJ(s) >0 and positive for
J(s) < 0.

Proof. Forimaginarys, s = i€, we have

qie) =—%(\/&+6b+62 —ﬁ),

where

a = sirf(oh/2)(1 + sirf(wh/2)),
5
b= hj'(l + 2sirf(wh/2)),

h4

C=——.
16

For 0 < € « 1, an expansion yields

_ ib .
qlie) = —ﬁ - 4;;5(4ac— b?) + O(e?).
Sinceb is purely imaginary, the first term is real, and after some algebra,
h4
dac—b?= —
ac 16

SO
4

6da/a

Since3(q(s)) # 0 for I(s) # 0 andq(s) is continuous, we havag(q(s)) < 0 for J(s) > 0.
Further,q(S) = q(s), soJ(q(s)) > 0 for J(s) < 0. This proves the lemma.

J(qie)) = — +0@E?) <0, 0<e<x 1l

2.2. The Div—Grad Condition

The boundary conditio®§ p(w, 0, s) = 2DY9(w, 0, S) gives

_Psinh(ozh) _ 2P sinh(ah)

—ah —ph
h s €T

which can be written

sinh(eh) 2(e~*h — = Fh)

P 1 =0.
h ( T s

We remark that it is not necessary to analyze this case &)§¢e= %D}’rﬁ is equivalent to

the coupled conditio®g? = 0. To see this, we note that theequation in (11) reduces to

D§p = DY D?d ony = 0. HenceD} DY % = 2D 4, which givesD§? = 0.
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2.3. The Curl-Curl Condition

The boundary conditio® p(w, 0, s) = —1 sin(wh) DJli(w, 0, s) leads to

(23)

b sinhah)  sirf(wh) /sinh(Bh)  sinhah) _0
(h _h25<h a h)>_'

Similar to the two previous boundary conditions, this also allows for nontrivial solutions f
o = Othat are due to the undetermined constant in the pressure. We proceed by consid
o > 0. Here we study

a(s) = h? sinhah) — sir?(wh)q(s). (24)

By Lemma 2.2 it follows tha% (g (s)) = 0 if and only if3(s) = 0. Hence, we only need
to consider real-valuesland we proceed by studyirg(s) for s = &, J(§) = 0. We note
that by (22),

2

h
l = h?sinh(ah) — sirf(wh) ~——————.
EII_’IjOCIz(S) sinh(ah) — sinf(w )2tanr(ah)
In order to show thad,(£) > 0 for & > 0 we need the following lemmas.
LEMMA 2.4, The function ¢g(&) satisfies g(0) > 0.

Proof. We have

(sinr?(ah) B sir?(wh) coshah) > .

2

The appropriate double angle formulas and (12) give

coshah) = 1+ 2sinif (a—2h> ,

sintf(ah) = 4sinr?<%) (1-|— sinhz(a—zh»,
. . ah ) ah
sirf(wh) = 4S|nr?<7) (1 — smhz(?)).

_ 2h?sintf(ah/2) . ah
02(0) = W |:2<1+ Sll’lhz(?)>

(o () ()

. 2h? sintf(ah/2) . ah . ah
= i@l {1+ S|nl"?<2> +23|nﬁ‘<2)].

Hence,

Since all the terms on the last line are positigg0) > 0, which proves the lemma.
An example of the functiony (&) is shown in Fig. 2. We havg,(§) = — sirf(wh)q'(§),
s0q,(§) is positive ifg’(§) is negative. We proceed by showing
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0.054

0.062 -

0.05

0.048|

0.046

0.044

o+ i i
o
FIG. 2. The functionq,(¢) for real-valued: for the casen = 15,w = 1.

LEMMA 2.5. The function g¢) satisfies ¢&) < Ofor& > 0.
Proof. From (21),

qé) = —g sin(wh/2)4/1 + sir(wh/2)

h4 h? _ 1 . .
+2 T E(l + 2sirf(wh/2)) + = Sirf(wh/2) (1 + sirf(wh/2)).

Let us write the derivative af as

—11(8) + 12(8)

qe) = NGE)

where

2
11(€) = %(1 + 2sirf(wh/2)) + 5—23 sirf(wh/2)(1 + sirf(wh/2)),

12(€) = ?22 sin(wh/2)1/1 + sirf(wh/2)N (&),

h4 h2
NE) = 1—6+E

After some algebra,

(14 2sirf(wh/2)) + 5—12 Sirf(wg/2) (1 + sirf(wh/2)).

4

h
12(8) — 12(6) = =3

Hence) 2(&) > 12(£). Sincel1(§) > 0andl(£) > Oforé > 0, thisimpliesi1(§) > 15(¢).
FurthermoreN (&) > 0, soq'(§) = (—11(&) + 12(8))/N (&) < 0 for &£ > 0. By making a
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Taylor expansion o' (&) aroundé = 0, one can see that(0) is bounded and satisfies
g’(0) < 0. This proves the lemma.

