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Summary 

 

Let H and M denote the Hilbert and the Mellin transform operators. For the Gaussian 
function )(xf  it holds 
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The corresponding entire Zeta function is given by ([EdH] 1.8) 
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The central idea is to replace  
 

    )()()()( sxfMsxfxM H  

 

with   )(:)( xfHxfH  , 0)0(ˆ Hf  and 

  )
2

tan()
2

()(),
2

3
,1(2)()( 2

1

2

11 s
s

sxFxMsxfM

s

H


 










   . 

 

This enables the definition of an alternative entire Zeta function in the form (§2) 
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with same zeros as )(s . It enables a modified formula for )(xJ  ([EdH] 1.13 ff.). 
  

The fractional part function 
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is linked to the Zeta function by ([TiE] (2.1.5), lemma 2.1) 
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The Hilbert transform of the fractional part function is given by 
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Applying the idea of above leads to the replacement (§3) 
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with same zeros as )1( s . 
 

The integral function representations of the Zeta functions above based on the Hilbert 

transforms of the Gaussian and the fractional part functions enable all “convolution” 

related Polya-RH criteria ([CaD]), e.g. the Hilbert-Polya conjecture, Polya polynomial 

criteria ([EdH] 12.5), as the Hilbert transform is defined by a singular (convolution) 

integral operator.  
 

The #

1H  Hilbert space is the same as applied in [BaB] to reformulate the Beurling-

Nyman criterion. The non-vanishing constant Fourier term of the series causes same 

“self-adjoint integral operator” building issue than in case of the Gaussian function.  
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The related entire Riemann function enables the definition of correspondingly defined 

alternative Keiper-Li coefficients ([LaG]). It is enabled by the zeros of the concerned 

Kummer functions and the related zeros of the Hilbert transformed Hermite polynomials. 

The challenging part to verify the RH (prime number counting error function) criterion 
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is the asymptotical behavior of the exponential (integral) function ([EdH] 1.14 ff.)   
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given by  Ramanujan’s asymptotic power series ([BeB] IV)   
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The non-normalized (exponential) error function is given by ([AbM] 13.6) 
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Its relationship to the Kummer functions is given by ([AbM] 7.15) 
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The asymptotics of the corresponding non-normalized  )(xerfc  function is given by 

(lemma D4, [OlF] chapter 3, 1.1; chapter 12 1.1, ([AbM] 7.1.23) 
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It further holds ([LeN] 9.13) 
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The above relationships provide the linkage of the concerned Kummer functions with the 

RH ( )(xli  function) convergence criterion. 

 

We further note the following properties: 
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               has the value 2/  as 0x , 0x  ([BeB] IV, (10.2)) 
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We also note the following properties of the concerned hypergeometric functions ([AbM] 

p.507, [OlF] p. 44/67).  
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They are related to the error function and the Dawson function by 
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The corresponding Mellin transforms (valid in the critical stripe) are given by 
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n fulfilling ([SeA], [SeA1], Note O5/38/39) 
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The analog approach based on the fractional part function 

 

There is an analog approach to the Gaussian function above with respect to the fractional 
part function )(x  and its relationship to the  function by the equality 
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We note that the function   )()( xHxH    has mean value zero, i.e the norm below is defined 

and the prerequisites of the theorems in Note S36 are fulfilled.  
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This generalized Fourier series representation of )cot( x  is Cesàro summable (mean of 

order one) ([ZyA] VI-3, VII-1). It leads to a  function representation in the form 
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For functions with vanishing constant Fourier term (i.e. with zero mean, where the 

Hilbert transform defines a unitary mapping, see also Note S36) the norm of the 
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The distributional Hilbert spaces 
2l  ( 1,2/1,0 ) play a key role  

 

- in [BrK3] in order to define an alternative new ground state energy for the 

harmonic quantum oscillator (see also Note O52 for the Weyl-berry conjecture) 

 

- in [BrK1] providing a global, unique solution of the non-stationary, non-linear 3D-

Navier-Stokes equations 

 

