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Abstract 

Explicit solutions are found for the viscous version of the model vorticity equation recently 
proposed by P. Constantin, P. D. Lax, and A. Majda: 

w, = H ( w ) w  + YW,+, 

where H ( w )  is the Hilbert transform of w ,  and u is a positive constant. Various properties of these 
solutions, including the fact that they blow up after a finite time, are discussed. 

1. Introduction 

The equation 

(1) w, = H ( w ) w ,  

where H ( w )  is the Hilbert transform of w, has recently been proposed by 
P. Constantin, P. D. Lax, and A. Majda [2] as a simple model for the vorticity 
equation of three-dimensional inviscid incompressible fluid flow, which can be 
written as (see [2]) 

D 
Dt -w  = D ( w ) w ,  

where D ( * )  is a certain strongly singular integral operator and D/Dt  is the 
convective derivative. See [2] for a discussion of the analogies between (1) and (2) 
and for the explicit solution of (1). 

For viscous flow the vorticity equation (2) is modified to 

(3) 

which suggests 

(4) wr = H (  w ) w  + vwxx 

as the viscous model vorticity equation. In this paper I present some explicit 
solutions of (4) that blow up in finite time. Various properties of these solutions, 
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some interesting in their own right and some relating to the usefulness of (4) as a 
model, will be discussed in Section 4. 

2. Complexification 

The Hilbert transform H is defined by 

One of the insights of [2], in slightly different notation than theirs, is that the 
fact that H(f) is the unique function such that Q = f + i H ( f )  is analytic in the 
upper half-plane and vanishes at infinity implies that (1) is the restriction to 
the real axis of the real part of 

because H( w )  w = A%[ - ti( w + zH( w ) )  2 ] .  Since 

w’ + i H ( w ) ’  = [ Q ( Z ) ~ A , , ~ - O ] ’  = [ Q ’ ( z ) ] ~ . I c I ~ - o  = w’ + i H ( w ’ ) ,  

(4) is the restriction of 

(7) Q, = - t i e 2  + vQ”; 

that is, if Q satisfies (7) and is analytic in the upper half-plane and vanishes at 
infinity, then 9% Q ( z )  satisfies (4). 

3. Explicit Solutions 

It is easy to check that (7) has the stationary solutions 

if z0 is chosen to lie in the lower half-plane, this yields a stationary solution of 
(4). Trying to determine how two such “polar solutions” interact (cf. [l], [4]) leads 
one to look for a solution of the form 

The poles of order one are included because ( z  - z l ) -*  (z - z 2 ) - 2  has such 
terms in its partial-fraction decomposition. Since it turns out that the solutions 
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have 

(10) C ( t )  = - A ( t ) ,  D ( t )  = B ( t ) ,  

it will simplify the ensuing algebra to assume this from the outset. 
Substituting (9) into (7), using partial fractions to express the result in terms 

of the form f( t ) / (  z - zj)P, equating coefficients of like terms on the two sides of 
the equation, and simplifying the results yields the following five equations for 
the four unknowns A, B, z1 + z2, z1 - z2: 

1 12uA + 1Uu2i - + 2 +  - 2 = o ,  z1 - z2 (Zl - z2) 

(1W A ,  = $iA2/(zl - z 2 ) .  

Since (llc, e) implies [A(z, - z,)], = 0 in agreement with the solution 

i -A(z, - z2) = 12(6 f 6) K ,  (12) V 

of (llb), the overdetermined set of equations (lla-e) is consistent, and so 
solutions of the form (9) do exist. Writing (12) as iA = K,u/ (z l  - z2), substitut- 
ing this into (llc), and solving the resulting ordinary diflerential equation one 
obtains 

Taking the square root of (13) and combining it with the solution 

of ( l ld)  yields 

(15a) 

(15b) 

zl(t) = $[zl(0) + z2(0)  -t ([zl(0) - z2(0)I2 - $ K , v t ) l ” ] ,  

z2(t) = $[zl(0) + z2(0) - ([zl(0) - z2(O)I2 - $ K * u ~ ) ~ ” ] .  
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Finally, plugging (15) into (12) one obtains 

A ( t )  = - K , v i / ( [ z , ( O )  - z2(0)]’  - ~ K , V ~ ) ” ~ .  

