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Introduction

The equations of motion of an incompressible, Newtonian fluid –usually called
Navier-Stokes equations– have been written almost one hundred eighty years
ago. In fact, they were proposed in 1822 by the French engineer C. M. L. H.
Navier upon the basis of a suitable molecular model. It is interestingto observe,
however, that the law of interaction between the molecules postulated by Navier
were shortly recognized to be totally inconsistent from the physical point of view
for several materials and, in particular, for liquids. It was only more than twenty
years later that the same equations were rederived by the twenty-six year old
G. H. Stokes (1845) in a quite general way, by means of the theory of continua.

In the case where the fluid is subject to the action of a body force� , the
Navier-Stokes equations can be written as follows

��

��
� � � �� � ��� ���� �

div� � �

(0.1)
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where� � ���� �� is the velocity field evaluated at the point� � � and at time
� � ��� � 	, �� is the pressure field,� is the constant density of the fluid, and�
�	 �� is the coefficient of kinematical viscosity. Finally,� denotes the relevant
geometrical domain where the spatial variables are ranging. Therefore, it will
coincide with the region of flow for three-dimensional motions (
���, � � 
��),
while it will coincide with a two-dimensional region, in case of plane flows
(� � 
��).

To the equations (0.1) we append theinitial condition: 1

���� �� � ��� � � � (0.2)

and theboundary condition

��
� �� � �� 
 � ��� � 	 � 2� (0.3)

In the case where� extends to infinity, we should impose also convergence
conditions on���� �� (and/or, possibly, on���� ��) when ��� � �.

Several mathematical properties for system (0.1) have been deeply investi-
gated over the years and are still the object of profound researches.However,
after more than one hundred seventy years from their formulation, the Funda-
mental Problem��� �related to them remains still unsolved, that is:

Given the body force� and the initial distribution of velocity�� (no matter
how smooth), to determine a corresponding unique regular solution���� ��� ���� ��
to ������ ���
� for all times � 	 �.

So far, this problem is only partially solved, despite numerous efforts by
mathematicians and despite being viewed as an “obvious truth” by engineers.
All this adds more weight to the following profound consideration due to Sir
Cyril Hinshelwood, see Lighthill (1956, p. 343)

Fluid dynamicists were divided into hydraulic engineers who observe what
cannot be explained and mathematicians who explain things that cannot be
observed

One of the aims of this article is to furnish an elementary presentation of
some of the basic results so far known for��� �. In Section 1, we shall discuss
the main features of system (0.1) and describe the main difficulties related to

1Without loss of generality, we can take� as initial time.
2For simplicity, we shall consider the case of homogeneousno-slip conditions.
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it. Successively, following the classical methods of Leray (1934a, 1934b) and
Hopf (1951/1952), we introduce the definition ofweak solutionto (0.1)-(0.3)
and study some of the related properties (Section 2). These solutions play a
major role in the mathematical theory of Navier-Stokes equations, in that they
are the only solutions, so far known, which exist forall times and without
restrictions on the size of the data. In Section 3 we shall show the existence of
a weak solutionfor all times � 	 �. Uniqueness and regularity of Leray-Hopf
solutions will be presented in Sections 4 and 5, respectively. Due to the particular
form of the nonlinearity involved in the Navier-Stokes equations, this study will
naturally lead to the functional class���� 	 ����� � �������, ��� � ��� � �,
� 	 �, 3 such that any weak solution belonging to���� is unique and regular.
In view of this result, we shall see that every weak solution in dimension two
is unique within its class, and that it possesses as much space-time regularity
as allowed by the data. Since it is not known if a weak solution in dimension
three is in����, it is not known if these properties continue to hold for three-
dimensional flows. However, “partial regularity” results are available. To show
some of these latter, we begin to prove the existence of more regular solutions
in Sections 6. This existence theory will lead to the celebrated “théor̀eme de
structure” of Leray, which, roughly speaking, states that every weak solution
is regular in space and time, with the possible exception of a set of times �
of zero 1/2-dimensional Hausdorff measure. Moreover, defining a finite time
�� � � an epoch of irregularityfor a weak solution�, if � is regular in a left-
neighborhood of�� but it can not be extended to a regular solution after��, we
shall give blow-up estimates for the Dirichlet norm of� at any (possible) epoch
of irregularity. In view of the relevance of the functional class����, in Section 7
we will investigate the existence of weak solutions in such a class. Specifically,
we shall prove the existence of weak solutions in����, at least for small times,
provided the initial data are given in Lebesgue spaces��, for a suitable�. To
avoid technical difficulties, this study will be performed for the case� � 
��

(Cauchy problem). As a consequence of these results, we shall enlarge the class
of uniqueness of weak solutions, to include the case� � �. In addition, we
shall give partial regularity results of a weak solution belonging to����. The
important question of whether a weak solution in���� is regular, is left open.

3� denotes the space dimension.
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1 Some Considerations on the Structure of the Navier-
Stokes Equations.

Before getting involved with weak solutions̀a la Leray-Hopf and with their
regularity, we wish to emphasize the main mathematical difficulties relating to
��� �. First of all, we should notice that the unknowns�� � do not appear in
(0.1) in a “symmetric way”. In other words, the equation of conservation of
mass isnot of the following form

��

��
� �������

This is due to the fact that, from the mechanical point of view, the pressure plays
the role ofreaction force(Lagrange multiplier) associated with the isochoricity
constraint div� � �. In these regards, it is worth noticing that, in a perfect
analogy with problems of motion of constrained rigid bodies, the pressure field
must be generally deduced in terms of the velocity field, once this latter has
been determined. In particular, we recall that the field���� �� can be formally
obtained –by operating with “div ” on both sides of������– as a solution of the
following Neumann problem

�� � div �� � �� � �� in �

��

��
� ����� � �� �� at ��

(1.1)

where� denotes the unit outer normal to�� 4.
Because of the mentioned lack of “symmetry” in� e �, the system (0.1) does

not fall in any of the classical categories of equations, even though, in a sense,
it could be considered close to a quasi-linear parabolic system. Nevertheless,
the basic difficulty related to problem (0.1)–(0.3) does not arise from the lack
of such a symmetry but, rather, from thecoupledeffect of thelack of symmetry
and of thepresenceof the nonlinear term. In fact, the��� � formulated for any
of the following systems

��

��
� ��� ���� �

div� � �

(0.1�)

4From this it is clear that to prescribe the values of the pressure at the bounding walls or at
the initial timeindependentlyof �, could be incompatible with (1.1) and, therefore, could render
the problem ill-posed.
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��

��
� � � �� � ��� � � (0.1��)

obtained from (0.1) by disregarding either the nonlinear term [������] or the
isochoricity condition [������)] can be completely solved. While for������ this
solvability will be clear when we shall consider the solvability of��� � for (0.1),
the solvability of ������� is a consequence of an interestinga priori estimate
discovered by Kiselev and Ladyzhenskaya (1957) and based on a maximum
principle that we would like to mention here. Setting

���� �� � ���� ������ � 	 �

from ������� we obtain

�
�

���

��
� �

�
� � ��� � ��� � ��� � �� � � ������ (1.2)

Consider a point� � ���� ��� of the cylinder� 
 ��� � 	 where�� assumes its
maximum. If such a point lies either on the bottom face of the cylinder (
���, at
�� � �) or on its lateral surface (
���, at �� � ��) we have

���
���
����� �� � ������ �� � ���

�
������� (1.3)

If, on the contrary,� is an interior point of the cylinder or lies on its top face
we find

���

��
� �� ��� � ��

�� ��� � ����� � �
�
��� � �

�
���

���
evaluated at ���� ��� � � .

Therefore, from (1.2) we deduce

������� ��� � ����� ��� � ����� ��������� (1.4)

As a consequence, from (1.3), (1.4) we prove the followinga priori estimate
holding for all (sufficiently regular) solutions to system�������

����� ��� � ���
�
�

�
���
���

���������� ���	 � ���
�
��������

�
� (1.5)

Notice that (1.5) isindependentof the spatial dimension. Unfortunately, nothing
similar to (1.5) is so far known for system (0.1) in dimension 3. Nevertheless, as
we shall show later on, in dimension 2 the global (
���, for all times) estimates
that we are able to derive will suffice to ensure the existence and uniqueness of
a regular solution for (0.1).
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2 The Leray-Hopf Weak Solutions and Related Prop-
erties.

We shall begin by giving the definition of weak solution in the sense ofLeray-
Hopf. To this end, we need to introduce some notation. By����� and�	�����,
� � � � �, � � �� �� � � �, we denote the usual Lebesgue and Sobolev spaces,
respectively. The norm in�	�� is indicated by
 � 
	��. For � � �, it is
� ��� 	 �� and we set
 � 
��� 	 
 � 
�. Whenever we need to specify the
domain� on which these norms are evaluated, we shall write
 � 
	���
. We
denote by�	��

� ��� the completion in the norm
 � 
	���� of the space��
� ���

constituted by all infinitely differentiable functions with compact support in�.
The dual space of�	��

� will be denoted by��	���.
Let 5

���� � �� � ��
� ��� � div� � � in ���

We define�� � ����� as the completion of���� in the Lebesgue space�����.
Moreover, we denote by��

� ��� the completion of���� in the Sobolev space
� ������. For � � �, we shall simply write� and��, respectively. It is well
known, see Galdi (1994, Chapter III), that if� has a bounded boundary which
is locally lipschitzian, or if� is a half-space, the following characterizations for
�� and��

� hold, for � � � ��:

����� � �� � ����� � div� � �� � ����� � ��

��
� ��� �

�
� �� ������ � div� � �� ���� � �

	

where the values at the boundary have to be understood in the trace sense.
Furthermore, if� is of class��, the following Helmholtz-Weyl decomposition
holds

����� � ����������� (2.1)

where

����� � �� � ����� � � � ��� for some� � ���
���� with �� � ������

(we set� � ��). The projection of�� onto �� is denoted by�� (	 � , for
� � �). In the case� � �, � and� are orthogonal subspaces of��, and (2.1)
holds for any open set�.

5If � is a space of scalar functions, we denote by� the space constituted by vector or tensor
valued functions having components in�.
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For � � ����	 we set�� � �
 ��� � � and define

�� � �	 � ��
� ��� � � div	��� �� � � in ���

Notice that for	 � �� , 	��� �� need not be zero. For
� � vector functions in
� we put

�
� �� 	



�

 � �� 


� � �
�
����

��
���� 	
��

�����




�

���
���

� �
���

� 
�

� � ��
��
�����

If we need to specify the domain� on which these quantities are evaluated, we
shall write

��� ��
� 
 � 
��
�

Moreover, for a given Banach space!, with associated norm
 � 
� , and
a real interval���  �, we denote by�����  �!� the linear space of (equivalence
classes of) functions" � ���  �� ! such that the functional


"
��������	 	

�
����


�����

�
 �

�

"���
��#�

����
if � � � ��

��� ���
������	


"���
� if � ��

is finite. It is known that this functional defines a norm with respect to which
�����  �!� becomes a Banach space (Hille and Phillips 1957, Chapter III). Like-
wise, for � a non-negative integer and� a real interval, we denote by�����!�
the class of continuous functions from� to !, which are differentiable in� up
to the order� included. Finally, if� is open or semi-open, by$����!�, we
denote the subspace of����!� such that���

���

%���
� ��. Depending on!,

these spaces might share several properties with the “usual” Lebesguespaces
�����  � and spaces�����, and we refer to the monograph of Hille and Phillips
for further information.

Assume now���� ��� ���� �� is a classical solution to (0.1)-(0.3).6 Then,

6For instance,� is one time differentiable in� and twice differentiable in�, while � is one
time differentiable in�. Moreover,� assumes continuously the initial and boundary data.
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multiplying ������ by 	 � �� and integrating over�� we find


 �

�

��
��

�	

��

�
� ������	�� �� � ���	�

�
#�

��

 �

�
�� �	�#�� ����	�����

for all 	 � �� �

(2.2)

Conversely, if���� �� is a vector field satisfying (2.2), and having enough smooth-
ness as to allow for integration by parts over�� in some sense,7 we easily obtain


 �

�

�
��

��
� � � �� � ��� � � � &����

�
#� � �

for all & � ��
� ���� � �� and� � ����. Therefore, for every such�

�
��

��
� � � �� � ��� � � ��

�
� ��

and by a well known result of Hopf (1950/1951), see Galdi (1994, Lemma
III.1.1), we conclude the validity of (0.1) for some pressure field���� ��. How-
ever, it is clear that if���� �� is a solenoidal vector field that satisfies (2.2) but
is not sufficiently differentiable, we cannot go from (2.2) to������ and it is
precisely in this sense that (2.2) has to be considered as theweak formulationof
�������

Remark 2.1 It is simple to give examples of solenoidal vector fields which
satisfy (2.2) but which do not have enough smoothness as to verify������, no
matter how smooth� and�� are. Take, for instance

���� �� � �����'���� �' � � in � (2.3)

where���� has no more regularity than the local integrability in��� � � with ����
finite. Since

� � �� � �
�
���'��

and div� � �, we deduce that���� �� is a non-smooth solenoidal vector field
satisfying (2.2) with� � � and�� � �����(. Notice that, since' is harmonic,
�� is analytic.

7For instance, in the sense of generalized differentiation.
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We wish to give a generalized meaning to the solenoidality condition������
and to the boundary condition (0.4). This will be accomplished, for instance,
if we require that, for almost all times� � ��� � 	, ���� �� belongs to�����.
Moreover, to ensure that all integrals in (2.2) are meaningful, we may require
� � ����� � ����.

These considerations then lead to the following definition of weak solution,
due to Leray (1934a, 1934b) and Hopf (1951/1952).

Definition 2.1 Let �� � ����, � � ����� �. A measurable function� �
�� � 
��, � � �� 
, 8 is said aweak solutionof the problem (0.1)-(0.4) in��

if

a) � � )� 	 ����� � ���� � ����� � ���;

b) � verifies (2.2).

If � � ����� � for all � 	 �, � will be called aglobal weak solutionif it is a
weak solution in�� for all � 	 �.

Remark 2.2 In a) we have included the condition that� � ����� � ���
which, a priori, does not seem to be strictly necessary. However, on one hand,
this condition ensures that the kinetic energy of a weak solution is essentially
bounded in the time interval��� � 	, and this is a natural request from the physical
point of view. On the other hand, excluding such a condition would result ina
definition of weak solution too poor to allow for the development ofany further
relevant property. And last, but not least, we shall prove that the class of weak
solutions is not empty, see Theorem 3.1.

Remark 2.3Definition 2.1 is apparently silent about the pressure field. Later
on (Theorem 2.1) we shall see that to every weak solution we can alwaysassociate
a corresponding pressure field.

Our next objective is to collect a certain number of properties of weaksolu-
tions which will eventually lead, among other things, to a definition equivalent
to Definition 1.1. The following result is due to Hopf (1951/1952, Satz 2.1); see
also Prodi (1959, Lemma 1) and Serrin (1963, Theorem 4).

Lemma 2.1Let � be a weak solution in�� . Then� can be redefined on a
set of zero Lebesgue measure in such a way that���� � ����� for all � � ��� � �

8Of course, the definition of weak solution can be given for any spatial dimension� � �,
but we shall be mainly interested in the physical interesting cases of two and three dimensions.
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and satisfies the identity


 �

�

��
��

�	

��

�
� ������	� ��� � ���	�

�
#*

��

 �

�
�� �	�#* � ������	����� ������	�����

(2.4)
for all � � ��� �	, � � � , and all	 � �� .

