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where «, (3, ¥ are the components of magnetic intensity or the force on a unit magnetic
pole, and we, wf3, py are the components of the quantity of magnetic induction, or the
number of lines of force in unit of area.

In isotropic media the value of w is the same in all directions, and we may express
the result more simply by saying that the intrinsic energy of any part of the magnetic
field arising from its magnetization is

Ll ¢
87rI

per unit of volume, where I is the magnetic intensity.

(72) Energy may be stored up in the field in a different way, namely, by the action
of electromotive force in producing electric displacement. The work done by a variable
electromotive force, P, in producing a variable displacement, £, is got by integrating

ypaf
from P=0 to the given value of P.
Since P=Z%f, equation (E), this quantity becomes

Sefif=4hf*=37f.

Hence the intrinsic energy of any part of the field, as existing in the form of electric

displ ¢, i 5
isplacement, is 13(Pf+Qg+RA)QV.

The total energy existing in the field is therefore

E=3{g (st BuB+ron) HHEFAHQARD Y. . . (D)

The first term of this expression depends on the magnetization of the field, and is
explained on our theory by actual motion of some kind. The second term depends on
the electric polarization of the field, and is explained on our theory by strain of some
kind in an elastic medium. ‘

(73) 1 have on a former occasion * attempted to describe a particular kind of motion
and a particular kind of strain, so arranged as to account for the phenomena. In the
present paper I avoid any hypothesis of this kind; and in using such words as electric
momentum and electric elasticity in reference to the known phenomena of the induc-
tion of currents and the polarization of dielectrics, I wish merely to direct the mind of
the reader to mechanical phenomena which will assist him in understanding the elec-
trical ones. All such phrases in the present paper are to be considered as illustrative,
not as explanatory. ,,

(74) In speaking of the Energy of the field, however, I wish to be understood literally.
All energy is the same as mechanical energy, whether it exists in the form of motion or
in that of elasticity, or in any other form.  The energy in electromagnetic phenomena is
mechanical energy. The only question is, Where does it reside? On the old theories

# « On Physical Lines of Force,” Philosophical Magazine, 1861-62.
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it resides in the electrified bodies, conducting circuits, and magnets, in the form of an
unknown quality called potential energy, or the power of producing certain effects at a
distance. On our theory it resides in the electromagnetic field, in the space surrounding
the electrified and magnetic bodies, as well as in those bodies themselves, and is in two
different forms, which may be described without hypothesis as magnetic polarization
and electric polarization, or, according to a very probable hypothesis, as the motion and
the strain of one and the same medium.

(75) The conclusions arrived at in the present paper are independent of this hypo-
thesis, being deduced from experimental facts of three kinds:—

1. The induction of electric currents by the increase or diminution of neighbouring
currents according to the changes in the lines of force passing through the circuit.

2. The distribution of magnetic intensity according to the variations of a magnetic
potential.

8. The induction (or influence) of statical electricity through dielectrics.

We may now proceed to demonstrate from these principles the existence and laws of
the mechanical forces which act upon electric currents, magnets, and electrified bodies
placed in the electromagnetic field.

PART IV..MECHANICAL ACTIONS IN THE FIELD.

Mechanical Force on a Moveable O(mductor.

(76) We have shown (§§ 34 & 35) that the work done by the electromagnetic forces
in aiding the motion of a conductor is equal to the product of the current in the con-
ductor multiplied by the increment of the electromagnetic momentum due to the
motion.

Let a short straight conductor of length @ move parallel to itself in the direction of
x, with its extremities on two parallel conductors. Then the increment of the electro-
magnetic momentum due to the motion of @ will be

/dF dx ﬂG dy . dil dg)

dx T dx L(];+ de ds

That due to the lengthening of the circuit by increasing the length of the parallel con-
ductors will be

do ds T dy ds U dz ds
3 {di/ dé¢  dF¥ (L aF dl
aor ds(;z;;—;zy )|
which is by the equations of Magnetic Force (B), p- 482,

adx <d py — 7 (Aﬁ).

Let X be the force acting along the direction of & per unit of length of the conductor,
then the work done is Xadr.

(d[‘ dz L4 Pdy dF d7>5$

The total increment is
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Let C be the current in the conductor, and let p', ¢/, # be its components, then
dy dz
Xad=Cadax <%(uy— oA {1;,8),
or X=pyq

Similarly, Y =poar’ —uyp/, (J)

Z=pPp —pag. |
These are the equations which determine the mechanical force acting on a conductor
carrying a current. The force is perpendicular to the current and to the lines of foree,
and is measured by the area of the parallelogram formed by lines parallel to the current
and lines of force, and proportional to their intensities.

Mechanical Force on a Magnet.

(77) In any part of the field not traversed by electric currents the distribution of
magnetic intensity may be represented by the differential coefficients of a function
which may be called the magnetic potential. When there are no currents in the field,
this quantity has a single value for each point. When there are currents, the potential
has a series of values at each point, but its differential coefficients have only one value,
namely,

de

i de
L= =B =

Substituting these values of @, 8, y in the expression (equation 38) for the intrinsic
energy of the field, and integrating by parts, it becomes
. dpe | duB | du
‘-E{QD 87:((/& +a dy + 7>}dv
The expression

E<d&+dz/ﬁ+dm>d\7 =3mdV . ... . . . (39

indicates the number of lines of magnetic force which have their origin within the
space V. Now a magnetic pole is known to us only as the origin or termination of
lines of magnetic force, and a unit pole is one which has 4# lines belonging to it, since
it produces unit of magnetic intensity at unit of distance over a sphere whose surface
is 4.

