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ERROR ESTIMATES FOR A
SINGLE-PHASE NONLINEAR STEFAN
PROBLEM IN ONE SPACE DIMENSION

H. Y. LEE, M. R. OuM AND J. Y. SHIN

ABSTRACT. In this paper we introduce the semidiscrete solution
of a single-phase nonlinear Stefan problem. We analyze the opti-
mal convergence of the semidiscrete solution in H! and H? normed
spaces and also we derive the error estimates in L? normed space.

1. Introduction

The mathematical formulation of many problems arising in practice
leads to a free boundary problem—a Stefan problem. In one space
dimension a single-phase nonlinear Stefan problem with zero forcing
term can be described as follows:

Find a pair of {(U,S);U = U(y,7) and S = S(7)} such that U

satisfies

(1.1)
(1.2)
(1.3)
(1.4)

Ur — (a(U)Uy)y =0 in £2(7) x (0,Tp),
U(y,0) =g(y) for yel,

Uy0,7) =U(S(7),7) =0 for 0< 7 <Tp,
S+ (a(U)Uy)Iyzs(T) =0 for 0<7<LTy
S5(0) =1,

where 2(1) = {y;0 < y < S(7)} for each 7 € (0,Tp] and I = (0,1).
For simplicity, we suppress 7 in 2(7) and write £2(7) as {2 only. For
a single-phase linear Stefan problem, the study of semidiscrete finite
element error analysis was initiated with the fixed domain method
by Nitsche [4, 5]. Das & Pani [1] extended the error analyis to the
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problem (1.1)-(1.4) and derived error estimates in H' and H2 norms for
semidiscrete Galerkin approximations to the problem (1.1)-(1.4) using
the fixed domain method. And when the temperature was given at the
fixed boundary instead of the flux condition of (1.3), Pani & Das [6, 7]
obtained error estimates for semidiscrete Galerkin approximations to
the problem (1.1)-(1.4). Also error estimates for fully discrete Galerkin
approximations to the problem (1.1)-(1.4), depending on the backward
Euler method in time, were derived in [7]. Lee & Lee [3] adopted the
modifed Crank-Nicolson method to improve the rate of convergence in
the temporal direction.

In this paper, we not only improve the previous error estimates in H*
and H? norms for the semi-discrete case in [1], but we also derive the
error estimates in L?. In section 2, the weak formulation and Galerkin
approximations are considered. In section 3, the auxiliary projection
and related estimates are given. In section 4, error estimates for the
semidiscrete case are established. In section 5, the global existence of
the Galerkin approximation is considered.

Throughout this paper, we assume the followings:

(i) The pair {U,S} is the unique smooth solution of (1.1)-(1.4)
with S(r) > v > 0 for all T € [0, Tp)-

(ii) The function a(-), only depending on U, is C*4(R) and has
bounded derivatives up to order 4, bounded by a common con-
stant K, say. Further, the function a(-) is bounded below on
R by a positive constant a.

(iii) The initial function g is sufficiently smooth and non-negative
and satisfies the compatibility conditions g(0) = g(1) = 0.

For an integer m > 0 and 1 < p < 0o, W™P(Q) denotes the usual
Sobolev space of measurable functions which, together with their distri-
butional derivatives of order up to m, are in LP. For Q =TI and p = 2,
we shall use the symbol H™ in place of W™2(I) with norm || - ||,. Let
X be a Banach space with norm || - ||x and let v : [0,7] — X be a
function. The following notations are used:

ol oo, %) = (/ lo(r)f%dr)?, for 1<p<oo

Wlz=orx) = sup_ Il'v(T)llx
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We assume that {U, S} satisfies the following regularity condition: For
r>1, 3
Condition R :

(1.5) UeWh™>(0,To; H+1(Q)) and S € WH(0,Tp).

Let K be a bound for {U, S} in the space appeared in the condition
R.

2. Weak formulation and Galerkin approximations

With the help of the Landau transformations
T
(2.1) z=yS~! and = t(r) = / S=2(+')dr,
0

the problem (1.1)-(1.4) can be transformed into the following problem
with the fixed domain:

Find a pair of {(u, s);u(z,t) = U(y,7) and s(t) = S(7)} such that
u satisfies

(2.2) ur — (a(uw)ug ), = —za(u(l, t)uz (1, t)u,
in Ix(0,T],
(2.3) u(z,0) = g(z) for ze€l,
(2.4) uz(0,¢8) =u(l,t) =0 for 0<t<T,
(2.5) % = —a(u(l,?))uz(1,t)s for 0<t<T,
5(0) = 1.

