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1 Introduction

1.1 Modelling

Modelling is the art of taking a real-world situation and constructing some mathematics to
describe it. It’s an art rather than a science, because it involves choices that can not be
rationally justified. Personal preferences are important, and ‘taste’ plays a major role.

Having said that, some choices are more rational than others. And we often also need
to explain our choices to ourselves and to our colleagues. These notes are about such issues
in an area that has recently increased in importance, that of gradient flows, and especially
Wasserstein gradient flows. The notes are organized around a central question, a question
that one might ask for any given model, but that we will ask specifically for gradient flows:

What are the modelling assumptions that underlie such-and-such model?

In these notes we will provide the background and theory that we will need to give a good
answer to this question.

Gradient flows are evolutionary systems driven by an energy, in the sense that the energy
decreases along solutions, as fast as possible. The property ‘as fast as possible’ requires
specification, which is typically done by choosing a dissipation mechanism. From a modelling
point of view the two choices of (a) the driving energy and (b) the dissipation mechanism
completely determine the system—I will give more detail below. That means that in order
to justify any given model, we need to explain three things:

1. Why do we choose this energy?

2. Why this dissipation?

3. Why this combination of energy and dissipation?

Just to illustrate how these are non-trivial questions, here is an example. The diffusion
equation,

∂tu = ∆u in Rd, (1)

is a gradient flow in many different ways:

1. with energy
∫
|∇u|2 and the L2-norm as dissipation mechanism;
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2. with energy
∫
u2 and the (homogeneous) H−1-norm as dissipation mechanism;

3. with energy ‖u‖2Hs (the homogeneous Hs-norm or seminorm) and the Hs−1 (semi-)norm
as dissipation;

4. with energy
∫
u log u and the Wasserstein metric as dissipation;

5. with energy
∫

[u log u+(1−u) log(1−u)] and a modified Wasserstein metric as dissipation;

and there are many more. This shows that the equation itself determines neither the energy
nor the dissipation; those are really choices that result from the modelling context. For
some of the pairs above we will see this in these notes (numbers 1, 4, and 5, to be precise).
Note that each of the ‘energies’ above is a Lyapunov function of equation (1)—they decrease
along solutions—and therefore each might reasonably serve with any of the five dissipation
mechanisms mentioned above (or any other). This shows how not only the choices of energy
and dissipation, but also of the combination requires explaining.

We limit ourselves to systems that can be modelled by gradient flows because these systems
have recently become much more important. A major step was taken in 1997 by the introduc-
tion by Jordan, Kinderlehrer, and Otto of Wasserstein gradient flows [JKO97, JKO98], which
we discuss in detail in these notes. Since 1997 it has become clear that a large number of
systems can be written as Wasserstein gradient flows, and an even larger number are gradient
flows that incorporate a Wasserstein-type dissipation term together with other dissipations.
The box on this page shows some of these.

1.2 Gradient flows

In the next section we will describe some examples that we address in these notes. Before
that we need to explain why gradient flows are determined by an energy and a dissipation,
and how these two components together determine the evolution. For simplicity we now take
the case of Rn; generalizations are discussed later.

The gradient flow in the Euclidean space Z = Rn of a functional E : Rn → R is the
evolution in Rn given by

żi(t) = −∂iE(z(t)). (2)

Many diffusive systems are Wasserstein gradient flows
A surprisingly large number of well-known diffusive partial differential equations have the structure
of a gradient flow with respect to the Wasserstein metric (or a related metric). These are just a
few examples:

convection and nonlinear diffusion [JKO98] ∂tρ = div ρ∇
[
U ′(ρ) + V

]
nonlocal pbs ([AGS05, CMV03, CMV06] et al.) ∂tρ = div ρ∇

[
U ′(ρ) + V +W ∗ ρ

]
thin-film equation [Ott98, GO01] ∂tρ = −∂x

[
ρ∂3
xρ
]

DLSS and related [DLSS91, JM09, MMS09] ∂tρ = −div ρ∇
(
ρα−1∆ρα

)
, 1/2 ≤ α ≤ 1

a reactive moving-boundary problem [PP10] ∂tρ = ∆ρ in Ω(t), with ∂nρ = −ρvn
and vn = f(ρ) on ∂Ω(t)

the Cahn-Hilliard equation ∂tρ = −divD(ρ)∇
[
∆ρ+ f(ρ)

]
two-phase flow [Ott99] ∂tρ = −div ρu, div u = 0, u = f(ρ)

[
∇p+ ρez

]
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Although this equation appears to involve only an energy E , a dissipation mechanism is
hidden, and this can be seen in two equivalent ways.

1. The first argument rests on geometry. Equation (2) can be written in a geometrically
more correct way as

żi(t) = −
∑
j

gij∂jE(z(t)), (3)

with gij = δij . This form is ‘more correct’ in the sense that the first form is not invariant
under changes of coordinates, as the difference between the upper and lower indices
indicates; by the rules of coordinate changes in Riemannian manifolds, the second form
is coordinate-invariant. Because of the difference between vectors and covectors, we use
different names and notation for the (Fréchet) derivative or differential ∂i (also denoted
E ′ or diff E) and the gradient, which is the object gij∂jE (also written as grad E).

The form (3) shows how the energy E and the metric g together determine the evolution
of z. In this context the metric g is called the dissipation metric, since it characterizes
the decrease (‘dissipation’) of energy along a solution:

∂tE(z(t)) =
∑
i

∂iE(z(t))żi(t) = −
∑
i,j

gij∂iE(z(t))∂jE(z(t)) = −
∑
i,j

gij ż
i(t)żj(t),

where we write gij for the inverse of gij . Note how the last term above is the squared
length of ż in the g-metric.

2. The necessity of the distinction between derivative and gradient can also be explained
in terms of function spaces. If Z is a Hilbert space, then the derivative E ′(z) of a
differentiable functional E : Z → R at z ∈ Z is a bounded linear mapping from Z
to R, and therefore an element of the topological dual Z ′. Suppose we seek a curve
z ∈ C1([0, T ];Z) that solves in some sense the equation ż = −E ′(z); we then run
into the problem that for given t, ż(t) ∈ Z, while E ′(z(t)) ∈ Z ′, and therefore these
two objects can not be equated to each other. A natural way to solve this definition
problem is use Riesz’ Lemma and the inner product in Z to convert E ′(z) ∈ Z ′ to an
object grad E(z) ∈ Z satisfying

∀y ∈ Z : (grad E(z), y)Z = Z′〈E ′(z), y〉Z . (4)

Here we use the notation (·, ·)Z for the inner product in Z, and Z′〈·, ·〉Z for the duality
product between Z ′ and Z. The equation

ż = − grad E(z) (5)

now makes sense, since both sides are elements of Z. In terms of coordinates, (x, y)Z =
gijx

iyj , which implies that equations (5) and (3) are the same.

Note that while the derivative E ′ is independent of the choice of inner product, the
gradient grad E does depend on the inner product.
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1.3 Guiding examples and questions

We now describe some examples that will serve as beacons: these will be the key examples
that we will want to explain.

The diffusion equation (1) is both simple and has many gradient-flow structures, and
therefore it is an excellent first example. We will want to understand the modelling arguments
that lead to three of the structures mentioned above. Let us formulate some of the questions
that we want to address.

• Equation (1) is the L2-gradient flow of the H1-seminorm E(u) := 1
2

∫
|∇u|2, in the sense

described above: for each t, the time derivative ∂tu satisfies the weak characterization

∀v ∈ L2(Rd), (∂tu, v)L2(Rd) = −〈E ′(u), v〉. (6)

Indeed, if we write the terms explicitly as

∀v ∈ L2(Rd),
∫

Rd
v∂tu = −

∫
Rd
∇u∇v, (7)

then we recognize here a weak formulation of (1).

Question 1: What is the modelling background of this gradient-flow struc-
ture?