- in [BaB] (see also [BrK2]) where a functional analysis reformulation of the Nyman 

criterion is provided (see below). 
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The Dirichlet series (see also Notes S44/45/47) on the critical line 
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From Remark 2.8 below we recall the identity 
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The analog approach related to the von Mangoldt density function )(x  

 
 

We propose the Landau density function )(x  alternatively to the Riemann density 

function )(xJ and the von Mangoldt function )(x . They are related by 
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The Riemann and von Mangoldt densities are related to the Zeta function by (see also 
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It holds ([LaE] §50, [ScW] IV, ([PrK] III §3, Note S39) 
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The Landau density function )(x  is linked to the Zeta function by ([OsH] Bd. 1, 8, [KoJ], 

Note O51) 
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The proof of (*) applies the fundamental identity ([LaE] §48, [ScW] IV, ([PrK] III §6) 
 













10

1

0

log

2

1
2

2
y

yy

s

ds

s

y

i

i

i

s



  . 

 

With respect to corresponding convergent Dirchlet series representation we refer to [LaE] 

Bd. 2, theorem 51, Note S47. 

 

Remark: We note the “regularity” relationship between the above three density functions 

(in a weak “Hilbert scale” framework) given by  
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Remark ([OsH] Bd. I, §8, Note O51): As )()( xexT   is monotone increasing, and 
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ss

   

 

exists, this holds also for  

x

xT

x

)(
lim



 

and both limits are identical, i.e. 
 

  )2log(
log

)(
lim

log

)(log
lim

)(
lim)(lim

0





  x

x

x

xT

x

xT
ssf

xxxs

   . 

 

 

Remark: Von Mangoldt proved the Euler conjecture, i.e. that ([PrK] III, §5) 
 

0...
6

1

5

1

3

1

2

1
1

)(

1




n n

n   . 

 

The convergence of this series is a consequence of the PNT.  

 

The convergence of ([PrK] III, §5) 
 

                                           (**)   
1

log)(

1




n n

nn    i.e. 
1)

1
log(

)(

1




 nn

n

n

  

 

was proven by E. Landau ([LaE] §150). It cannot be derived from the PNT. In this 

context we recall the corresponding comment from E. Landau concerning his proof ([LaE] 

§159) 
 

“… (it) goes deeper than the prime number theorem ...” . 

 

The Landau theorem (**) can be represented in the following form 
 

   














 

 dtitvituvuba
nn

n
n

nn

n

)2/1()2/1(
2

1
lim:,:

1
)

1
log()(

1
1 2/1

11

 

 

i.e. the  2/1H  inner product of the related functions exists,  

i.e.  







1

2/1

)(
:)

2

1
(

n
s

H
n

n
itu

    ,  
2/1

1

)/1log(
:)

2

1
( 





  H
n

n
itv

n
s

. 

 

 
From [PrK] III, §5, we recall for 1  
 







1

)(

)(

1

n
sn

n

s





    ,    








1

11)(

n
snns

s  

i.e. 




















 







 11

11)(

)(

)(

n
s

n
s nnn

n

ss

s 



  . 

 

Remark: We note that for 
 

)(log
1

:)(log
~

n

x

n
xT

xn




   ,  1x  

 

the inverse mapping is given by ([ScW] (3.8)) 
 

)(log
)(

)(log
~

:)( 1

n

x

n

n
xTx

xn




 


  . 
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With 

)log()log()
1

(log)log(
n

y

n

x

nn

xy
  

it follows  
)()(log)()( yxnnxy    

)()(1)( yxxy   . 
 

Remark: The asymptotics of the Riemann, the von Mangoldt and the Landau functions 

are given by 
 

x

x

n

n
xJ

xn loglog

)(
)( 






  , xnx
xn




)()(   ,  x
n

x
nx

xn




)log()()(  . 

 
The asymptotics xx )(  leads to the PNT, whereby the convergence of the summand  








x  

 

requires special attention ([EdH] 4.1, [LaE] §89), i.e. 
 

xx )(     iff     
0lim

1











x

x

  . 