We have proven thai;(0) > 0 and thaig;(¢) > 0 for & > 0. Hencegy(€) > O for & >
0, and by using Lemma 2.2 we conclude that there are no nontrivial solutions of (:
with 9i(s) > 0. Therefore, the system (11) with the boundary condi@p(w, 0, s) =
—‘ﬁ sin(wh) ngw, 0, s) does not have any eigenvaluesyirs) > 0.

3. THE FULLY DISCRETE CASE

We consider a backwards Euler discretization of the Stokes problem studied in the |
vious section:

u”+1 —_u"
— t D8 p"t! = DXD*u™! + DIDYu™!t + £,
Un+1 — "
At + Dger—l — Dj'(_ DiUrH-l + D_)(_ DXUrH—l + f(y)’
DXDX p"! 4+ DYDY p"tt = fP, (25)
u(x,0) =0,
uo(x,y) =0,
p°(x, y) = 0.

Here, superscript corresponds to time-levé] = nAt. As before, we need an additional
boundary condition for the pressure and the three previously considered alternatives bec

1. The coupled conditiorDdv" = 0.

2. The div—grad conditionDd p"** = 2DYv". Note the lagging of the velocity that is
necessary in order to calculapd+! before the velocities are computed.

3. The curl—curl conditionDJ p"** = —D¥DJu". Again note the lagged velocity.

To analyze the stability we make the ansatz

u" Uo
v =" v |, (26)
p" Po

and Fourier-transform the solution in tikedirection. After setting the forcing to zero, we
get the eigenvalue problem

k=1, i . 4 N VYA
— 0t sin(wh)p = —rz sirf(wh/2)G + DY DYQ,
£ 1a +Dp= _4 sirf(wh/2)d + DY DY%
K At 0 h2 e
4 R R
— sirf(wh/2)p+ DYDY p =0, (27)
U(w,0,x) =0,

A9« DY p(w,0,k) = B9G(w,0,), q=1,2, or3
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We call « an eigenvalue if there is a nontrivial solution of (27) with boundeenorm.
The Gudonov-Ryabenkii condition states that the solution of (25) is unstable if there
an eigenvaluer of (27) with |«| > 1. Similar to the semidiscrete case, the absence ¢
eigenvalues withw | > 1 is only a necessary condition for stability. However, we postpon
the analysis of sufficient conditions to a future paper. Here, we will only check if there &
eigenvalues of (27) withe¢| > 1.

By settings = (x — 1)/(x At), we get the semidiscrete problem analyzed in the previou
section. The solution of the first four equations in (27) is therefore

. i P sin(wh) At

_ —ay _ o BY

aty) = h o _1C e), (28)

@(y) — W KAt (e—ay _ e—ﬂy)’ (29)
h Kk —1

p(y) = Pe™. (30)

As in the semidiscrete case, the remaining coeffidentust be determined by the pressure
boundary condition, which in this case is the last equation in (27).

Sincex = 1/(1 — sAt), |«| > 1 corresponds to the interior of a unit circle in the complex
sAt plane, centered atAt = 1. The time-step\t > 0 can be arbitrarily small, so to make
sure that there are no eigenvalueg«in> 1 for any At > 0 it is necessary to consider
9(s) > 0ands = 0. Inthe following we will alternate betweerands as we find convenient.

3.1. The Coupled Condition

Since there is no lagging of time in the boundary conditi¥b(0) = 0, we get the
same problem as in the semidiscrete case for the coupled condition. Hence, there ar
eigenvalues of (27) with¢| > 1 for At > 0.

3.2. The Div—Grad Condition

The lagged velocity in the boundary conditidd} p™** = %Di’rv” transforms to
kD3 P(0) = 2DY5(0). Hence,

:0’

sinh(ah) 2(e~*h — e Fh)
P h (K + s

which is equivalent to

i —ah _ o—ph
PSIHh(ah)( 1 2(e e )) _o.

h 1— sAt h2s
There are nontrivial solutions if

h? 2(e " —e M
+
— sAt s

as(s) = 1

becomes zero. After some numerical experiments, we found zemspfwith R(s) > O.
For example, the case= 15, w = 1 is shown in Fig. 3. This example demonstrates tha
the boundary condition makes the scheme unstable for cextain
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3 i i ; ; i i i i ;

0 0.2 0.4 0.6 08 1 1.2 14 1.6 18 2

FIG.3. Thefunctiongs(s) for real-valued for the case = 15,0 = 1, andAt = 2. Note thatyz is unbounded
ats = 0.5 and that it has a zero for®< s < 1. This means thak| > 1, so this zero leads to an instability.