Thus z,(O), z2(0), and the sign in K ,  can be chosen arbitrarily, and then (lo), 
(lla), (15a, b), (16) determine the solution (9) to equation (7). If z,(O) and z2(0) 
both lie in the lower half-plane, then the real part of (9) on the real axis yields a 
solution to (4) for as long as z l ( t )  and z 2 ( t )  both remain in the lower half-plane. 
Denote this solution by w( t ,  x ,  v,  z,(O), z2(0),  *). 

4. Properties of the Solutions 

LEMMA 1. For all z,(O) and z2(0)  in the lower half-plane and either choice of 
sign. the solution w ( t ,  x ,  v ,  z,(O), z2(0), k) of (4) blows up infinite time. 

Proof: Let z j ( t )  = x j ( t )  + iyj(t) ,  j = 1, 2. By (14), y l ( t )  + y 2 ( t )  = 
constant, and in view of the real part of (13), Iyl( t )  - y2( t ) l  -, 00 as t + 00; 

thus one of the poles z j ( t )  must eventually cross the real axis, at which time the 
solution blows up. 

Let T * ( v ,  z,(O), z2 (0 ) ,  *) be the blow-up time of the solution 
w ( t ,  x ,  Y, z,(O), z2(0), k), and define, as in [2], the “velocity” u corresponding to 
the “ vorticity” w by 

U ( X )  = JX w ( s )  ds. 
-00  

For the inviscid equation (1) the velocity typically remains bounded in L* when 
the vorticity blows up (see [2]), but this is no longer true in the viscous case. 

LEMMA 2. 
(i) for all s, u ( t )  E Ws*P(R)  for t E [0, T * ) ,  1 < p 

(ii) lim,pT*lpllLp = l i m z p T ~ ~ ~ w ~ ~ L p  = 00, 1 < p 5 00. 

For all solutions w ( t ,  x ,  v ,  z,(O), z2(0), +) the following holds: 
00; 

Proof: (i) Using (lo), (lla), (12), one can write (9) as 

12vi - 12vi - K , v i  
W ( X )  + i [ ~ ( w ) ] ( x )  = - 2 2 ’  ( x  - Z A X  - z2 )  ( x  - 2,) ( x  - z 2 )  

It is now easy to verify that w and all of its derivatives are in LP, 1 5 p 5 00, as 
long as zI and z 2  stay away from the real axis. Also, jFmw = 0 so that 
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u(  + ao) = 0 and u = O(l/lxu as 1x1 00, and hence u E LP, 1 < p 5 00. Part 
(ii) follows from (18) on taking the limit 9&n zj -, 0, j = 1 or 2. 

Equation (4) is thus a less successful qualitative model than (l), since if any 
solutions of the Navier-Stokes equations with initial data in H 2 ,  say, do blow up, 
they do so in such a way that the velocity remains bounded in L'. 

On the other hand, equation (4), like (1) (see [2]), does have the appropriate 
scale invariance. That is, if w ( t ,  x) satisfies (4), then X1+uw(X1"ut, X'x) satisfies 
(4) with v replaced by Xu-'v, and this is the same scaling law as for w in (3). Our 
set of explicit solutions is also scale invariant, i.e., 

P+aw(Xl+ut,  A%, P - l v ,  Z,(O), Z'(O), *) = w ( t ,  x, v, X-"z,(O), X-"z,(O), *). 

Taking a = - 1 and X = f( v) shows that 

and the only function this can converge to as v + 0 is zero, so the set of initial 
data for which the explicit solution is known is not large enough to examine this 
limit. 

Solutions of (4) with fixed v can, however, be compared with those of (1) with 
the same initial data. Let 7 * ( v ,  zl(0), z,(O), *) be the blow-up time of the 
solution of (1) with initial data wo(x)  = w(0, x, v, tl(0), z2(0), *). 

LEMMA 3. 

(ii) i f c  > .2042, then 

= 2(1 + c')'li(xl(0) - x,(0))12/v[K+(1 + c') - 24(1 - c2)];  

(iii) i f c  .c .219 in (ii), then 7 *  > T * .  