Hence if m is the amount of free positive magnetism in unit of volume, the above
expression may be written 4z, and the expression for the energy of the field becomes

E=—3Fem)dV. . . . . . . . . . . (40)

If there are two magnetic poles m, and m, producing potentials ¢, and ¢, in the field ,
then if m, is moved a distance dz, and is urged in that direction by a force X, then the
work done is Xdx, and the decrease of energy in the field is

A(3ei+2.)(m+m,)),

and these must be equal by the principle of Conservation of Energy.
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Since the distribution ¢, is determined by m,, and ¢, by m,, the quantities ¢,m, and
@, m, will remain constant.
It can be shown also, as GREEN has proved (Essay, p. 10), that
M@, =1M50; ,

so that we get
Xdax=d(m,p,),

or

X=m2% =M, ,
where «, represents the magnetic intensity due to m,. PR e (K
Similarly, Y=m,0,

Zi=myy,.

So that a magnetic pole is urged in the direction of the lines of magnetic force with
a force equal to the product of the strength of the pole and the magnetic intensity.

(78) 1If a single magnetic pole, that is one pole of a very long magnet, be placed in
the field, the only solution of ¢ is

my 1
¢l=_j;’ e e s e e e e e e e e (41)

where m, is the strength of the pole and r the distance from it.

The repulsion between two poles of strength m, and m, is

d mm

In air or any medium in which p=1 this is simply "17{;19, but in other media the force
acting between two given magnetic poles is inversely proportional to the coeflicient of

magnetic induction for the medium. This may be explained by the magnetization of
the medium induced by the action of the poles.

Mechanical Force on an Electrified Body.

(79) If there is no motion or change of strength of currents or magnets in the field,
the electromotive force is entirely due to variation of electric potential, and we shall
have (§ 65)

a¥y
P=— Q==90 R=—T
Integrating by parts the expression (I) for the energy due to electric displacement, and
remembering that P, Q, R vanish at an infinite distance, it becomes

(i)

or by the equation of Free Electricity (G), p. 485,
—13(¥e)dV.
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By the same demonstration as was used in the case of the mechanical action on a magnet,
it may be shown that the mechanical force on a small body containing a quantity e, of
free electricity placed in a field whose potential arising from other electrified bodies

is '¥,, has for components
A

X=ezd Pleg,

dv¥,
Y—e2dy 2 e )
Z—esd;,l; —R.e,.

So that an electrified body is urged in the direction of the electromotive force with a
force equal to the product of the quantity of free electricity and the electromotive force.

If the electrification of the field arises from the presence of a small electrified body
containing ¢, of free electrity, the only solution of ¥, is

v=Eea, 0L L (43

where 7 is the distance from the electrified body.
The repulsion between two electrified bodies ¢,, ¢, is therefore

AV, _ k ege,
Got=_-t o (4)

Measurement of Electrical Phenomena by Electrostatic Effects.

(80) The quantities with which we have had to do have been hitherto expressed in
terms of the Electromagnetic System of measurement, which is founded on the mecha-
nical action between currents. The electrostatic system of measurement is founded on
the mechanical action between electrified bodies, and is independent of, and incom-
patible with, the electromagnetic system; so that the units of the different kinds of
quantity have different values according to the system we adopt, and to pass from the
one system to the other, a reduction of all the quantities is required.

According to the electrostatic system, the repulsion between two small bodies charged

with quantities #,, 7, of electricity is
where 7 is the distance between them.
Let the relation of the two systems be such that one electromagnetic unit of elec-
tricity contains v electrostatic units; then z,=wve, and z,=ve,, and this repulsion becomes
X k e
v = by equation (44), . . . . . . . . (45)
whence %, the coefficient of ¢ electric elasticity ” in the medium in which the experi-
ments are made, 4. e. common air, is related to v, the number of electrostatic units in one

electromagnetic unit, by the equation
s yHeH N € (i)

MDCCCLXY. 3x
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The quantity v may be determined by experiment in several ways. .According to the
experiments of MM. WEBER and KOHLRAUSCH,

v=310,740,000 metres per second.

(81) 1t appears from this investigation, that if we assume that the medium which -
constitutes the electromagnetic field is, when dielectric, capable of receiving in every
part of it an electric polarization, in which the opposite sides of every element into
which we may conceive the medium divided are oppositely electrified, and if we also
assume that this polarization or electric displacement is proportional to the electro-
motive force which produces or maintains it, then we can show that electrified bodies
in a dielectric medium will act on one another with forces obeying the same laws as are
established by experiment.

The energy, by the expenditure of which electrical attractions and repulsions are pro-
duced, we suppose to be stored up in the dielectric medium which surrounds the electri-
fied bodies, and not on the surface of those bodies themselves, which on our theory
are merely the bounding surfaces of the air or other dielectric in which the true springs
of action are to be sought.

Note on the Attraction of Gravitation.

(82) After tracing to the action of the surrounding medium both the magnetic and
the electric attractions and repulsions, and finding them to depend on the inverse square
of the distance, we are naturally led to inquire whether the attraction of gravitation,
which follows the same law of the distance, is not also traceable to the action of a
surrounding medium.

Gravitation differs from magnetism and electricity in this; that the bodies concerned
are all of the same kind, instead of being of opposite signs, like magnetic poles and
electrified bodies, and that the force between these bodies is an attraction and not a
repulsion, as is the case between like electric and magnetic bodies.

The lines of gravitating force near two dense bodies are exactly of the same form as
the lines of magnetic force near two poles of the same name; but whereas the poles are
repelled, the bodies are attracted. Let E be the intrinsic energy of the field surrounding
two gravitating bodies M, M,, and let E'be the intrinsic energy of the field surrounding
two magnetic poles m,, m,, equal in numerical value to M,, M,, and let X be the gravi-
tating force acting during the displacement 8z, and X' the magnetic force,

Xdz=23E, Xz=0E;
now X and X' are equal in numerical value, but.of opposite signs; so that

dE=—3E!,
or

E=C—F
=C—3 (@ +f+7")dV,
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where «, 8, ¥ are the components of magnetic intensity. If R be the resultant gravi-
tating force, and R’ the resultant magnetic force at a correspounding part of the field,
R=—R/, and ’+43*4+¢*=R2*=R"
Hence )
E=C—3gRdvV. . . . . . . . . . ... (47)

The intrinsic energy of the field of gravitation must therefore be less wherever there is
a resultant gravitating force.