We proceed by studyings(s) for real-valueds and sets = &, J(§) = 0 and study
the real-valuedyz(¢) for £ > 0. To analyze this case, we use the identity sthih) =
log(n + +/n2 + 1) to evaluatee #" ande—<":

h? 2 1
+_

1-&At & (sin(wh/Z) ++1+ sinz(a)h/Z))z

1
(\/th/4 1 sirP(wh/2) + \/h2 /4 + sif(wh/2) + 1)2

0z(§) =

For 0< & < 1/At, g3(&) is clearly positive. Att = 1/At, g3 has a pole and becomes
negative for YAt < & < 1/At + ¢, 0 < € « 1. On the other hand, for large

h? 2

1
BE) ~ = | —— + 5 |,
(sin(a)h /2)+ 1+ sinZ(wh/z))

X
Henceqs is positive for larges if
h? 2
At 2’
(sin(wh /2)+ 1+ sinz(a)h/Z))

which is equivalent to

h2 2 h2
at> = <sin(wh/2) +/1+ sinz(wh/2)> z = (31)

& — oo.
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TABLE Il
The Largest Stable Time StepAt, for Different Grid Sizes

N h At, At,/h?
10 0.62832 - -
20 0.31416 0.355 3.60
40 0.15708 0.053 215
80 0.07854 0.011 178
160 0.03927 0.0025 1.62
320 0.01963 0.00060 1.56

If At > At,, thengz(¢) = 0 for 0 < & < 2/At for at least onev,
which makes the method unstable.

Since there are no poles oy for & > 1/At, and gz changes sign when the time-step
satisfies (31), there must be at least one zemy(d) for & > 1/At. We summarize these
observations in

LEMMA 3.6. Thereis at least one zero of(@) in R(s) > 0if the time-step satisfig81).
Note that there are no real-valued zerogoif At < h?/2. As At is increased to satisfy

2

2
h? (sin(h/Z) +1/1+ sinz(h/2)> < At < % (sin(2h/2) +4/1+ sin2(2h/2)> ,

the zero occurs only fo = 1. Hence, this instability occurs first for the lowest Fourier
mode. Naturally, aat is increased further, the zero will eventually appear fowall

For real-valued, the unstable regiojg | > 1 correspondsto & & < 2/At. Hence, only
if the zero ofgs occurs foré < 2/At does it make the difference method unstable. Sinc
it is hard to solvey;(§) = O analytically, we did a numerical investigation for various grid
sizes. The result is presented in Table Il. We note that for fine grids, the time-step restric
in (31) is approximately three times too strict, i.e., the time-step can be three times lar
before the method becomes unstable. However, the time-step restriction is similar to
in an explicit scheme, so the lagging of time in the boundary condBipp™** = ZDYv"
ruins the stability of the scheme.

3.3. The Curl-Curl Condition

The lagged velocity inthe boundary conditibg p™** = —Dg Dy u" leads toc Dg p(0) =
—'ﬁ sin(wh) Dga(O). Therefore, the equation fé&t becomes

b (K sinhah) sirf(wh) (sinh(ﬂh) . sint‘(ah))) _0

h h2s h h

which is equivalent to

. ( sinh@h)  sir?(wh) (sinh(ﬂh) B Sinh(ah)» _o (32)

h(l—sAt)  h2s h h

As before, there are nontrivial solutions fer= 0 that correspond to the undetermined
constant in the pressure. This mode is removed by enforcing the mean of the pressure
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zero. Forw > 0 we consider

h2 sinh(ah)

T sat sirf(wh)q(s).

a(s) =

We have

h?At sinh(eeh)

T_satp sin(wh)3(q(s)).

3(Ga(s)) = 3(9)
For3(s) > 0, the firstterm is positive, and by Lemma 2.3, so is the second term. Convers
for J(s) < 0, both terms are negative. We have proven
LEMMA 3.7. The function g(s) satisfiesy(gs4(s)) = Oif and only ifJ(s) = 0.

We proceed by studying,(s) for real-valueds = &, J(&) = 0. We begin with the case
0 < & < 1/At. From (24) and the properties of the functign we get

QW) > Q&) >0, 0<& < %

The second case &> 1/At. Now both terms iy, are negative, so

1
Q) <0, &> A

At & = 1/At, g4 becomes unbounded, so we concludedhét) # 0foré > 0. We present
an example ofjy(¢) in Fig. 4. To summarize, there are no nontrivial solutions of (32
for %i(s) > 0. Hence, there are no eigenvalues of (27) with> 1 for At > 0 when the
boundary conditiorDd« p(w, 0, k) = — - sin(wh) D§l(w, 0, k) is used.

FIG. 4. The functiong, (&) for real-valued: for the casen = 15,0 = 1, andAt = 1. Note that there is a pole
até = 1, whereg, becomes unbounded.
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4. NUMERICAL COMPUTATION OF AMPLIFICATION FACTORS

In this section we numerically compute the amplification factors for Stokes equatio
discretized by backward Euler in time, and for a semi-implicit discretization of the linearize
Navier-Stokes equations where the viscous termis treated implicitly and the convective t
is handled explicitly.