Proof. It is clear that to show (2.4) for arbitrary� � ��� �	, it is enough to
prove it for� � �. We begin to show that (2.4) holds for� � � and almost every
� � ��� � �. Let + � ���
�� be a monotonic, non-negative function such that

+�,� �

�


�

� if , � �

� if , � �

For a fixed� � ��� � � and& 	 � with �� & � � we set

+��* � � +

�
* � � � &

&

�
�

Notice that �����
#+�
#*

����� � �&��� � 	 ��


 �
�

�

#+�
#*

#* � ���
(2.5)

Choosing in (2.2)	��� �� as+����	��� ��, we obtain


 �
�

�
+��* �

��
��

�	

��

�
� ������	� ��� � ���	� � �� �	�

�
#*

��

 �
�

�

#+��* �

#*
���	�#* � ����	��

(2.6)
Letting&� � in this relation and recalling Definition 2.1, we easily deduce that
the integral on the left-hand side of this relation tends to


 �

�

��
��

�	

��

�
� ������	�� �� � ���	� � �� �	�

�
#*�
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Let now investigate the behavior of the integral at the right-hand sideof (2.6).
In view of (2.5) and of a) of Definition 2.1, we have for each fixed�

-�&� �� 	
�����


 �
�

�

#+��* �

#*
���*��	�* ��#* � ������	����

�����

�

�����


 �
�

�

#+��*�

#*
����*�� �����	���� � ���* ��	�*��	����� #*

�����

� �
	���
�
�
&��


 �
�

�

��* �� ����
�#*

�

� ���
������
��


	����	�* �
�
�
&��


 �
�

�

��* �
�#*

�

� �
	���
�
�
&��


 �
�

�

��* �� ����
�#*

�

�. ���
������
��


	����	�*�
��

Denote by���� the set of all those� � ��� � � for which

���
���

&��

 �
�

�

��* �� ����
�#* � ��

As is well known from the theory of Lebesgue integration (Titchmarsh,1964,
�11.6, Hille and Phillips, 1957, Theorem 38.5),���� can differ from��� � � only
by a set of zero Lebesgue measure. Therefore, since

���
���

���
������
��


	����	�* �
� � ��

we obtain
���
���

-�&� �� � �� for all � � �����

and so identity (2.4) follows for� � � and all � � ����. We set/� � ��� � ��
����. Moreover, by a) of Definition 2.1, there exists a constant. 	 � and a
set/� � ��� � � of zero Lebesgue measure such that


����
� �.� for all � � ��� � �� /�� (2.7)

Put/ � /��/� and pick� � /. Then, there exists a sequence���� � ��� � ��/
converging to� as 0 � �. By (2.7), 
�����
� � . and so, by the weak
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compactness of the spaces� we find� � � ���� such that

���
���

�������� ���� � �� for all � � �����

Define

����� �� �

�



�
���� �� if � � ��� � �� /

� ���� if � � /�

(Notice that����� �� � �����.) Clearly, �� � �����, for all � � ��� � �. Fur-
thermore, evaluating (2.4) along the sequence���� associated to� � and letting
0 �� it is easy to verify the validity of the following statements:

1) �� satisfies (2.4) for all� � ��� � �;

2) � � does not depend on the sequence����.

The lemma is then completely proved.

As a corollary to this result, we have

Lemma 2.2Let � be a weak solution in�� . Then� can be redefined on a
set of zero Lebesgue measure in such a way that it satisfies the identity


 �

�
���������� ��� � ������ #�

��

 �

�
�� ���#�� ��������� �������

(2.8)

for all � � ��� � � and all � � ����. Furthermore,� is �� weakly continuous,
that is,

���
����

������ �������� � ��

for all �� � ��� � � and all � � �����.
Proof. We put in (2.4)� � � and choose	��� �� � +��������, where+�

is the function introduced in the proof of the previous lemma and� � ����.
Noticing that	 � � in � � ��� �	, (2.8) follows at once. To show the�� weak
continuity, we observe that for any fixed�� � ��� � � from (2.8) it follows that

�1 	 �� � 2�1� 	 � � ��� ��� � 2 �� ������� ��������� � 1�
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for all � � ����. It is clear that this property continues to hold (by density)
for all 
 � ����. Let now� � �����. By the Helmholtz-Weyl decomposition
(2.1) we may write

� � 
 ���� 
 � ����� �� � ����

and so, since� � ����, we have

������ �������� � ������ ������
��

and the lemma follows.

Remark 2.4 Lemma 2.2 tells us, in particular, the way in which a weak
solution assumes the initial data, namely, in the sense of the weak�� convergence.

Throughout the rest of these notes, we shall assume that every weak solution
has been modified on a set of zero Lebesgue measure in such a way that it
verifies the assertions ofLemma 2.1and Lemma 2.2

Our next concern is to investigate if and in which sense, we can associate a
“pressure field” to a weak solution. Let us first assume that�� � is a classical
solution to (0.1)-(0.4). Then, multiplying������ by � � ��

� ��� and integrating
by parts over�� we formally obtain


 �

�
���������� ��� � ����� � �� ���� #�

�

 �

�
��� div�� � ��������� �������

(2.9)

In the next theorem, we shall show that to any weak solution� in �� we can
associate a function� ��� � ���3�, � � ��� � �, 3 �� �, such that


 �

�
���������� ��� � ����� � �� ���� #�

��� ���� div�� � ��������� �������

(2.10)

for all � � ��
� ���. We wish to emphasize that, using only (2.8) and the local

regularity property of weak solution, in general, we cannot write

� ��� �� �

 �

�
���� ��#�� for some� � ���
����� � ��� (2.11)
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due to the fact that a weak solution hasa priori only a mild degree of regularity
in time. To see this, let us consider the vector field� given in (2.3) and choose
���� � ����� � �� but �� �� ���
����� � ��. By a straightforward calculation we find
that


 �

�
���������� ��� � ������ #�� �������� � ������

� �
�


 �

�
��������'��� div��#�� ������ ������'� div��

and therefore (2.10) is satisfied with� 	 � and

� � �
�


 �

�
�������'��#�� ������ �����'�

Since�� �� ���
����� � ��, � does not verify (2.11); see also Remark 2.6.

Theorem 2.1Let � be a weak solution in�� . Then, there exists a scalar
field � � �� � 
� with

� ��� � ���3�� for all � � ��� � � and3 �� ��

verifying (2.10) for all� � ��
� ��� and all � � ��� � �. Moreover, if3 satisfies

the cone condition, there exist� � ���� 3� � 
� and�� � ���3� 	 � such that


� ���� �
������

�
 �

�

�

�����
����.�
�����
���� � 
����
���

�
#��.

�

for all � � ��� � �, where

. � ��� ���
�������


����
���

and

� �

�


�

� if � � �

��� if � � 


4 �

�



�
� if � � �


�� if � � 
.
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Proof. Let us consider a sequence of bounded “invading domains”����,
that is,�� is bounded for each0, and

��
� � ��� � �
��

���

���

Without loss, we may assume that�� satisfies the cone condition for each0.
For fixed � � ��� � �, consider the functional

�����

 �

�
������������� � ������ �� ���� #����������� �������

� �� ���
� �����

It is clear that� is linear functional on� ���
� ����. Moreover, using the Schwarz

inequality and the following ones (see,��5�, Galdi, 1994, Chapter II)


%

 � ����

%
���� 
�%
���� � � � ��


%

 �
�



�
�
�

���
 
%
��
� 
�%
��
� � � � 
�
(2.12)

it is easy to see that

������ � 6
�
�
�
 �

�

�

��
� �.�

� 
��
�
�
�
�
#��.�

�
(2.13)

where
.� � ��� ���

�������

����
���� �

As a consequence,� is a continuous linear functional on� ���
� ���� which, by

Lemma 2.2, vanishes on������. Thus, since�� is bounded for all0, by known
results (Galdi, 1994, Corollary III.5.1) there exists�� � ����� � ������ such
that

���� � ���� div��� for all � �� ���
� ����.

Likewise, we show that there exists�� � ����� � ������ such that

���� � ���� div��� for all � �� ���
� �����

Since, for� � ��, we have����� �� � ����� �� � 6������� ��, 6������� �� � 
�,
we can modify�� by a function of time so that�� 	 �� in ��. By means of
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an induction argument, we then prove the existence of a function� � �� � 
�
with � � ������, for all 0 � 
�. 9 Furthermore,

���� � ��� div��� for all � �� ���
� ����.

and, again by Galdi (1994), Corollary III.5.1, and (2.13), we have


� ���
���� � ��

�
 �

�

�

��
���� �.�

� 
��
�����
�
����
�
#� �.�

�

�� ���� ���� � �

which proves the theorem.

Remark 2.5 If � has a bounded boundary satisfying the cone condition, one
can show that the field� introduced in the previous theorem can be chosen
to belong to����� � �������. In fact, in such a case, assuming some more
regularity on� one shows that relation (2.11) holds, see Sohr and von Wahl
(1986).

Remark 2.6 In a recent paper, J. Simon (1999) has shown that, when
� is bounded, there exists at least one weak solution satisfying (2.9),with
corresponding� � �������� � ����
�����, if � has no regularity, and with.
� � �������� � �������, if � is locally lipschitzian. For this result to hold
it is sufficient to assume� � ����� � ����������.

We wish now to prove a converse of Lemma 2.2, that is, any function� � )�
(see Definition 2.1) which satisfies (2.8) for all� � ��� � � and all� � ���� must
also satisfy (2.2). This will lead to an equivalent formulation of weak solution
involving identity (2.8) instead of (2.2). We begin to show that if� � )� solves
(2.8) for all � � ��� � � and all� � ����, then it also satisfies (2.2) with

	��� �� 	 	� �
��

���

7���������� (2.14)

where7� � ��
����� � ��. By the linearity of (2.8) in	, it is enough to show this

statement for8 � �. Now, (2.2) with	��� �� � 7������� and (2.8) can be
written in the following forms


 �

�
7����5���#� � �


 �

�
7�������#�� 7���5��� (2.2’)

9�� denotes the set of all positive integers.
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and

5��� �

 �

�
����#�� 5���� � � ��� � � (2.8’)

respectively, where

5��� � ��������

���� � ����������� �� � ����� � �� ���� � ����� � �

From Lemma 2.2 we already know that������ implies ������. Conversely, from
classical results on Lebesgue integration (see,��5�, Titchmarsh, 1964,�11), one
shows that������ implies ������. 10 To complete the equivalence of the two
formulations, it remains to show that every	 � �� together with their first and
second spatial derivatives and first time derivatives, can be approximated in��

by functions of the type (2.14). This is the objective of the following lemma.

Lemma 2.3 Let � be an arbitrary domain in
��, � � �, and let� 	 �.
Then, there exists a sequence of functions���� � ���� with the following
properties. Given	 � �� and 1 	 � there are8 � 8�	� 1� � 
� functions
7� � ��

� ���� � ��, 0 � �� � � � �8� such that

���
������ �


	�����	���
����	 � ���
������ �

�����
�	����

��
� �	���

��

�����
����	

� 1�

with 	� given in (2.14). Moreover,���� can be chosen to be an orthonormal
basis in����.

Proof. Let �	 � �	��� be the completion of���� in the norm
 � 
	
of the Sobolev space�	����� and let���� be a basis of�	 constituted by
elements of����. 11 For arbitrary9 	 �, let � 	 �� � �� � � � � � �� 	 � be a
partition of ��� � 	 such that


	�����	�����
	 � 9� ��� ��� � ������ ��	� (2.15)

Denoting by��� ��	 the scalar product in�	 and setting

	���� �� �
��

���

�	����	������

10If � � ����� 	 ��, equation��
��� is obtained from��
��� after multiplying this latter by
����� and integrating by parts.

11This is always possible, owing to the separability of����.
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we have
���
���


	�����	���
	 � �� for all � � ��� � 	� (2.16)

and so, by the Schwarz inequality, we find for all� � ������ ��	


	�����	�����
	 � 
	����	����
	 � 9� (2.17)

Thus, from (2.15)-(2.17), for� � ������ ��	 and sufficiently large: we find


	�����	���
	 � 
	�����	�����
	 � 
	������	����
	
�
	����	����
	 � 
9�

Choosing� 	 ���, by the Sobolev embedding theorem we conclude

���
������ �


	�����	���
����	 � �9

with � � ������ ��. Moreover, for all� � ��� � 	, it is

���
���

�����
�	����

��
� �	���

��

�����
	

� ��

and so, by the same kind of argument used before, we show

���
���

���
������ �

�����
�	����

��
� �	���

��

�����
����	

� ��

To the set���� we can apply the Schmidt orthogonalization procedure in��, thus
obtaining another system����, whose generic element is a linear combination
of ��� � � � ���, - � -���. Since�	 is dense in�, it is easy to show that����
satisfies all requirements stated in the lemma which, consequently, is proved.

From what we have shown, we deduce the following result.

Lemma 2.4 A measurable function� � �� � 
�� is a weak solution of the
problem (0.1)-(0.4) in�� if and only if

a) � � )� ;

b) � verifies (2.8), for all� � ��� � � and all� � ����.
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Remark 2.7 Differentiating (2.8) with respect to� and recalling that� � )� ,
we find

#

#�
�������� � ������������� ����� � �������� � �� ��� (2.18)

for a.a. � � ��� � � and all� � ����. It is easily seen that the right-hand side
of (2.18) defines a linear, bounded functional in� � �����. In fact, denoting
by � such a functional, by the Schwarz inequality and by (2.12) we have,

���������
��
��
�
�
�
�
�� 
�
���

� 6
�

��
� � 
�
��
��
��

�

�
���

(2.19)

where
� � 4 � �� if � � �

� � ���� 4 � 
��� if � � 
�

Thus, denoting by������ the dual space of�����, for almost all� � ��� � �,
there exists�� � ������ such that

#

#�
�������� � ������� � � ������

where ��� �� denotes the duality pairing between��� and ��. Notice that��
is in ��� but not necessarily in�����. Moreover, by (2.18), (2.19) and the
assumption� � )� , we find

������������������������� � ����������� ���� �� �� ��� � ���������

where' � � if � � � and' � ��
 if � � 
.

Remark 2.8 The method of proof used for Lemma 2.3 enables us to give a
density result which will be used several times in the next sections. To this end,
we recall standard facts concerning the theory of approximation of functions. Let
; � ����� � �!�, � � � ��� For � 	 & 	 �, the mollifier ;� (in the sense of
Friederichs) of; is defined by

;���� �

 �

�
<���� ��;���#� (2.20)

where<���� is an even, positive, infinitely differentiable function with support

in ��&� &�, and

 �

��
<����#� � �. We have (see,��5�, Hille and Phillips, 1957)
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Lemma 2.5 Let ; � ����� � �!�, � � � � �. Then;� � ������ � 	�!�,
for all 0 � �. Moreover

���
���

;� � ;
������ ��	 � ��

Finally, if �;�� � ����� � �!� converges to; in the norm of����� � �!� then

���
���


�;��� � ;�
������ ��	 � ��

We also have.

Lemma 2.6�� is dense in����� � �������.

Proof. Let ���� � ���� be a basis of�� and let
 � ����� � �!�.
Denoting by��� ��� the scalar product in��, and setting


������ �� �
��

���

�
������������

we have

���
���



�������
����
� � �� for all � � ��� � 	 and& � � � (2.21)

Clearly,
��� � �� . By Lemma 2.5, for a given1 	 �, there is& 	 �


 �

�


�����
���
�� � 1�

On the other hand, from (2.21) and the Lebesgue dominated convergence theorem,
we have for all fixed&

���
���


 �

�


�������
����
�� � ��

Thus the result follows from the last two displayed relations and the triangle
inequality.