 

Remark: The relative error in )()( xLix   goes to zero faster than  2/1x  as x   is 

equivalent to the RH ([EdH] 5.1). 

 

Remark: In [ViJ] a quick distributional way to the Prime Number Theorem (PNT) is 

provided. In this context we note that the regularity of the applied Dirac function is given 

by 
 

    2/1, HH         

where 

  )(glo
1

)(
n

x

x
xH   

and (in a distributional sense) 
 





xn

nxnx )()()(     ,    



xn

nxHnx )()()(  . 

 

For the relationship to the )cot( x  function we refer to [EsR] example 78, appendix 

“Cardinal series”). 
 

Putting )2log()0(/)0(  c  one gets from the PNT 
 

1
)(


x

x      resp.     
xcx

x

xc

x

xc

xx

cx

x

log

)(

/1

)(

/1

/)()(














   

where 

)1(
)2(

12
)

1
1log(

2

1
log)( 2

222












   n

n

x
n

n

x

x
xcxx

  .  

 

Proposal: The above provides alternatives in the form 
 

            
xcx

x

cx

x

x

x

x

x
x

log

)()()(log
)(










                      

cx

x
x

x

x
xcx

x









1

2

2
1

log

)(

)
1

1log(
2

1
log

)(   . 

resp.                      
x

x

x

x

x

x
x

log

)(

log

)(
)(


 

                      

                                                                      

x

x

x

x

x

xx

x

x
xlix










1log

)(

)
)2log(1

1log
(

log

1
1

1

log

)(
)((

2

* 





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The Riemann Hypothesis states that  
 

0)( s     for all its    with 12/1   , 

i.e. 

)(

)(
,

)(

1

ss

s

s 





   

has no poles in case of  12/1  .  

 

We note the following equivalent critera for the RH: 
 

i) )log()()( xxOxLix     
 

ii) )()()( 2/1   xOxLix   , 0      ,    (
   2/1

*

2/1( HH ) 
 

iii) )log()( 2 xxOxx      
 

iv) The series   s

n

nn 





1

)(    is convergent for  2/1)Re( s  and 

                                                                






1

)(

)(

1

n
sn

n

s





 . 

 

Remarks:  iv) states that 

)(

1

s

 

 

is holomorphic for 2/1)Re( s ;  from ii) one can derive that  
 

ss

s







1

1

)(

)(



  

 

is holomorphic for 2/1)Re( s ;  von Mangoldt explicit formula regarding  )(x  given by 
 
 

 





















 c

x

x
x

Nx

Nx

xx

x

x )
1

1log(
2

1

)(
2

1
)

2

1
1(

)(

:)(
20

    ,   
84.1)2log(

)0(

)0(
: 


 



c

 . 

 
 

The proof that iii) is valid in case the RH is true, is based on the estimate 
 





T T

xx
O

x
xx








,

2

)
log

()(
 for xT 2 . 

 

Putting xT   with 4x  this leads to 
 





x T

xx
OxOxx

 


,

2

)
log

()
1

()(
 . 

Because of  

)(log)1()
log

(
1 2

,,

xOO
n

n
O

xx

 
  

 

one gets 

)log()( 2 xxOxx  . 

 

Proposal: Combining von Mangoldt’s formula with the Landau function leads to 
 

)1(
)2(

12)1(
)log1(2)()( 2

220 















   n

n

x
n

nx
xcxxx

 

)2log(1
)2(

12)1(
log)()( 2

220 















   n

n

x
n

nx
xcxx

 

 

which indicates a replacement in the form 
 

x

x
x

log

)(
)(


 

              
)()(

)()(
)(

0

0

xx

xx
x











    . 
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We summaries the related H norm estimates on the critical line 2/1 : 
 








1

2

2/1
)1(

1

n n
     ,    



















 

1

1
2

1
2

2

1

)(
)2(

1

nn n

n

n




 . 

 

From 







1

)(

)(

1

n
sn

n

s





    ,    









1

11)(

n
snns

s  

one gets 
 































1
2/1

)(
1,

)(

1

n n

n

s





 

 































1
2/1

log
)(

)(,
)(

1

n

n
n

n
sv

s





 

 























 
 






1
2

2/1

)()(
,

)(

1

n n

n

s

s

s





 . 