As energy is essentially positive, it is impossible for any part of space to have nega-
tive intrinsic energy. Hence those parts of space in which there is no resultant force,
such as the points of equilibrium in the space between the different bodies of a system,
and within the substance of each body, must have an intrinsic energy per unit of volume
greater than .
L R?

87 °
where R is the greatest possible value of the intensity of gravitating force in any part of
the universe.

The assumption, therefore, that gravitation arises from the action of the surrounding
medium in the way pointed out, leads to the conclusion that every part of this medium
possesses, when undisturbed, an enormous intrinsic energy, and that the presence of
dense bodies influences the medium so as to diminish this energy wherever there is a
resultant attraction.

As I'am unable to understand in what way a medium can possess such properties, I
cannot go any further in this direction in searching for the cause of gravitation.

PART V.--THEORY OF CONDENSERS.

Capacity of @ Condenser.

(83) The simplest form of condenser consists of a uniform layer of insulating matter
bounded by two conducting surfaces, and its capacity is' measured by the quantity of
electricity on either surface when the difference of potentials is unity.

Let S be the area of either surface, @ the thickness of the dielectric, and % its coeffi-
cient of electric elasticity; then on one side of the condenser the potential is ¥,, and on
the other side ¥,41, and within its substance

avr 1 :

e £ €:3)
Since - and therefore f is zero outside the condenser, the quantity of electricity on its
first surface =—Sf, and on the second +Sf. The capacity of the condenser is there-

; S . .
fore Sf = in electromagnetic measure.

3x2
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Specific Capacity of Electric Induction (D).
(84) If the dielectric of the condenser be air, then its capacity in electrostatic mea-
sure is ;- (neglecting corrections arising from the conditions to be fulfilled at- the
{1

edges). * If the dielectric have a capacity whose ratio to that of air is D, then the capa-
. city of the condenser will be %—Sé~

Hence D:%,..............(49)

where £, is the value of £ in air, which is taken for unity.

Electric Absorption.

(85) When the dielectric of which the condenser is formed is not a perfect insulator,
the phenomena of conduction are combined with those of electric displacement. The
condenser, when left charged, gradually loses its charge, and in some cases, after being
discharged completely, it gradually acquires a new charge of the same sign as the original
charge, and this finally disappears. These phenomena have been described by Professor
Farapay (Experimental Researches, Series X1.) and by Mr. F. JENkIN (Report of Com-
mittee of Board of Trade on Submarine Cables), and may be classed under the name of
¢ Electric Absorption.”

(86) We shall take the case of a condenser composed of any number of parallel layers
of different materials. If a constant difference of potentials between its extreme
surfaces is kept up for a sufficient time till a condition of permanent steady flow of
electricity is established, then each bounding surface will have a charge of electricity
depending on the nature of the substances on each side of it. If the extreme surfaces
be now discharged, these internal charges will gradually be dissipated, and a certain
charge may reappear on the extreme surfaces if they are insulated, or, if they are con-
nected by a conductor, a certain quantity of electricity may be urged through the con-
ductor during the reestablishment of equilibrium.

Let the thickness of the several layers of the condenser be @, a,, &c.

Let the values of £ for these layers be respectively %, %, %, and let

alytak,+&e.=ak, . . . . . . . . . (50)

where % is the “ electric elasticity” of air, and @ is the thickness of an equivalent con-
denser of air. |

Let the resistances of the layers be respectively r,, ry, &c., and let 77,4 &ec. =r be
the resistance of the whole condenser, to a steady current through it per unit of surface.

Let the electric displacement in each layer be f,, f;, &o.

Let the electric current in each layer be p,, p,, &ec.

Let the potential on the first surface be ¥, and the electricity per unit of surface e,.

Let the corresponding quantities at the boundary of the first and second surface be
¥, and ¢,, and so on, Then by equations (G) and (H),
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&=~/ %Z—Pu \‘
ts=Ffi—F %‘;—‘2:: — s b (51)
&c. &c. J
But by equations (E) and (F),
¥V, —V,=akfi=—rp,
¥, —V,=a.k,f,=—7r,p,, (62)

&ec. &ec. &ec. [

After the electromotive force has been kept up for a sufficient time the current
becomes the same in each layer, and

v
pi=p.=&e. =p=—
where ¥ is the total difference of potentials between the extreme layers. We have then

s .ﬂ'—: —\E Te &e.

b=

T ak T agky’
and . (53)
T ___‘I’ re T &
o= aky’ e“""?(@k;_a/«: 1>’ c.}

These are the quantities of electricity on the different surfaces.

(87) Now let the condenser be discharged by connecting the extreme surfaces
through a perfect conductor so that their potentials are instantly rendered equal, then
the electricity on the extreme surfaces will be altered, but that on the internal surfaces
will not have time to escape. The total difference of potentials is now

V'=a,k e+ akc+e)tak(d+e+e), &e. =0, . . . . . (54)
whence if ¢, is what ¢, becomes at the instant of discharge,

=Yn ¥ Y .. (55)

The instantaneous discharge is therefore :EPZ’ or the quantity which would be dis-

charged by a condenser of air of the equivalent thickness @, and it is unaffected by the
want of perfect insulation.

(88) Now let us suppose the connexion between the extreme surfaces broken, and the
condenser left to itself, and let us consider the gradual dissipation of the internal charges.
Let ¥ be the difference of potential of the extreme surfaces at any time ¢; then

Y=ak fitakfot&e; . . . . . . . . (86)
but a,k,f,:-—?‘,%a

, d
a2k2,f2= '_7'2—2% '
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Hence fi= Ae’Tx , Ja=A St , &c.; and by referring to the values of ¢, ¢, &c.,
we find
¥ ¥
T ak,  ak
Vo ¥ . (57)
_—7‘_21276.‘; -‘;];a
&ec. ;

so that we find for the difference of extreme potentials at any time,

aiky 3
v=1(2- ak)e“7‘+<%—%,f?)e*“7f’+ &l LG

(89) It appears from this result that if all the layers are made of the same sub-
stance, ¥’ will be zero always. If they are of different substances, the order in which
they are placed is indifferent, and the effect will be the same whether each substance
consists of one layer, or is divided into-any number of thin layers and arranged in any
order among thin layers of the other substances. Any substance, therefore, the parts
of which are not mathematically homogeneous, though they may be apparently so, may
exhibit phenomena of absorption. Also, since the order of magnitude of the coefficients
is the same as that of the indices, the value of ¥' can never change sign, but must start
from zero, become positive, and finally disappear.