3 Existence of Weak Solutions.

The aim of this section is to prove the following existence theorem ofweak
solutions.
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Theorem 3.1 Let � be any domain in
�� and let � 	 �. Then, for any
given

�� � ����� � � ����� ��

there exists at least one weak solution to (0.1)-(0.3) in�� . This solution verifies,
in addition, the following properties

i) The energy inequality:


����
�� � ��

 �

�

���* �
��#* � �


 �

�
���*����*��#* � 
��
��� � � ��� � 	�

(EI)

ii) ���
���

����� ��
� � �.

Proof. We shall use the so called “Faedo-Galerkin” method. Let���� �
���� be the basis of���� given in Lemma 2.3. We shall look for approximating
solutions�� of the form

����� �� �
��

���

6����������� 0 � 
�� (3.1)

where the coefficients6�� are required to satisfy the following system of ordinary
differential equations

#6��
#�

�
��

���

���6�� �
��

�����

����6��6�� � "�� � � �� � � � � 0� (3.2)

with the initial condition

6����� � ��� � � �� � � � � 0� (3.3)

where
��� � ����������� ���� � ��� � ���������

"� � �� ����� ��� � ��������

Since"� � ����� � � for all � � �� � � � � 0, from the elementary theory of ordinary
differential equations, we know that problem (3.1)–(3.3) admits a unique solution
6�� � � ������ ���, � � �� � � � � 0, where�� � � . Multiplying (3.2) by 6��,
summing over� and employing the orthonormality conditions on���� along
with the identity

�� � ����� � �� for all � � �����
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we obtain for all� � ��� � �


�����
�� � ��

 �

�

����*�
��#* � �


 �

�
����*����* ��#* � 
���
�� (3.4)

with ��� � �����. Since
���
� � 
��
�, Using in (3.4) the Schwarz inequality
along with Gronwall’s lemma, we easily deduce the following bound


�����
�� �

 �

�

����* �
��#* �.� for all � � ��� � � (3.5)

with . independent of� and 0. From this inequality it follows, in particular,
that �6������ � .��� for all � � �� � � � � 0 which in turn, by standard results on
ordinary differential equations, implies�� � � , for all 0 � 
�. We shall now
investigate the properties of convergence of the sequence���� when0 ��. To
this end, we begin to show that, for any fixed� � 
�, the sequence of functions

�
��	
� ��� 	 ����������

is uniformly bounded and uniformly continuous in� � ��� � 	. The uniform
boundedness follows at once from (3.5). To show the uniform continuity, we
observe that from (3.2), (3.5), with the help of the Schwarz inequality iteasily
follows that

����	
� �����

��	
� ���� �=�


 �

�
�
����*�
� � 
��*�
�� #*

�=�.
���

 �

�

����* �
�#*�

(3.6)

where
=� 	 
��
�� =� � ���

���
��������

Thus, using the Schwarz inequality into (3.6) and recalling (3.5), we readily show
the equicontinuity of���	

� ���. By the Ascoli-Arzel̀a theorem, from the sequence
����	

� �������� we may then select a subsequence –which we continue to denote
by ����	

� ��������– uniformly converging to a continuous function���	���. The
selected sequence����	

� �������� may depend on�. However, using the classical
Cantor diagonalization method, we end up with a sequence –again denoted by
����	

� ��������– converging to���	, for all � � 
�, uniformly in t� ��� � �. This
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information, together with (3.5) and the weak compactness of the space�, allows
us to infer the existence of���� � ���� such that

���
���

������� �������� � � uniformly in � � ��� � 	 and for all� � 
�� (3.7)

Let us now prove that����� converges weakly in�� to ����, uniformly in
� � ��� � 	, that is,

���
���

������� ������� � �� uniformly in � � ��� � 	 and for all� � ������
(3.8)

By the Helmholtz-Weyl orthogonal decomposition (2.1), it is enoughto show
(3.8) for� � ����. To this end, writing

� �
��

���

%��� 	
��

���

%��� � �
��	

and using the Schwarz inequality together with (3.5), we find

�������� �������� �
��

���

�������� ����� %������ �������� ��������	��

�
��

���


�
��������� ���������� �.���
���	
��

For 1 	 �, we choose8 so large that


���	
� � 1�

Further, by (3.6) we can pick0 � 0��� 1� so that

��

���


�
��������� ��������� � 1�

and (3.8) follows from (3.7) and the last two displayed inequalities. In view
of (3.5) we clearly have� � ����� � ������. Again from (3.5), by the weak
compactness of the space����� � it follows the existence of�� � ����� � �������
such that for� � �� � � � � � (with �	 � ����	)

���
���


 �

�
�������
�#� � ���

���


 �

�
��	��������
�#���� for all 
 � ����� �.



24 Navier-Stokes Initial-Boundary Value Problem.

Choosing in this inequality
 � �� and using (3.8), it is easy to show that
� � ��. Thus, in particular, we find

���
���


 �

�
��	�������
�#� � �� for all 
 � ����� �, � � �� � � � � �. (3.9)

We wish now to prove that (3.8) and (3.9) imply thestrongconvergence of����
to � in ���3 
 ��� � 	�, for all 3 �� �. To show this, we need the following
Friederichs inequality, see,��5�, Galdi (1994, Lemma II.4.2):Let � be a cube
in 
��, then for any9 	 �, there exist>�9� �� � 
� functions�� � �����,

 � �� � � � � > such that


 �

�


���
����#� �

!�

���


 �

�
�
�������

�
�#� � 9


 �

�

�
���
����#��

If we apply this inequality with
 	 �� � � and use (3.5), (3.7) we find

���
���


 �

�

������ ����
����#� � � (3.10)

With the help of (3.8)-(3.10), we shall now show that� is a weak solution to
(0.1)-(0.3). Since we already proved that� � )� , by Lemma 2.4, it remains to
show that� satisfies (2.8). Integrating (3.1) from� to � � � we find


 �

�
������������ ���� � �������� #�

��

 �

�
�� ����#�� ����������� ��������

(3.11)

From (3.8), (3.9) we at once obtain

���
���

������� �������� � �� ���
���


 �

�
�����������������#� � �� (3.12)

Furthermore, denoting by� a cube containing the support of��, we have

����

 �

�
��� � �������� �� � ������#�

����

�
����

 �

�
���� � �� � ��������#�

�����
����

 �

�
�� � ���� � �������#�

���� �
(3.13)
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Setting= � ���
���
������, by (3.5) we also have

����

 �

�
���� � �� � ��������

���� �=
�
 �

�

�� � �
����#�

�����
 �

�

���
��#�

����

�=.���

�
 �

�

�� � �
����#�

����

and so, using (3.10), we find

���
���

����

 �

�
���� � �� � �������#�

���� � �� (3.14)

Furthermore, we have

����

 �

�
�� � ���� � �������#�

���� �
��

	��

����

 �

�
��	��� � ��� ?	����#�

����

and since?	� � ����� �, from (3.9) we deduce

���
���

����

 �

�
�� � ���� � �������#�

���� � �� (3.15)

Therefore, passing into the limit0 � � in (3.11), from (3.12)-(3.15) we con-
clude


 �

�
����������� ��� � ������� #�

��

 �

�
�� ����#�� ���������� ��������

(3.16)

However, from Lemma 2.3 we know that every function� � ���� can be
uniformly approximated in����� by functions of the form

����� �
��

���

7������� 8 � 
�� 7� � 
��

So, writing (3.16) with�� in place of�, we may pass to the limit8 �� in
this new relation and use the fact that� � )� to show the validity of (2.8) for
all � � ����. We shall now prove the energy inequality (EI). To this end, we
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shall take the��� ��� as0 �� of both sides of (3.4). By the definition of���,
the properties of� , and (3.8) we deduce

���
���

�
 �

�
����*����* ��#* � 
���
��

�
�

 �

�
���* ����* ��#* � 
��
���

Moreover, by (3.8), (3.9) and a classical property of weak limits, wefind that

��� ���
���

�

�����
�� � ��


 �

�

����*�
��#*

�
� 
����
�� � ��


 �

�

���* �
��#*�

(3.17)
and (EI) follows from (3.4) and the last two displayed relations. From (EI) we
deduce at once

��� ���
���


����
�� � 
��
���

On the other hand,���� is weakly continuous in�� (see Lemma 2.2), and so we
have

��� ���
���


����
�� � 
��
���
which implies

���
���

����
�� � 
��
���

This relation together with the�� weak continuity of� allows us to conclude

���
���

����� ��
� � ��

and the theorem is thus proved.

Remark 3.1 In the literature, one may find many different definitions of
weak solution (see,��5�, Lions, 1969; Masuda, 1984; von Wahl (1985)). The
one chosen here is due to Leray and Hopf. Likewise, there are many different
constructive procedures of weak solutions (see Leray 1934a, 1934b; Kiselev and
Ladyzhenskaya, 1957; Shinbrot, 1973). Since, as we shall see in the next section,
there is no uniqueness guaranteed for weak solutions in dimension 3 (or higher),
these procedures may conceivably lead to different solutions.

4 The Energy Equality and Uniqueness of Weak
Solutions.

An interesting feature of weak solutions that should be emphasized, is that they
obey only an energyinequality rather than the energyequality (that is (EI) with
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the equality sign), as should be expected from the physical point of view. To
analyze this fact in more detail, let us take, for simplicity,� 	 �. Then, any
“physically reasonable” solution should be such that the associated kinetic energy
/��� at a certain time� (� �

�

����
��) is equal to/�'� (' � �) minus the amount

of energy dissipated by viscosity in the time interval�'� �	 (� �
� �
 
���* �
�#* ).

According to (EI), however, a weak solution not only does not satisfy a priori
this property but, in fact, its kinetic energy could evenincreasein certain time
intervals. Therefore, a first question to ask is if it is possible to construct weak
solutions for which the corresponding kinetic energy is a decreasing function of
time. To this end, it would be enough that weak solutions would satisfy the
following relation


����
�����

 �

 

���* �
��#* � 
��'�
���

for almost all' � �, and all� � �'� � ��

(4.1)

Inequality (4.1) is usually called thestrong energy inequality(SEI).

It is easy to see that if� is bounded, then the solutions constructed in Theorem
3.1 obey the (SEI). In fact, from (3.10), by taking� � �, it follows that

���
���


���'�� ��'�
� � �� for almost all' � ��� � �� (4.2)

On the other hand, from (3.4) (with� 	 �) we have


�����
�����

 �

 

����* �
��#* � 
���'�
���

for all ' � ��� � � and� � �'� � ��

and so, passing to the limit0 � � in this relation and using (3.17) (with�
replaced by' ) and (4.2), we recover (SEI). With much more effort, one can
show existence of weak solutions obeying (SEI) when� is either the whole
��

(Leray 1934b), or an exterior domain (Galdi and Maremonti, 1986; Sohr, von
Wahl and Wiegner, 1986; Miyakawa and Sohr, 1988), or a half space (Borchers
and Miyakawa, 1988). It is interesting to observe that all proofs given bythese
authors rely on a certain estimate for the pressure field, which implies, in par-
ticular, the following property for�:

� � ����� � �������� for suitable exponents�� ��
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This is much more than the regularity property proved in Theorem 2.1. On the
other hand, one knows how to prove this estimate only for a certain type of
domains and, therefore,it is not known if(SEI) holds for an arbitrary� (no
matter how smooth).

The strong energy inequality, even though more reasonable than the energy
inequality, still presents an undesired feature, in all time intervals � (if any) where
it holds as astrict inequality. Actually, in any of such intervals, the kinetic energy
is decreased by a certain amount, say.� , which isnot due to the dissipation. It
seems therefore interesting to furnish sufficient conditions on a weak solution in
order that it verifies anenergy equalityand to compare them with those ensuring
its uniqueness. As we shall see, the former (see Theorem 4.1) are weaker than
the latter (see Theorem 4.2), and they are both verified by a weak solution in
dimension 2, but nota priori in dimension 3. Thus, the question of the existence
of a three dimensional weak solution which 1) satisfies the energy equality and
2) is unique, remains open.

In this section we provide conditions on a weak solution under which 1)and
2) above are met. The following theorem holds.

Theorem 4.1 Let � be a weak solution in�� . Assume

� � �
��� � ��
����� (4.3)

Then� verifies the energy equality


����
�� � ��

 �

�

���* �
��#* � �


 �

�
���* ����* ��#* � 
��
��� (4.4)

for all � � ��� � ��

Proof. Let ���� � �� be a sequence converging to� in ����� � �������,
see Lemma 2.6. We choose in (2.4) (with� � �) 	 � ����� 	 ����, where� � ��
is the mollification operator defined in (2.20), see Lemma 2.5. Observing that

�����


 �

�
���� ��������� �� � ������� #�

�����

�

 �

�

�
�

������ � ���
�

� 
���� � ��
������ �"�	

�
 �

�

����


#�

����
�

(4.5)



4. Energy Equality and Uniqueness. 29

by a standard procedure which makes use of Lemma 2.5, we find in the limit
0 ��

 �

�

��
��

���
��

�
� ��������� ��� � ������

�
#�

��

 �

�
�� ����#�� ������������� ���� �������

(4.6)
Since the kernel<���� in (2.20) is even in��&� &�, we obtain


 �

�

�
��

���
��

�
�

 �

�


 �

�

#<���� ���

#�
������������ #�#�� � ��

Moreover, by Lemma 2.5 and (4.5) with�� in place of���� and� in place of
��, respectively, we obtain

���
���
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��������#� �


 �

�
�������#�

���
���


 �

�
�� ����#� �


 �

�
�� ���#�

���
���


 �

�
�� � ������#� �


 �

�
�� � �����#��

Now, ���� � �����, for a.a. � � ��� � � and so, for any such fixed�, denoting
by ���� a sequence from���� converging to� in �� we have

��� � ������ �� � �������� � ��� � ��� �� ���������� � ��� ��������

� �
�


��
�
� ���

 �
�
�

��� ����
��

By the Sobolev embedding theorem it follows that12


%

 � 6 �
%
� � 
�%
�� � % �� ������

and so we deduce
���
���

�� � ������� � �� � ������

However, since���� � ���� for a.a. �, we get

�� � ������� �
�
�
��������

�� � �� for all 0 � 
��
12Recall that the space dimension is 2 or 3.
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which furnishes 
 �

�
�� � �����#� � ��

Finally, by the weak�� continuity, and recalling that
� �
� <����#� � ���, we have

������������ �

 �

�
<���� ���������� ��� #�

�

 �

�
<���� �
����
�� � ������ ���� � ��� ������ #�

� �
�

����
�� �@�&��

Likewise,
���� ������ �

�
�

��
�� �@�&��

Therefore, the theorem follows by letting&� � in (4.6).

Remark 4.1 From �������, for a weak solution� we have

 �

�

����


#� � 6


 �

�

����
��
�����
��#� ��� � � ��

and so every weak solution, in dimension 2, obeys the energy equality. However,
by �������, we have only

� � ������� � ��
����� � � 


and the question of whether a weak solution obeys the energy equality remains
open.

Remark 4.2 Recalling that every weak solution is�� weakly continuous in
time, all weak solutions satisfying (4.4) –and so, all weak solutions indimension
2– belong to������ � ��������.

Remark 4.3 Serrin (1963, Theorem 5) proves (4.4) for� � 
 under the
assumption

� � ����� � ��������



�
�

�

�
� �� � � �
��	� (*)

This condition, however, is stronger than (4.3) for any choice of� and� in their
ranges. Actually, for� � �, it furnishes� � ����� � ��
���� which implies
(4.3). For� 	 �, by the convexity inequality we find


�
���

	��
 � 
�
��
�
����	��� �
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and so��� implies (4.3), since� � � and � � )� . If � � �, by the Sobolev
embedding theorem we have13


�

 � 6
�
�������	� 
��
��
��	������	� �

which, by the Ḧolder inequality, gives


 �

�

�

����	������	
 #��6

�
 �

�

�
��#�

�����	������	�
 �

�

��
��#�

���
��	������	
�

Since� � 
, also in this case��� implies (4.3).

