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Introduction

Two Parts to talk

I. How statisticians are involved in programs at Fields
1. Thematic programs
2. DLSS
3. NPCDS

II. How mathematicians and statisticians look at the same
problem with different tools: turbulence

1. Statistical (Kolmogorov)
2. Deterministic: modelling (Burgers)
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Thematic Programs
Visitors Workshops Lecture Series Graduate Courses

Related Activities

Probability and Its Applications August 1998 - June 1999
Organizing Committee D. Dawson (Fields), N. Madras
(York), T. Salisbury (York), G. Slade (McMaster)

Causal Interpretation and Identification of Conditional
Independence Structures September to November 1999
Organizing Committee: Hélène Massam (University of
Virginia), David Tritchler (University of Toronto)

Fall 2005 Renormalization and Universality in
Mathematics and Mathematical Physics
Course: Percolation, Brownian motion, and SLE.
Workshop, September 20-24, 2005: Percolation, SLE,
and related topics. Organizing Committee: Ilia Binder
(Toronto), Steffen Rohde (University of Washington)
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DLSS

Distinguished Lecture Series in Statistical Science
(by nomination)

Week of November 7-11, 2005
Brad Efron, Stanford

http://www.fields.utoronto.ca/programs/scientific/statistical_lectures/
Previous Lectures:

Sir David Cox

Don Dawson

Donald Fraser

Peter G. Hall
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NPCDS
National Program on Complex Data Structures

Joint venture of SSC & 3 institutes

National network in the statistical sciences

The broad goal is to foster nationally coordinated projects
with substantial interactions with the large community of
scientists involved in analysis of complex data sets, and to
establish a framework for national networking of research
activities in the statistical community.

http://www.fields.utoronto.ca/programs/scientific/NPCDS/

application of statistical methods for the analysis of data

complex survey sample designs

longitudinal biological, epidemiological, medical studies
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NPCDS
Jamie Stafford (University of Toronto),

Director of the National Program
David Bellhouse (University of Western Ontario)
Richard Cook (University of Waterloo)
Paul Gustafson (UBC)
Mike Hidiroglou (Statistics Canada)
Nancy Reid (University of Toronto)
Randy Sitter (Simon Fraser University)
Ed Susko (Dalhousie University)
Louis-Paul Rivest (Université Laval).
Goal: establish 4-6 national projects

form partnerships

increase influence of statistical sciences on research
agendas
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NPCDS

Areas

Data w complex structure

Surveys w complex design

Biology, Medicine, Industry, Environment, etc

Data that is Longitudinal, Hierarchical, Correlated,
Multi-level

Emerging data types
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NPCDS
Nine workshops run or planned; most recent –

October 13-15, 2005
Workshop on Current Issues in the Analysis of
Incomplete Longitudinal Data; to be held at the Fields
Institute

August 17-19, 2005
Workshop on Spatial/Temporal Modelling for Marine
Ecological Systems; to be held at Dalhousie University

May 24-28, 2005
Workshop on Forest Fires and Point Processes; held at
the Fields Institute

May 4-6, 2005
Workshop on Latent Variable Models and Survey Data for
Social Sciences Research; held at Centre de recherches
mathématiques, Montréal
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NPCDS

Current projects underway

Statistical Methods for Complex Survey Data (w MITACS)
(Bellhouse, UWO)

Statistical Genomics (Rafal Kustra, Toronto)
proposal came from Canadian Consortium on Statistical
Genomics

Computer Experiments for Complex Systems (Bingham,
SFU)

Data Mining Methodology and Applications (Chipman,
Acadia)

Operation: start with workshop, formulate project (60K/yr),
with faculty, PDFs, partners (industry, gov’t, medicine)
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Turbulence
Navier-Stokes Equations

∂tu + u · ∇u = −∇p + ν∆u

∇ · u = 0

ν = viscosity, small
Re = LV

ν = Reynolds number, large

Equations correct

No existence theory

No prediction of patterns

Problems:
– formation of eddies
– vortex stretching,
– typical scales
– energy cascade
(transfer of energy between scales)

Van Dyke, Lesieur
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Background

Routes to turbulence (instability of laminar flow)

Hydrodynamic stability or fully developed turbulence

Boundary layer or homogeneous

Stationary, isotropic

Practical models (K − ε)

Start by defining mean flow and fluctuations

mean flow uniform, steady, or even trivial

Fluctuations modelled statistically or deterministically
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Statistical Theory of Turbulence
Why a statistical theory?

Experimental results are not reproducible in detail;
statistical properties are reproducible

Energy cascade, correlations etc, are statistical
properties

Modern theory: ‘chaotic’ behaviour can be deterministic

Ergodic theorem: time averages = ensemble averages,
so experiments (time traces or spatial correlations) are
statements about random variable (initial condition) and
stochastic process (time-dependent solution)

Interesting questions about discrepancies, and theory of
‘large deviations’

Velocity u(t,x, ω) is stochastic process with u(0,x, ω) = ω
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The Spectrum
Kinetic energy E =

1

2

∫

u
2 dx

Energy dissipation
dE

dt
= −

1

Re

∫

(∇u)2 dx (from equation)

Fourier transform (or series): û(k, t); energy E(k), k = |k|;

E =

∫

E(k) dk k =
1

L
= spatial scale of “eddy”

Energy spectrum is E(k)

Dissipation spectrum (from Ė) is
1

Re
k2E(k)

E(k) k2 E(k)

k
k1

k2

“Inertial range” between k1

and k2 (stationary behaviour)
Dimensional considerations:

E(k) = Ck−5/3
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Correlations

Velocity correlation

〈ui(t,x)uj(t
′,x′)〉 = Γij(t − t′,x − x

′)

for stationary, homogeneous turbulence
General properties:

E(k) = Ck−p

implies
〈|ui(t,x) − uj(t,x

′)|2〉 = C|x− x
′|p−1

Note:

valid only in inertial range (convergence)

experiments have p − 1 = 2/3 in inertial range
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Experimental Results

Two basic experimental results

1. Two-thirds law. 〈|ui(t,x) − uj(t,x
′)|2〉 = C`2/3 where

|x − x
′| = `.