We consider a rectangular domainn 0 < x < 2w, 0 <y < 1, where the solution is
2r-periodic in thex-direction, with no-slip boundary conditions gt=0 andy = 1.
The computational grid is given by, = (j — DAX, Ax=2r/N, 1< j < N, andy, =
(k—1DAy,Ay=1/(M —-1),0<k <M+ 1. Theextragridlinek =0andk =M + 1
outside the no-slip boundaries are used to help discretize the boundary conditions. Sinc
boundary conditions are the same for both Stokes and the linearized Navier—Stokes e
tions, we begin by discussing them. Here, the boundary conditions will be used for solv
an eigenvalue problem corresponding to (27), so they will be expressed in the transfort
variables((, p).

We apply the momentum equations at all interior points R < M — 1 and the no-
slip boundary conditions d& = 1 andk = M. The pressure equation will be applied at
all interior points and on the boundaries<lk < M. Hence, to get the same number of
equations as unknowns, we will need three additional equations at each boundary. We
use the following conditions at the= 0 boundary. Corresponding relations are impose
at they = 1 boundary.

1. The coupled condition. Together with the zero divergence condition, enforae the
momentum equation and extrapolate

(DY)*0j0 =0,
Dgf)ji =0, (33)

y A A
Dok pj1 = DY DXva,l.

Note that the value dii on the ghost point is not used by any other equation.
2. The div—grad condition:

(DY)*0j,0=0,
Dgvj1 =0, (34)
Dgk Pj1 = DYDY 1.

Note that the only difference compared to the coupled condition is the absence of the fa

« on the right-hand side of the last equation.
3. The curl—curl condition:

(DY)*0j0 =0,
(DD)*j0 =0, (35)
D§k Pj.1 = —+ sin(wh) DJaj 1.

Note that the value af dn the ghost point is not used by any other equation.
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4.1. Implicit Discretization of Stokes Equations

We consider the eigenvalue problem (27) from Section 3, but now in the periodic ch:
nel domain with one of the boundary conditions (33), (34), or (35). For computatior
convenience, we introduce the new varialjle- kp and solve for({, v, §). By setting
A = (k — 1)/ At, we get the generalized eigenvalue problem

i
——sSiN(wAX)§ + Lpd, 2<k<M -1,
Ax (@AX)g + Lp <k<

A0 — AAtLO =
AD — AAtLpd = —D§G + Lnd,
LG =0,
l'.\lj’k = 0,

2<k<M-1,
1<k<M,
k=1 M,

wherelL, is the discretized, Fourier-transformed, Laplace operator:

4 . .
LnG = N sirf(wAx/2)0 + DY D’a.
In addition, the eigenfunctions are subject to one of the boundary conditions (33), (34)
(35). In matrix form, the eigenvalue problem can be written

N N N N - - T
Ax=ABx, Xx=(lp,...,0m+1,00,...,0M+1, 00, ..., 0m+1) -

We show an example of the structure of the nonzero elemesaimd B in Fig. 5.

We solve the generalized eigenvalue problem fer«dd<N —1 by using the QZz-
algorithm in Matlab (fore = 0, the problem becomes singular due to the undetermine
constant in the pressure). The amplification factos1+ A At when the coupled condi-
tion (33) is used are shown in Fig. 6. The case when the div—grad condition (34) is applie
presented in Fig. 7. Finally, the case when the curl—curl condition (35) is used is displa
in Fig. 8.

In agreement with the analysis in Section 3, these computations indicate that the
grad condition (34) leads to an unstable discretization (for this time-step), while the cour
condition (33) and the curl—curl condition (35) both lead to stable discretizations.

i:ti*
ek * *irk
L33 * i
5 L a4 * § R 334
Add L g b 234
E 234 L] £ 334
Ak * wirw
L 234 * *irk
1 drk * 10 ek
*t: * Hkh
wdkdeR
L 3.2 324
AE14 * 15
s 34 & L33 ]
344 LI Rk
Tk * *kwh
*HK ® * warx
20 L 354 ¥ ¥ 20 *irk
*uE L% wAw
L 454 * % *kHk
*hk * * kd
25 t*: * 2 *kdk
Rk ke ik
* & *
wdrk
£ 354
30 LS5 X
Tk d
L35
Rk
£ 544
35 wAw 35
ook
hwr
*hw
* % * W
40 40 s N i N
o H 10 15 20 25 0 35 40 Q 5 10 15 20 25 3 35 40

nz= 148 nZ = 54

FIG.5. The structure of the nonzero elements in the matric@eft) andB (right) for the curl—curl condition,
M =11,N = 10, andw = 5.
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FIG. 6. The amplification factors for the coupled condition (33) for the caa¢ = 1 andN = 10,M =11