Remark 4.4The result proved in Theorem 4.1 is due to Lions (1960) and is a
particular case of that stated in Shinbrot (1974, Theorem 4.4), where assumption
(4.3) is replaced by the following one:

� � ����� � ��������
�

�
�

�

�
�

�

�
� � � ��

However, unlike Theorem 4.1, the proof given by Shinbrot requires certainre-
strictions on the domain� (such as boundedness of its boundary) which are
not explicitly formulated by the author. For related questions, we also refer to
Taniuchi (1997).

Our next objective is to give sufficient conditions under which a weak solution
is unique in the class of weak solutions. The basic idea is due to Leray (1934b,
pp.242-244), who gave this result for the Cauchy problem (� 	 
��). The
generalization to an arbitrary domain is due to Serrin (1963, Theorem 6). The
procedure to prove uniqueness is essentially the same as that we have just used
for proving the energy equality and, here as there, one approximates the solutions
by a suitable sequence of functions from�� . The main difficulty is to show
the convergence of the nonlinear terms along these sequences. Apparently, the
condition� � )� satisfied by a weak solution does not guarantee this convergence
in dimension 3, while it does in dimension 2. The following lemmas play a
fundamental role in estimating the nonlinear term. The first one is a simple
consequence of the Ḧolder and Sobolev inequalities (see Serrin 1963, Lemma
1; Masuda 1984, Lemma 2.4); the second one is a clever application of Dini’s
theorem on the uniform convergence of sequences of monotonically decreasing
functions (Masuda, 1984, Lemma 2.7).

13Recall that the space dimension is 2 or 3.
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Lemma 4.1Let �� � satisfy

�

�
�

�

�
� �� � � ����	�

and let��
 � )� , � � ����� � �������. Then,

�����
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���#�

������6
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��#�
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��#�

������
 �

�

�
��
�
��#�

����
�

with the exception of the single case� � � � �.

Lemma 4.2Let
 � ���*� � �������, � � ���*� � �������. Assume that


 �

�

�

��#� 	 �� for all � � �*� � �

and that� is right continuous at� � * in the ��-norm. Then, for any1 	 �
there exists. � .�
��� 1� 	 � such that

����

 �

�
�
 � �
���#�

���� � 1

 �

�

�

��#��.


 �

�



��#�� for all � � �*� � ��

We also have

Lemma 4.3Let � � )� . Then, there exists a sequence of functions���� �
����� � ������� such that

(i) �� tends to� in ����� � �������

(ii) ����� � ���� for a.a. � � ��� � �

Moreover, their mollifiers����� 	 ���� (� �� ), see (2.20), satisfy the following
properties

���
���


 �

�
�� � ��������#� �


 �

�
�� � ������#��

for all � � )� .

Proof. Let � �� � �� denote the scalar product in��. Let ���� be an ortho-
normal basis in����� constituted by elements of����, and set

����� �
��

���

�������������
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Clearly, �� satisfies (i), by the Lebesgue dominated convergence theorem, and
(ii). Now, we have

������� �
��

���

��������������

and
���
���


�������� �����
��� � �� for all � � ��� � ��

By the Sobolev embedding theorem and by the property of mollifiers, we also
have


�������� �����

 � 6
�������� �����
��� � 6���
������ �


�����
��� � � ��


�������� �����
� � 6
�������� �����
��� � 6���
������ �


�����
��� � � 
�

(4.7)
from which we deduce, in particular, for all� � ��� � �

���
���


�������� �����

 � � for � � �

���
���


�������� �����
� � � for � � 
�
(4.8)

Let us first consider the case� � �. We know from Remark 4.1 that
�
�
 �
�
��
� and so, by the Ḧolder inequality,


 �

�
��� � ������� � ���#� � �


 �

�

��
��
�������� �����
�
� (4.9)

The result then follows from (4.9), (4.7),������ and the Lebesgue dominated
convergence theorem. In the case� � 
, by the Sobolev theorem, we have

�
� � 6
��
� and, in place of (4.9), we find


 �

�
��� � ������� � ���#� � �


 �

�

��
��
�������� �����
���

and the result follows as in the case� � �.

We are now in a position to show the following uniqueness theorem.

Theorem 4.2 Let �, � be two weak solutions in�� corresponding to the
same data�� and� . Assume that� satisfies the energy inequality(EI) and that
� satisfies at least one of the next two conditions:
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(i) � � ����� � �������, for some�� � such that
�

�
�

�

�
� �, � � ����	;

(ii) � � ����� � �������, and ���� is right continuous for� � ��� � � in the
��-norm.

Then� � � a.e. in�� .

Proof. Let ������ be a sequence of functions of the type introduced in the
previous theorem, and let������ be the sequence of Lemma 4.3 . We choose
	 � ���� in (2.4), with � � �, and	 � ���� in (2.4), with � � � and with� in
place of�. We thus obtain
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������������� �� � ��������
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�
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(4.10)
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�� ������#* � ��������������� ���� ���������

(4.11)

We wish to let0 � � in these relations. The only terms which need a little
care are the nonlinear ones. From Lemma 4.1 and the assumptions made on���
it follows that
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where� depends on�. Therefore, from Lemma 2.5, we find
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�� � ��������#* � �
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�� � ������#*� (4.12)

Moreover, from Lemma 4.3, we have
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�� � ��������#* �
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�� � ������#*� (4.13)
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Thus, letting0 �� in (4.10), (4.11) and using (4.12), (4.13) and Lemma 2.5,
we find
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(4.14)
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(4.15)
By Fubini’s theorem and the properties of the mollifier, we show
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and so, adding (4.14) and (4.15) furnishes
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�� ��� � ���#* ������������� � ������������

����� ������� ���� �������
(4.16)

We now want to let& � � in this relation. Again, the main difficulty is given
by the nonlinear terms, the other terms being easily treated by meansof Lemma
2.5. By the same reasoning leading to (4.12) we find
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�� � ������#* �


 �

�
�� � �����#*� (4.17)

Concerning the other nonlinear term, we shall distinguish the three cases:

a) � 	 �;

b) � � �;

c) � ��.
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In case a), since� � )� , from Lemma 4.1 we obtain
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������ �����		

with � � ����, and so, by Lemma 2.5 we find
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�� � �����#*� (4.18)

In case b), we shall consider only the case� � 
, the case� � � being treated
in a similar way. We thus observe that by the Hölder and Sobolev inequalities,
and recalling that� � )� , it follows that
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Therefore, setting
 	 � � ��, by the property of the mollifier, we obtain
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By (4.19), we have
 � ����� � ��������� and so, by Lemma 2.5, we conclude
the validity of (4.18). Finally, in case c), from the Schwarz inequalityand the
fact that� � )� , we easily establish that
 � ����� � ������� and so, using the
following relation
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we again arrive at (4.18). Letting&� � in (4.16), and using (4.17), (4.18), we
obtain
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(4.20)
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with 
 � �� �. By Remark 4.3,� obeys the energy equality
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while, by assumption,� obeys the energy inequality
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Adding �
 ������, (4.21) and (4.22), and observing that
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we obtain
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If � 	 �, we employ Lemma 4.1 on the term on the right-hand side of (4.23)
together with the Young inequality to deduce
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Replacing this inequality into (4.23), we find
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which, with the help of Gronwall’s lemma, allows us to conclude� � � a.e. in
�� . If � � �, we set

� � �* � ��� � 	 � 

���
� � �� for all � � ��� * 	��

Clearly,� is not empty and, in virtue of the�� weak continuity of
, it is also
closed. Let us denote by*� its maximum. If*� � � , there is nothing to prove.
Therefore, assuming*� � � , we have
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By Lemma 4.2, it then follows
����

 �

��
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���#*

���� � 1

 �
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��#��.
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��#�� for all � � �*�� � ��

Replacing this inequality into (4.23), and recalling that
��� � � for all � � *�,
we find



���
�� �.

 �

��



��#��

which, with the help of Gronwall’s lemma, again implies� � � a.e. in�� . The
theorem is thus proved.

Remark 4.5 If � is a bounded or an exterior domain with a sufficiently
smooth boundary, or a half space, one can furnish an important generalization
of the uniqueness result given in the previous theorem. Such a generalization,
instead of hypothesis (ii), requires only

� � ����� � �������� (4.24)

This result, due to Kozono and Sohr (1996a) (see also Sohr and von Wahl (1984),
under more restrictive assumptions on�, and the review article of Kozono (1998))
will be proved in Section 7, Theorem 7.2, in the case� � 
��.

Remark 4.6 Since in dimension 2 every weak solution belongs to the class
������ � ��������, see Remark 4.2, by Theorem 4.2 it follows that every such
weak solution is unique in the class of weak solutions assuming the same data,
a fact discovered for the first time by Lions and Prodi (1959). In dimension 3,
by the Sobolev inequality, we have


�
� � 6
�
����	���� 
��
�����	���� � � � ��� �	

and so, for� � )� , we find

� � ����� � ��������



�
�

�

�
�




�
�

and the condition in Theorem 4.2 isnot satisfied. The problem of whether
a three dimensional weak solution obeying the energy inequality is unique in
its class is an outstanding open question. In this respect, we wish to mention
the contribution of Ladyzhenskaya (1969), in her effort todisproveuniqueness.
Specifically, using a method introduced by Golovkin (1964) in a different context,
she constructs two distinct three dimensional solutions��, 
 � �� �, with rotational
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symmetry, corresponding to the same data, in anon-cylindrical domainA� of
the space-time. This latter is defined as

A� � ���� B� �� � � � ��� � 	� � � �9
 
�� -
 

�	� B � ��-
 
�� -
 
�	� 9 �� -��

where��� B� denote cylindrical coordinates. Both solutions belong to the Leray-
Hopf class in the sense that

���
������ �




���	
����� �




#�
������ ��

where
���� 	 �� � �9

 
�� -
 
�	� B � ��-

 
�� -
 
�	��

Moreover, they match the (vanishing) initial data in the following sense

���
���




���	
����� � �

and obey “stress-free” boundary conditions.14 Finally, they satisfy the following
condition


 �

�

�


���	
�����

����
#� � .�1� ��� 
 � �� ��

with exponents�� � such that




�
�

�

�
� � � 1� 1 	 ��

(.�1��� as1 � �). However, this result can not be considered completely
satisfactory, in that the space-time domainA� where the solutions�� exist isnot
cylindrical (that is, of the type�
 � with � a fixed spatial domain and� a time
interval). Rather, it expands when time increases and reduces to a single point
when time goes to zero. In the same paper, Ladyzhenskaya furnishes another
counter example to uniqueness in a class of solutions slightly weaker than the
Leray-Hopf one, in that the spatial derivatives are summable with an exponent
strictly less than 2. This time the boundary conditions are the usual adherence
conditions, but the space-time domain is still non-cylindrical.

14That is, the normal component of� is prescribed, together with the tangential component of
the vorticity field.
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Remark 4.7 For later purposes, we wish to notice that the condition

� � ������ � ��������� for some�� � ����	, �� � �����, with
�

��
�

�

��
� �

(A)
is weaker than

� � ������ � ��������� for some�� � ����	, �� � �����, with
�

��
�

�

��
� �

(B)
in the sense that if� satisfies (B), then, by the Ḧolder inequality,� satisfies (A)
with �� � �� and�� � ������� � �� (� ��).

Remark 4.8 In the literature, one may find many other uniqueness theorems
for weak solutions, see, among others, Prodi (1959), Lions and Prodi (1959),
Ladyzhenskaya (1967). However, in all these papers one compares two weak
solutionseach of whichpossesses more regularity than that established in the
existence Theorem 3.1. It is therefore worth emphasizing that Theorem4.2
compares two weak solutions of whichonly onepossesses extra regularity. For
uniqueness results related to Theorem 4.2, in a class of “very weak” solutions,
see Foiaş (1961), Fabes, Jones and Riviére (1972), H. Kato (1993), Chemin
(1999), Monniaux (1999), Amann (1999).

5 Regularity of Weak Solutions.

The regularity theory for weak solutions to the Navier-Stokes equations presents
different features, according to whether one looks forinterior regularity or reg-
ularity for the initial-boundary value problem. In the first case, denoting by
C � 3
���� ��� a bounded domain strictly contained in�� , one considers a field
� that satisfies the identity (2.2) for all solenoidal test functions	 � ��

� �C�,
(hereafter denoted by������), which is divergence free inC and, further, verifies
the following condition

� � ������ ����
����3�� � ������ ����

��3��� (5.1)

In the second case, one requires that� is a weak solution to the initial-boundary
value problem, in the sense of Definition 2.1. Now, let us consider the field �
defined in (2.3). As already observed in Section 2,� satisfies������ with � 	
�. However, this field –though infinitely differentiable in the spacevariables–
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need have no time derivative at all and, in fact, it may even have (integrable)
singularities in the time interval��� � �. This example, due to Serrin (1962),
leads us to the following considerations. First, for interior regularity, one can
not expect to prove a result where the amount of regularity in time is more than
that assumed at the outset. Second, the existence of such “bad” solutions isdue
to the fact that the possible singularities are absorbed by the pressureterm. For
instance, the field (2.3) with a “bad” behavior in time could also be a solution
to the quasi-linear (vector) heat equation�������, on condition that, however, the
force� is chosen to have an equally “bad” behavior. On the other hand,� does
not meet the boundary conditions (0.3) hidden in requirement a) of Definition2.1,
unless it is identically zero, and so there is hope that one can “gain” regularity
in time by dealing with solutions of the initial-boundary value problem.

The aim of this section is to furnish sufficient conditions for regularity of
weak solutions. As we shall see, these conditions do not overlap completely with
those ensuring uniqueness, and there is an interesting question which is still left
open. Moreover, as in the case of uniqueness, one shows that every weak solution
in dimension 2 is regular, provided the data are regular enough. In dimension 3,
the regularity of weak solutions is an outstanding open problem. We shall report,
without proof, the interior regularity results, due essentially to Ohyama (1960),
Serrin (1962) and Struwe (1988), see Theorem 5.1. Successively, in Theorem
5.2, we shall give a result concerning the regularity of weak solutions ofthe
initial-boundary value problem (in the sense of Definition 2.1). In doing this, we
shall follow the method of Galdi and Maremonti (1988). For further regularity
results, see H. Kato (1977/78,1986,1989,1993), Tanaka (1987).

Theorem 5.1 Let � be a solenoidal field in3 
 ���� ���, satisfying������
with � � �, 15 and (5.1). Assume, in addition, that� verifies at least one of the
following two conditions:

(i) � � ������ ����
��3��, for some�� � such that

�

�
�

�

�
� �, � � �����;

(ii) � � ������ ����
��3��, and, givenD 	 � there is� 	 � such that




$���
����� ����#� � D� for all � � ���� ���

where$% is a ball of radius�.

15For the general case� �	 �, we refer the reader to the papers of Serrin and Struwe.
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Then,� is of class���3�, and each space derivative is bounded in compact
subregions of3 
 ���� ���. If, in addition,

��

��
� ������ ����

��3��� for some� � ��

then, the space derivatives of� are absolutely continuous functions of time.