 

 

 

Remark: A related 1

2l  identity is given by ([ApT] 3.12)  
 

)
log

()(log
6log)()(

2
1

22 x

x
Ox

n

nn

n

n

nxn









 . 

 

 

Remark: The following identities are valid (Note S41)  
 

i) 
s

np n

ns

p
s nn

n
p

np
s

1

log

)(1
)

1
1log()(log 1 


  

  ([PrK] III §3) 

ii) 
 







p n

ns

p
s

pp
p

p

s

s
)(log

1

log

)(

)(



   ([PrK] III §3) 

iii) 
  















 



n s

c

nsnssss

s

s

s

)2(2

1

)(

1

1

1

)(

)()(glo   ([PrK] VII §2, [EdH] 10.6) 

iv) 
 





























 


 



1
222

2 )2(

1

)(

1

)1(

1
))(log()()(glo

nn

s

nsss
nnnss

 

 

                and therefore  

  
 




 







2

2

1
2200

1

24
1

4

11
1)(glolim

)(glo
lim

n
ss n

s
s

s . 

 

 
Remark:As ss /)(glo   has no pole at 0s its poles are identical to the zeros of the Zeta 

function. 

 

 

Remark [LuB]: )(log)(glo tOs    for    2/1 , 0  
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Remark: 
 

i) 
nd d

n
dn log)()(    ([PrK] III §6) 

ii) 





xn n

n
xJ

log

)(
)(   ,  








ia

ia

s

s

ds
xsxJ )(log)( 

  ([PrK] VII §2) 

iii) 



xn

nx )()(   ,  












 


ia

ia

s

s

ds
x

s

s
x

)(

)(
)(






 

iv) 
  











n

n

n

xx
xx )2log(

2
)(

2    , 

 

where   

 

1  is divergent , 
 





1

1  is convergent 

v) 
  

















n

nx

tconsx
n

xx
x

t

dt
tx tanlog

)0(

)0(

)2(
)()(

2

2

2

0

  ([EdH] 4.1) 

 

vi) 
)(

)(glo

2

1
)log()(

11

1

log

2

2

x

i

i

s

xn

xeOx
s

ds
x

s

s

in

x
n 












 
 





 ([LaE] Bd.1, XII, §51) 

 

Remark: The formula (*) motivates the definition of correspondingly defined alternative 

Keiper-Li coefficients ([LaG]). From [VoA] we recall the sufficient and necessary condition 

for the Riemann Hypothesis (see also Riemann’s estimate of )(TN , [EdH] 6.7, 9.8): 
 









 )1(

2
log

22

2




 NNN  . 
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Additive number theory, Goldbach conjecture and the circle method 

 
Additive number theory is the study of sums of h-fold hA  of a set A  of integers for 2h . 

Instead of analyzing the arithmetic nature of corresponding sets/sequences of integers 

one considers metric structures of corresponding sums of sets of integers. The 

Schnirelmann-Goldbach theorem states that every integer greater than 1 can be 

represented as a sum of a finite number of primes (NaM), i.e. the set of primes builds a 

basis of finite order h of the set of integer numbers. The Schnirelman number is the 

number of primes which one needs maximal to build this representation. 
 

The natural density of a set  
 NnA n  ...,...: 21   

 

is defined by                                   

n
n

n
Ad


 lim)(  

 

if the limit exits. Obviously the density of the set of integers is 1. As 
 

0
log

lim 
 n

n

n

 

 

the “asymptotic density” of the set of prime numbers is 0 . Any natural number 1n  

either is a prime number or a unique (up to permutation of factors) product 
 

kn

k

nn
pppn ...21

21  
 

which is called the canonical representation of n . Thus the prime numbers form a 

multiplicative basis for the set of natural numbers. In this context we refer to the above 

densities 







1

)log()()(
n n

x
nx     ,   

)(log
)(

)(
n

x

n

n
x

xn








 

 

and its related multiplicative” properties 
 

 nnyxxy log)()()()(     ,   1)()()(  yxxy  . 