Here, ¢t = T corresponds to 7 = Tp. Note that all the regularity
properties for {u,s}, denoted by the condition R, are inherited from
(1.5) for {U,S} and that K> is a bound for {u,s}. Note that the
integral in (2.1) can be rewritten as

d
(2.6) —&%————32(75) for 0<t<T

7(0) = 0.
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To obtain the weak formulation of the problem (2.2)-(2.5), we con-
sider the space
(2.7) HY(I) = {v € H*(I) : v,(0) = v(1) = 0}.
Multiplying both sides of (2.2) by w,, and integrating the first term
of (2.2) with respect to z, we obtain
(2.8)  (ut,wz) + ((a(w)ug)z, Waz) = a(u(l, t))ug(1,t)(zus, wes),

for t >0, we H2(I) with u(z,0) = g(z). .
To get Galerkin approximation of u, let Sk be a finite-dimensional
subspace of H2(I) with the following properties:

(i) The approximation property: for v € H*(I)(YH?(I), there
exists a constant Ky, independent of h and v, such that

(2.9) inf |lv—xll; < Koh*|loll, for 0<j <2, 2<k<r+1,
XESh

where r is a positive integer.
(ii) The inverse property:
lixllz < Koh™ixll1, x € S

Then a Galerkin approximation of u can be defined as follows:
Find u? = u®(-,t) € S}, such that for t > 0, x € Sy,

(2.10) (ufy, xz) + ((@(@™)ul)z, Xzz) = a(u™(L, 6))ul (1, t)(@ul, Xzs),
with
uh(x7 O) = th(:l:),

where Q) is an appropriate projection of v onto Sp at t = 0 to be
defined later in section 4. Moreover, Galerkin approximations s, and
7, of s and 7, respectively are given by

(2.11) %;Th = —a(0)ul(1,t) sp for 0<t<T,
sp(0) =1
and
d’Th 9
(2.12) —p =sn(t) for 0<t<T,

7(0) = 0.
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3. Auxiliary projection and related estimates

For u, v, w € H2(I), we define a trilinear form
A(u; v, w) = ((a(u)vy + @y (W urV)z, Wez) — a(0)uz (1) (2vr, Wer ),

as in [7]. Then it is easy to show that
the boundedness of A :

3.1) |A(u; v, w)| < Kallvee||llwae||
a Garding-type inequality for A :
(3.2) A(u;9, v) 2 alluge | = Allos |

for u, v, and w € H? (I) where K3, a, and A are constants and K3 and
A may depend on ||ul|z2-

Let
(3.3) Ap(u;v, w) = A(u; v, w) + (vz, W)
Let @(z, t) € S, be the auxiliary projection of v with respect to A :
(3.4) Ap(u;u—1i, x) =0, x € Sh.

Due to [2], we obtain the following result.
THEOREM 3.1. Foragivenu € H?2(I), there exists a unique solution
@ € Sp, to (3.4).

Define n = u — % and { = u” — 4. Then we obtain the following
estimates for 7 and 7; whose proofs are similar to those of Lemma 4.2
- Lemma 4.7 in [1].

THEOREM 3.2. Fort € [0, T}, there exists a constant
K4 - K4(O£, A, KO, K17 K2) K3)

h

such that )

lill; < Kab™ 7 fluiflm,

Imells < Kah™ 7 {{lullm + lluelim},
and

Inz (1, £)] < Kah®™ 2 |lull,m
forj=0,1,2and 2<m<r+1.
Due to the conditions on u and Theorem 3.2, there exists K5 such
that
@lizee(zr2) + ||el| Lo a2y < K.
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4. Error estimates for the semidiscrete case

Throughout this section, it is assumed that there exist constants K*
and hg such that a Galekin approximation u” € S, of (2.10) exists and
satisfies

(4.1) Nu"||poo(arzy < K* for 0<h < ho,
where u”(z,0) is defined as Qng(z), satisfying

Ap(9;9 — Qng, xX) =0, X € Sh.

Clearly, u"(z, 0) = i(z,0).
Following the standard notations for nonlinear problems, we define

h -~

e=u—u", n=u—4, and (=u"

— 4.