(90) Let us next consider the total amount of electricity which would pass from the
first surface to the second, if the condenser, after being thoroughly saturated by the
current and then discharged, has its extreme surfaces connected by a conductor of
resistance R. Let p be the current in this conductor; then, during the discharge,

Y'=pr+pr,+&e.=pR. . . . . . . . . (59)

Integrating with respect to the time, and calling ¢y, ¢;, ¢ the quantities of electricity.
which traverse the different conductors, )

gnm+gr+&e=¢R. . . . . . . . . (60)
The quantities of electricity on the several surfaces will be

6@—q —¢

6ot —Gas

&e. ;

and since at last all these quantities vanish, we find

¢ =6,—g,
/8 =6"1+62—q;
Wy
whence gR=_<~ +—= +&> —
l 2

v 2
or q__akrRlak@@(ak )+azlc ak. ( ke zg%s) +&c.}, . . . (61)
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a quantity essentially positive; so that, when the primary electrification is in one direc-
tion, the secondary discharge is always in the same direction-as the primary discharge*.

PART VI.—ELECTROMAGNETIC THEORY OF LIGHT.

(91) At the commencement of this paper we made use of the optical hypothesis of
an elastic medium through which the vibrations of light are propagated, in order to,
show that we have warrantable grounds for seeking, in the same medium, the cause of
other phenomena as well as those of light. ‘We then examined electromagnetic pheno-
mena, seeking for their explanation in the properties of the ‘field which surrounds the
electrified or magnetic bodies. In this way we arrived at certain equations expressing
certain properties of the electromagnetic field. 'We now proceed to investigate whether
these properties of that which constitutes the electromagnetic field, deduced from electro-
‘magnetic phenomena alone, are sufficient to explain the propagation of light through
the same substance.

(92) Let us suppose that a plane wave whose direction cosines are {, m, » is propa-
gated through the field with a velocity V. Then all the electromagnetic functions will

be functions of w1z my+nz—Vi.
The equations of Magnetic Force (B), p. 482, will become
dH aG
{LMZMW—-% aw’
dr dH
w,@:n %"—l v’

_,d6_ aF
Y=l g T M

If we multiply these equations respectively by Z, m, n, and add, we find
lwa+mpp4npy=0, . . . . . . . . . (62)
which shows that the direction of the magnetization must be in the plane of the wave.

(98) If we combine the equations of Magnetic Force (B) with those of Electric
Currents (C), and put for brevity

ZE"'%(—;-F%:J, and $+§+%=V’, L. (83)
b =5 —V'F,
4"”/“9”;‘%*,‘72(}, P (64)
dapr’ =g—-V‘*‘H.

* Since this paper was communicated to the Royal Society, I have seen a paper by M. GAvearw in the Annales
de Chimie for 1864, in ‘which 'he has -deduced the phenomena of electric absorption and secondary ‘discharge .
from the theory of compound condensers.
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If the medium in the field is a perfect dielectric there is no true conduction, and the
currents p/, ¢, 7' are only variations in the electric displacement, or, by the equations of

Total Currents (A), P p 7
. — 2 | =2
=z, 4= 5 r=o e o (65)

But these electric displacements are caused by electromotive forces, and by the equations
of Electric Elasticity (E),
- P=if Q=kyg, R=kh. . . . . . . . (66)
These electromotive forces are due to the variations either of the electromagnetic or
the electrostatic functions, as there is no motion of conductors in the field; so that the
equations of electromotive force (D) are

dF d¥
P=—Tr—" |
A A S O 67
Q ‘%—’@'9> ot ( )
dH d¥
R dt ~ dz

(94) Combining these equations, we obtain the following :—

d*F  4*¥

Jc(——V2F)+4m( aL i d[) 0,
d*G | d*¥

k(———sz)+4m( e+ gat) =0 (68)
d*H 4V

k (‘“‘V2H> +4”"f"< pre +dzdt> =0.

If we differentiate the third of these equations with respect to y, and the second with
respect to z, and subtract, J and ¥ disappear, and by remembering the equations (B) of
magnetic force, the results may be written

-~

a2
EVipe=4xp T s
(69)

v
.
-
-

. d?
lcVﬂwB = 4%’{.1:-(-1—225‘Uaﬁ,

dQ
EVipy =4z py. |

(95) If we assume that , 8, y are functions of lz+my-+nz— Vi=w, the first equa-
tion becomes

? 2
k{k%__:zlwﬁzvz‘;_&, N ()]
or ! i
V—i\/a;;""""""‘”)

The other equations give the same value for V, so that the wave is propagated in either
direction with a velocity V. '
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This wave consists entirely of magnetic disturbances, the direction of magnetization
being in the plane of the wave. No magnetic disturbance whose direction of magneti-
zation is not in the plane of the wave can be propagated as a plane wave at all.

Hence magnetic disturbances propagated through the electromagnetic field agree with
light in this, that the disturbance at any point is transverse to the direction of propaga-
tion, and such waves may have all the properties of polarized light.

(96) The only medium in which experiments have been made to determine the value
of % is air, in which p=1, and therefore, by equation (46),

V=o. . . . . . . o . . (72)
By the electromagnetic experiments of MM. WEBER and KonLRAUSCH *,
v=2310,740,000 metres per second

is the number of electrostatic units in one electromagnetic unit of electricity, and this,
according to our result, should be equal to the velocity of light in air or vacuum.
The velocity of light in air, by M. Fizeav’s{ experiments, is

V=314,858,000;
according to the more accurate experiments of M. Foucavwr I,
V =298,000,000.