Note how (7) contains a mathematical inconsistency: the right-hand side is not well
defined for all v ∈ L2(Rd). While the expression (7) can simply be corrected by passing
to a dense subset of L2 for which the right-hand side is meaningful, the better solution
to this problem involves a discussion of Fréchet subdifferentials and semigroups; see
e.g. [Bre73, RS06]. This type of issue will arise many times, but since we want to focus
on modelling issues we will typically disregard it.

• Equation (1) is also the Wasserstein gradient flow of Ent(u) =
∫
u log u, which we call the

entropy. We will define and discuss the Wasserstein metric in much more detail below;
since there is no corresponding inner-product structure, the concept of a gradient flow
as described above will be generalized below. For the moment it is sufficient to define
a Wasserstein gradient flow of any functional E as the evolution equation

∂tu = div u∇δE
δu
, (8)

where we use the physicist’s notation δE/δu for the variational derivative (or L2-
gradient) of E , i.e. the function w satisfying

∀v ∈ L2, 〈E ′(u), v〉 = (w, v)L2 .

Question 2: What is the modelling background of this structure?

An important sub-question here is

Question 3: What do the entropy Ent and the Wasserstein distance mean,
in modelling terms?
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Let us check that equation (1) is indeed the Wasserstein gradient flow, in this sense, of
the entropy Ent(u) =

∫
u log u. The variational derivative of Ent is δ Ent /δu = log u+1,

so that equation (8) becomes

∂tu = div u∇(log u+ 1) = ∆u.

• In a similar way we might define what I call the Kawasaki-Wasserstein gradient flow1

as the equation

∂tu = div u(1− u)∇δE
δu
. (9)

Then equation (1) is the gradient flow of the mixing entropy Entmix(u) =
∫

[u log u +
(1− u) log(1− u)], since δ Entmix /δu = log u− log(1− u) and

∂tu = div u(1− u)∇[log u− log(1− u)] = ∆u.

Question 4: What is the modelling background of this structure? How does
this modified Wasserstein gradient flow arise?

These three gradient-flow systems all have the diffusion equation (1) as the corresponding
equation. The fact that equation (1) can be written as a Wasserstein gradient flow was
actually first published in [JKO97, JKO98], as a consequence of a stronger statement:

• The advection-diffusion equation (or Fokker-Planck equation)

∂tu = ∆u+ div u∇Φ, (10)

where Φ : Rd → R is a spatially dependent potential, is the Wasserstein gradient flow
of the functional

F(u) :=
∫

Rd

[
u log u+ uΦ

]
. (11)

This can be checked again by (8). We will come back to this example below in much
more detail.

Question 5: What is F in (11)? Why does it drive the evolution in (10)?

These are the questions that we will be concerned with in these lecture notes. There are
many more examples of gradient-flow systems, such as

• The Allen-Cahn and Cahn-Hilliard equations, which are gradient flows of the energy
u 7→

∫
1
2 |∇u|

2 +W (u) with the L2 and H−1 metrics, respectively:

(AC) ∂tu = ∆u−W ′(u),
(CH) ∂tu = −∆(∆u−W ′(u)).

1The name arises from the fact that this structure arises from microscopic models with Kawasaki exchange
dynamics; see e.g. [KOV89].
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• Nonlocal Cahn-Hilliard-type equations such as the H−1-gradient flow of a nonlocal
energy [Cho01]

u 7→
∫ [1

2
|∇u|2 +W (u)

]
dx+ ‖u− −

∫
u‖2H−1 ,

where −
∫
u is the average of u. The resulting equation is

∂tu = −∆(∆u−W ′(u))− u+−
∫
u.

• Phase-separation problems based on convolution energies, such as the Kawasaki-Wasserstein
gradient flow of the energy [GL98]

u 7→
∫
f(u) dx− 1

2

∫∫
J(x− x′)u(x)u(x′) dxdx′

with J ≥ 0,
∫
J = 1, and f(u) = u log u + (1 − u) log(1 − u) (so that the first term in

the energy is Entmix). The correspdonding equation is

∂tu = ∆u+ div u(1− u)∇J ∗ u.

• Various free-boundary problems, such as the Stefan problem [RS06], fourth-order thin-
film equations [GO01, Ott98], and a crystal-dissolution problem [PP10].

• Various equations of viscous flow, such as the Stokes equations and flow through porous
media.

• If we allow for generalizations to non-quadratic ψ and ψ∗ (see Section 5) then the large
theory of rate-independent systems is also (formally) of this form [Mie05]. This applies
to many problems in elasto-plasticity, hysteresis in phase transitions, delamination,
friction, and other mechanical situations

In these lecture notes we do not have the time to discuss all the possible types of gradient
flows and their modelling considerations. Instead we focus on the most conspicuous open
problems, which are those surrounding the Wasserstein distance and Wasserstein gradient
flows. The numbered questions above serve as a good indication of where we want to go.

1.4 Overview

The questions formulated above are also the questions that have been driving my own interest
in these matters over the last few years. The surprising thing here (at least to me) is that
the answer to most of these questions can be found only by broadening our view, and taking
into account that most of these equations arise as the continuum limit of particle systems. As
it turns out, the gradient-flow structures themselves also arise from these particle systems.
And in order to understand this, it turns out that one has to consider these particle systems
as stochastic particle systems, and one has to study the occurrence of rare events, or in
probabilistic parlance, large deviations.

This last statement is so important that I’m going to state it again, as it is the moral of
this course:
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The origin of the gradient-flow structures can only be understood by including the
large-deviation behaviour of underlying microscopic particle systems.

In order to understand how to model such Wasserstein-type gradient flows, therefore, one has
to understand the underlying stochastic particle systems.

The rest of these notes are structured as follows. In Section 2 we first discuss entropy,
we introduce large deviations, and then we use the concept to give an answer to one of the
central questions: Why does the entropy Ent(u) =

∫
u log u appear as the driving energy in

the Wasserstein-entropy gradient-flow formulation of (1)? (see 3).
In Section 4 we discuss the first example in detail: the diffusion equation as the Wasserstein

gradient-flow of entropy.

1.5 Prerequisites, notation, and assumptions

In these notes I assume an understanding of the basic concepts of abstract measure theory,
such as measurable spaces, absolute continuity, the total variation norm ‖ · ‖TV and the
Radon-Nikodym derivative.

We will work with a measurable space (Ω,Σ) consisting of a topological set Ω with a
σ-algebra Σ that contains the Borel σ-algebra B(Ω). We always assume that Ω is complete,
metrizable, and separable. M(Ω) is the set of all (finite or infinite) signed measures on
(Ω,B(Ω)), and P(Ω) is the set of all non-negative measures µ ∈ M(Ω) with µ(Ω) = 1. For
ρ ∈ P(Ω), L2(ρ) is the set of measurable functions on Ω with finite L2(ρ)-norm:

‖f‖2L2(ρ) :=
∫

Ω
f2 dρ.

A sequence of measures µn ∈M(Ω) is said to converge narrowly to µ ∈M(Ω) if∫
Ω
f dµn

n→∞−→
∫

Ω
f dµ for all f ∈ Cb(Ω).

The Lebesgue measure on Rd is indicated by Ld.
The push-forward of a measure µ by a Borel measurable mapping ϕ : Ω → Ω is the

measure ϕ#µ defined by

ϕ#µ(A) := µ(ϕ−1(A)) for any A ∈ B(Ω).

It satisfies the identity∫
Ω
f(y)ϕ#µ(dy) =

∫
Ω
f(ϕ(x))µ(dx) for all f ∈ Cb(Ω).

In these notes Brownian particles have transition probability (4πt)d/2 exp(−|x − y|2/4t),
i.e. the corresponding generator is ∆ rather than 1

2∆. A subscript t indicates a time slice at
time t.
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2 Entropy and large deviations

In this section we focus on the concepts of entropy and large-deviation theory, and their
interconnections. The main modelling insights that we want to establish are

M1 Entropy is best understood as the rate functional of the empirical measure of a large
number of identical particles; it describes the probability of that system (Section 2.4);

M2 Entropy arises from the indistinguishability of the particles (Section 2.2);

M3 Free energy arises from the tilting of a particle system by a heat bath (Section 2.5).