 

The binary Goldbach problem states that every even integer greater 2 can be 

represented as the sum of two primes. The tertiary Goldbach conjecture is about a 

Schnirelman number 3. The theorem from Ramaré gives a proof for a Schnirelman 

number 7. 
 
 

The metric in a Hilbert space is defined by its norm. The negative result of [DiG] 

concerning asymptotic basis of second order in case of 0C  metric indicates an 

alternative metric in form of a  

2l norm with 0 .  
 

Let   ,...,...,: 21 knnnA   denote a set of integers and x  denote the variable of the generating 

function )(xF  of a number theoretical function ).(nf  Then  
 

i) 
sex   is a one-to-one mapping to (in case of A0 , generalized) Dirichlet 

sums and therefore a one-to-one mapping to the Hilbert scale H  

ii) 
isex 2  is a one-to-one mapping to Weyl sums and therefore a one-to-one 

mapping to the Hilbert scale 


 Hl 2
. 
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The circle method (defined on the open unit disc, [RaH] IV) is applied to additive number 

theory questions (e.g. [ErP1] [LaE] [LuB] [PrK]). The key conceptual element of the 

circle method is the definition of the partition number function based on prime number 

generation power series in combination with the Cauchy integral formula (e.g. ([PrK] VI, 

([OsH] Bd. 1, 1.7). The challenge is that this results into “different “ (problem 

depending) definitions of related partition number counting functions depending from 

even/odd and positive-pairwise/negative-pairwise different even/odd summands ([OsH] 

Bd. 1, 1.7). The advantage of the circle method (and the central concept why it has been 

established) is the fact that the convergence of all to be considered power series is 

always ensured, as the circle method operates in the open unit disk. 
 

The circle method is about Fourier analysis over Z , which acts on the circle ZR / . The 

analyzed functions are complex-valued power series  





0

)( n

nzaxf
   ,   1z . 

The fundamental principle is ([ViI] chapter I, lemma 4) 

 




1

0

int22 )( dterefar it

n

n   ,  10  r . 

The circle method is applied to additive prime number problems. Hardy-Littlewood 

[HaG2] resp. Vinogradov [ViI] applied the Farey arcs resp. major and minor arcs ([HeH]) 

to derive estimates for corresponding Weyl sums ([WaA]) supporting attempts to prove 

the 2-primes resp. 3-primes Goldbach conjectures. All those attempts require estimates 

for purely trigonometric sums ([ViI]), as there is no information existing about the 

distribution of the primes, which jeopardizes all attempts to prove both conjectures.  

 

We propose an alternative framework to leverage on the idea of the circle method to 

prove both Goldbach conjectures: th concept is about an replacement of the discrete 

Fourier transformation applied for power functions )(xf  by continuous Hilbert- ( H ), 

Riesz- ( A ) resp. Calderon-Zygmund-transformations ( S ) (which are Pseudo Differential 

Operators of order 0 , 1  and 1) with distributional, periodical Hilbert space domains 

)1,0(#

H .  The analogue fundamental principle is 
 

    )()(:
))((sin

)(

2

1
)( 1

1

0

2
xfAxSfdy

yx

yf
xnf nn

n
n




  

  

 
for                                        nybnyayf nnn  2sin2cos:)(    . 

 

The circle method is based on convergent power series with the open unit disk as 

domain. The Dirichlet series theory is an extension of the concept of power series 

replacing 







 
1

log

1

nx

n

xn

n eaea . 

 

The relationship between the Dirichlet series (see also Notes S44/45) 
 





1

log:)( ns

neasf   



1

log:)( ns

nebsg  

and the Hilbert space 2/1

2

#

2/1



  lH on the critical line is given by ([LaE] §227, Satz 40): 
 

   






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1

2/1

1
)2/1()2/1(

2

1
lim:, nnba

n
dtitgitfgf




 

. 