Then we obtain

e=1n—¢
and
(4.2) a(uP)ul — a(i)i,
=a(u™)¢ + (a(u?) — a(@))is,
(4.3) a(uw)ug — a(@)i
=a(u)17m + a, (’U,)'I]’Uq; — QMM — a'uu"]2uxa
where

_— L da
Gy = /0 22 (u — Em)d,

U
— ! d%a
G = A (1 - &) 5 (u— En)e.

THEOREM 4.1. There exists a constant K¢ = Kg(a, A, K1, K2, K3,
K4, K5, K*) such that

(4.4) 1<l zoe a1y + Bl L2 (1r2) < Keh™

fora<m<r-+1.
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Proof. Substracting

(e, Xz) + ((a(@)ic)z, Xzz) = a(0)us(1)(2lhs, Xaz)
from (2.8) and (2.10) and using (4.2) and (4.3), we have

(G + (e a(u)Ge + (a(u) — afu)) ], x0)
=a(0)uz (1)(zuf, Xaz) + (s Xo)

+( ;%[a(u)nx + 6y (W)U — GuTz — Guul Uz), Xaoz)
—a(0)us(1)(zuz, Xoz),
which implies that
(Gtar Xz) + ((@(w)Ce)as Xaz)
=(Tws Xz) — ANy Xz) + a(0)uz(1)(2Cz, Xox)
+a(0) ¢ (1) (zuf, Xzz) — (((a(v") — a(@))iie)zs Xaz)
~((@unMz + Guu’Ua)z, Xoz)-

Taking x = ¢ in (4.3), integrating by parts the first term on the right-
hand side, using Schwartz inequality and Sobolev imbedding theorem,
we obtain

= el + alerl?
<K K*[|C €zl + lInellICazll + Allnlll| ol + K1 Ko |Gl Coz
(4.6) TEIE ne(Dll|Cezl + K()l¢eall® + K (K1, K™, €)|ICI1F
+2K:1 K| [I¢Nl2 + Ka Kl oz | + (K1 (K2 + linll2) nil3
+2K:1|nll1linllz + K1 (K2 + |nll2) 191 + 2K linll (il
+EK1 (Ky + ||nll2) |71} + 3K ]| ¢ea -

From (4.6), we obtain

(4.5)

LI + 2013
(4.7) <K(e)lICII3 + K7(K1, K2, A, K*, K5,2)|CII3
(K, Ko, ALK, K, ) [l + il + o (1)
+nlld + I3l + ml3lnl2).
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Choosing ¢ sufficiently small so that 2o — K(¢) > 0 and applying
Gronwall’s inequality to (4.7), we obtain

t t
< +ﬁ/ I<lzdt’ SK7exp(K7t)/ [eli® + > + Ima (1)1
0 0

+nll + Il il + InlZlnl3] dt’-

(4.8)

The desired result can be obtained for m > 4 if we take the supremum
over all t in [0, 7] in (4.8) and if we use the results of Theorem 3.2. [J

COROLLARY 4.2. For m > 4, the following estimate holds:
(4.9) Kl Lo (r2) < Kah™.

From Theorem 3.2, Theorem 4.1, and Corollary 4.2, the following
theorem is obtained. The estimates in H? and H! norms for e are the
same as those in [1]. However, the order of h in the previous estimate
in L? porm in [1] is improved by 1.

THEOREM 4.3. Let the solution u € H2(I) of (2.8) with (2.3) be suf-
ficiently smooth so that the regularity condition R is satisfied. Further,
let there exist constants hg and K*(K* > 2K3) such that a Galekin
approximation u® € Sy, of (2.10) satisfying (4.1) exists in I x (0,1] for
0 < h < hg. Then we obtain the following estimate:

(4.10) lelleo(msy < Koh™ 7 for r>3 and j=0,1,2,
where K9 = Ko(K4, Kg). Besides, for sufficiently small h and r > 3,
NP | Lo a2y < 2Ka < K*

and consequently Kg can be chosen independent of K*.
Finally, the Galerkin approximation of the solution {U(y, 1), S(7)}
of the problem (1.1)-(1.4) can be defined as
Uy, ) = u(z,1),
Sp(1) = sn(t),
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where
y = sn(t)z,
T = 1(t).
Here sp, and 75, are given by (2.5) and (2.6), respectively. Then we
obtain the following error estimates for the Galerkin approximation

in which the order of h in the previous estimate for S and 7 in [1] is
improved by 1.