M3 will also answer part of Question 5.
We start by introducing entropy (Sections 2.1 and 2.2) and large-deviation theory (Sec-

tion 2.3).

2.1 Entropy

What is entropy? This question has been asked an unimaginable number of times, and has
received a wide variety of answers. Here I will not try to summarize the literature, but only
mention that I personally like the treatments in [LY97, Eva01].

Instead we define one version of entropy, the relative entropy of two probability measures.
Fix a probability space (Ω,Σ).

Definition 1. Let µ, ν ∈M(Ω), with µ, ν ≥ 0. The relative entropy of µ with respect to ν is

H(µ|ν) :=


∫

Ω
f log f dν if µ� ν and f =

dµ
dν

+∞ otherwise.

With this definition we see that the entropy Ent that we defined above can be written as
Ent(ρ) = H(ρ|Ld), where Ld is the Lebesgue measure on Rd.

Before we discuss the interpretation of this object in the next section, we first mention a
number of properties.

Theorem 2. 1. If µ(Ω) = ν(Ω), then H(µ|ν) ≥ 0, and H(µ|ν) = 0 if and only if µ = ν;

2. If µ(Ω) = ν(Ω), then 2‖µ− ν‖2TV ≤ H(µ|ν) (Csiszár-Kullback-Pinsker inequality);

3. H is invariant under transformations of the underlying space, i.e. if ϕ : Ω → Ω is a
one-to-one measurable mapping, and ϕ#µ and ϕ#ν are the push-forwards of µ and ν,
then H(µ|ν) = H(ϕ#µ|ϕ#ν).

Proof. The first part of the theorem can be understood by writing H as

H(µ|ν) =
∫

(f log f − f + 1) dν if f =
dµ
dν
,

and using the fact that g(s) = s log s− s+ 1 is non-negative and only zero at s = 1. For the
Csiszár-Kullback-Pinsker inequality we refer to [Csi67, Kul67].
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To prove the invariance under transformations, note that for all ω ∈ Ω,

dϕ#µ

dϕ#ν
(ϕ(ω)) =

dµ
dν

(ω),

so that

H(µ|ν) =
∫

log
dµ
dν

(ω)µ(dω) =
∫

log
dϕ#µ

dϕ#ν
(ϕ(ω))µ(dω) =

=
∫

log
dϕ#µ

dϕ#ν
(ω′)ϕ#µ(dω′) = H(ϕ#µ|ϕ#ν).

The properties in this theorem are relevant for the central role that this relative entropy
plays. The non-negativity and Csiszár-Kullback-Pinsker inequality show that when µ and ν
have the same mass (e.g. if µ, ν ∈ P(Ω)) then H acts like a measure of distance between µ
and ν. It’s not a distance function, since it is not symmetric (H(µ|ν) 6= H(ν|µ)), but via the
Csiszár-Kullback-Pinsker inequality it does generate the topology of total variation on the
space of probability measures.

The fact that H is invariant under transformations of space is essential for the modelling,
for the following reason. Every modelling process involves a choice of coordinates, and this
choice can often be made in many different ways. Nevertheless, if we believe that there is a
well-defined energy that drives the evolution, then the value of this energy should not depend
on which set of coordinates we have chosen to describe it in.

Note that Ent is not invariant under change of coordinates. This implies that this func-
tional corresponds to a specific choice of coordinates.

2.2 Entropy as measure of degeneracy

This mathematical definition of the relative entropy H above does not explain why it might
appear in a model. One way to give an interpretation to the relative entropyH is by a counting
argument, that we explain here for the case of a finite state space. It involves microstates
and macrostates, where multiple microstates correspond to a single macrostate. The result
will be that the entropy characterizes two concepts: one is the degree of degeneracy, that
is the number of microstates that corresponds to a given macrostate, and the other is the
probability of observing a macrostate, given a probability distribution over microstates. The
two are closely connected.

Take a finite state space I consisting of |I| elements. If µ ∈ P(I), then µ is described by
|I| numbers µi, and the relative entropy with respect to µ is

H(ρ|µ) =
∑
i∈I

ρi log
ρi
µi
, for ρ ∈ P(I).

ConsiderN particles on the lattice described by I, i.e. consider a mapping x : {1, . . . , N} →
I. We think of x as the microstate. Define an empirical measure ρ ∈ P(I) by

ki := #
{
j ∈ {1, . . . , N} : x(j) = i

}
, ρi =

ki
N
. (12)
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In going from x to ρ there is loss of information; multiple mappings x produce the same empir-
ical measure ρ. The degree of degeneracy, the number of unique mappings x that correspond
to a given ρ, is N !

(∏
i∈I ki!

)−1. The fact that the particles are identical, indistinguishable, is
important here—this is required for the description in terms of integers ki. Because of this
loss of information, we think of ρ as the macrostate.

We now determine the behaviour of this ‘degree of degeneracy’ in the limit N →∞. Using
Stirling’s formula in the form

log n! = n log n− n+ o(n) as n→∞,

we estimate

logN !
(∏
i∈I

ki!
)−1 = logN !−

∑
i∈I

log ki!

= N logN −N −
∑
i∈I

(ki log ki − ki) + o(N)

= −N
∑
i∈I

ρi log ρi + o(N) as N →∞.

One interpretation of the relative entropy therefore is as follows. Take for the moment µi
to be the uniform measure, i.e. µi = |I|−1; then

H(ρ|µ) =
∑
i∈I

ρi log ρi + log |I|.

Then
H(ρ|µ) = − lim

N→∞

1
N

log #realizations of ρ + log |I|. (13)

This shows that if the number of microscopic realizations x of the macroscopic object ρ is
large, then H(ρ|µ) is small, and vice versa.2 This is the interpretation in terms of a counting
argument.

We now switch to the probabilistic point of view. If we allocate particles at random with
the same, independent, probability for each microstate x, then the probability of obtaining
each microstate is |I|−N , and the probability of a macrostate ρ satisfies

log Prob(ρ) = log |I|−NN !
(∏
i∈I

ki!
)−1

= −NH(ρ|µ) + o(N) as N →∞.

We can do the same with non-equal probabilties: we place each particle at an i ∈ I with
probability µi. Then the probability of a microstate x is

N∏
j=1

µx(j),

2There is a problem here, though; the ρ in the right-hand side can not be independent of N , since it is a
vector with components of the form k/N , while the ρ in the left-hand side expression can not depend on N .
This contradiction will be resolved when we discuss large deviations in the next section.
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and now the probability of a macrostate ρ satisfies

log Prob(ρ) = log
( N∏
j=1

µx(j)

)
N !
(∏
i∈I

ki!
)−1

=
N∑
j=1

logµx(j) + logN !
(∏
i∈I

ki!
)−1

= N
∑
i∈I

ρi logµi −N
∑
i∈I

ρi log ρi + o(N)

= −NH(ρ|µ) + o(N) as N →∞.

The common element in both points of view is the degeneracy, the number of microstates
that is mapped to a single macrostate. Of course, this degeneracy only arises if the particles
can not be distinguished from each other. Therefore I like to summarize this section like this:

Entropy arises from the indistinguishability of the particles in an empirical mea-
sure.

We will return to this issue in Section 2.4.

2.3 Large deviations

For our purposes, the main role of the relative entropy is in the characterization of large
deviations of empirical measures.

Large deviations are best explained by an example. We toss a balanced coin n times, and
we call Sn the number of heads. Well-known properties of Sn are3

• 1
n
Sn

n→∞−→ 1
2

almost surely (the law of large numbers)

• 2√
n

(
Sn−

n

2
) n→∞−→ Z in law, where Z is a standard normal random variable (the central

limit theorem).