(left), andN = 20, M = 21 (right). Note that both cases are stable. The solid line represents the neutral stabi
curvelx| = 1.
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FIG. 7. The amplification factors for the div—grad condition (34) for the cag¢ = 1 andN = 10,M =11
(left), andN = 20, M = 21 (right). Note that both cases are unstable, and the instability gets worse as the grit
refined. The solid line represents the neutral stability clxye= 1.
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FIG. 8. The amplification factors for the curl—curl condition (35) for the caag = 1 andN = 10,M =11

(left), andN = 20, M = 21 (right). Note that both cases are stable. The solid line represents the neutral stabi
curvelx| = 1.
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4.2. Viscous-Implicit Discretization of Navier—Stokes Equations

To analyze the stability of the incompressible Navier—Stokes equations (1), we star
linearizing the problem around smooth velocity and pressure fields;

_ L oy (Y ,_ (v
p=P+ep, u=U+eu, U_<V , U= o)

where 0< ¢ « 1. After skipping the prime and setting the forcing to zero, the linearize
equations read

U+ Uu-V)U+ (U-V)u+ Vp = vV,
(36)
VZp + 2Uyuy + 2Uy vy + 2Viuy + 2Vyo, = 0.

As in the previous sections, we discretize (36) by second-order accurate centered
ferences in space. Time is discretized by a mixed forward Euler/backward Euler sche
where the viscous term is treated implicitly and the convective term is handled explicitl

To analyze the stability of the scheme, the variable coefficients are frozen and the prok
is Fourier transformed in the-direction, resulting in

0n+1 _ an
— T Ae ()" 4+ G p™t = vLpa"™

whereGy, is the discretized, Fourier-transformed gradient operator

i sin(wAX)
Gnp= < A);, ) P,
|:)0

and Ag (U) corresponds to the linearized convective term

i Sin(wAX) ..
(@ )u

AUl = (D§U) G+ U2

+ (D§U) b + Vv D0

After discretization and Fourier transformation, the linearized pressure equation in (
becomes

Lap™t = Ra(U)0", (37)

where

Ry(U)Q" = ~2(D§V) DY — 2(DV) D§" — 2(Dju) e g

— Z(DgU)Mf)n_

To derive the eigenvalue problem, we make the ansatz (26), anfl=satp andx =
1+ AAt. This yields

A0 — AAtwLp0 = —Ag(U)0 — G+ vLpd, 2<k<M —1,
LhG = Ry(U)Q, 1<k=M, (38)
djx =0, k=1, M.
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In addition, the eigenfunctions are subject to one of the pressure boundary conditions (
(34), or (35).
We linearize the equations around the divergence-free velocity field

U(x, y) sir(rx/4) sin(ry/2) 39
V(x,y) )\ —sin(rx/2)sirf(zy/4) )’ 39
where the coefficients are frozemat 0.5.

In order to estimate the largest stable time-step, we proceed by performing avon Neurr
analysis of the spectrum. For this purpose, we neglect the boundayies Gtandy = 1,
assume that the solution ig2periodic in bothx andy, and Fourier transform the problem
in both directions. For simplicity, we neglect all zeroth-order terms, and we disregard |

pressure. Then the andv-equations decouple and we get the approximate expression f
the amplification factor,

Kka—1 .
aAt +ia = —vkab,
where
sin(wAX sin(wy A
a(w. wy) = U (e )+V (w2 Y),
AX Ay
4 i? 4 ir?
b(w, wy) = N SIf(wAX/2) + Aiyz Sif (w2 AY/2).
We have
_ 1-iaAt
a1 ubat”

Sincela] > 0 for w > 0 or wy > 0, we see thalk,| > 1 if v = 0. Hence, the scheme is
unstable for allAt whenv = 0. However, forv > 0, the factorb improves the situation
sinceb > Oforw > 0 andw, > 0. Inthis case the scheme is stable for sufficiently seall
GivenU, v, and the grid sizes, the largest that satisfiesky| < 1forall0<w <N -1
and 0< wp; < M — 1 can be computed numerically. For the case 0.05,N = 10 (AX =
m/5)andM = 11 (Ay = 1/10), we getAt ~ 1.44. This time-step also makes,| < 1 for
M = 21 andN = 20.

We solve the eigenvalue problem (38) for the three different pressure boundary conditi
by using Matlab. In Figs. 9, 10, and 11, we show the corresponding amplification factors
these computations, we usAd = 1.44 andv = 0.05. Similar to the implicit discretization
of Stokes equation, the div—grad condition leads to an unstable scheme, while the curl-
condition gives a stable scheme. The coupled condition has one pair of eigenvalues
lx| > 1 for the finer grid, but stability was regained when the time-step was reduced
At = 1.