 

The cardinal series theory is an extension of the Dirichlet series theory. 
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The change leads to a generalized circle method on the circle in a 

#

H  framework based 

on generalized Fourier series representations leveraging the method into two directions 
 

- move from the open unit disk domain to the unit circle domain 

- move from complex-value power series representations to generalized Fourier 

series representations with unit circle domain (resp. cardinal series with domain 

R) (e.g. [LiI]). 

 

We propose to apply the properties of the zeros of the concerned Kummer functions for 

an alternative “prime number counting” process (Lemma 2.4, Notes O5/6/22/27): 
 

all zeros 
nz  of the functions  

),
2

3
,

2

1
(1 zF

     

 

are complex-valued and lie in the horizontal stripe 
 

n
z

n
z

n
n

n

n

n 2
)Im(

:12
)Im(

:)1(2 212 


 






   . 

As it holds 
 

    1122  nn   

resp.  
 

2

1
21

22

1
2 212 


  nn nn   

 

we propose a replacement in the form 
 

1
2

2 212 


  nnqpn
  

 

to define an alternative definition of )(xH  which denote the number of prime pairs ),( qp  

for which it holds xqp  given by ([LaE1], Note O30)  
 

                                 
 












2

2

2

2 log)log(log
)()()(

x

xp

x

t

dt

tx

tx

t

dt
txpxxH 

 

 

 

For the relationships to  the Hardamard gap condition, the Schnirelmann’s density, the 

Littlewood-Paley function and corresponding Fourier series ([ZyA]  XV) we refer to the 

Notes O5-7, O22-27,O33-35, S36-S38). 
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Our proposed enhanced circle method framework enables 
 

- convergence and asymptotic analysis in a (distributional) Hilbert space framework 

with inner product on *2/1

2

2/1

2 )(  ll  and appropriate linkage to the Fourier-Stieltjes 

integral concept ([NaS]) 
 






 nn

S

vnuidguvuS
1

),(  ,      



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1
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1
)2/1()2/1(

2

1
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n
dtitvituvu




 

 

 

- a generalized Schnirelmann’s density concept in the form 

-  
  







1

2

2/1

21)(
lim aa

nn

nA
n

n

   ,    2/1

2)( 


 lnaa

Nn

 . 

 

It provides the linkage to  
 

- the full power of spectral theory and of conformal mapping theory 

- to probability theory([BiP]) and its linkage to Linnik’s dispersion (variance) 

method ([LiJ]) 

- a convergent series representation of the (not fixed, not unique, non-measurable) 

ground state energy of the Hamiltonian operator of a free string ([BrK3]) 
- Hardy and BMO (bounded mean oscillation) spaces ( dispersion method)  

- an alternative “Dirac function” functionality with slightly (but critical) better 

regularity requirements than (see also Note O52) 
 





  

2/1

2

2

0

2

0

)cos(
1

2

1
)( ldkkxdkex ikx

 

 

- the Teichmüller theory ([NaS]) 

- Ramanujan’s (main) master theorem ([BeB], lemma A10) 

- the inverse formula of Stieltjes for BMO density functions (Note S33) 

- the concept of of logarithmic capacity of sets and convergence of Fourier series to 

functions fulfilling ([ZyA] V-11) 

 

 



1

22

nn ban

 

- harmonic analysis by ([StE]) 
 

  



  

 


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w
dxdyzdhba
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)(
)()(

4

1
)(

2

1
)(

2
:

2

2

22

1

22

 
 

and the related energy of the harmonic continuation )(h  to the boundary 

- Jacobians of the Riemann surfaces ([BiI]), “mute” winding numbers ([BoJe]), 

topological degree (H. Brezis), electric field integral equation theory 
- a global unique weak  2/1H solution of the generalized 3D Navier-Stokes initial 

value problem with not vanishing (generalized) non-linear energy term                 

www.navier-stokes-equations.com (Note O55) 
 

2

12/12/1

2
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The Goldbach problem 
 

The binary Goldbach problem states that every even integer greater 2 can be 

represented as the sum of two primes. Every integer n  can be represented in the form 

21 nnn   in 1n  different ways. The relative frequency of the occurrence of primes is 

n1log  , i.e. 

x

x

n

dn
x

x

loglog
)(

2

 
 . 