The second (which contains the first) states that Sn is typically n/2 plus a random devia-
tion of order O(1/

√
n). Deviations of this size from the expectation are called normal. Large

deviations are those that are larger than normal, such as for instance the event that Sn ≥ an
for some a > 1/2. Such large-deviation events have a probability that vanishes as n → ∞,
and a large-deviation principle characterizes exactly how fast it vanishes. A typical example
is

For any a ≥ 1
2
, Prob(Sn ≥ an) ∼ e−nI(a) as n→∞, (14)

where

I(a) :=

{
a log a+ (1− a) log(1− a) + log 2 if 0 ≤ a ≤ 1
+∞ otherwise

The characterization (14) states that the probability of such a rare event decays exponentially
in n, for large n, for each a ≥ 1/2. The function I is called the rate function, since it
characterizes the constant in the exponential decay.

3This section draws heavily from the introduction in [dH00].
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Figure 1: The function I

In order to explain what exactly the symbol ∼ in (14) means we give a precise definiton
of a large-deviation principle. As always we assume we are working in a complete metrizable
separable space Ω with a σ-algebra Σ that contains the Borel sets.

Definition 3. A sequence µn ∈ P(Ω) satisfies a large-deviation principle with speed n and
rate function I iff

∀O ⊂ Ω open, lim inf
n→∞

1
n

logµn(O) ≥ − inf
O
I

∀C ⊂ Ω closed, lim inf
n→∞

1
n

logµn(C) ≤ − inf
C
I.

Let us make a few remarks.

• The definition of the large-deviation principle is rather cumbersome. We often write it,
formally, as

Prob(Xn ≈ x) ∼ e−nI(x),

which is intended to mean exactly the same as Definition 3.

• The characterization (14) can be deduced from Definition 3 as follows. Define

µn(A) := Prob(Sn ∈ nA).

Then Prob(Sn ≥ an) = µn([a,∞)), and note that inf [a,∞) I = I(a) whenever a ≥ 1/2.
Supposing that the large-deviation principle has been proved for µn with rate function I
(see e.g. [dH00, Th. I.3]), we then find that for all 1/2 ≤ a < 1

−I(a) = − inf
(a,∞)

I ≤ lim inf
n→∞

Prob(Sn > an)

≤ lim sup
n→∞

Prob(Sn ≥ an) ≤ − inf
[a,∞)

I = −I(a).

Therefore, if 1/2 ≤ a < 1 then the liminf and limsup coincide, and we have that

lim
n→∞

1
n

log Prob(Sn ≥ an) = lim
n→∞

1
n

log Prob(Sn > an) = −I(a).

This is the precise version of (14).
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• In the example of the coin, the two inequalities in Definition 3 reduced to one and the
same equality at all points between 0 and 1, by the continuity of I at those points. In
general a rate function need not be continuous, as the example of I above shows; neither
is the function I unique. However, we can always assume that I is lower semi-continuous,
and this condition makes I unique.

• Looking back at the discussion in Section 2.2, we see that for instance the limit (13)
is a large-deviation description, at least formally. We also remarked there that the
characterization (13) can not be true as it stands. In Definition 3 we see how this
is remedied: instead of a single macrostate ρ, we consider open and closed sets of
macrostates, which may contain states ρ of the form k/N for different values of N .

Remark 4 The definition of the large-deviation principle has close ties to two other concepts
of convergence.

• A sequence of probability measures µn converges narrowly (in duality with continuous
and bounded functions) to µ if

∀O ⊂ Ω open, lim inf
n→∞

µn(O) ≥ µ(O)

∀C ⊂ Ω closed, lim inf
n→∞

µn(C) ≤ µ(C).

Apparently, the large-deviation principle corresponds to a statement like ‘the measures
1
n logµn converge narrowly’.

• The definition in terms of two inequalities also recalls the definition of Gamma-convergence,
and indeed we have the equivalence (shown to me by Lorenzo Bertini)

µn satisfies a large-deviation principle with rate function I ⇐⇒ 1
n
H( · |µn) Γ−→ Î ,

where Î(ν) :=
∫
I dν. A proof is given in [Mar12].

A property of large deviations that will come back later is the following. Suppose that
we have a large-deviation result for a sequence of probability measures µn on a space X with
rate functional I. Suppose that we now tilt the probability distribution µn by a functional
F : X → R, by

µ̃n(A) =

∫
A
e−nF (x) µn(dx)∫

X
e−nF (x) µn(dx)

.

This increases the probability of events x with lower F (x), with respect to events x with
higher F (x), with a similar exponential rate (the prefactor n) as a large-deviation result.

The large-deviation behaviour of µ̃n is now given by

Theorem 5 (Varadhan’s Lemma). Let F : X → R be continuous and bounded from below.
Then µ̃n satisfies a large deviation principle with rate function

Ĩ(x) := I(x) + F (x)− inf
X

(I + F ).

The final term in this expression is only a normalization constant that makes sure that
inf Ĩ = 0. The important part is that Ĩ is the sum of the two functions I and F . In words: if
we modify a probability distribution by tilting it with an exponential factor e−nF , then that
tilting function F ends up being added to the original rate function I.

13



2.4 Entropy as large-deviation rate function

Now to the question why relative entropy appears in the context of thermodynamics. Con-
sider the following situation. We place n independent particles in a space X according to a
distribution µ ∈ P(X ), i.e. the probability that the particle is placed in a set A ⊂ X is µ(A).
We now consider the empirical measure of these n particles, which is the measure

ρn :=
1
n

n∑
i=1

δXi ,

where Xi is the position of the ith particle. The empirical measure ρn is a random element of
P(X ), and the law of large numbers gives us that with probability one ρn converges weakly
(in the sense of measures) to the law µ. (This is of course the standard way of determining µ
if one only has access to the sample points Xi).

In this situation the large deviations of ρn are given by Sanov’s theorem (see e.g. [DZ98,
Th. 6.2.10]). The random measure ρn satisfies a large-deviation principle with rate n and
rate function

I(ρ) := H(ρ|µ),

or in the shorthand notation that we used earlier,

Prob(ρn ≈ ρ) ∼ e−nH(ρ|µ) as n→∞. (15)

This is such an important result that I state it separately:

The relative entropy is the rate functional of the empirical measure of a large
number of identical particles.

Note the stress on ‘empirical measure’: the appearance of the relative entropy is intimately
linked to the fact that we are considering empirical measures. Section 2.2 gives an insight into
why this is: when passing from a vector of positions to the corresponding empirical measure,
there is loss of information, since particles at the same position are indistinguishable.

2.5 Free energy and the Boltzmann distribution

In many books one encounters in various forms the following claim. Take a system of particles
living in a space X , and introduce an ‘energy’ E : X → R (in Joules, J) depending on the
position x ∈ X . Bring the system of particles into contact with a ‘heat bath’ of temperature
T . Then the probability distribution of the particles will be given by

Prob(A) =

∫
A
e−E(x)/kT dx∫

X
e−E(x)/kT dx

. (16)

This is known as the Boltzmann distribution, or Boltzmann statistics, and the Boltzmann
constant k has the value 1.4 · 10−23 J/K. (Note that it only exists if the exponentials are
integrable, which is equivalent to sufficient growth of E for large x. We will assume this for
this discussion).
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Where does this distribution come from? The concept of entropy turns out to give us the
answer.

Since we need a system and a heat bath, we take two systems, called S and SB (for ‘bath’).
Both are probabilistic systems of particles; S consists of n independent particles Xi ∈ X , with
probability law µ ∈ P(X ); similarly SB consists of m independent particles Yj ∈ Y, with law
ν ∈ P(Y). The total state space of the system is therefore X n × Ym.

The coupling between these systems will be via an energy constraint. We assume that
there are energy functions e : X → R and eB : Y → R, and we will constrain the joint system
to be in a state of fixed total energy, i.e. we will only allow states in X n × Ym that satisfy

n∑
i=1

e(Xi) +
m∑
j=1

eB(Yj) = constant. (17)

The physical interpretation of this is that energy (in the form of heat) may flow freely from
one system to the other, but no other form of interaction is allowed.