Remark 5.1 For � � �, a possible choice of exponents is� � � � �.
Therefore, from Remark 4.1, we conclude that every two dimensional weak
solution is regular in the sense specified in Theorem 5.1. On the other hand,
three dimensional weak solutions do not satisfy either of assumption (i), (ii), see
Remark 4.6, and nothing can be said about their regularity. An interesting variant
of Theorem 5.1(i) has been given by Takahashi (1990, 1992), who replaces the
Lebesgue space�� with the Lorentz space���	 (“��-weak”), requiring, however,
that the corresponding “norm” be sufficiently small. In particular, denoting by
$&���� a ball of radiusC centered at��, he shows that a sufficient condition
for a weak solution� to be of class�� in $&����
 ��C� � ��� ���

16 is that it
satisfies an estimate of the type


����
 �$����	 �
1

��� � ��� ��	�� 
� � � ��C� � ��� ���� ' � ����	

with a “small” 1. As we shall see in Theorem 7.3, a necessary condition for�

to become irregular at a time�� 17 is that


����
 �
�

��� � ��� ��	�� 
� � � ���

with � � ���� '� �� 	 �; Takahashi also extends Theorem 5.1(i) to the case
� ��.

We shall now be concerned with the regularity of weak solutions to the initial-
boundary value problem, in the sense of Definition 2.1. For simplicity, weshall
assume that� 	 �. Before going into details, we wish to outline the main idea
underlying the proof. To this end, let� be a weak solution in�� and let� be

16And hence regular, in the sense of Theorem 5.1.
17See Definition 6.1.
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a weak solution in�� to the following initial-boundary value problem

��

��
� � � �� � �����E

div� � �

���� �� � ��� � � �

��
� �� � �� 
 � ��� � 	 ��

(5.2)

By this we mean that� � )� and that it satisfies the following relation

 �

�

��
��

�	

��

�
� ������	�� �� � ���	�

�
#� ������	����� for all 	 � �� �

(5.3)
Thus,� becomes the coefficient of a “linearized” Navier-Stokes equation. Notice,
also, that� and� are both weak solutions to thesameNavier-Stokes problem
with thesamedata��. The question is now to determine the weakest conditions
on � in order that:

a) � � �, a.a. in�� .

b) � has more regularity than that originally assumed for�.

If b) is met, then, by a),� becomes more regular and then� becomes more
regular too and so, by a boot-strap argument, we can conclude that� becomes as
much regular as allowed by the data. In this latter respect, we wishto emphasize
that this method only requires�� � ����, since regularity is established in the
semi-open interval��� � 	. On the other hand, we shall prove regularity up to the
boundary of� which, therefore, will be assumed suitably smooth.

Remark 5.2 Instead of the linearized problem (5.2), we could consider the
following one:

��

��
� � � �� � �����E

div� � �

���� �� � ��� � � �

��
� �� � �� 
 � ��� � 	 ��

With such a choice, one could find conditions on�� (instead of�) under which
the weak solution� becomes regular. This can be done exactly along the same
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lines we shall follow hereafter for problem (5.2). We shall limit ourselves to
state the corresponding results, without proof, in Remarks 5.3 and 5.6.

Let us first consider condition a). Since the system (5.2) islinear in �, we
expect that the conditions on� which ensure a), should be weaker than those
ensuring the uniqueness of a weak solution to the full nonlinear Navier-Stokes
problem. Actually, we have

Lemma 5.1Let � � )� and let� be a weak solution to (5.2) in�� . Then,
if

� � �
��� � ��
����� (5.4)

we have� � �, a.a. in�� .

Proof. Reasoning exactly as in the proof of Lemma 2.1, we show that�

satisfies the following relation


 �

�

��
��

�	

��

�
� ������	�� �� � ���	�

�
#� �������	����� ����	�����

for all � � ��� � � and all	 � �� �

Subtracting the integral equation in the previous relation from that in(2.4) with
� 	 �, and setting
 � �� � we find


 �

�

��

�

�	

��

�
� ���
��	�� �� � �
�	�

�
#� ��
����	����� (5.5)

From now on, the proof is the same as that of Theorem 4.1. Specifically, we
denote by�
�� � �� a sequence converging to� in ����� � �������. We then
choose in (5.5)	 � 
���, and pass to the limits0 �� and&� �. Reasoning
as in Theorem 4.1, we show

�
�


���
�� �


 �

�

�
�� � �
�
�� �
�

��

	
#��

However, since���� � ���� for a.a. �, we get

 �

�
�� � �
�
�#� � ��

and the lemma follows.

The major assumption on the weak solution� comes into the proof of point b).
To show this, however, we need some preliminary considerations. Thefirst one
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concerns well known results for the steadyStokes system, obtained as a suitable
linearization of the full steady-state Navier-Stokes system (0.4). Specifically, we
have (see,��5�, Galdi, 1994, Theorem IV.6.1).

Lemma 5.2Let� be a bounded domain of
��, of class�	
�, � � �. For
any� ��	�����, � � � ��, there exists one and only one solution�� F 18

to the following Stokes problem

���� � �F� �

div� � �

��
� � �� 
 � ���

such that
� ��	
������� F ��	
�������

This solution satisfies the estimate:


�
	
��� � 
F
	
��� � 6
� 
	���

Moreover, the problem
���
 � �F� G


div
 � �


�
� � �� 
 � ���

admits a denumerable number of positive eigenvalues�G�� clustering at infinity,
and the corresponding eigenfunctions�
�� form an orthonormal basis in�.

Our second preliminary result concerns an estimate for the nonlinear term,
which strengthens that given in Lemma 4.2.

Lemma 5.3Let

� � ������ � 	�������� � �� ������� 
 � ������

Then, given9 	 � there exists. � .��� 9� 	 � such that

��� � ���
�� � 1
�

���
�� � 


��

�
�.
��
���

where� is the orthogonal projection operator from�� to � (see Section 2).
18With the normalization condition

�
�
� 	 �.
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Proof. We extend� to zero outside�, and let�' be the spatial mollifier of
�, that is,

�'��� �� �



���
H'��� ,���,� ��#,�

with H'�'� an infinitely differentiable function vanishing for�'� 	 9 and nor-
malized to 1. It is well known that

���
���
��'��� ��� � 6�9�
����
�

and that
���
'��

�'���� ����
� � �� for all � � ��� � 	�

Using the continuity assumption on�, by an argument completely analogous
to that adopted in the proof of Lemma 2.3, we show that this limit is taken
uniformly in � � ��� � 	. In view of this, by Sobolev’s theorem and Lemma 5.2,
we thus have

��� � ���
�� � ���� � �'� � ���
��� ���' � ���
��

� 
� � �'
�
��
�


� � ������ ��'��� ���
��
�


�
� 1
���
�


� �.
��
�


��

and the result follows after using Cauchy’s inequality on the last line of this
inequality.

Using these lemmas we can now show the first regularity result for�.

Lemma 5.4Let � be an arbitrary domain in
��, uniformly of class��. 19

Assume that� � )� and that it satisfies at least one of the following two
conditions:

(i) � � ����� � �������, for some�� � such that
�

�
�

�

�
� �, � � ����	;

(ii) � � ������ � 	�������.

19
 is saiduniformly of class��, 
 � �, if 
 lies on one part of its boundary�
 and,
for each�� � �
, there exists a ball� centered at�� and of radius independent of��, such
that �
 � � admits a Cartesian representation of the form�� 	 ����� 
 
 
 � �����, where� is
a function of class�� in its domain, with its derivatives up to order
 inclusive uniformly
bounded by the same constant, independently of��. If 
 is uniformly of class��, for all

 � �, we shall say that
 is uniformly of class��.
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Then, for any�� � ����, there exists one weak solution� to (5.2) in�� such
that

� � ����1� � 	������� � ���1� � �� �������

��

��
� ���1� � �������

where1 is an arbitrary positive number. Moreover, byLemma 5.1andRemarks
4.1, 4.3, � � � a.e. in�� . 20

Proof. To avoid unessential technical difficulties, we limit ourselves togive
the proof in the case� bounded and� � 
, referring the reader to Galdi and
Maremonti (1988) for the proof in the general case. We shall use the Faedo-
Galerkin method of Theorem 3.1, with the basis�
�� of � constituted by the
eigenvectors of the Stokes problem (Lemma 5.3). Thus, we shall look for ap-
proximating solutions�� of the form

����� �� �
��

���

6�����
����� 0 � 
��

where the coefficients6�� are required to satisfy the following system of ordinary
differential equations

#

#�
����
�� � �������
�� � �� � ����
�� � � � � �� � � � � 0� (5.6)

with the initial condition

6����� � ����
�� � � �� � � � � 0�

As in Theorem 3.1, we show that this system of ordinary differential equations
admits a (unique) solution in the time interval��� � 	, as a consequence of the
following relation, which is obtained by multiplying (5.6) by6�� and summing
over the index�:


����
�� � ��

 �

�

���* �
��#* � 
��
��� (5.7)

For simplicity, here as in the following relations, we shall omit the subscript “0”.
We next multiply (5.6) byG�6�� and by#6���#�, respectively, sum over�, and
employ the properties of the eigenfunctions
� to obtain

�
�

#

#�

�����
�� � �
���
�� � �� � ��� ����� (5.8)

20Of course, in case (ii), we have�� � ��
� ����
�.
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and
�
�

#

#�

�����
�� � �
���
�� � ��� � ��� ����� (5.9)

where� is the orthogonal projection operator from�� to � (see Section 2)
and�� denotes differentiation with respect to�. We wish now to increase the
trilinear form �� � ���
�. Let us first consider the case (i),
���, � � � 	 

(=�). By the Ḧolder inequality we have

��� � ���
�� � 
�
�
��
�������	


��

Furthermore, since������ �� � ��� ��, by the Sobolev theorem and Lemma 5.3
we obtain


��
�������	 � 6
�
������ 
��
����	��� � 6�
���
���� 
��
����	���

and so, it follows that

��� � ���
�� � 6
�
�
��
����	��� 
���
���� 


��

Employing Young’s inequality, with exponents������
�, ���
 and��� we thus
conclude

��� � ���
�� � 6
�
�����	��� 
��
�� � 9
���
�� � 9


�� (5.10)

with arbitrary 9 	 � and 6 � 6��� �� 9�. Summing (5.8) and (5.9), and using
(5.10) with 
 � ��� and
 � ���, respectively, for sufficiently small9 we
find

#

#�

��
�� � 6��
���
�� � 
���
��� � 6�
�
�����	��� 
��
���

Integrating this relation furnishes


�����
�� � 6�


 �

�
�
���
�� � 
���
���#* � 
���*�
�� ���

�
6�


 �

�

��*�
��#*

�

for all � � ��� � 	, � � 1�

If we integrate this inequality on* � �1� �	 and use (5.7), we obtain the following
limitations


����
��� �

 �

(
�
���
�� � 
��
��� �.� for all � � �1� � 	� (5.11)
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where. depends on
��
�, 1, �, and�. Using thesea priori estimates on the
approximating solutions���� and proceeding as in the proof of Theorem 3.1,
we easily show that from the sequence���� we can select a subsequence which
converges to a weak solution� of the problem (5.2) and which, in addition,
satisfies

� � ���1� � ������� � ���1� � �� �������

��

��
� ���1� � �������

From these properties and the identity:


��� � &�� ����
���� �

 �

�

�
#

#�

���� &�� ����
��

�������� &�� ������ �

��
����� &�� ������

�
#��

we deduce
� � ����1� � 	��������

and so the result follows under the assumption (i). In case (ii), insteadof (5.10),
we use the estimate showed in Lemma 5.3 and proceed exactly as in case(i).
The lemma is thus proved.

Remark 5.3 The same conclusion of Lemma 5.4 can be obtained under the
following alternative assumptions, see Remark 5.2,

���� �� � ������ � ��������� �
��
� �

��
� �� �� � ����	,

����� �� � ������ � 	���������.

A similar result, for the case� 	 
��, was first obtained by Beirão da Veiga
(1995a, 1995b).

Remark 5.4 Once we have established that� has the “minimum” regularity
ensured by Lemma 5.4, we shall prove, in the next two lemmas that, in fact,
� must be of class�� in � 
 �1� � 	, if � is uniformly of class��. Now,
while the assumption (i) coincides with that made for uniqueness when� 	 �,
the assumption (ii) for� � � is stronger. Actually, if we compare it with the
analogous assumption for uniqueness in a domain with a compact boundary (see
Remark 4.5), we see that regularity requirescontinuityin time, while uniqueness
only requiresessential boundedness. Though it may be very likely that this latter
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weaker condition also ensures regularity, no proof is so far available. To add
more weight to this conjecture, there is the recent remarkable contribution of
Necas, Ruzicka and Sverák (1996) who rule out a possible counter example to
regularity proposed by Leray (1934b, pp. 225, 245) (see Remark 7.4). This weak
solution (whose existence has been disproved by the previous authors) would
satisfyneitherconditions (i), (ii) of Lemma 5.4 butonly the weaker assumption
of being in the class����� � �������. We shall return on the importance of this
condition in Section 7.

In the next lemma we show that a weak solution satisfying either (i)or (ii)
of Lemma 5.4, possesses time derivative of arbitrary order. The method of proof
is borrowed from Heywood (1980).

Lemma 5.5Let � and� satisfy the assumption ofLemma 5.4.Then,

��
�� � ���1� � �� �������� for all - � �. (5.12)

Proof. By Lemmas 5.1 and 5.4, it is enough to prove (5.12) for the solution
� to (5.2). For- � � the result has already proved in Lemma 5.4. We then
construct a solution� to (5.2) satisfying (5.12) for- � �. By uniqueness, it will
coincide with� which will then verify (5.12) wit- � �. With this information on
the coefficient, we shall then construct a solution� to (5.2) which satisfies (5.12)
with - � �. By uniqueness, it will coincide with� and so, by induction, we can
prove (5.12) for arbitrary0 � 
�. Here, for simplicity, we shall prove (5.12) for
- � �, referring the reader to the paper of Galdi and Maremonti (1988) for a proof
in the general case. To construct the solution� we shall use the Faedo-Galerkin
method. So, in addition to the estimates on the approximating solutionthat we
have already obtained in the proof of Lemma 5.4, we obtain the following ones.
We differentiate (5.6) with respect to time, multiply by#6���#�, and sum over�
from � to 0 to obtain

�
�

#

#�

���
�� � �
����
�� � ����� � ��� ����� (5.13)

where, as before, we have omitted the subscript “0”. From the Ḧolder inequality,
the Sobolev theorem, and Lemma 5.2 we find

����� � ��� ����� � 
���
�
��
�
���
� � 6
���
�
�
���
����
�
� 
6
���
��
���
�� � 9
����
���

(5.14)
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where9 is a small positive number. Multiplying (5.6) byG�6��, summing over
� and recalling the second part of Lemma 5.2, we find

����� ���� � 
���
�� � �� � ��� �����

From Lemma 5.5 and by the Sobolev theorem, we know that� � ���1� � �������
and so, we may use Lemma 5.3 in the preceding relation to obtain


���
� � 6�
���
� � 
��
��� (5.15)

with a constant6 independent of� � �1� � 	. Replacing this inequality into (5.14),
and recalling that
��
� � � with � independent of�, we deduce

����� � ��� ����� � 6
���
��
���
�� � 9
����
���

With this estimate, equation (5.13) furnishes

#

#�

���
�� � 6�
����
�� � 6�
���
��
���
���

Integrating this inequality from* to � and then on* from 1 to �, and recalling
Lemma 5.4, we obtain that the weak solution� satisfies

��� � ���1� � ������� � ���1� � �������� (5.16)

By uniqueness, the same properties hold for�. Notice that, by virtue of Lemmas
5.2 and 5.4, and (5.16) it also follows that

��� � ���1� � �� �������� (5.17)

We now differentiate (5.6) with respect to�, multiply byG�#6���#� and sum over
�. We get

�
�

#

#�

����
�� � �
�����
�� � ���� � ��� ������ � �� � ����� �������

(5.18)
By the Ḧolder inequality, the Sobolev theorem, (5.17), and Lemma 5.2 it easily
follows that

����� � ��� ��������
���
�
��
�
�����
��6����
���
�
���
�����
�
� 6�
���
���
�����
� � 6�
���
���� � 9
�����
��

��� � ����� ������� � 
�
�
����
�
�����
�
� 6
���
���
�����
� � 6�
���
���� � 9
�����
���
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We now replace this inequalities into (5.18) and integrate with respect to time
twice, as we already did many times previously. If we then use (5.16), wearrive
at (5.12) with- � �. As we noticed, the general case is treated by an elementary
induction procedure.