The velocity of light in the space surrounding the earth, deduced from the coefficient
of aberration and the received value of the radius of the earth’s orbit, is

V=308,000,000.

(97) Hence the velocity of light deduced from experiment agrees sufficiently well
with the value of v deduced from the only set of experiments we as yet possess. The
value of v was determined by measuring the electromotive force with which a condenser
of known capacity was charged, and then discharging the condenser through a galvano-
meter, so as to measure the quantity of electricity in it in electromagnetic measure.
The only use made of light in the experiment was to see the instruments. The value
of V found by M. Foucavrr was obtained by determining the angle through which a
revolving mirror turned, while the light reflected from it went and returned along a
measured course. No use whatever was made of electricity or magnetism.

The agreement of the results seems to show that light and magnetism are affections
of the same substance, and that light is an electromagnetic disturbance propagated
through the field according to electromagnetic laws.

(98) Let us now go back upon the equations in (94), in which the quantities J and
¥ occur, to see whether any other kind of disturbance can be propagated through
the medium depending on these quantities which disappeared from the final equations.

# TLeipzig Transactions, vol. v. (1857), p. 260, or PoseeNporrr’s ¢ Annalen,” Aug, 1856, p. 10.
+ Comptes Rendus, vol. xxix. (1849), p. 90. + Ibid. vol. Iv. (1862), pp. 501, 792,
MDCCCLXY. 3y
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If we determine ¥ from the equation

2 d/Q_l- d72 : . . . B . . . . . . (73)
and I, G/, H' from the equatlons
B G=G—9% H=H-% 7
FFd—G_..G ol H= dz....(ul)
then
dF’ 46! 4V -
dd/+déo""'."""(‘5)
and the equations in (94) become of the form
=t (g g (F45)) - - - o L (1)
Differentiating the three equations with respect to &, y, and z, and adding, we find that
d -
Y=o, y,2), - . . . . . . . . (TT)
' 3
and that EV?E :4%@% ,
W=t T (T8)
FVIT =4 L
J

a
Hence the disturbances indicated by ¥, G/, H' are propagated with the velocity
V= A\/ L through the field; and since
47 -

¥y W
de Tidy TV de T

the resultant of these disturbances is in the plane of the wave.
(99) The remaining part of the total disturbances I, G, H being the part depending
on y, is subject to no condition except that expressed in the equation
G =
If we perform the operation V? on this equation, it becomes
]ce:;i;—kvz o(z,y,2). . . . . . . . . . (79
Since the medium is a perfect insulator, e, the free electricity, is immoveable, and
AN . .
therefore 5182 function of #, y, z, and the value of J is either constant or zero, or

uniformly increasing or diminishing with the time; so that no disturbance depending
on J can be propagated as a wave.

(100) The equations of the electromagnetic field, deduced from purely experimental
evidence, show that transversal vibrations only can be propagated. If we were to go
beyond our experimental knowledge and to assign a definite density to a substance which
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we should call the electric fluid, and select either vitreous or resinous electricity as the
representative of that fluid, then we might have normal vibrations propagated with a
velocity depending on this density. We have, however, no evidence as to the density of
electricity, as we do not even know whether to consider vitreous electricity as a sub-
stance or as the absence of a substance.

Hence electromagnetic science leads to exactly the same conclusions as optical science
with respect to the direction of the disturbances which can be propagated through the
field; both affirm the propagation of transverse vibrations, and both give the same velocity
of propagation. On the other hand, both sciences are at a loss when called on to affirm
or deny the existence of normal vibrations.

Relation between the Index of Refraction and the Electromagnetic Character of the
substance.

(101) The velocity of light in a medium, according to the Undulatory Theory, is

1
"TVOa

2

where ¢ is the index of refraction and V, is the velocity in vacuum. The velocity,
according to the Electromagnetic Theory, is

Vi

m’

where, by equations (49) and (71), k—_—ﬁllco, and k,=4#V3.

Hence D=2, . . . .. . L. (8D)
I

or the Specific Inductive Capacity is equal to the square of the index of refraction
divided by the coefficient of magnetic induction.

Propagation of Electromagnetic Disturbances in o Crystallized Medium.

(102) Let us now. calculate the conditions of propagation of a plane wave in a
medium for which the values of £ and p are different in different directions. As we
do not propose to give a complete investigation of the question in the present imperfect
state of the theory as extended to disturbances of short period, we shall assume that the
axes of magnetic induction eoincide in direction with those of electric elasticity.

(103) Let the values of the magnetic coefficient for the three axes be A, p, », then
the equations of magnetic force (B) become

I _dG )

'“_dg/_dz’
dF dH
_dG_dr

7"—dx—-dy'
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The equations of electric currents (C) remain as before.
The equations of electric elasticity (E) will be

P=4=a’f,
Q=4=tg,; . . . . . . . . . . . (82
R=4=c*h,

where 4wa’®, 470%, and 4wc® are the values of £ for the axes of 2, ¢, 2.
Combining these equations with (A) and (D), we get equations of the form

da*F d*F  d*F 1 4 dG@ , dH d*F  d*¥
< TGt dzﬁ) 7 dw( &gy T dz) (dﬂ +dxdt> (83)
(104) If 7, m, n are the direction-cosines of the wave, and V its velocity, and if
le4+my+nz—Vt=w, . . . . . . . . . (84

then F, G, H, and ¥ will be functions of w; and if we put ¥, G/, H', ¥' for the second
~ differentials of these quantities with respect to w, the equations will be

2 2
(Ve (5+5) ) Pt SEa+ -y =0,

(V=r(G45)) o+ T S _ve=o, L (e)

<'2—o( + ))H’+C"ZF’ T G — V=0,

If we now put

V=V Af&”{l?;‘(b?"‘ +¢%) - mip(v i) +ntv(an - Zf"M)} \l
oo .. (86)
QbQ 2 ZQ 2 2
+a7\,u.: (a_cz"!-%-l—t—e)(Zﬁ-}—mﬁw-}-n%):U, J
we shall find

FVU—-ivi=0, . . . . . . . . . . (8]
with two similar equations for G/ and H'. Hence either

V=0, . . . . . . .. 0L, (8

U=0, . . . . . . o . . .00 (89

or
V=¥, VG@=m¥ and VH'=2¥'. . . . . (90)

The third supposition indicates that the resultant of ¥', G/, H' is in the direction
normal to the plane of the wave; but the equations do not indicate that such a disturb-
ance, if possible, could be propagated, as we have no other relation between ¥’ and
¥, G, H. ‘

The solution V=0 refers to a case in which there is no propagation.