 

Therefore, an even n  has about  
2

log

1
)1( 










n
n

 

 representations as a sum of two primes.  
 

The current state of verification of the Goldbach conjecture is, that it is true for nearly all 
even integers, i.e. ([LaE] V), let )(nh  denote the number of the first n  even positive 

integers, which can not represented as a sum of two primes, then there exists a constant 

1  that 
 

0
)(

lim 
 n

nh

n

 , i.e  0
)(

lim 
 n

nh

n

 

 
 

leading to Schnirelmann’s “density” concept ([ScL]).  
 

The result above states that for at most 0% of all even positive integers the Goldbach 

conjecture is not true. 
 

The complementary set of all even integers which cannot be represented as a sum of two 

primes has the natural (Schnirelmann) density zero, i.e. ([OsH] Bd. 2, 21) 
 

)
log

()(
x

x
OxG




   0  . 

 

From [PrK] II, §4, we recall the theorem of Brun, i.e. 
 

If p  goes through all twins prime pairs, then the following series is 

convergent                               


 p p

1  

 

We note that the binary Goldbach problem is inaccessible to the dispersion (variance) 

method as given in [LiJ] X.2.  The main difficulty is the calculation of a term which is 

asymptotically equal to the number of solutions of the equation 
 

)()( 2211 pnpn    , 
21   , where 

2121 ,,, pp  are primes. 
 

 

Remark: The dispersion method in binary additive problems is about the concepts of 

dispersion, covariance, and the Chebysev inequality ([LiJ]).The central concept is that of 

the independence of events relating to different primes. The dispersion method simply 

takes for use a finite field of elementary events. Its application to concrete binary 

additive problems involves a great deal of rather cumbersome computations (the 

calculation of the dispersion of the number of solutions). The construction of the 

fundamental inequality for the dispersion closely resembled Vinogradov’s method for the 

estimation of double trigonometric sums. The latter one somehow corresponds to the 

double integral representation of the Hilbert-transformed Gaussian function above.  

 

 
We propose to define generalized variances with respect to the appropriate 

2l  

distributional Hilbert space framework applying corresponding asymptotic analysis for the 

corresponding generalized (distributional) Fourier series representations ([EsR], [VlV]).  
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Let )(xH  denote the number of prime pairs ),( qp  for which it holds xqp  given by 

([LaE1], Note O30)  
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Stäckel’s approximation formula is given by ([LaE1]) 
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 . 

 

It provides the mean value for the corresponding variance (dispersion) calculation “to 
attack” the binary Goldbach problem. We propose an alternative definition of )(xH  based 

on the corresponding density function )(x  and the related alternative li-function 

x

x

x

x

x

xx

x

x
xli


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

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)2log(1
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(
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1
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1

log

)(
)(

2

* 



 . 

 

Remark: A Schnirelmann density corresponds to the probability to pick an element 

Ank   out of the total numbers of integers. The concept builds on the simplest function 

of period 1 ([WeH]) 
 

ixnenxe )2()(   for all integers n . 
 

For any sequence 
nana )(  and any integer m it holds 
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n
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k
n
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n 1

1

0

0)()(
1
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. 

 

It also holds the following inverse:  
 

If for any integer m it holds 





n

k

k noame
1

)()(  

 

then the numbers 1modna  build a uniform dense distribution on the unit circle. 

Vinogradov’s solution concept it built on the Weyl sums. The root cause of current 

handicaps to prove appropriate estimates in this framework are due to corresponding 

estimates of the Weyl sums and not due to Goldbach problem specific challenges.  

 

We propose to apply an analog Weyl sums based concept replacing the exponential 

function by corresponding Kummer functions and its related zeros (see also Notes 

O13/16 resp. Notes O6/O7/O27). 

 
 

Remark: Let 

),(: 2121 ppnPppNan  . 

 

Then for appropriate constants 
21 ,cc  it holds ([PrK] V) 
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Our proposed replacements above 
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are supposed to enable appropriate estimates to verify the binary Goldbach problem. 
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