The next lemma provides regularity in space and time for a weak solution,
for sufficiently smooth�.

Lemma 5.6 Let � be a weak solution satisfying the assumption of Lemma
5.4. Assume, further,� uniformly of class�	, � � �. Then

��
�� � ���1� � �� �������� for all - � � and all 0 � �� � � � ��� (5.19)

Proof. The main idea is to write (5.2) as a Stokes system of the following
type

���� � ���

��
� � � ����E 	 � ��E

div� � �

��
� �� � �� 
 � ��� � 	 ��

(5.20)

Then, as in the previous lemma, the proof is again based on an inductive argument
and the “interplay” between� and�. Specifically, knowing that

��
�� � ���1� � �� ��������

by Lemma 5.2 we deduce

��
�� � ���1� � �� �
��������

and so, by uniqueness,

��
�� � ���1� � �� �
��������

If we plug this information back into (5.20), we obtain that� has more spatial
regularity than that assumed at the outset and, by induction, we obtain the proof.
Referring the reader to the paper of Galdi and Maremonti (1988) for full details,
we wish here to give a proof of the lemma for the case� � 
, - � �. By what
we said, it is enough to show that

���
������ � ��� � � ����� � ���1� � �� ��������
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From Lemma 5.5 we know already21

��
�� � ���1� � �� ��������

By the Hölder inequality and Sobolev theorem, we have (�� � �����)


��� � ��
� � 
���


��

 � 
���
���
�
���

����� � ��
� � 
���
���
�
���

��� � ����
� � 
���
���
�
���

� � ����
� � 
�
�
����
� � 
�
���
���
���

��� � ����
� � 
���


����

 � 
�
���
���
���

� � ������
� � 
�
�
������
� � 
�
���
���
����

and the result follows from these inequalities and Lemma 5.5.

From the preceding lemma and the Sobolev theorem we at once deduce the
following result

Theorem 5.2Let� be a weak solution in�� , corresponding to� 	 � and to
�� � ����. Assume that� satisfies at least one of the following two conditions:

(i) � � ����� � �������, for some�� � such that
�

�
�

�

�
� �, � � ����	;

(ii) � � ������ � 	�������.

Then, if� is uniformly of class��, we have

� � ����
 ��� � 	��

Remark 5.5 Intermediate regularity results, with� only of class�	, � � �,
can be directly obtained from Lemma 5.6, and the Sobolev theorem. We leave
it to the reader as an exercise.

Remark 5.6 The same conclusion of Theorem 5.2 can be obtained under the
following alternative assumptions, see Remarks 5.2, 5.3

21Recall that, by uniqueness,� 	 �.
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���� �� � ������ � ��������� �
��
� �

��
� �� �� � ������	,

����� �� � ������ � ����������.

Remark 5.7 Every weak solution in dimension 2 is�� strongly continuous,
and, thus, by Theorem 5.2, it is regular in space and time. Regularity of weak
solutions in dimension two was first obtained by Leray (1934a), Ladyzhenskaya
(1958)

Remark 5.8 Theorem 5.2(i), for� � 
�� was proved for the first time by
Leray (1934b, pp. 224-227), while for� � 
��, � � �, and� � � it is due
to Fabes, Jones and Riviere (1972); see also Fabes, Lewis and Riviere (1977a,
1977b). Sohr (1983) proved Theorem 5.2(i) with� � �, for domains with
a bounded boundary. An attempt to prove Sohr’s result was already made by
Kaniel and Shinbrot (1967). However, their proof contains an oversight which
leads to the Corollary at p. 323 of their paper, where it is stated that,if � is of
class��, then any weak solution corresponding to initial data in����� and
satisfying condition (i) is in����
 ��� � 	�. This result can not hold as stated,
due to the fact that if a solution is regularup to the time� � � included, then
certain compatibility conditions have to be met, see Solonnikov (1964,p. 97 of
the english translation), Heywood (1980, Remark at p. 677). The same oversight
is contained in the book of Temam (1977, pp. 303, 307). The question of “how
much smooth” a solution can be up to the time� � �, without compatibility
conditions is studied by Rautmann (1983), von Wahl (1983) and Temam (1980).
That condition (ii) implies regularity was first discovered by von Wahl (1986),
in the case of a bounded domain. This latter result was extended to domains
with a bounded boundary by Giga (1986). The case� � 
, �� � �, �� � � of
Remark 5.6 for� � 
��, is due to Leray (1934b, p. 227); see also Section 6.

Remark 5.9 Regularity results involving assumptions on the pressure, rather
than the velocity, have been given by Kaniel (1969) and, more recently, by
Berselli (1999).

6 More Regular Solutions and the “Théorème de
Structure”.

The aim of this section is two-fold. On one hand, we would like to show that
regular solutions do exist in three dimension if either we restrictourselves to a
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“short” time interval, or if we choose initial data “small” compared to viscosity.22

On the other hand, we wish to give more information about the possible formation
of singularities for a weak solution, along the lines of the so-called “théor̀eme
de structure”, Leray (1934b, pp. 244-245).

We have the following result due to Heywood (1980)23.

Theorem 6.1 Let � � 
�� be uniformly of class��. Then, for any�� �
�����, there exists� 	 � and at least one weak solution in�� such that

� � ����� � ������� � ����� � �� ��������

The number� is bounded from below by a constant depending only on
���
�,
� and the��-regularity of �. In the case when� is bounded or� � 
�� we
have

� � ����
���

��
where� depends only on�. Moreover, there is a decreasing function� � ��G�,
G 	 �, such that if


��
� � ��
���
���
� can be taken as an arbitrary positive number. In the case when� is bounded
or � � 
�� we have� � ����
���
�, with � depending only on�.

Proof. We shall show the result for the case� bounded, referring the reader
to the paper of J. Heywood for the general case. To show the existence of such a
solution, we then use the Faedo-Galerkin method of Theorem 3.1, with thebasis
of the eigenfunctions of the Stokes problem, see Lemma 5.3. In addition to the
estimate (3.4) with� 	 �, we obtain the following one. We multiply (3.2) (with
� 	 �) by G�6�� and sum over�, to get (as usual, we omit the subscript “0”)

�
�

#

#�

�����
�� � �
���
�� � �� � ��� ����� (6.1)

Using the Ḧolder inequality, the Sobolev theorem, and Lemma 5.2 we have the
following two different ways of increasing the term8 (say) on the right-hand
side of this equation, namely,

a) 8�
�
�
��
�
���
� �6
��
���� 
���
���� � 6���
��
����
�
�
���
��

22We assume hereafter, for simplicity, that� 	 �. We also notice that existence of regular
and global solutions in dimension 2 has been established in Theorem 5.2, see Remark 5.7.

23Actually, Heywood requires more regularity on the boundarythan that requested in Theorem
6.1.
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b) 8�
�
�
��
�
���
� �6
�
���� 
��
���� 
���
��.

Replacing a) in (6.1) and setting
��� � 
�����
�� we find

#


#�
� ���6
�� (6.2)

which, by Gronwall’s lemma, and (6.1) and a), in turns gives


�����
� �

 �

�

������
��#� �.� for all � � ��� � � (6.3)

where ��� � � is the maximal interval of existence of the differential inequality
(6.2). By classical comparison theorems for differential inequalities, we have
� � ����6
���

�. In case b) we find

#

#�

�����
�� � �� � 6
�
���� 
��
���� �
���
�� � ��

which, once integrated, furnishes (6.3) for arbitrary� 	 �, provided

� 	 6
��
���� 
���
���� �

Using the estimate (6.3) along the approximating solutions, together with the
procedure employed in Theorem 3.1, we then show the result.

From this theorem, Theorem 5.2, and������� we then obtain the following
result.

Theorem 6.2 Let � � 
�� be uniformly of class��. 24 Then, for any
�� � ����� there exist� 	 � and a unique solution to (0.1)-(0.3) with� 	 �,
which assumes the data�� and which is of class���� 
 ��� � ��. Moreover,
there exists a positive constant���� such that, if


��
� � ��
���
���

with � defined inTheorem 6.1, we can take� arbitrarily large.

We shall now derive some other consequences of Theorem 6.1. Following
Leray, we are able to specify better the set of times where a weak solution
can be irregular. This can be done for all those� for which a strong energy

24See Remark 5.5.
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inequalityholds (see (4.1)). Specifically, we have the following result of “partial
regularity”.

Theorem 6.3(Théor̀eme de Structure)Let � satisfy the assumption ofThe-
orem 6.2. 25 Assume� is a weak solution in�� , for all � 	 �, corresponding
to � 	 � and satisfying the strong energy inequality�����. Then, there exists a
union� of disjoint open time intervals such that:

(i) The Lebesgue measure of������ � is zero;

(ii) � is of class�� in �
 � ,

(iii) There exists� � � ����� 26 such that� � �� ����;

(iv) If �� � ����� then� � ��� ��� for some�� 	 �.

Proof. Since


����
�� �

 �

�

���* �
��#* � 
��
�� for all � 	 ��

and since� verifies (4.1) for almost all� 	 �, we can find� � with the following
properties:

a) 
��� ��
� � ��
���� ��
��,

b) The strong energy inequality (4.1) holds with� � � �,

where� is the function introduced in Theorem 6.1. Let us denote by�� the
solution of Theorem 6.1 corresponding to the data��� ��. By a), �� exists for all
times � � � � and, by Theorem 6.2, it is of class�� in � 
 �� ����. By the
uniqueness Theorem 4.2 we must have� � �� in �
 �� ����, and part (iii) is
proved. Next, denote by� the subset of��� � �� where the following conditions
are met:

a) 
����
��� ��, for � � �,

b) The strong energy inequality (4.1) holds with� � �.

25See Remark 5.5.
26	 � can be estimated from above by a quantity depending only on
��
� and
, see Heywood

(1980, Theorem 8 (ii)). See also Remark 6.3.
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Clearly, ��� � �� � � is of zero Lebesgue measure. Moreover, for every�� � �
we can construct in the time interval���� �� � � ����� a solution�� assuming at
�� the initial data����� (� ������. From Theorems 6.1 and 4.1, we know that
�� is of class�� in � 
 ���� �� � � ����� and that it coincides with�, since
this latter satisfies the energy inequality with� � ��. It is obvious that the set
�

����
���� �� � � ����� � � has zero Lebesgue measure. Finally, if�� � �����,

by Theorems 6.1 and 6.2, there exists�� 	 � such that� is of class�� in

�
 ��� ���. The theorem thus follows with� 	
�

����
���� ���� ������ �� ����.

Remark 6.1 It is likely that Theorem 6.3 holds for any (sufficiently smooth)
domain. However, no proof is so far available, since one can prove the strong
energy inequality only for certain domains (see Section 4). On the other hand,
Heywood (1988) has shown that for any�, uniformly of class��, and any
�� � ���� there exists at least one corresponding weak solution� satisfying the
following condition: There exists an open setC ! ����� such that

a) ������C has zero Lebesgue measure;

b) For every compact interval��� 4	 � C there holds

���
�������


����
���� �

 �

�

�

��*�
���� � 
����*�
��

�
#� ���

Since it is not known if weak solutions in dimension 3 are unique in their class,
we can not conclude from this result thatany weak solution satisfies a) and
b). Notice that, by Theorem 5.2, every weak solution satisfying b) is of class
����
 ��� 4	�, if � is uniformly of class��.

Our next objective is to investigate when and in which way a weak solution �
can become irregular, and to give a more precise estimate of the set of the possible
irregular times. From Theorem 6.3, we know that this set is the complementto
����� of a union� of intervals, and that, under suitable assumptions on the
smoothness of�, � � ����
 � �.

For simplicity, in the remaining part of this section, we shall assume that the
domain� � 
�� is either bounded and uniformly of class��, or � � 
��, and
that � 	 �.

Following Leray (1934b, p. 224) we give the following
Definition 6.1 We shall say that a solution�, becomes irregular at the time

�� if and only if
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a) �� is finite;

b) � � ����
 ���� ����, for some�� � ��;

c) It is not possible to extend� to a regular solution in���� ��� with �� 	 ��.

The number�� will be called epoch of irregularity (“ époque de irŕegularit́e”,
Leray, loc. cit.).

We shall denote by" � "��� the set of all possible epochs of irregularity.
As we know from Theorem 6.3, the one-dimensional Lebesgue measure of" is
zero.

We have the following result which is essentially due to Leray (1934b, pp.
245-246) and Scheffer (1976a).

Theorem 6.4Let � be a weak solution in�� , for all � 	 �, corresponding
to the initial data�� � ����, and satisfying the strong energy inequality (4.1).
Let �� be an epoch of irregularity for�. Then, the following properties hold:

(i) 
�����
� diverges as�� ��� in such a way that


�����
� �
����


��� � ����

� � � ���

with � � ���� 	 �;

(ii) There exists a constant� 	 �, depending only on�, such that

�� � ����
��

��

(iii) The one-half dimensional Hausdorff measure of"��� is equal to zero. 27

27Let � be a subset of���. The
-dimensional (spherical) Hausdorff measure#� of � is
given by

#���� 	 �
�
���

#�� ����

where

#�� ��� 	 
��
�

�

���� �
�����
��

the infimum being taken over all at most countable coverings���� of � constituted by closed
balls�� with

�
���� � �� for all ��

see,�
�
, Simon (1983).



60 Navier-Stokes Initial-Boundary Value Problem.

Proof. Let �� be an epoch of irregularity. Then,

���
�����


�����
� ��� (6.4)

Actually, assuming that (6.4) does not hold, there would exist a sequence�*��
tending to��, *� � �� for all 0 � 
�, and a number. 	 � such that


���*��
� �.�

Since��*�� � �����, by Theorem 6.1 we may construct a solution� with initial
data��*��, in a time interval�*�� *� � ��� where

�� � I�
���*��

� � I. 	 ���

and I depends only on� and �. The solution� belongs to���*�� *� �
����

����� and so, by the Sobolev theorem, it satisfies Theorem 5.2(i) with
� � � and � � � (for instance). Therefore,� � ���� 
 �*�� *� � ��	�. More-
over, by the uniqueness Theorem 4.2,� � � in �*�� *� � ��	. We may now
select*� such that*���� 	 ��, contradicting the assumption that�� is an epoch
of irregularity, and (6.4) follows. We next operate as in the proof of Theorem
6.1, to show that
��� 	 
�����
�� satisfies (6.2) in the time interval���� ���.
Integrating (6.2) we then find

�


�����

�
� �


���*�

�
� ���6�* � ��� �� � � � * � ���

Letting * � �� and recalling (6.4), we prove (i). Property (ii) is simply obtained,
by integrating the inequality in (i) from� to ��, and then using the energy
inequality (EI) in Theorem 3.1. To show (iii) we observe that the set� introduced
in Theorem 6.3, can be decomposed as follows

� �

�
�

���
�*�� ���

�
��� ����� *� � ���

where� � ��, each�� is an epoch of irregularity, and

�*�� ��� � ��� � �	� for all 
 � ��

�*�� ��� � �*� � ��� � $� 
 �� <�
(6.5)
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From (i) and the energy inequality (EI) we at once deduce that

�

���
�*� � ���

��� � �
�

���


 ��

��

���*�
��#� � ��
��
���

Thus, for every2 	 � we can find a finite part�) of � such that

�

����	

�*� � ��� � 2�
�

����	

�*� � ���
��� � 2� (6.6)

By ��� ��, �����*�� ��� � ��� � �	 and so the set

��� � �	� ����	�*�� ���

consists of a finite number of disjoint closed intervals$�, < � �� � � � � 8 . Clearly,

��

���

$� � "���� (6.7)

By ��� ��, we have that each interval�*�� ���, 
 �� �), is included in one and only
one$�. Denote by�� the set of all indeces
 satisfying$� � �*�� ���. We thus
have

� � �) �
�

�
��


��

��

�

 

$� �

�
�
�

���


�*�� ���

�
 � �$� � "���� �

(6.8)

By Theorem 6.3, the set" has zero Lebesgue measure and so, from������ we
have

!���$� �
�

���


�*� � ����

Thus, by (6.6),

!���$� �
�

����	

�*� � ��� � 2 (6.9)

and, again by (6.6) and������,

��

���

�!���$��
��� �

��

���

�

�
�

���


�*� � ���

�

 
���

�
�

����	

�*� � ���
��� � 2� (6.10)
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Therefore, property (iii) follows from (6.7), (6.9) and (6.10).