The solution U=0 gives two values for V* corresponding to values of ¥, G/, H', whici
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are given by the equations
l
PG+ H=0, . . . . . . ... (%))

2 2. 2,
G U= )+ o (r—a) + G (@n—bu)=0, . . . . . (92)

(105) The velocities along the axes are as follows :—

Direction of propagation . . . . . z Y z
{ a? a2
|| = " ;

o . b? b?
Direction of the electric displacements - Y = -
v A

e &

2 —1; x

Now we know that in each principal plane of a crystal the ray polarized in that
plane obeys the ordinary law of refraction, and therefore its velocity is the same in
whatever direction in that plane it is propagated.

If polarized light consists of electromagnetic disturbances in which the electric dis-
placement is in the plane of polarization, then

Y C5)

If, on the contrary, the electric displacements are perpendicular to the plane of pola-
rization, ’

A=p=r. . . o . e e e e e e . (94
We know, from the magnetic experiments of FaraDAY, PLUCKER, &c., that in many
crystals A, g, v are unequal.

The experiments of KNoBLAUCH* on electric induction through crystals seem to show
that @, b and ¢, may be different.

The inequality, however, of A, w, v is so small that great magnetic forces are required
to indicate their difference, and the differences do not seem of sufficient magnitude to
~ account for the double refraction of the crystals.

On the other hand, experiments on electric induction are liable to error on account
of minute flaws, or portions of conducting matter in the crystal.

Further experiments on the magnetic and dielectric properties of crystals are required
before we can decide whether the relation of these bodies to magnetic and electric
forces is the same, when these forces are permanent as when they are alternating with
the rapidity of the vibrations of light.

#* Philosophical Magazine, 1852,
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Relation between Electric Resistance and Transparency.

(106) If the medium, instead of being a perfect insulator, is a conductor whose resist-
ance per unit of volume is ¢, then there will be not only electric displacements, but true
currents of conduction in which electrical energy is transformed into heat, and the undu-
lation is thereby weakened. To determine the coefficient of absorption, let us investi-
gate the propagation along the axis of 2 of the transverse disturbance G.

By the former equations

4*G
T = —dmu(y)

= —47p <§—J; +q> by (A),

a2 1d%G 1dG
W:Hm(z i 7{) by (E)and (F). . . . . . . (95)
If G is of the form |
G=e¢"cos(qr+nt),. . . . . . . . .« . . . . . (96)
we find that
—Zmpn_2me V o . 97
P=ry T w ° - O

where V is the velocity of light in air, and ¢ is the index of refraction. The proportion
of incident light transmitted through the thickness # is

e (98)

Let R be the resistance in electromagnetic measure of a plate of the substance whose
thickness is #, breadth 4, and length /, then

le
R—— bi’

A\
2]956::4‘72‘{/47 TR e (99)

(107) Most transparent solid bodies are good insulators, whereas all good conductors
are very opaque.

Electrolytes allow a current to pass easily and yet are often very transparent. We
may suppose, however, that in the rapidly alternating vibrations of light, the electro-
motive forces act for so short a time that they are unable to effect a complete separation
between the particles in combination, so that when the force is reversed the particles
oscillate into their former position without loss of energy.

Gold, silver, and platinum are good conductors, and yet when reduced to sufficiently
thin plutes they allow light to pass through them. If the resistance of gold is the same
for electromotive forces of short period as for those with which we make experiments,
the amount of light which passes through a piece of gold-leaf, of which the resistance
was determined by Mr. C. HockiN, would be only 107 of the incident light, a totally
imperceptible quantity. 1 find that between 545 and 1455 of green light gets through
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such gold-leaf. Much of this is transmitted through holes and cracks; there is enough,
however, transmitted through the gold itself to give a strong green hue to the
transmitted light. This result cannot be reconciled with the electromagnetic theory
of light, unless we suppose that there is less loss of energy when the electromotive forces
are reversed with the rapidity of the vibrations of light than when they act for sensible
times, as in our experiments.

Absolute Values of the Electromotive and Magnetic Forces called into play in the
Propagation of Light.
(108) If the equation of propagation of light is

F=Acos Q%(Z—-Vt),
the electromotive force will be

2y, . 27w
P= —.A—A— A\ sm—i—(z-—Vt) ;
and the energy per unit of volume will be
PQ
8au V¥

where P represents the greatest value of the electromotive force. Half of this consists
of magnetic and half of electric energy.
The energy passing through a unit of area is

P,

W= SmuV’
P =./8xu VW,

where V is the velocity of light, and W is the energy communicated to unit of area by
the light in a second.

According to PoulLLET’S data, as calculated by Professor W. THoMSON *, the mecha-
nical value of direct sunlight at the Earth is

so that

834 foot-pounds per second per square foot.
This gives the maximum value of P in direct sunlight at the Earth's distance from the Sun,
P=60,000,000,

or about 600 DaNIELL'S cells per metre.

At the Sun’s surface the value of P would be about

13,000 DaxiELL’S cells per metre.

At the Earth the maximum magnetic force would be *193 .

At the Sun it would be 4'13.

These electromotive and magnetic forces must be conceived to be reversed twice in
every vibration of light; that is, more than a thousand million million times in a second.