In other words, adding the diffusion sometimes makes the solution blow up 
sooner! 
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Proof: (i) At time T *, yl, say, is equal to 0. Solving the real and imaginary 
parts of (13) and (14) for the four unknowns x l ,  x 2 ,  y,  and t yields, in 
particular, the formula for T *. 

(ii) As shown in [2], 7*  = 2 / M ,  where M = m a x { [ [ H ( w ) ] ( x ) ] ~ ~ w o ( x )  = 0).  
By translational invariance we may assume that - x 2 ( 0 )  = xl(0) > 0. A straight- 
forward calculation from (18) shows that w o ( x )  = vy l (0 )x~(O)EPx ,  where P is 
positive and E is a quadratic expression in ( x / x l ( 0 ) ) 2  that is definite provided 
c > .20414 (rounded to 5 decimals). Then M = [H(w,)](O) and evaluating this 
from (18) yields the formula for 7* .  

(iii) In the case considered in (ii), 

The condition 7* > T* reduces to (1 - c2)/(1 + c 2 )  > K+/144, which holds if 
c c .21928 (rounded to 5 decimals). 

The phenomenon T *  > T* can be explained as follows: 
Suppose w o ( x I )  = 0 but not equal to 0, w 0 ( x 2 )  = 0, and [H(w, ) ] (x , )  > 

[ H( wO)]( x 2 )  > 0. The formula w( t, x ) = 4 wo( x)/[[2 - t [ H( w, )]( x)] + t w,”( x )] 
from [2], shows that the solution of (1) becomes large at the point x 1  at 
time t = 2 / [ H ( w o ) ] ( x l ) ,  but remains bounded until it blows up, in a neighbor- 
hood of x 2 ,  at time t = 2 / [ H ( w o ) ] ( x 2 ) .  Although the solution of (4) in case (iii) 
also blows up at x 2  and not at x l ,  the large value of w at x 1  will diffuse towards 
x 2  and hasten the blow-up of the solution to (4). 

Two final remarks: First, equations (llc,e) for the motion of A and z1 - z2 
can be written as a Hamiltonian system, with the Hamiltonian given up to a 
constant factor by the left side of (llb). In fact, equation (4) can be written as an 
infinite-dimensional Hamiltonian system; the details will be presented elsewhere. 

Second, if instead of picking z,(O) and z2(0) in the lower half-plane we pick 
t2(0)  = zl(0)*, then Q(t ,  z) is pure imaginary on the real axis, and f = 
- +iQ(t ,  x )  is a solution of f ,  = f Z  + vf,, such that 

and 

In [3] solutions with these two properties were constructed for a class of 
equations including f, = l f l f  + vf,,. 

(i) the solution exists for t E [0, m) 

(ii) min,,,f(t) < 0 < maxXERf(t)  for all t. 

Acknowledgments. I thank Andy Majda for presenting the results from [2] 
and proposing the problem of how solutions of (4) behave to his seminar on 
incompressible fluid dynamics at Princeton University. I also thank Mike 
Weinstein for several helpful suggestions. 

The research for this paper was supported by the National Science Founda- 
tion postdoctoral fellowship # DMS84-14107. 



THE VISCOUS MODEL VORTICITY EQUATION 537 

Bibliography 

[l]  Chudnovsky, D. V., and Chudnovsky, G. V., Pole expansions of nonlinear partial differential 

[2] Constantin, P. ,  Lax, P. D., and Majda, A,, A simple one-dimensional modelfor the three-dimen- 

[3] Haraux, A., and Weissler, F. B., Nonuniqueness for a semilinear initial value problem, Indiana U. 

[4] Kruskal, M. D., The KdV equation and evolution equations, in Nonlinea; Wave Motion, A. Newell 

equations, I1 Nuovo Cimento, 40B, 1977, pp. 339-353. 

sional vorticity equation, Commun. Pure Appl. Math., 38, 1985, pp. 715-724. 

Math. J. 31, 1982, pp. 167-189. 

ed., American Mathematical Society, Providence, 1974. 

Received July, 1985. 