THEOREM 4.4. Under the assumptions of Theorem 4.3 and the reg-
ularity condition R, we obtain the following estimates:

IS — ShHLw(o,To) = O(hTH)
|7 — ’fh||L°°(o,To) = O(hrﬂ)

U = U™ oo (0105105 a(ryy) = OB 77), forr > 3 and j =0,1,2,

where Q(7) = (0, min(S(7), Sy (7)) for T € (0, Tp).
Proof. The proof is similar to that of Theorem 5.5 in [7]. a

5. Global existence of the Galerkin approximation

~ To obtain the unique existence of the Galerkin approximation uh €
Sk, of (2.10) in the domain of existence of the solution w and a priori
estimates of u—u”, we consider the following linear ordinary differential
equation of ¢ in time ¢ with {(z,0) =0
(Ctzs Xz) + ((a(u — E) )z Xaz)

=(tzs Xz) — A0z, Xa) + a(0)uz (1)(2Cz, Xax)
(5.1) —a(0)n:(1)(z(uz — Ez), X2z) + a(0)¢ (1) (z(ue — Ez), Xoz)

~(((a(u — E) — a(u — m)(uz ~ 12))zs Xzz)

_((&un"h + auu"]2ua:):c’ Xz:c), for X € Sha

where E € L°(H?(I)),

i 1 o _ 1 52
ay Z/O a—Z(’Uf—gT])dév and au'u,:‘/0 (1—5);9“—(;(11»—577)‘15
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Then, for any E = E(z,t), the existence of a unique solution of (5.1)
with {(z,0) =0 in (0,7 can be established, see [4]. Therefore we can
define an operator & such that ¢ = SE for each E € L™ (H?(I)). Since
e =1 — ¢, we obatin

(5.2) e=n—SE foreach E € L®(H?(I)).

To show the existence of a solution u” of (2.10), it is sufficient to
show that the operator equation (5.2) has a fixed point, i.e., e(E) = E.

THEOREM 5.1. If the solution u satisfies the regularity condition
R and K is any positive constant, then, for sufficiently small h and
r > 3, there exists a unique solution u® € Sy of (2.10) in the ball
{llu — v*|| Lo ar2(ry) < K}

Proof. Letting x = ¢ in (5.1), we obtain

(Ctzr Ge) + ((alu — E)e)z, Cos)
= (e Co) — A, C2) + a(0)uz (1)(2Cz, Cox)
(5.3) —a(0)7z(1)(z(us — Ez), Caz) + a(0)¢a(1)(z(ue — Ez), Cza)
—(((a(u — E) — a(u — 1)) (tz — Mz))z> Coa)
—((Gummz + auuWQUz)Zr Caz)s

which implies that

L1l + 20 Cerl?
Koo + K (e B, A, 1) [l + Il
HH IR D + (4 BB+ )
BY @+ IR+ Il + (Ul + NEID + Il
L ) S o R A o

+(L+ il + i3l + ]
+K (K1, K2, €)(1+ | EI3) 11
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Choosing € > 0 so that 2a — K(e) > 0, we get

d
S cl?
(55) SKEKLAK) [P + Il + (1 + B0 (O + Inli)

HinlZ T + Iall3 + I9ld + IEIZ 03 + i)
+K (K1, Ka,€) (1 + | EIDICN?,

which implies that

[4HO)
<K(e, K1, A, K3) exp[K (K1, Ka,€)(1 + | E||3)]

6o / el + il + (L + IEIZ) (me (LI + lnli3)

+ I3 InlE + Il + Il + IEZlnlI3 + Inlli]
<Kexp[K(1+||E|3)T] - [B*™ + (1 + || E|I3)(h* ™2
+ h2(m—1)) + h4m—6 + hZ(m—Z) + ”E”§h2(m—2) + h4(m—1)] .
If | E||zoo 2y < 6, then from (5.6) we obtain
¢l poe a1y < K (K1, K2,6,A,6)h™ ™2 < K(Ky, Ka,e,A,8)h™ !
for m > 4 and so
llellzoe a2y < lInllzee 2y +ICH Loo (22)

< inllzee a2y + Koh ¢ Lo (1)
< Kh™3 < Kh™2

Therefore, for sufficiently small h,
llelizee a2y < 6.
Thus the operator & defined by (5.2) maps a ball
Bs = {v € L(H?) : |||l g2y < 6}

into itself for sufficiently small A and so by Schauder’s fixed point
theorem the operator equation (5.2) has a fixed point, i.e., e(E) = E.
This completes the proof. 0
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