# Transactions of the Royal Society of Edinburgh, 1854 (¢“ Mechanical Encrgies of the Solar System™).
+ The horizontal magnetic force at Kew is about 1-76 in metrical units.
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PART VIL—CALCULATION OF THE COEFFICIENTS OF ELECTROMAGNETIC INDUCTION.
General Methods.

(109) The electromagnetic relations between two conducting circuits, A and B,
depend upon a function M of their form and relative position, as has been already
shown.

M may be calculated in several different ways, which must of course all lead to the
same result.

First Method. M is the electromagnetic momentum of the circuit B when A carries

a unit current, or dy

dx dz
where F, G, H are the components of electromagnetic momentnm due to a unit current

in A, and d¢' is an element of length of B, and the integration is performed round the
circuit of B. ‘

To find F, G, H, we observe that by (B) and (C)

a*F | d°F  d°F
gt =ty

with corresponding equations for G and H, ¢/, ¢, and #' being the components of the
current in A.
Now if we consider only a single element ds of A, we shall have

dx d dz
7 = ds, ¢ = d—'gds, 7 =7 as
and the solution of the equation gives

__wdx

F="—ds, G:&d—yds, H=~ d;ds,
o ds o ds

= i

where ¢ is the distance of any point from ds. Hence

=12 dxd;z- 'fl?_/d?/ dz dz .
Mﬁj‘j‘—é (‘7; it w29 ) sds

:‘ f‘;ﬁ cos ddsds’,
where ¢ is the angle between the directions of the two eclements ds, ds', and ¢ is the
distance between them, and the integration is performed round both circuits.

In this method we confine our attention during integration to the two linear circuits
alone.

(110) Second Method. M is the number of lines of magnetic force which pass
through the circuit B when A carries a unit current, or

M=3(nal+uBm+pyn)ds,

where pe, p3, wy are the components of magnetic induction due to unit current in A,
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S'is a surface bounded by the current B, and [, m, » are the direction-cosines of the
normal to the surface, the integration being extended over the surface.
‘We may express this in the form

M=p3 % sin 4 sin ¢ sin pdS'ds,

where d¥ is an element of the surface bounded by B, ds is an element of the circuit A,
¢ 1s the distance between them, d and ¢ are the angles between ¢ and ds and between
¢ and the normal to dS respectively, and ¢ is the angle between the planes in which
¢ and ¢ are measured. The integration is performed round the circuit A and over the
surface bounded by B.

This method is most convenient in the case of circuits lying in one plane, in which
case sin §=1, and sin p==1.

111. Third Method. M is that part of the intrinsic magnetic energy of the whole
field which depends on the product of the currents in the two circuits, each current
being unity. '

Let @, 8, ¥ be the components of magnetic intensity at any point due to the first
circuit, ¢, f3', o' the same for the second circuit; then the intrinsic energy of the
element of volume dV of the field is

E (@+eP+(B+B P+ (r+7))dv.
The part which depends on the product of the currents is
£ (! +-BB 47y )aV.

Hence if we know the magnetic intensities I and I' due to unit current in each circuit,
we may obtain M by integrating

® !
i SpIT cos 8dV

over all space, where 4 is the angle between the directions of I and T.

Application to a Coil.

(112) To find the coefficient (M) of mutual induction between two circular linear
conductors in parallel planes, the distance between the curves being everywhere the same,
and small compared with the radius of either.

If » be the distance between the curves, and ¢ the radius of either, then when # is
very small compared with @, we find by the second method, as a first approximation,

M=4za (loges%’—Q).

To approximate more closely to the value of M, let ¢ and e, be the radii of the circles,
and b the distance between their planes; then
r=(a—a,) 45
MDCCCLXY. 3z
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We obtain M by considering the following conditions :—
1st. M must fulfil the differential equation
&M d°M  1dM
WE T T T
This equation being true for any magnetic field symmetrical with respect to the common
axis of the circles, cannot of itself lead to the determination of M as a function of @, a,,
and 6. We therefore make use of other conditions.
2ndly. The value of M must remain the same when ¢ and ¢, are exchanged.
3rdly. The first two terms of M must be the same as those given above.
M may thus be expanded in the following series :—

M=4zalog {1-[— “1_{_ 1 w_%(ng'F(“—a‘;x)g)(“"%)_}_&&}

la—a; | 10°—3(a—a 1 (602 (a—a,)?)(a—a
_47;@{2_{__5 1+ ag ) E( ( asl) )( 1>+&C.}.
(118) 'We may apply this result to find the coefficient of self-induction (L) of a circular
coil of wire whose section is small compared with the radius of the circle.
Let the section of the coil be a rectangle, the breadth in the plane of the circle being
¢, and the depth perpendicular to the plane of the circle being 4.
Let the mean radius of the coil be @, and the number of windings #; then we find,

by integrating, 2 (CF
L=gea| ({{ My ey)vdy av ay.

where M(zy #'y') means the value of M for the two windings whose coordinates are 2y
and 2'y' respectively; and the integration is performed first with respect to & and y over
the rectangular section, and then with respect to &' and 9’ over the same space.

L= 47m2a{loge§g+11—2 —-%( 4> cot 20— cos 20— lcot“’ﬂ log cos 0—— tan®d log sin 0}

§ 1 8
{108 (2 sn0-+ 1) 34527475 costd— 32 (5— 0) osi-+3 Sy log cos

—1—133 zmaz log sin 9}—}-&0
Here a= mean radius of the coil.
,, #= diagonal of the rectangular section ==/ 4"
,» 0= angle between 7 and the plane of the circle.
,» %= number of windings.
The logarithms are Napierian, and the angles are in circular measure.

In the experiments made by the Committee of the British Association for deter-
mining 2 standard of Electrical Resistance, a double coil was used, consisting of two
nearly equal coils of rectangular section, placed parallel to each other, with a small
interval between them.
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The value of L for this coil was found in the following way.