Similar to the example above, we describe the total states of systems S and SB by empirical
measures ρn = 1

n

∑
i δXi and ζm = 1

m

∑
j δYj . We define the average energies E(ρn) :=

1
n

∑
i e(Xi) =

∫
X e dρn and EB(ζm) :=

∫
Y eB dζm, so that the energy constraint above reads

nE(ρn) +mEB(ζm) = constant.
By Section 2.4, each of the systems separately satisfies a large-deviation principle with

rate functions I(ρ) = H(ρ|µ) and IB(ζ) = H(ζ|ν). However, instead of using the explicit
formula for IB, we are going to assume that IB can be written as a function of the energy
EB of the heat bath alone, i.e. IB(ζ) = ĨB(EB(ζ)). For the coupled system we derive a joint
large-deviation principle by choosing that (a) m = nN for some large N > 0, and (b) the
constant in (17) scales as n, i.e.

nE(ρn) + nNEB(ζnN ) = nE for some E.

The joint system satisfies then a large-deviation principle4

Prob
(

(ρn, ζnN ) ≈ (ρ, ζ)
∣∣∣ E(ρn) +NEB(ζnN ) = E

)
∼ exp

(
−nJ(ρ, ζ)),

with rate functional

J(ρ, ζ) :=

{
H(ρ|µ) +NĨB(EB(ζ)) + constant if E(ρ) +NEB(ζ) = E,

+∞ otherwise.

Here the constant is chosen to ensure that inf J = 0.
The functional J can be reduced to a functional of ρ alone,

J(ρ) = H(ρ|µ) +NĨB

(
E − E(ρ)

N

)
+ constant.

In the limit of large N , one might approximate

NĨB

(
E − E(ρ)

N

)
≈ NĨB(E)− Ĩ ′B(E)E(ρ).

4This statement is formal; I haven’t yet worked out how to formulate this rigorously for general state spaces.
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The first term above is absorbed in the constant, and we find

J(ρ) ≈ H(ρ|µ)− E(ρ)Ĩ ′B(E) + constant.

We expect that I ′B is negative, since larger energies typically lead to higher probabilities and
therefore smaller values of IB. Now we simply define kT := −1/Ĩ ′B(E), and we find

J(ρ) ≈ H(ρ|µ) +
1
kT

E(ρ) + constant.

Compare this to the typical expression for free energy E−TS; if we interpret S as −kH(·|µ),
then we find the expression above, up to a factor kT .

Note that the right-hand side can be written as H(ρ|µ̃), where µ̃ is the tilted distribution

µ̃(A) =

∫
A
e−e(x)/kT µ(dx)∫

X
e−e(x)/kT µ(dx)

Here we recognize the expression (16) for the case when µ is the Lebesgue measure.
This derivation shows that the effect of the heat bath is to tilt the system S: a state ρ

of S with larger energy E(ρ) implies a smaller energy EB of SB, which in turn reduces the
probability of ρ. The role of temperature T is that of an exchange rate, since it characterizes
the change in probability (as measured by the rate function IB) per unit of energy. When
T is large, the exchange rate is low, and then larger energies incur only a small probabilistic
penalty. When temperature is low, then higher energies are very expensive, and therefore
more rare. From this point of view, the Boltzmann constant k is simply the conversion factor
that converts our Kelvin temperature scale for T into the appropriate ‘exchange rate’ scale.

In books on thermodynamics one often encounters the identity (or definition) T = dS/dE.
This is formally the same as our definition of kT as −dIB/dE, if one interprets IB as an
entropy and adopts the convention to multiply the non-dimensional quantity IB with −k.

One consequence of the discussion above is that the expression

H(ρ|µ) +
1
kT

E(ρ) + constant

is the rate function for a system of particles in contact with a heat bath. This is the same
expression as (11), if we identify Φ with E/kT , and this answers the first part of Question 5,
‘what is F?’ Answer: this ‘free energy’ is the rate function for a system of particles, in contact
with a heat bath of temperature T , and with energy function Φ = E. It’s good to note that
the Boltzmann distribution is the unique minimizer of the free energy.

Yet another insight that this calculation gives is the following. I was often puzzled by
the fact that in defining a free energy (e.g. E − TS, or kT Ent +E), one adds two rather
different objects: the energy of a system seems to be a completely different type of object
than the entropy. This derivation of Boltzmann statistics shows that it’s not exactly energy
and entropy that one’s adding; it really is more like adding two entropies (H and IB, in the
notation above). The fact that we write the second entropy as a constant times energy follows
from the coupling and the approximation allowed by the assumption of a large heat bath.

16



3 Wasserstein distance and Wasserstein gradient flows

In this section we introduce the Wasserstein distance function (Section 3.1) and Wasserstein
gradient flows (Section 3.2), in preparation for the discussion of Section 4.

3.1 The Wasserstein distance function

The natural set on which to define the Wasserstein distance is the set of probability measures
with finite second moments,

P2(Rd) :=
{
ρ ∈ P(Rd) :

∫
Rd
|x|2 dρ <∞

}
.

The Wasserstein distance between two such probability measures ρ0,1 ∈ P2(Rd) is [Vil03]

d(ρ0, ρ1)2 := inf
q∈Γ(ρ0,ρ1)

∫
Rd×Rd

|x− y|2 q(dxdy), (18)

where Γ(ρ0, ρ1) is the set of all couplings of ρ0 and ρ1, i.e. those q with marginals ρ0 and ρ1:

for any A ⊂ Rd, q(A× Rd) = ρ0(A) and q(Rd ×A) = ρ1(A).

It is also known as a type of ‘earth-mover’s distance’, by its interpretation in terms of the
minimal cost of transport of a given pile of sand ρ0 to fill a given hole ρ1, where the unit cost
of transport of a grain of sand from x to y is the squared distance |x− y|2.

The distance function d is a complete separable metric on the space P2(Rd). Convergence
in Wasserstein metric is equivalent to the combination of (a) narrow convergence of measures
(i.e. in duality with continuous and bounded functions) and (b) convergence of the second
marginals [AGS05, Remark 8.1.5-7].

The Wasserstein distance function has an alternative formulation due to Benamou and
Brenier [BB00],

d(ρ0, ρ1)2 = inf
{∫ 1

0
‖∂tρt‖2−1,ρt dt : ρ : [0, 1]→ P2(Rd), ρt

∣∣
t=0,1

= ρ0,1

}
,

where for fixed t the local Wasserstein norm at ρt of the ‘tangent’ ∂tρt is given by

‖∂tρt‖2−1,ρt := inf
{∫

Rd
|v|2 dρt : v ∈ L2(ρt; Rd), ∂tρt + div ρtv = 0

}
. (19)

If the distributional derivative ∂tρt at time t has no representation as div ρtv for any v ∈
L2(ρt), then the norm is given the value +∞.

The infimum in (19) is achieved, and the corresponding vector field v is an element of the
set

{∇ϕ : ϕ ∈ C∞c (Rd)}
L2(ρt)

. (20)

The distributional derivative ∂tρt and the corresponding velocity field v are two different ways
of describing the same tangent vector. We often need to switch from one to the other, and so
we introduce the notation

(s, v) ∈ Tanρ ⇐⇒ s+ div ρv = 0 and v ∈ {∇ϕ : ϕ ∈ C∞c (Rd)}
L2(ρ)

.
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This optimal vector field allows us to define a local metric tensor on the tangent space, the
corresponding local inner product:

(s1, s2)−1,ρt :=
∫

Rd
v1 · v2 dρt where (si, vi) ∈ Tanρt , (21)

such that the norm (19) satisfies ‖s‖2−1,ρ = (s, s)−1,ρ.

3.2 Wasserstein gradient flows

Turning to Wasserstein gradient flows, there is a simple, but formal, way of describing these.
This way is obtained by taking the Hilbert-space concept of a gradient flow (as in e.g. (4–5)
or (6)) and taking for the inner product the local metric tensor (·, ·)−1,ρt defined in (21).
In this way the Wasserstein gradient flow of a functional E defined on P2(Rd) is formally
characterized by

(∂tρt, s)−1,ρt = −〈E ′(ρt), s〉 for all times t and tangent vectors s. (22)

In Section 1.3 we claimed that the diffusion equation (1) is the Wasserstein gradient flow
of the entropy Ent(ρ) :=

∫
Rd ρ(x) log ρ(x) dx (we often write ρ(x) for the Lebesgue density of

a measure ρ). Let us verify this, at least formally.
Finiteness of the entropy Ent(ρ) implies that ρ is Lebesgue absolutely continuous. If we

take a tangent vector s that is also Lebesgue absolutely continuous, then the action of the
derivative Ent′(ρ) on a tangent vector s is given by

〈Ent′(ρ), s〉 := lim
h→0

Ent(ρ+ hs)− Ent(ρ)
h

=
∫

Rd
(log ρ(x) + 1)s(x) dx.