After some experimentation, we found that the case with the div—grad condition cot
be made stable by decreasing the time-stepttes 0.073 (forN = 20, M = 21), which
is almost 20 times smaller than the original time-step. Also note Ahyafv = 0.05, so
the stable time-step is approximatelyt@Ay?/v, which agrees well with the analysis in
Section 3.2.
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FIG.9. The amplification factors for the viscous-implicit treatment of the Navier—Stokes equations with the
coupled condition (33) for the caget = 1.44,v = 0.05. The resolution iN = 10, M = 11 (left), andN = 20,

M = 21 (right). Note that the fine grid has two unstable eigenvalues for this time-step. The solid line repres
the neutral stability curvéec| = 1.
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FIG. 10. The amplification factors for the viscous-implicit treatment of the Navier—Stokes equations with
the div—grad condition (34) for the caget = 1.44, v = 0.05. The resolution isN = 10, M = 11 (left), and
N = 20,M = 21 (right). Note that both cases are unstable and that the instability gets worse as the grid is refi
The solid line represents the neutral stability curje= 1.
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FIG.11. Theamplification factors for the viscous-implicit treatment of the Navier—Stokes equations with the
curl—curl condition (35) for the castt = 1.44,v = 0.05. The resolution i = 10,M = 11 (left), andN = 20,
M = 21 (right). Note that both cases are stable. The solid line represents the neutral stability funde
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5. FLOW AROUND CYLINDERS

In this section, we numerically solve the incompressible Navier—Stokes equations
test both split pressure boundary conditions as well as the inaccurate, but commonly t
[9, 10], homogeneous Neumann condition

ap

an = 0, (x,y) eoq. (40)
We solve the equations by using the OverBlown solver [6], which is based on the Ov
ture class library. OverBlown uses overlapping (Chimera) grids to discretize the unste
incompressible Navier—Stokes equations in velocity-pressure formulation. For this reas
we cannot use it to test the coupled condition, which would require a simultaneous solut
of the momentum and pressure equations.

While the solveris capable of simulating both 2-D and 3-D problems in rather complicat
geometries, we use it to demonstrate the stability characteristics of the pressure boun
conditions. For this purpose we find it sufficient to study unsteady 2-D flow past circul
cylinders in a channel.

To make the time-integration efficient, we only use the semi-implicit technique on co
ponent grids where the viscous term dominates the convective term. Often, this is the ¢
for components with a no-slip boundary, where the grid needs to be fine in order to resc
boundary layers. On the other components, we employ an explicit method.

The semi-implicit technique consists of a second-order Adams—Bashforth/Adan
Moulton predictor—corrector scheme for the convective part coupled to a second-or
Crank—Nicholson scheme for the viscous part. To describe the scheme, we split the inc
pressible Navier—Stokes equations (1) according to

U = Lu+ Lou+f,

where
Liu=—-Uu-V)u—-Vp,
Lou = vVZ2u,

and p satisfies the pressure equation in (1). Then each time-step consists of a predicto

uP—u" 3 1 1 3 1
=L n__L n-1 (L p L n _fn__fn—l
Al 5 1u > U+ 2( 2uP 4 Lou™) + > 5 ,

followed by a corrector
utl—yn 1 1 1 1 1
= ZLuP 4 ZLu" 4 S(Lau™t 4 Lou” —fntl g 2,
AL Sb1 + 5L + 2( 2 + Lou’) + > + 5

Note that the scheme is explicit in the pressure. For example, let us denote the pres
occurring inL,u" by p". It is computed by solving

V2 4+ VUt R + Vo up =V - f,

together with one of the pressure boundary conditions.
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The explicit time-integration method, which is used on component grids where the c
vective term dominates the viscous term, is obtained by applying the Adams—Bashfo
Adams—Moulton predictor—corrector scheme to both the convective and the viscous tel

Due to truncation errors and because of the interpolation between components in
overlapping grid, the divergence will not be identically zero in the numerical computatic
To suppress the spurious divergence, an extra term is added to the pressure equation
OverBlown solver:

VZp+Vu- U+ Vo -uy=V-f+CXV-u.

This term can be viewed as a divergence sink, since it appears as a sink in the equatio
the divergence. The OverBlown documentation [6] provides a detailed description of
coefficientC(x).

We start by checking the accuracy and stability of the solver by applying the methoc
an exact solution: see Chesshire and Henshaw [2]. We choose the exact solution to be

Ue(X, Yy, t) = %cos(nx/Z) coqry/2) coqnt/2) + %

ve(X, Y, 1) = %sin(nx/Z) sin(my/2) coqnt/2) + % (412)
Pe(X, Y, t) = cosmXx/2) coqny/2) coqnt/2) + %

The forcing is constructed by inserting the exact solution (41) into (1). For example, |
u-component of the momentum equation yields

au ap
8—: + Ue- VUe + 8_xe — VV2Ue.

fO =
The forced problem is solved numerically and the truncation error can be computed
taking the difference between the exact and the numerical solution. Furthermore, the ©
of accuracy can be estimated by refining the grid. Note that only one level of refinem
is necessary, since the truncation error can be computed exactly. In the computations
initial data isug(x, y) = Ue(X, Y, 0), v = 0.01, and the truncation error was evaluated a
timet = 1. The computational grid is shown in Fig. 12 and the results are presentec
Table Ill. Note that all three boundary conditions yield second-order accurate velocit
and divergence. The apparent superconvergence of the pressure is caused by the divel
sink in the pressure equation.