Remark 6.2 From Theorem 6.4(i) it follows that a sufficient condition for
the absence of epochs of irregularity is that

�� � �
��� � ��������

a fact discovered for the first time by Leray (1934b, p. 227) when� � 
��.
As we already noticed, this is a particular case of the more generalconditions
furnished in Remark 5.6.

Remark 6.3 From Theorem 6.4(ii) it follows that the number� � introduced
in Theorem 6.3 is bounded above by����
��

�, with � � ����. Moreover, as-
sume�� � �����. By Theorem 6.1 we then know that any epoch of irregularity
�� satisfies the following estimate

�� � ����
���

��

with � � ����. Thus, from this inequality and Theorem 6.4(ii), it follows that
there existsI � I��� 	 � such that if


��
�
���
� � I���

the set"��� is empty, and we reobtain the second part of Theorem 6.2.

Remark 6.4There is a wide range of results concerning “partial regularity” of
“suitable” weak solutions, that we will not treat here. In this regard, we refer the
reader to the work of Scheffer (1976a, 1976b, 1977, 1978, 1980, 1982, 1985),
Foiaş and Temam (1979), Caffarelli, Kohn and Nirenberg (1982), Maremonti
(1987), Wu (1991), Lin (1998), and Ladyzhenskaya and Seregin (1999).

7 Existence in the Class����� � �������, ������� �

	, and Further Regularity Properties.

Theorem 5.1 has revealed that the functional class

������� � 	 ����� � �������� ��� � ��� � �� (7.1)

plays a crucial role in the study of regularity of weak solutions. However, as
we have seen in Remark 4.6, unless� � �, it is not known whether ageneric
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weak solution belongs to this class, for a suitable choice of� and �. It seems,
therefore, of the utmost importance to investigate under which assumptions on
the initial data�� 28 one canconstruct a weak solution which, in addition,
belongs to such a class. For example, in Theorem 6.1 we have shown that this
happens if�� � �����. Our main objective in this section is to show existence
of weak solutions in the class (7.1),29 under mild assumption on��, namely,
that it belongs to Lebesgue spaces� ���. Though obvious, it is worth noticing
that, in order to show regularity of weak solutions, it wouldnot really matter if
existence in the class (7.1) is proved for ashort time � (say) only, on condition
that one could take' and � suitably. For instance, regularity would trivially
follow if we could take' � � and� a decreasing function of
��
�. However,
the existence theory known so far, with data in��, requires' � �. 30� 31

In order to avoid technical difficulties, in what follows we shall assume that
� � 
��, referring to Giga (1986, Theorem 4) for the more general case when�
has a (non-empty) compact boundary.32 The results we shall prove will be then
an immediate consequence of suitable estimates for solutions to the heat equation
and of the classical successive approximation method applied to thelinearized
Stokes problem(see (7.3) below). In fact, using a decomposition lemma of the
Helmholtz-Weyl type, we shall see that the assumption� � 
�� allows us to
treat this latter problem as a (vector) heat equation.

We have the following.

Lemma 7.1Let � � ����� be a second order tensor field with

��� � ���
���� ����� � ���
���� < � �� � � � � � � � � �� � ���

Then, there exists a second order tensor field� � ����� with ������� � �, 33

28Throughout this section, for the sake of simplicity, we shall assume� 	 �.
29See Remark 4.7.
30This is another way of obtaining regularity of weak solutionfor � 	 �.
31Weak solutions with data in��, � � � � �, have been constructed by Calderon (1990a).

For existence of strong solutions with data in suitable Besov spaces, larger than��, see Cannone
(1997), Kozono (1998), Kozono and Yamazaki (1998), Amann (1999), and the extensive literature
cited therein.

32For the Cauchy problem, see also T. Kato (1984).
33We shall use the Einstein summation convention over repeated indeces. This condition on

��� has to be understood in the distributional sense.
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and a scalar field� such that, for all 
� < � �� � � � � �,

��� � ���
���� ����� � ���
���� � � ���
���� ��� � ���
���

����� � ����� � ���


���
� � 6��� ��
���
�

�����
� � 6��� ��
�����
��

Proof. Without loss of generality, we may assume that��� are smooth func-
tions with compact support in
��, see Galdi (1994, Lemma VII.4.3). We set

���� �



���
%��� 
���������
�#


��� � 2���� ����

where%�,� is the fundamental solution of Laplace’s equation. It is clear that

����� � ����� � ���

������� � ��

Moreover, from the Calderon-Zygmund theorem on singular integralswe find
that


��
� � 6��� ��
�����
�

�
� � 6��� ��
���
��

(7.2)

and the lemma is proved.

Our next objective is to prove some existence results for weak solutions� to
the following Cauchy problem for the linearizedStokes system:

��

��
� ������ � div�

div� � �

�
���

���
in 
��

�

���� �� � �����

(7.3)

where� is a given second-order tensor field, and�div� �� � �����. As usual,
we shall say that� is a weak solution to (7.3) if� � )� (see Definition 2.1),
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and it satisfies the following relation


 �

�

��
��

�	

��

�
�������	�

�
#� �


 �

�
�� ��	�#�� ����	����� for all 	 � �� �

(7.4)

Before proving our results, however, we wish to recall some well-known proper-
ties concerning the heat equation and classical inequalities. Denoteby � ��� ��,
��� �� � 
��

� , theWeierstrass function, that is,

� ��� �� �
�

��E������
���

�
� ��

���

�
�

By a direct computation, we show that

�� ��� ��� � 6

��� � �����

���� ��� ��� � 6

��� � ����
�	��
�

(7.5)

where6 � 6��� ��. For %� � � �
��� and" � �����
��
� � the convolutions

J��� �� �



���
� ��� 
� ��%��
�#
 	 � �%�

and

J���� �� �

 �

�

�


���
� ��� 
� �� *�"�
� * �#


�
#*

are called thevolume potentialandvolume heat potential, respectively. It is well
known, see,��5� Ladyzhenskaya, Ural´ceva and Solonnikov (1968, Chapter IV,
�1), that the volume potentials solve the following Cauchy problems fortheheat
equation

�J

��
� ��J in 
�� 
 �� 	 ��,

���
���

J���� %�
� � �

and
�J�
��

� ��J� � " in 
�� 
 �� 	 ��,

���
���

J���� �� � �� � � 
���
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For " � ����
���, � � �� ��, � � �, we set

�"��� �



���

"�
�

��� 
���*#
� � � G � ��

Then, the followingHardy-Littlewood-Sobolev inequalityholds (see,��5� Stein
(1970))


�"
+ � 6
"
�� �
�

��
�

�

�
�

G

�
� (7.6)

Finally, if ��% � $����� � �����
����, and; � �����
��
� �, we set

��%������� � ���
������ 	

��
%���
�


;
����� 	 
;
��������� 	�

We are now in a position to prove the following result.

Lemma 7.2 Let � � � � �, � � �� � �, ���� � ��� � ���, ���� �
�� ����, � � ��� ������. Assume

� � ��������
��
� �

div� � �������
��
� �

���� � $����� � �������
����

��� � $����� � ������
�����

Assume also that�� � ��
��� and that

� � �� � �����
��
� �

��� � �� � $����� � �����
����

where� is the Weiestrass function and

�

�
�

�

��
� �

�

�
�� �

�

�
�

Then, there exists a unique weak solution� to (7.3) such that

� � �����
��
� �

��� � $����� � �����
�����
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This solution satisfies the following estimates


�
����� � 
� � ��
����� � �
� 
��������
���������� � ��� � ��������� � ���� ����������

�
����� � 
��
� � ���� ��������

��
����� � ��
��
� � 
div� 
�������

(7.7)

with � � ���� �� �� ���.
Proof. Uniqueness of the solution in the class)� is easy to show along the

same lines of the proof of Theorem 4.2, and we leave it to the reader. In view
of the Helmholtz-Weyl decomposition result given in Lemma 7.1, it is enough
to give the proof of existence for the following non-homogeneous heat equation
problem

�%

��
� ��%� div� in 
�� 
 ��� � �

%��� �� � %�����

where% is the <-th component of the velocity field, and� � ����� � � � � ����,
with � given in Lemma 7.1. A solution to this problem may be written as the
sum of the volume potential corresponding to%� and to the heat volume potential
corresponding to div� , namely,

%��� � � ��� � %� �

 �

�
� ��� *� � div� �* �#*� (7.8)

Integrating by parts in the space variables in the last integral, we have

%��� � � ��� � %� �

 �

�
��� ��� * � � ���*�#*� (7.9)

From (7.9), we find


%���
 � 
� ��� � %�
 �

 �

�

��� ��� *� � ���* �
 #*� (7.10)

Using �"� �� it follows that

���� ��� * � � ���*�� � �



���

�� �
� *��
�
��� 
�� � ��� *�

���
�	��#
�
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Since
�

����� � ����
�	��
� 6�4�

������
�	���
�	����	�� � 4 � ��� ���

we obtain

���� ��� * � � ���*�� �
�

��� * ���
�	����	��




���

�� �
� * ��
��� 
����
�	

#
�

Thus, choosing4 � ����� ��, and using (7.6) we deduce


��� ��� * � � ���* �
 �

� 
 �

��� * �
�
�

�
�

�
� �



�

�
�

�
�

'�
�

�

'
������ ��4

�
� (7.11)

Since4 is arbitrary in��� ��������, we have that this last relation holds for all
'� � '. Thus, inserting the inequality in (7.11) into (7.10), we conclude


%���
 � 
� ����%�
 �

 �

�


� �*�
 �
��� * �

�
�

�
�

�
� �



�

 �
�

#*� � � '� � ' ��� (7.12)

We next differentiate (7.8) with respect to�� and take the��-norm of both sides
of the resulting equation, to get


��%���
� � 
���� ��� � %��
� �

 �

�

��� ��� *� � div� �* �
�#*� (7.13)

Proceeding as before, one shows that


��� ��� *� � div� �* �
� � �

div� 
��

��� *�
�
���


�
� �

where���� � ��� � ���. Replacing this estimate into (7.13), we deduce


�%���
� � 
��� ��� � %��
� �

 �

�


div� 
��
��� *�

�
���


�
� �

#*�
�

��
�

�

�
�

�

�
� (7.14)

We now choose in (7.12)' � �, '� � ��� to obtain


%���
� � 
� ��� � %�
� �

 �

�


� �* �
���
��� *�

�
���


�
� �

#*� (7.15)
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We take the��-norm in time of both sides of this relation. If� 	 �, we may
apply inequality (7.6) with� � �, � � � andG � ��� ������ to the integral in
(7.15) to show the validity of�"�"��. To show�"�"��, we multiply both sides of
(7.16) by��, � � ��� ������, and notice that

�,�

 �

�

#*

��� *�
�
���


�
� �* ��
,	�

� $, � #$��%� 7 � �� �� (7.16)

To show�"�"��, we take in (7.12)' � �, '� � �� and notice that, by (7.17),


 �

�


� �* �
��
��� *�

�
���


�
� �

#* � ��� ��������

 �

�

#*

��� *�
�
���


�
� �*�

� $���� �������� �

Finally, to prove of�"�"�
, we take the��-norm in time of (7.14), apply (7.6)
with � � �, � � �, G � ����������, and notice that, for the solution� ����%�
of the Cauchy problem for the heat equation it is


��� ��� � %��
�� �
�

��

%�
���

The lemma is thus proved.

Before proving the main result of this section, we need a further preliminary
lemma. The first part is a simple consequence of the Young inequality for
convolutions while the second is due to Giga (1986, Lemma p. 196).34

Lemma 7.3Let � � '� � � �,

�

�
�

�

�

�
�

'
� �

�

�
�

and let� � � �
���. Then, there exists� � ���� �� �� '� such that the following
properties hold, for all� � ��� � 	 and all � 	 �:

(i) 
� � %�
� � � �����
%�
 , ' � �

(ii) 
� � %�
����� � � 
%�
 , ' � �.

We shall now prove the main result of this section.

34Actually, Giga’s lemma applies to more general situations than the Cauchy problem for the
heat equation described in Lemma 7.3.
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Theorem 7.1Let � � ' � � ��, and let
�

�
�

�

�
�

�

'
�

Then, for any�� � ��
��� � � �
���, there exists� 	 � and a unique weak
solution� to the Navier-Stokes equations in�� such that� � �����
��

� �. More-
over, denoting by"' the (spatial) mollifier of the function" , we have that the
number� is estimated as follows:

(i) If ' 	 �:

� � �


��
���� 

� 4� �
�

�

�
�� �

'

�
�

(ii) If ' � �:

� �
�
� � 
�� � ��'
�


��'
�

�����
� 4� �

�

�

�
�� �

�

�
�

where� � ���� �� �� '� 	 �, � is arbitrary in ��� ��, and9 is taken as small as
to satisfy the condition
�� � ��'
� � �.