The left-hand side of (22) is equal to ∫
Rd
v1 · v2 dρt,

where (∂tρt, v1), (s, v2) ∈ Tanρt . Assume we can write vi = ∇ϕi for some ϕi ∈ C∞c ; the
definition (20) assures that this is possible at least in approximation. Then the integral above
becomes ∫

Rd
∇ϕ1 · ∇ϕ2 dρt,

which we rewrite by partial integration to

−
∫

Rd
ϕ2 div ρt∇ϕ1

(∂tρt,∇ϕ1)∈Tanρt=
∫
ϕ2∂tρt.

For fixed t and s we then rewrite (22) as∫
ϕ2∂tρt =

∫
(log ρt + 1)s

= −
∫

(log ρt + 1) div ρt∇ϕ2

=
∫
∇(log ρt + 1) · ∇ϕ2 dρt

=
∫
∇ρt · ∇ϕ2. (23)
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This equality is to hold for all tangent vectors s = −div ρt∇ϕ2, and therefore for all func-
tions ϕ2. Therefore (23), like (7), is a weak formulation of the diffusion equation (1).

A very similar calculation shows how the expression (8) describes a Wasserstein gradient
flow for an arbitrary functional F , using the fact that, at least formally,

〈F ′(ρt), ∂tρt〉 =
∫

Rd

∂F
∂ρ

(ρt) ∂tρt.
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4 Example: the diffusion equation

The aim of this section is to develop the following modelling concepts:

M1 The Wasserstein distance characterizes the mobility of empirical measures of systems
of Brownian particles (Section 4.1);

M2 The Wasserstein gradient flow of the entropy arises from the large-deviation behaviour
of a system of Brownian particles (Section 4.2).

This will also answer Questions 2 and 3.

4.1 A corresponding microscopic model: independent Brownian particles

In Section 2.4 we showed that the diffusion equation is the Wasserstein gradient flow of the
entropy, but we couldn’t explain why this is the case, which is one of the main issues of these
notes. We now turn to a microscopic model, in terms of stochastic particles, to motivate this.

The model is a system of n independent Brownian particles Xn,i in Rd (i = 1, . . . , n).
Each particle has a transition kernel5

ph(x, y) :=
1

(4πh)d/2
e−|x−y|

2/4h, (24)

which describes the probability of finding the particle at y after time h conditioned on it
being at x at time zero. For the moment we focus on just the two times t = 0 and t = h.
The particles are not identically distributed; while their transition probabilities are the same,
their initial position differs, as follows. Given an initial datum ρ0, we choose a sequence
xn = (xn,i)i, for i = 1 . . . n and n = 1, 2, . . . , such that

ρ0
n :=

1
n

n∑
i=1

δxn,i −⇀ ρ0 as n→∞.

For each n, we then give particle Xn,i a deterministic initial position xn,i. In words, therefore,
this is a collection of particles that start at positions constructed such as to reproduce ρ0,
and jump over time h to new positions as described by ph.

In Section 2.4 we showed how the entropy Ent is the large-deviation rate functional of
the empirical measure of a similar system of particles in a static situation. Here we want to
work towards the dynamic situation. Mirroring the earlier setup, we consider the empirical
measure ρn of the particles at time h,

ρn :=
1
n

n∑
i=1

δXn,i(h).

For this particle system a large-deviation result states that [Léo07, PR11]

Prob(ρn ≈ ρ) ∼ e−nIh(ρ|ρ0), (25)
5In the probability literature Brownian particles usually have generator 1

2
∆, and the exponent reads −|x−

y|2/2h; here we take generator ∆ and therefore exponent −|x− y|2/4h.
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where the rate functional I is given by

Ih(ρ|ρ0) = inf
q∈Γ(ρ,ρ0)

H(q|Q), (26)

for the measure Q given by
Q(dxdy) = ph(x, y)ρ0(dx)dy.

It was proved in [Léo07] that

4hIh( · |ρ0) Γ−→ d( · , ρ0)2 as h→ 0. (27)

(The type of convergence is Γ- or Gamma-convergence, a natural concept of convergence for
functionals. See [DM93] for an introduction.)

Although this is a simple convergence result, it is actually the first result that indicates
to us why the Wasserstein distance plays a role in the gradient-flow structure of the diffusion
equation. The argument runs as follows. If Ih is essentially the same as d2/4h, as suggested
by (27), then apparently the Wasserstein distance tells us the same thing: high values of d
have low probability, and low values have high probability.

Therefore the value of d(ρ, ρ0) is a characterization of the probability that these Brownian
particles travel from ρ0 to ρ between time zero and time h:

The Wasserstein distance characterizes the stochastic mobility of empirical mea-
sures of systems of Brownian particles.

We’ll see another interpretation of this fact in Section 6.1 below. Also compare this to the
statement on page 14.

Before continuing we briefly describe why (27) is true. Using the definition of the relative
entropy, we write (assuming all measures are Lebesgue absolutely continuous for simplicity)

H(q|Q) =
∫

Rd×Rd
q(x, y)

[
log q(x, y)− log ph(x, y)− log ρ0(x)

]
dxdy

= Ent(q) +
∫

Rd×Rd
q(x, y)

[d
2

log 4πh+
1

4h
|x− y|2 − log ρ0(x)

]
dxdy.

Formally, the largest term on the right-hand side is the term

1
4h

∫
Rd×Rd

q(x, y)|x− y|2 dxdy,

where the integral is the same as in the definition of d(ρ0, π2q)2, where π2q(y) =
∫

Rd q(x, y) dx
is the projection onto the second variable.

Indeed, as h→ 0, it is shown in [ADPZ11] under some restrictions that this term dominates
the right-hand side, and that the other terms diverge as h → 0, but only logarithmically;
therefore they vanish after multiplication by h, as in (27). In addition, in the limit h→ 0 the
optimal q in the infimum (26) converges narrowly to the optimum in (18).

This ‘proof’ explains for instance why there is a relationship between the Wasserstein
distance and a system of Brownian particles: the expression |x − y|2 for the cost in (18) is
exactly the same as the exponent |x−y|2 in the Gaussian transition probability ph (24). This
exponent itself can ultimately be traced back to the central limit theorem.
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4.2 Scaling the ladder: the next step up

The insight gained in the previous section is useful, but not good enough to explain the
gradient-flow structure completely. As we discussed in the Introduction, three questions
need to be answered. The first question for the Entropy-Wasserstein gradient flow, ‘why
Wasserstein?’, has now received an answer, but the other two questions, ‘why entropy?’ and
‘why this combination?’ are still open. Therefore we need to sharpen up our analysis.

The convergence result (27) implies that Ih is similar to d2/4h for small h. As we shall
see, we need what is essentially the next order in this asymptotic development in h, which is
the O(h0) = O(1) term. In [ADPZ11] it was shown that (27) indeed can be improved to give

Ih( · |ρ0)− 1
4h
d( · , ρ0)2 Γ−→ 1

2
Ent( · )− 1

2
Ent(ρ0) as h→ 0,

under some technical restrictions. This suggests the asymptotic development

Ih(ρ|ρ0) ≈ 1
4h
d(ρ, ρ0)2 +

1
2

Ent(ρ)− 1
2

Ent(ρ0) + o(1) as h→ 0. (28)

This expression connects to a well-known approximation scheme for gradient flows, which we
now discuss.