The time-step used for the curl—curl condition and the simplified Neumann condition w
calculated by a von Neumann analysis based on only the convective part of the equat
The computations indicate that the scheme is stable for this time-step. However, for
div—grad condition, the time-step needs to be much smaller. The time-steps reporte
Table Il are the largest values that gave a stable scheme. Also note that in this case
time-step is proportional to the square of the grid size, instead of being proportional to
grid size itself, as it is when the curl—curl condition is applied.

The simplified Neumann condition (40) is apparently stable for the same time-step
the curl—curl condition. In this forced computation, a forcing is also added to the bound:
conditions, which makes the simplified Neumann condition compatible with the moment
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200 4

FIG. 12. The coarser of the grids used in the convergence study with 21 points in the rectangular grid
and 21x 14 points in the circular grid. The finer counterpart of this grid hack811 U 41 x 27 points. A no-slip
boundary condition was imposed on the circle, and slip conditions were used on the horizontal boundaries o
rectangle. The left boundary had a prescribed velocity condition (inflow) and an outflow condition was prescril
on the right boundary.

equations. Therefore, the divergence remains small in these computations. However, ir
unforced case, the simplified Neumann condition is not compatible with the momentt
equations, so it cannot be expected to perform as well.

We proceed by studying the unsteady flow around two cylinders in a rectangular char
to evaluate the curl—curl condition and the simplified homogeneous Neumann condit
(40). The channel has the dimensior&[5, 7.5] x [—2.5, 2.5] with slip boundaries on the
horizontal sides, prescribed velocity on the left (inflow) boundary, and an outflow conditi
on the right boundary. Both cylinders have radius 0.5 and they are centered@ 0.75)
andx = (0.5, —0.75). To conserve computational resources, we construct a grid with seve
components to concentrate grid points in the regions where the solution can be expect:
vary rapidly; see Fig. 13. We start the computation from negts, y) = 0, and accelerate
the flow smoothly up to timé = 1 by prescribing the horizontal velocity component on the
inflow boundary to be

0, t <0,
Unt) = q3t2-2t3, 0<t<1, (42)
1, t> 1

Shortly after the acceleration of the fluid is completed, the flow develops an oscillati

TABLE 11l
Truncation Errors for the Forced Computation for the Div—Grad and Curl-Curl Conditions
as Well as the Simplified Homogeneous Neumann Condition

BC Grid At 1P — Pells lu— Uello v — velloo V- ulle
div—grad coarse D103 58102 42.102 8.6-102 11-101
div—grad fine .10 57-10° 8.8-10°2 15.10°7? 2.4.1072
curl-curl coarse .10 5.8.102 42.102 8.6-102 11.-101
curl—curl fine 55.10°% 58102 88102 1.5.107? 24.102
simple coarse 1-102 7.3-102 42.102 8.6-102 12.101
simple fine 55.10°° 9.1.-10° 8.8-10°2 15.10°72 2.4.102




—t—ated

FIG. 13. A closeup of the grid used to compute the flow around two cylinders. This grid has 9 compone
with a total of 26,223 grid points, of which 14,256 are discretization points, 10,017 are (unused) hole points
1,950 are interpolation points. The semi-implicit time-integration method was used on the component grids
a boundary on one of the circles, and the explicit method was used on all Cartesian grids.

Incompressible NS, nu=2.00e— 02 vorticity
t=  15.000, dt=6.94e-Q3

7.000

FIG. 14. The vorticity around the two cylinders at time= 15.
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pattern where the von Karman vortices behind the two cylinders interact. In the pres
computation, the viscosity was= 0.02, which corresponds to a Reynolds humber of 5(
based on the diameter of a cylinder. As an example, we show the vorticity at tinfb

in Fig. 14. An interesting observation is that essentially the same solution is obtained w
the homogeneous Neumann condition (40) is used. However, close to the no-slip w
on the cylinders, a divergence boundary layer is formed. The net effect of the diverge
is to change the shape of the cylinders such that they become slightly more streamlil
see Fig. 15. When the homogeneous Neumann condition is used, the divergence ir
boundary layer is negative on the upstream side and positive on the upper and lower si
As a consequence, streamlines enter through the cylinder on its upstream side and e»
the upper and the lower sides of the cylinder, which makes the curvature of the streaml

74:r.1,—;|-a~.:;.r.-i.—-. NS, nu=2.00e—02 (uv)
t= 15000, dt=694e-03

=0, 7RG

-1.000

Intompressible NS, nu=2.00e-02 (uy)
= 15000, dt=6.94e-03

=1.000 -

1250 |~

0003

FIG.15. Streamlines around parts of the lower cylinder for the curl—curl condition (top) and the homogenec
Neumann condition (bottom).
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Boundary Pressure

— Correct dp/dn
- — dp/dn=0

FIG. 16. The pressure as a functionxbn the lower cylinder.

smaller. It can therefore be expected that the pressure on the cylinder is affected; see Fi
Furthermore, integrated quantities such as lift, drag, and torque are also affected adve
by the simplified pressure boundary condition; see Table IV. We conclude that the ust
the homogeneous Neumann boundary condition for the pressure gives questionable re
especially close to no-slip boundaries.