2. Energy dissipation dE/dt as a function of Reynolds
number approaches a positive, finite limit as Re → ∞.

1941: Kolmogorov deduced these from the Navier-Stokes
equation.

Theory now used to develop further properties of
turbulence, such as intermittency (current work of Chorin,
Frisch, etc)
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Kolmogorov’s 1941 Theory
Hypotheses:

1. Symmetries of NSE in statistical sense as Re → ∞.

2. Flow is self-similar (small scales, large Re): ∃! h

δu(x, λr) = λhδu(x, r)

where δu(x, r) = u(x + r) − u(x)
(Called universality by Kolmogorov)

3. Finite, nonzero mean energy dissipation rate ε.

Theorem (4/5 law): In the limit Re → ∞,

〈(δu(x, r)3〉 = −
4

5
ε|r|

Proof: NSE + (1), (2) and (3).
Thm ⇒ h = 1/3, and h = 1/3 ⇒ p = 5/3.

Presidential Invited Address, SSC Annual Meeting, June 13, 2005 – p.16/24



Burgers’ Model

Infinite channel (x) width 1 (y):

dU

dt
= P − νU −

∫ 1

0
v2 dy

∂v

∂t
= Uv + ν

∂2v

∂y2
− 2v

∂v

∂y

P

U
v

1

x

y

U(t) = laminar component P = pressure drop
v(y, t) = turbulent fluctuation ν = viscosity

Uv and
∫

v2 represent transfer of energy from laminar to
turbulent modes & balance each other

−2v ∂v
∂y is internal transfer among turbulent modes

E(t) = 1
2U2 + 1

2

∫ 1
0 v2 dy

dE
dt = PU − ν

(

U2 +
∫

(∂v
∂y )2dy

)
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Properties of Model
U̇ = P − νU −

∫

v2, v̇ = Uv + νvyy − (v2)y

1. Stability dependence of laminar flow on ν or Re

2. Energy transfer between modes of turbulent component

3. Coherent structures

Purpose of Model

show three properties may result from balance of viscous
damping and quadratic nonlinearities

study dependence on parameters ν and P

Leaves out

3-D (even 2-D) effects

vortices and vortex-stretching

transition, main sequence, chaos
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Loss of Stability

U̇ = P − νU −
∫

v2, v̇ = Uv + νvyy − (v2)y
Laminar solution U = P

ν , v ≡ 0

Bifurcation to stationary soln, U̇ = 0 = v̇; v = νϕ, λ = P/ν2

ϕ′′ − 2ϕϕ′ + ϕ[λ −
∫

ϕ2] = 0, ϕ(0) = 0 = ϕ(1)

Linearize equation ϕ′′ + λϕ = 0, λn = n2π2, n = 1, 2, . . .
Wirtinger’s inequality ⇒ [

∫

ϕ2][(π2 − λ) +
∫

ϕ2] ≤ 0

Liapunov function E(t) = 1
2(U − P

ν )2 − 1
2

∫

v2

Ė(t) ≤ −ν(U − P
ν )2 − ν(π2 − λ)

∫

v2 < 0

Stable if P/ν2 < π, supercritical bifurcation at nπ
||φ||

9π2 16π2π2 4π2

λ
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Partition of Energy

Analysis of Fourier series: modes, transfer and decay

v =

∞
∑

1

ξn sin nπy, U̇ = P − νU −
1

2

∞
∑

1

ξ2
n

ξ̇n = (U − νn2π2)ξn + nπ{quadratic terms}

Decay if π2n2 > P
ν2

Exact solns for U const,
v = U

2

(

y − 1 + tanh U(1−y)
2ν

)

ξn = U/(πn) for n � Re,
ξn = 2πνe−π2nν/U for n > Re,
• equipartition of energy dissi-
pation in finite number of modes y

v

0 1
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Burgers’ Equation
Infinite (in y) domain, U = 0, vt + 2vvy = νvyy

Decay to N -waves:

y y
B/t 1/2

A/t 1/2 Ct1/2

v0
v(y,t)

A = min
y

∫ y

−∞
v0(η) dη, B = max

y

∫ y

−∞
v0(η) dη

Momentum M =
∫ ∞
−∞ v dy = const, Energy = O

(

M3/2

√
t

)

Correlation: J(r) = lim
T→∞

∫ T

−T
v(y)v(y + r) dy

Find R(r) =
J(r)

J(0)
= 1 − Cr2/3 and E(k) = Ck−5/3
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The Mathematics of Burgers’ Equation
vt + 2vvy = νvyy, small ν

ν = 0: conservation law
∂u

∂t
+

∂

∂x

(

u2

2

)

= 0

IC u(x, 0) = u0(x)
Method of characteristics:
on

dx

dt
= u

d

dt
u(x(t), t) = uux + ut = 0

Thm: decay to N-waves
Results for ν > 0

x

t

0t=x0

x0

x−u
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Conclusions

Simple model shows energy relations between modes

Formation of structures with particular size (determined
from IC)

Current theories are statistical

Theory of Burgers’ equation has developed

Conjecture on transition: successive loss of stable modes
through repeated branching (bifurcation cascade)
replaced in 1970’s when Ruelle and Takens produced
example of a (finite-dimensional) system that became
chaotic after 2 bifurcations (no cascade)
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