4.3 Time-discrete approximation

Gradient flows have a classical time-discrete approximation scheme that goes back at least as
far as De Giorgi. For instance, for the case of the Wasserstein gradient flow of the free-energy
functional F defined in (11), this takes the following form. Given an initial datum ρ0 and a
time step h > 0, iteratively construct a sequence of approximations ρk by the minimization
problem

Given ρk−1, let ρk be a minimizer of

ρ 7→ F(ρ) +
1

2h
d(ρ, ρk−1)2. (29)

Here d is the Wasserstein metric defined in (18). The piecewise-constant interpolation t 7→
ρt defined by ρt := ρbt/hc then converges narrowly to the solution ρ of (10) with initial
datum ρ0 [JKO98].

This origin of this approximation scheme is best recognized by formulating it for a simple
gradient flow in Rn of an energy E . Minimizing the corresponding functional

u 7→ E(u) +
1

2h
|u− uk−1|2

leads to the stationarity condition for u

∇E(u) +
u− uk−1

h
= 0,

which is the backward-Euler discretization of the gradient-flow equation u̇ = −∇E .

This time-discrete approximation shows how the expression (28) connects to the Wasser-
stein gradient flow of the entropy Ent, since (28) is exactly one-half of (29) (with F = Ent).
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4.4 Wrapping up the modelling arguments

With all the pieces in place we can now describe the whole argument.

1. The starting point is the assumption that our intended gradient flow is the macroscopic,
or upscaled version, of a set of particles with Brownian mobility.

2. The asymptotic expression for the rate function for the empirical measure after time h,
starting from ρ0, is (see (28))

ρ 7→ 1
4h
d(ρ0, ρ)2 +

1
2

Ent(ρ)− 1
2

Ent(ρ0). (30)

We think of this as the result of two separate effects. The first, the Wasserstein distance
d(ρ0, ρ)2/4h, describes the probability that the empirical measure transitions from ρ0

to ρ, as discussed in Section 4.1.

3. The two terms 1
2 Ent(ρ)− 1

2 Ent(ρ0), as the entropy difference between initial and final
time, represent the degree to which the final distribution ρ has a higher probability of
being chosen than the initial distribution ρ0—because of indistinguishibility. This is
in the same sense as the characterization (15) and the discussion of Section 2.2. Two
things are different, in comparison to (15): the factor 1/2 and the absence of a reference
measure.

• The factor 1/2 I can’t explain, to be honest, other than by remarking ‘that it
works’—in the sense that the resulting equation (1) is the right one if and only if
the prefactor of Ent is 1/2. If anyone has any suggestions I’d be very interested.

• The lack of a reference measure is a consequence of the fact that, for a Brownian
motion without potential landscape, all positions x are equal. The natural reference
measure therefore is translation-invariant. This rules out a probability measure
on Rd, but the Lebesgue measure Ld is a natural choice: and H(ρ|Ld) = Ent(ρ).
Note that if a > 0, then H(ρ|aLd) = Ent(ρ) − log a; therefore multiplying the
Lebesgue measure by a doesn’t change the difference 1

2H(ρ|aLd)− 1
2H(ρ0|aLd) =

1
2 Ent(ρ)− 1

2 Ent(ρ0).

4. The fact that the two contributions are added can be understood with Theorem 5,
Varadhan’s Lemma. The large-deviation behaviour of Brownian particles without taking
into account the indistinguishibility is given by d(ρ0, ρ)2/4h; if we tilt the distribution
by adding in the indistinguishibility, described by the difference of the entropies, then
the result is the sum of the two expressions.

5. We now finish with the remark that the expression (30) is the time-discrete approx-
imation of a gradient flow driven by Ent and with the Wasserstein distance d as the
dissipation, as described in Section 4.3.

This overview provides the answer to Question 2, ‘What is the modelling background of
the Wasserstein-Entropy gradient-flow structure?’.
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5 Intermezzo: Continuous-time gradient-flow formulations

The discussion of the previous section is based upon a discrete-time view: the large-deviation
rate function concerned empirical measures at time zero and time h > 0, and the time-discrete
approximation of the gradient-flow similarly connected states at time 0 and time h.

A parallel way to connect large-deviation principles and gradient flows makes use of a
time-continuous description, which we now describe. Consider a linear space Z and an energy
functional E : Z → R. If Z happens to be a Hilbert space, then the Fréchet derivative E ′ can
be represented as the gradient grad E (see (4)). Then we can compute that along any curve
z ∈ C1([0, T ];Z),

∂tE(z(t)) = 〈E ′(z), ż〉 = (grad E(z), ż)Z
(∗)
≥ −‖ grad E(z)‖Z‖ż‖Z

(∗∗)
≥ −1

2
‖ grad E(z)‖2Z −

1
2
‖ż‖2Z

(∗∗∗)
= −1

2
‖E ′(z)‖2Z′ −

1
2
‖ż‖2Z .

The identity (∗ ∗ ∗) is a consequence of the definition of the gradient.
The inequality (∗) is the Cauchy-Schwarz inequality, and becomes an identity if and only

if grad E is equal to λż for some λ < 0; Young’s inequality (∗∗) becomes an identity if and
only if the two norms are equal, implying λ = −1. Therefore identity is achieved in this
inequality iff grad E(z) = −ż, i.e. if z is a gradient-flow solution.

This can be generalized by introducing a pair of convex function ψ : Z × Z → R and its
Legendre transform, or convex dual, ψ∗ : Z ′ × Z → R. In ψ and ψ∗ we think of the second
variable as a parameter, and the convexity and duality only refers to the first parameter.
Therefore

∀ s ∈ Z, ξ ∈ Z ′, z ∈ Z : ψ(s; z) + ψ∗(ξ; z) ≥ 〈s, z〉, (31)

with equality iff s ∈ ∂ψ∗(ξ; z) ⇐⇒ ξ ∈ ∂ψ(s; z). For smooth convex functions, ∂ψ is
simply the derivative of ψ. (See [Roc72] for a general treatise on convex functions, or [Bre11,
Section 1.4] for a quick introduction). The example of the Hilbert space above is of this type,
with ψ(s; z) = ψ(s) = 1

2‖s‖
2
Z and ψ∗(ξ; z) = ψ(ξ) = 1

2‖ξ‖
2
Z′ .

With (31) we find similarly that

∂tE(z(t)) = 〈E ′(z), ż〉 ≥ −ψ(ż; z)− ψ∗(−E ′(z); z), (32)

with equality if and only if
ż ∈ ∂ψ∗(−E ′(z); z). (33)

This latter equation is the generalization of the gradient-flow equation ż = − grad E(z) to the
case of general ψ.

We will mostly use this property in an integrated form. Integrate (32) in time to find that
the expression

E(z(T ))− E(z(0)) +
∫ T

0

[
ψ(ż; z) + ψ∗(−E ′(z); z)

]
dt

is non-negative for any curve z. In addition, if the expression is zero, then at almost all
t ∈ [0, T ] the equation (33) is satisfied. This provides the definition of a gradient-flow solution
that we will use extensively below:
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Definition 6. The curve z : [0, T ]→ Z is a gradient-flow solution (associated with energy E
and dissipation potential ψ) if and only if

E(z(T ))− E(z(0)) +
∫ T

0

[
ψ(ż; z) + ψ∗(−E ′(z); z)

]
dt ≤ 0. (34)

Note that although this definition seems to require that ż and −E ′ are well-defined, actu-
ally only the objects ψ(ż; z) and ψ∗(−E ′(z); z) need to be well-defined, as we shall see in the
next section.
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6 Examples of continuous-time large deviations and gradient
flows

In this section we again study the connection between gradient flows and large-deviation
principles, but now in a continuous-time context. The main modelling insights are

M1 The continuous-time large-deviation rate functional is the gradient flow (Section 6.1);

M2 The Kawasaki-Wasserstein gradient flow of the mixing entropy arises from the simple
symmetric exclusion process (Question 4) (Section 6.2).