As a final experiment, we study how the curl—curl boundary condition performs at
higher Reynolds number, where boundary layers get thinner and the normal derivativ
the pressure becomes smaller. The normal derivative of the divergence is forced to be
on no-slip boundaries by the balance between the viscous terms in the momentum equa
and in the curl—curl boundary condition. Subtracting (7) from the normal component of 1
momentum equations in (1) applied to a no-slip boundary yields

d(V - U)

O=wvn-(VU+VxVxu=v o

(43)
In the discrete case, the momentum equations are only applied in the interior of the dorr

TABLE IV
Forces and Torque About the Point (025, 0) on Both Cylin-
ders at Timet =15 when the Curl-Curl Condition and the Sim-
ple Homogeneous Neumann Condition Are Used

BC Drag Lift Torque

curl—curl 3.90 0.52 0.41
simple 3.97 0.50 0.38
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FIG.17. The vorticity (left) and the divergence (right) at time- 2.0 for the cas@ = 10~2. Both the vorticity
and the divergence are plotted with 18 equally spaced contour lines. The contour lines are Het@@éor the
vorticity and between-0.05 for the divergence. The thick lines show component grid boundaries.

and not on the boundary, so the balance in (43) is perturbed by truncation error ter
Hence, it is interesting to see how the divergence in the numerical solution behaves 1
the boundary whemw becomes small. For this purpose, we compute the unsteady flc
around the two cylinders whem= 10-3, which corresponds to a Reynolds number of
10°. Similar to the previous computation, the inflow velocity is smoothly accelerated fro
rest according to (42). To resolve the solution at this Reynolds number, the resolution \
increased to 245,281 grid points, of which 236,355 were discretization points and 8,
were interpolation points. In Fig. 17, we present the vorticity and the divergence at tir
t = 2. The scheme used in the OverBlown solver is not conservative, so the divergence
only be expected to be small, that is, of the order of the truncation error. We view the amo
of divergence as a measure of the accuracy of the velocity gradients in the flow field. Si
the divergence is more than two orders of magnitude smaller than the vorticity, we ded
that the solution is adequately resolved on the grid. Furthermore, the divergence is s
near all no-slip boundaries and we conclude that the curl—curl boundary condition wo
well also wherv becomes small.

6. CONCLUSIONS

The stability properties of three different pressure boundary conditions for no-slip wa
have been studied in detail. First, we used a normal-mode technigue to analyze St
equations discretized by centered differences in space and by backward Euler in time
a half-plane problem with only one no-slip boundary. We have proven that the div—gr
condition is unstable for time-stepgt > Ch?, whereh is the grid size an@ is a constant.
For the curl—curl condition and the coupled condition, we have shown that the necess
Godunov—Ryabenkii stability condition is satisfied for all > 0.
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For a periodic channel domain with two no-slip boundaries, we have performed nurr
ical computations of the amplification factors. For the Stokes equation, we confirmed
analytical results for the backward Euler scheme. A mixed forward Euler/backward Eu
discretization of the linearized Navier—Stokes equations was also studied. Here, the
vective term is treated explicitly while the viscous term is handled implicitly. In this cas
we have demonstrated that the curl—curl condition and the coupled condition lead to st
schemes (for positive viscosities) using the time-step predicted by a von Neumann ar
sis. It was also shown that the div—grad condition is stable only for a significantly smal
time-step.

The div—grad and the curl—curl conditions as well as a homogeneous Neumann condi
have also been evaluated in the Navier—Stokes solver OverBlown to study the unsteady
around cylinders in a 2-D channel. Here the problem was integrated in time with a sec
order Adams—Bashforth/Adams—Moulton predictor—corrector scheme for the convec
part coupled to a second-order Crank—Nicholson scheme for the viscous part. While
three pressure boundary conditions were shown to be second-order accurate, the ste
properties were significantly different. In agreement with the analysis and the amplificat
factor computation, the div—grad condition was only stable for a time-&teg Ch?. In
contrast, the curl—curl condition and the homogeneous Neumann conditions were stabl
the time-step predicted by a von Neumann analysis based on only the convective te
Furthermore, it has been demonstrated that the use of the homogeneous Neumann con
leads to significant errors close to no-slip boundaries, which adversely affects the accu
of integrated quantities such as lift, drag, and torque, which are of utmost importance
engineering applications.
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