Proof. We use the method of successive approximations. We set

����� �� 	� ��� � ���
and, for0 � �� �� � � � � ��
� solves the following Stokes-like problem

 �

�

��
��
��

�	

��

�
� �����
���	�

�
#�

�

 �

�
��� & ����	�#�� ����	����� for all 	 � �� �

(7.17)
Using (7.7) and the Ḧolder inequality, we find that35


��
�
����� � 
��
����� � �
��
������� � 
��
����� � �� ��
��
������
����
�������� � ����������� � �������������

��
�
����� � 
��
� � �
��
����� �����������

���
�
����� � ��
��
� � 
��
�� ��

�����
��
���
����� �

� ��
��
� � � ��
��
�����
���
����� ��
(7.18)

35Throughout the proof of this theorem, we denote by� a generic constant which depends, at
most, on�� �� �� ��.
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Denote by>��	
� � >

��	
� �� � and >

��	
� � >

��	
� �� � two majorants for
��
�����

and ����������� , respectively. We want to show that there exist� 	 � and>
��	
� ,


 � �� �, such that


��
�
����� � �>
��	
�

����
�������� � �>
��	
�

for all 0 � �� �� � � � � (7.19)

We proceed by induction. From�"������� we obtain


��
�
����� � >
��	
�

�
� � �� ��>

��	
�

�

����
�������� � >
��	
�

�
� � �>

��	
�

�
�

Thus, (7.19) follows whenever the following conditions are met

�� ��>
��	
� � �

�>
��	
� � ��

(7.20)

Let us first consider the case' 	 �. From Lemma 7.3 we find


��
����� � �
��
 �

Thus, we choose
>��	
� � �
��
 

and condition�"��&�� is certainly satisfied for those� such that

� ��
��
 � �� (7.21)

Moreover, again from Lemma 7.3, we find for� � ��� � 	

�
�
����

�
� �
�����
� � ���

�
�

 �
����

�
� �
��
 � �� ��
��
 

and so, choosing
>
��	
� � �� ��
��
 �

condition �"��&�� is satisfied again for those� verifying (7.21). In the case
' � �, observing that��' � ���
���, for all � � ����	, from Lemma 7.3 we
deduce for any� � ��� ��


��
����� � 
�� � ��'
� � �� ��
��'
��
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Thus, choosing
>
��	
� � 
�� � ��'
� � �� ��
��'
��

we see that�"��&�� is satisfied if we select9 sufficiently small and� such that

� ��
��'
� � � � 
�� � ��'
�� (7.22)

Likewise, we show that if we take>��	
� of the same form as>��	

� , condition
�"��&�� is satisfied for a choice of� of the type (7.22). Using (7.19) and (7.20),
into �"������
 we also find that


��
�
����� � 
��
�

���
�
����� � �
��
��

(7.23)

Let us now show that the sequence���� is converging to a weak solution be-
longing to the space����. To this end, we write (7.17) for��
� and for��, then
subtract the two resulting equations and apply the estimates of Lemma 7.2 to
find (0 � �, �� 	 �)


��
� � ��
����� � �� �� �
��
����� � 
����
����� � 
�� � ����
����� �

If we employ�"��&�� and�"����� into this inequality, we end up with an estimate
of the following form


��
� � ��
����� � �
�� � ����
����� � (7.24)

where� is a constant strictly less than one and independent of0. From (7.24)
it easy to show that���� is a Cauchy sequence in the space�����
��

� �. In fact,
(7.24) implies


��
� � ��
����� � >
��	
� ���

and so, for all0� � 0 � :, : 	 �,


������
����� �
��

���


��
����
���
����� � ��
��

���

�� � ��
�

�� �
� � �� 0 ���

Denoting by� the limit field, from (7.23) we also deduce that� � )� and, by
a simple calculation which uses (7.17) and the convergence properties of����,
that� satisfies (2.8) (with� 	 �). The existence proof is thus completed. Since
uniqueness is a consequence of Theorem 4.2 and Remark 4.7, the theorem is
completely proved.
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We shall now analyze some consequences of Theorem 7.1. We begin with
the following result which improves Theorem 4.2(ii), see also Remark 4.5

Theorem 7.2. Let �, � be two weak solutions in�� corresponding to
the same data��. Assume that� satisfies the energy inequality(EI) and that
� � ����� � ����
����. Then� � � a.e. in
��

� .

Proof. As in the proof of Theorem 4.2, we establish (4.23). Let� and *�
be defined as in that proof, and assume*� � � . Thus, (4.23) implies



���
�� � ��

 �

��

�

��#* � �


 �

��
�
 � �
���#*� � � �*�� � �� (7.25)

We shall show that

���� � ���
���� for all � � ��� � 	� (7.26)

and so, in particular, that��*�� � ���
���. In fact, denote by/ � ��� � 	 the set
where possibly (7.26) does not hold. Clearly,/ is of zero Lebesgue measure.
Let �� � / and let ���� � ��� � 	 � / be a sequence converging to��. By
assumption, it follows that there exists� � ����� such that

���
���

��������� � �� ���� for all � � ��
� ����

On the other hand, by the weak�� continuity, we have

���
���

��������� � ���������� for all � � ��
� ����

and (7.26) follows. Now, by Theorem 7.1, we infer that there exists a weak
solution ��, say, assuming the initial data��*�� and belonging to the space
���*�� *� � � �*����

��
����, ��� � ��� � �, � 	 �. In view of Theorem 4.1
and Remark 4.3,� satisfies the energy equality in�*�� *� � � �*��� and so, from
Theorem 4.2(i), we conclude� � �� in �*�� *� � � �*���. We then use (7.25),
and reason as in the proof of Theorem 4.2(i) to show� � � in �*�� *� � � �*���,
contradicting the fact that*� is a maximum.

Another consequence of Theorem 7.1 is contained in the following one, which
extends the results of Theorem 6.4(i) to the case� � 
��. 36

Theorem 7.3Let � be a weak solution in
��
� , for all � 	 �, corresponding

to the initial data�� � ��
���, and satisfying the strong energy inequality (4.1)
36We refer to Giga (1986), for the more general case when
 has a compact boundary.
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and let�� be an epoch of irregularity for�. Then,
����
 diverges as�� ��� ,
for all � � ' ��, in such a way that


����
 �
�

��� � ��� ��	�� 
� � � ���

with � � ���� '� �� 	 �;

Proof. Reasoning as in the proof of Theorem 6.4(i), we show that there
can not exist a sequence�*��, say, tending to��, along which
��*��
 stays
bounded.37 In fact, otherwise, in view of Theorem 7.2, we could construct a
solution��, having��*�� as initial data and belonging to���*�� *������

��
����,
for some� � ����� � ��, � 	 �, 38 and *� � �� 	 ��. By Theorem 5.2(i),
� � ���
�� 
 �*�� *� � ���� and by the uniqueness Theorem 4.2(i),� � �� on
�*�� *� � ���, contradicting the assumption that�� is an epoch of irregularity.
From Theorem 7.2(i), we then have

��� � �� � ��
����
� �� ��	 � � � ���

and the result is proved.

Remark 7.1 From Theorem 7.3, we reobtain the sufficient condition for the
absence of epochs of irregularity given in Theorem 5.2. The estimate of Theorem
7.3 was first obtained for� � 
 by Leray (1934b, pp. 227). Actually, following
the work of Leray,loc. cit. pp. 222-224, we could show that this estimate also
holds in the case' ��.

As we have noticed in Remark 5.4, one important point which is left out in
Theorem 5.4 is to show that a weak solution� which in addition satisfies

� � ����� � ������� (7.27)

is in fact regular. So far, it is not known whether this property is trueor not.
The last part of this section will be devoted to investigate the kindof regularity
achieved by weak solution satisfying (7.27). This will be obtained by means of
Theorem 7.1.

We begin to show the following result.

37Recall that, from the Definition 6.1 of epoch of irregularity, it follows that���� � �������
for all � � �.

38See Remark 4.7.
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Lemma 7.4Let � be a weak solution in
��
� , verifying (7.27). Then, for any

�� � ��� � �, there exists2���� 	 � such that� � ������ �� � 2�������
��
����. In

particular, ���� is right continuous in the��-norm, at each� � ��� � �.

Proof. We already know that���� � ���
���, for all � � ��� � �, see (7.26).
Therefore, for any fixed�� � ��� � �, by Theorem 7.1 we know that there exists
2���� 	 � such that

� � ������ �� � 2������
��
����� for all � 	 � and� � ������ ��� (7.28)

and thus� is regular in� � ���� �� � 2�����. We may then multiply the Navier-
Stokes equations (0.1) –written in
��
�, with � 	 �– by �������, and integrate
by parts over
��, to obtain39

�

�

#

#�

�
������������

�� �

��
����� � ������




���
������
� ��� ��#�� (7.29)

where
����� �




���
�����������#�

����� �



���
����������#��

We now apply the Cauchy-Schwarz inequality in the integral at the right-hand
side of (7.29) to deduce

�

�
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�
�� � �

�
������ � ��

�� �

��
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���
��������#�� (7.30)

Since
�� � �����?�?���

from the Calderon-Zygmund theorem on singular integrals we obtain


�
��
�	�� � �
�
��
��

Using this inequality at the right-hand side of (7.30), we conclude
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�
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#�

�
�� � �

�
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��
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��
�� (7.31)

By the same procedure, one also shows
�����
#

#�

�
��

����� � �
�
����� ������ � 
�
�
��
�

�
� (7.32)

39For this type of technique, see Rionero and Galdi (1979), andBeirão da Veiga (1987).
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From (7.28) we know that� � ��
����� �� � 2������
�
��
���� and, by assump-

tion, that� � ����� � ����
����. Therefore, (7.31) gives


 ��
)���	

��
������ ������	 #� �.�

which, in turn, once replaced into (7.32), allows us to infer


 ��
)���	

��

�����
#

#�

�
��

����� �.�

Thus, 
����
� is continuous in���� �� � 2�����. On the other hand, the weak
continuity of � in ��, along with the uniform boundedness in��, implies that
� is weakly continuous in�� and we conclude the continuity of� in ���
���.

We are now able to prove the following partial regularity result (Sohr and
von Wahl, 1984, Theorem III.4).

Theorem 7.4Let � be a weak solution in
��
� verifying the condition� �

����� � ����
����. Then, there exists a set/ � ��� � 	 with the following
properties

(i) � � ��
�

�� 
/

�
;

(ii) The set= 	 ��� � 	� / is at most countable;

(iii) For every epoch of irregularity�� �� =� we have

��� ���
�����


����
� 	 ���
�����


����
��

Proof. Point (i) is already known from Theorem 6.3.40 For �� � =, by
Theorem 7.1, we may construct a regular solution in���� �� � 2�����. We can
take a rational number in���� �� � 2����� to show that= is countable. Let now
�� be an epoch of irregularity. Then, by Theorem 7.3,� is right continuous at��
in the��-norm, that is,

���
�����


����
� � 
�����
��

40We recall that, by assumption and by Theorem 4.1,� satisfies the energyequality in ��� 	 �.



7. Existence in the Class����� � �������, ��� � ��� � �. 77

Since� is weakly continuous at��, we also have that

��� ���
�����


����
� exists�

If
��� ���
�����


����
� � 
�����
� � ���
�����


����
��

we would then have that���� is strongly continuous in�� at ��. From Theorem
5.2(ii) it then follows that

� � � ���� � 9�� ��	��
��
���� � 9� 	 ��

On the other hand, by Lemma 7.1, we also have that

� � � ����� �� � 9�	��
��
���� � 9� 	 ��

and so,
� � � ���� � 9� �� � 9	����
���� � 9 	 ��

and, by Theorem 5.2(ii),�� can not be an epoch of irregularity.

Remark 7.2 Condition (ii) in Theorem 7.4 can be refined in the following
way, see Kozono and Sohr (1996b), Beirão da Veiga (1996). Let the assumption
of that theorem be satisfied and let�� be any instant of time. Set

� 	 ��� ���
�����


����
� � ���
�����


����
��

Then, there exists a constant� independent of the particular solution� such
that, if � � �, then necessarily� � �, that is,� is strongly continuous in��

at �� and, therefore, smooth at��. Further investigation on the structure of the
possible irregular points of a solution satisfying the assumption of Theorem 7.4,
has been more recently carried out by J. Neustupa (1999).

Remark 7.3The estimate from below for the time� of existence of a solution
with data in�� may play a crucial role in the theory of regularity. Though it is
very unlikely that we can give for� a bound of the type

� � �
��
��� � 4 	 ��

we may still conjecture the following estimate

� � "�
��
�� (7.33)

where"�G� is a positive, strictly decreasing function ofG. The following two
possibilities may then arise
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i) ���
*��

"�G� � "� 	 �;

ii) ���
*��

"�G� � �.

In the case i), no epoch of irregularity can exist. In fact, we have� � "�. Let ��
be an epoch of irregularity. Then, we could choose�� such that�� � �� � "���
(say), and we would conclude, by Theorem 7.1, that� is regular in���� ��� "��,
contradicting the fact that�� is an epoch of irregularity. In case ii), we distinguish
again the following two possibilities:

ii�� ��� ���
�����


����
� ��;

ii��� � � ����� ����
�����.

In case ii��, for � very close to��, we would have


����
� � "����� � ��� � � ���

and, therefore, since
���
*��

"���G� ���

a condition even weaker than(7.27) –depending on"– would imply regularity.
In case ii���, setting

. � ��� ���
��������


����
��

we would have� � "�.�, and so, reasoning as in case i), we would deduce
that �� can not be an epoch of irregularity. From all the above, we then conclude
that, if an estimate of the type (7.33) holds for� , then a condition weaker than
(7.27) and depending on" , would suffice to ensure regularity of a weak solution.
However, we only have for� the estimate of Theorem 7.1(ii).

Remark 7.4 In view of Theorem 6.4(i) and Theorem 7.3, we deduce that a
weak solution� in dimension 3 will never go through an epoch of irregularity
��, provided that the condition� � )� is incompatible with the following ones:


�����
� �
�

��� � ����



����
 �
�

��� � ��� ��	�� 

� � ��, ' 	 �. (7.34)
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With this in mind, J.Leray (1934b, p.225) proposed apossiblecounter example
to the existence of a global regular solution. This counter examplewould lead
to a weak solution possessing just one epoch of irregularity. Even though the
existence of such a solution has been recently ruled out by Necas, Ruzicka and
Sveŕak (1996) (see also Tsai (1998)), we deem it interesting to reproduce and
discuss it here. This solution is constructed as follows.Assumethat the following
system of equations

����
�� � ���
� � � � ���
�	 ��� �
� � ��
� � ���
�

div��
� � �

 � 
���

admits a non-zero solution� �� ����
���, for some� 	 �, and set

G��� � ������ � �������� � � ���

Then, the function

���� �� �

�



�
G�����G����� if � � ��

� if � � ��
(7.35)

is a weak solution to the Navier-Stokes problem in
��
� . By a simple calculation

which uses (7.35) we show that


����
� �� �G���������� � � ������ � � ��


�����
� � ��G�������� � � ���
(7.36)

From (7.36) it is clear that� satisfies all requirements of a weak solution and
that, in fact, it possesses even more regularity, such as strong��-continuity in
time. However,� blows up at�� exactly in the way prescribed by (7.34), so
that �� is the only epoch of irregularity. Moreover,
����
� � �, uniformly in
�, and 
����
� becomes irregular at�� just in the way predicted by Theorem
7.4(iii). As we mentioned, such a solution does not exist, since Necas,Ruzicka
and Sveŕak, loc. cit., have shown that� 	 �. This result gives more weight to
the conjecture that the class�����
��

� � is a regularity class.
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Navier-Stokes,J. Reine Angew. Math., 352, 81

Sohr, H. and von Wahl, W., 1984, On the Singular Set and the Uniqueness of
Weak Solutions of the Navier-Stokes Equations,Manuscripta Math., 49,
27

Sohr, H. and von Wahl, W., 1985, A New Proof of Leray’s Structure Theorem
and the Smoothness of Weak Solutions Navier-Stokes Equations for large
���, Bayreuth. Math. Schr., 20, 153

Sohr, H. and von Wahl, W., 1986, On the Regularity of the Pressure of Weak
Solutions of Navier-Stokes Equations,Arch. Math., 46, 428

Sohr, H., von Wahl, W. and Wiegner, W., 1986, Zur Asymptotik der Gleichun-
gen von Navier-Stokes,Nachr. Akad. Wiss. G̈ottingen., 146, 1

Solonnikov, V.A., 1964, Estimates of Solutions of Nonstationary Linearized
Systems of Navier-Stokes equations,Trudy Mat. Inst. Steklov, 70, 213;
English Transl.: A.M.S. Transl.,75, 1968, 1

Stein, E.M., 1970,Singular Integrals and Differentiability Properties of Func-
tions, Princeton University Press, Princeton

Stokes, G.H., 1845, On the Theories of the Internal Friction of Fluids in Motion
Trans. Cambridge Phil. Soc., 8, 287

Struwe, M., 1988, On Partial Regularity Results for the Navier-Stokes Equa-
tions,Commun. Pure Appl. Math., 41, 437

Takahashi, S., 1990, On Interior Regularity Criteria for Weak Solutions of the
Navier-Stokes Equations,Manuscripta Math., 69, 237

Takahashi, S., 1992, On a Regularity Criterion up to the Boundary for Weak
Solutions of the Navier-Stokes Equations,Comm. Partial Diff. Eq., 17,
261; Corrigendum:ibidem, 19, 1994, 1015
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