6.1 Continuous-time large deviations for the system of Brownian particles

To take the important case of the Wasserstein metric, the corresponding objects are

ψ(∂tρ; ρ) =
1
2
‖∂tρ‖2−1,ρ where the norm ‖ · ‖−1,ρ is defined in (19),

ψ∗(ξ; ρ) =
1
2

∫
Rd
|∇w|2 dρ if w is related to ξ by (w, ζ)L2(Rd) = 〈ξ, ζ〉 ∀ζ.

With this description, the gradient flow is the same as the large-deviation rate functional, as
we shall now see.

Taking the same system of particles as in Section 4.1, the continuous-time large-deviation
principle for that system of particles is as follows. Fix a final time T > 0 and consider again
the empirical measure t 7→ ρn(t), now considered as a time-parametrized curve of measures.
Then the probability that the entire curve ρn(·) is close to some other ρ(·) is characterized
as (see [KO90] or [FK06, Th. 13.37])

Prob(ρn ≈ ρ) ∼ exp[−nI(ρ)],

where now

I(ρ) :=
1
4

∫ T

0
‖∂tρt −∆ρt‖2−1,ρt

dt. (35)

Note that I is nonnegative and its minimum of zero is achieved if and only if ρ is a solution
of the diffusion equation (1).

This rate function I has the structure of the left-hand side in (34). Expanding the square
in (35), and using the property that

(∂tρt,−∆ρt)−1,ρt =
d

dt
Ent(ρt),

we find that

I(ρ) =
1
2

Ent(ρT )− 1
2

Ent(ρ0) +
1
4

∫ T

0

[
‖∂tρt‖2−1,ρt + ‖∆ρt‖2−1,ρt

]
dt.

The first term is 1
2ψ(∂tρt); the final term is equal to 1

2ψ
∗(Ent′(ρt); ρt), since (assuming all

measures are absolutely continuous)

∆ρ = div ρ∇ log ρ =⇒ ‖∆ρ‖2−1,ρ =
∫
|∇ log ρ(x)|2ρ(x) dx,
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and

〈Ent′(ρ), ζ〉 =
∫

(log ρ(x) + 1)ζ dx =⇒ ψ∗(Ent′(ρ); ρ) =
1
2

∫
|∇(log ρ(x) + 1)|2ρ(x) dx.

In this sense, now, the large-deviation rate function I of the system of particles is the same
as the gradient-flow formulation (as given by Definition 6).

Let’s connect this to the appearance of the Wasserstein metric as we discussed in Section 4.
In that discrete-time context we saw that the Wasserstein distance characterizes the mobility
of empirical measures of Brownian particles, through the large-deviation result (25) and the
convergence result (27). Here we see that the Wasserstein geometry also characterizes the large
deviations of the full time-parametrized path: in (35) the deviation from the deterministic
limit ∂tρt = ∆ρt is measured (and penalized) in the Wasserstein norm ‖ · ‖−1,ρ.

6.2 Simple symmetric exclusion process

Question 4 asks ‘where does the Kawasaki-Wasserstein gradient-flow formulation of the diffu-
sion equation come from?’ Here we give an answer in terms of the symmetric simple exclusion
process.

Consider a periodic lattice Tn = {0, 1/n, 2/n, . . . (n− 1)/n} and its continuum limit, the
flat torus T = R/Z. Each lattice site contains zero or one particle; each particle attempts to
jump from to a neighbouring site with rate n2/2, and they succeed if the target site is empty.
We define the configuration ρn : Tn → {0, 1} such that ρn(k/n) = 1 if there is a particle at
site k/n, and zero otherwise. For this system the large deviations are characterized by the
rate function [KOV89]

I(ρ) :=
1
4

∫ T

0
‖∂tρ− ∂xxρ‖2ρ(1−ρ) dt, (36)

where the norm ‖ · ‖ρ(1−ρ) is given by a modified version of (19), as follows ( and again
assuming absolute continuity of ρ):

‖s‖−1,ρ(1−ρ) := inf
{∫

T
|v|2 ρ(1− ρ) dx : v ∈ L2(ρ(1− ρ)), s+ div ρ(1− ρ)v = 0

}
.

This functional can be written as

I(ρ) =
1
2

Entmix(ρT )− 1
2

Entmix(ρ0) +
1
4

∫ T

0

[
‖∂tρt‖2−1,ρt(1−ρt) + ‖∂xxρt‖2−1,ρt(1−ρt)

]
dt,

where the mixing entropy Entmix is defined as in the introduction as

Entmix(ρ) :=
∫

T

[
ρ log ρ+ (1− ρ) log(1− ρ)

]
.

The expression −∂xxρ is the ‘ρ(1− ρ)’-Wasserstein gradient of Entmix, since

−∂xxρ = −∂x
(
ρ(1− ρ)∂x log

ρ

1− ρ

)
= −∂x

(
ρ(1− ρ)∂x

δ Entmix

δρ
(ρ)
)
.

Therefore I is again of the form (34), and the fact that the equation ∂tρ = ∂xxρ is (also) the
gradient flow of Entmix with respect to this ‘ρ(1− ρ)’-Wasserstein norm ‖ · ‖−1,ρ(1−ρ) can be
traced back to the large deviations of this simple symmetric exclusion process.
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7 The H1-L2-gradient flow

Question 1 of these notes was ‘where does the H1-L2 gradient-flow formulation of the diffusion
equation come from?’ (see page 4). I don’t have a convincing model for this, but actually the
absense of a good model is even more interesting than its existence might have been.

In this section I describe my best shot. It’s an unreasonable, unconvincing model, but it’s
the best way I have of connecting this gradient flow to a model.

In this model the energy and dissipation are mechanical, not probabilistic. The continuum
system is the limit of discrete systems, consisting of n spheres in a viscous fluid, arranged
in a horizontal row and spaced at a distance from each other. Each sphere is constrained to
move only vertically, so that the degrees of freedom are the n vertical positions ui.

ui

Figure 2: The model of this section: spheres in a viscous fluid, only moving up and down, and
connected by elastic springs. The spring measures the difference in displacement ui − ui+1.

The energy of this discrete system arises from springs that connect the spheres, in such
a way that the energy of the spring connecting sphere i to sphere i + 1 is k(ui − ui+1)2/2.
Therefore the total energy is

En(u1, . . . , un) =
n−1∑
i=1

k

2
(ui − ui+1)2.

Movement of the spheres requires displacement of the surrounding fluid, and therefore
dissipates energy. The dissipation rate corresponding to a single sphere moving with velocity
v is assumed to be cv2/2, where c > 0 depends on the fluid. (Stokes’ law gives c = 6πRη,
where R is the radius of the sphere and η the viscosity of the fluid). For a system of moving
spheres the total dissipation rate is therefore

n∑
i=1

c

2
u̇2
i .

We now construct a gradient flow by putting energy and dissipation together, resulting in
the set of equations

cu̇1 = k(u2 − u1)
cu̇i = k(ui+1 − 2ui + ui−1) for i = 2, . . . , n− 1
cu̇n = k(un−1 − un)
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We can now take the continuum limit, either in the energy and dissipation, or in the
equations above; both yield the same limit, which is the L2-gradient flow of the energy

E(u) :=
∫
|∇u|2,

and the diffusion equation (1). However, the important modelling choices are already clear
in the discrete case. These two choices, viscous dissipation and interparticle coupling, are
very reasonable in themselves, but the unnatural restriction to vertical movement and the
just-as-unnatural spring arrangement make this model a very strange one.
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[Léo07] C. Léonard. A large deviation approach to optimal transport. Arxiv preprint
arXiv:0710.1461, 2007.

[LY97] E. H. Lieb and J. Yngvason. A guide to entropy and the second law of thermody-
namics. Notices of the AMS, 45(5), 1997.

[Mar12] M. Mariani. A Gamma-convergence approach to large deviations. Arxiv preprint
arXiv:1204.0640, 2012.

30



[Mie05] A. Mielke. Handbook of Differential Equations: Evolutionary Differential Equa-
tions, chapter Evolution in rate-independent systems, pages 461–559. North-
Holland, 2005.

[MMS09] D. Matthes, R. J. McCann, and G. Savaré. A family of nonlinear fourth order
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