The value of L was calculated by the preceding formula for six different cases, in
which the rectangular section considered has always the same breadth, while the depth
was

A, B, C, A4+B, B4C, A+4B+C,
and n=1 in each case.
Calling the results ‘
L(A), L(B), L(C), &c.,
we calculate the coefficient of mutual induction M(AC) of the two coils thus,
2ACM(AC)=(A+B4+C)yL(A4+B+C)—(A4B)L(A+B)—(B4CyL(B+C)4-B'L(B).

Then if , is the number of windings in the coil A and #, in the coil B, the coefficient
of self-induction of the two coils together is

L=n{L(A)42n,n,L(AC)+nzL(B).

(114) These values of L are calculated on the supposition that the windings of the
wire are evenly distributed so as to fill up exactly the whole section. This, however, is
not the case, as the wire is generally circular and covered with insulating material.
Hence the current in the wire is more concentrated than it would have been if it had
been distributed uniformly over the section, and the currents in the neighbouring wires
do not act on it exactly as such a uniform current would do.

The corrections arising from these considerations may be expressed as numerical
quantities, by which we must multiply the length of the wire, and they are the same
whatever be the form of the coil.

Let the distance between each wire and the next, on the supposition that they are
arranged in square order, be D, and let the diameter of the wire be d, then the correc-
tion for diameter of wire is

D 4 = 11
+2 (10g~g+§log2+§~—g).

The correction for the eight nearest wires is

+4-0:0236.
For the sixteen in the next row

4+0-00083.

- These corrections being multiplied by the length of wire and added to the former
result, give the true value of I, considered as the measure of the potential of the coil
on itself for unit current in the wire when that current has been established for some
time, and is uniformly distributed through the section of the wire.

(115) But at the commencement of a current and during its variation the current is
not uniform throughout the section of the wire, because the inductive action between
different portions of the current tends to make the current stronger at one part of the

~section than at another. When a uniform electromotive force P arising from any cause
' 3z2
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acts on a cylindrical wire of specific resistance g, we have
dF
pe=P—

where F is got from the equation

d*F 1dF

ar® +5 rodr — 47,
7 being the distance from the axis of the cylinder.

Let one term of the value of ¥ be of the form T7", where T is a function of the time,
then the term of p which produced it is of the form
1
Z;f;‘ n* L2,

Hence if we write

wr 72 1 dT?
F:T+?< P+dt) #g T ge &
dar pw d? T p,vr 1 43T
pe= (P"{"‘ E‘t‘) _g' dte o 12.92 4@ r*— &ec.

The total counter current of self-induction at any point is
dar 1 47
j'<_ —_ZJ> dt""‘ T+ l;” df +P‘ :7’: 1‘229 dﬁ 7' + &C~
from ¢=0 to t=o0

When t=0, p=0, . (), =P (&) =0 &
P dT /d°T
When i=o, p= P <EE) =0, (W)w—_-o, &e.

p 23 2
5‘ f 2r<——p>¢d1 dt= *T 43 : L ﬂ +ﬁ§" 12—;2*‘3 %Er“-k &e.

from t=0 to = .

| . dT &7
‘When ¢=0, p=0 throughout the section, .- ( dt) =P, (Zit_z> =0, &e.
0

. 2
When =<0, p=0 throughout . . . . .- (%) =0, (%) =0, &c.

Also if [ be the length of the wire, and R its resistance,

R=;

and if C be the current when established in the wire, C= I;

The total counter current may be written

! 17 LC
gL, —T)—grgC=—"5 by { (35).
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Now if the current instead of being variable from the centre to the eircumference of
the section of the wire had been the same throughout, the value of F would have been

7.2
F_—_T+W<1_;g>,

where y is the current in the wire at any instant, and the total countercurrent would

have been
“fr 1 dF l 3 1 /C
yo f ¢ @ rrdr=g (L. —T)—3pgC=—g= sy.

L=L'—1ul,
or the value of L which must be used in calculating the self-induction of a wire for
variable currents is less than that which is deduced from the supposition of the current
being constant throughout the section of the wire by }ul, where 7 is the length of the
wire, and w is the coefficient of magnetic induction for the substance of the wire.
(116) The dimensions of the coil used by the Committee of the British Association
in their experiments at King’s College in 1864 were as follows :—

Hence

metre.
Mean radius . . . . . . . =a='15819%4
Depth of each coil . . . . . =b6="01608
Breadth of each coil . . . . =¢="01841
Distance between the coils. . . =-02010
Number of windings . . . . n=313
Diameter of wire . . . . . =00126

The value of L derived from the first term of the expression is 437440 metres.
The correction depending on the radius not being infinitely great compared with the
section of the coil as found from the second term is —7345 metres.
The correction depending on the diameter of the wire is )

per unit oflength . . . . . . . . . . . . . . f+ 44997
Correction of eight neighbouring wires. . . . . . . . 40236
For sixteen wires nexttothese . . . . . . . . . . 0008
Correction for variation of current in different parts of section  — 25600
Total correction per unit of length . . . . . . . . . 22437
Length . . . . . . . . . . . . . . . . . . 311236 metres.
Sum of corrections of thiskind . . . . . . . . . . 70 '
Final value of L by calculation . . . . . . . . . . 4301656

This value of L was employed in reducing the observations, according to the method
explained in the Report of the Committee*. The correction depending on L varies
as the square of the velocity. The results of sixteen experiments to which this correc-
tion had been applied, and in which the velocity varied from 100 revolutions in
seventeen seconds to 100 in seventy-seven seconds, were compared by the method of

# British Association Reports, 1863, p. 169.



612 PROFESSOR OLERK MAXWELL ON THE ELECTROMAGNETIC FIELD.

least squares to determine what further correction depending on the square of the
velocity should be applied to make the outstanding errors a minimum.

The result of this examination showed that the calculated value of I should be
multiplied by 1-0618 to obtain the value of L, which would give the most consistent
results. :

We have therefore L by calculation . . . .« . . . . 430165 metres.

Probable value of L by method of least squares . . . . . . 456748

Result of rough experiment with the Electric Balance (see § 46) 410000

3%

29

The value of L calculated from the dimensions of the coil is probably much more
accurate than either of the other determinations.



