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conditions for the Navier-Stokes equations
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Abstract

Consider a smooth bounded domain 2 C R3, a time interval [0,7),
0 < T < o0, and a weak solution u of the Navier-Stokes system. Our aim
is to develop several new sufficient conditions on u yielding uniqueness
and /or regularity. Based on semigroup properties of the Stokes operator
we obtain that the local left-hand Serrin condition for each t € (0,7)
is sufficient for the regularity of u. Somehow optimal conditions are ob-
tained in terms of Besov spaces. In particular we obtain such properties
under the limiting Serrin condition u € L{® ([0,T); L3(£2)). The complete
regularity under this condition has been shown recently for bounded do-
mains using some additional assumptions in particular on the pressure.
Our result avoids such assumptions but yields global uniqueness and the
right-hand regularity at each time when u € L§° ([0,T); L3(§2)) or when
u(t) € L3(£2) pointwise and u satisfies the energy equality. In the last
section we obtain uniqueness and right-hand regularity for completely
general domains.
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1 Introduction and Preliminaries

Let 2 C R3 be a bounded domain with boundary 9f2 of class C%landlet 0 < T < 0.
Then we consider in [0,7") x 2 the Navier-Stokes system

up—Au+u-Vu+Vp = 0, divu=0 (1.1)

“‘an 0, u‘t:O = Uo-

In particular, we are interested in weak solutions u of this system for initial values

ug € L2(£2); here p means the associated pressure.

Definition 1.1: Let ug € L2(§2). Then a vector field
w e L%(0,T; L2(2)) N L0, T; Wy 2 (£2)) (1.2)
is called a (Leray-Hopf type) weak solution of the system (1.1), if the relation
—(u, w) o1 + (Vu, Vw) o r — (uu, Vw) o1 = (ug, w(0)) o (1.3)

holds for each w € C§°([0,T); Cg5,(£2)), and if the strong energy inequality

1 t 1
)13 + / IVull3 dr < 3 lu(to)l 3 (1.4)
0

holds for almost all ty € [0,T), including for to = 0, and all t € [to,T).

Usually, the energy inequality (1.4) is supposed for weak solutions w only for
to = 0. However, since {2 is bounded, we can prove the existence of weak solutions u
satisfying (1.2) - (1.4), see [10, Theorem V.3.6.2].

Another interesting problem concerns the energy equality
1 2 ! 2 1 2
SO+ [ 1Vull dr = Jllu)l} foralo<to<t<T,  (15)
to

describing the precise energy balance between the kinetic energy 3 |[u(t)|[5 and the

t
dissipation energy [ ||Vul|3dr in the interval [to, t].
to
To prove (1.5) we need an additional condition on the given weak solution w.
Assume that u satisfies one of the following conditions:
a) wu € Li([0,T); L*(22)),

loc

b) ue L ([0,7); L*(£2)),

loc

2 3
c) we Ly (0,T);L9£2)),2<s<00,3<g<o00, —+—=1. (1.8)
s q



Then the energy equality (1.5) is satisfied for all 0 < tg <t < T.

Concerning the proof for a), see [10, Theorem V.3.6.1], obviously b) implies a),
and to prove the assertion in ¢) we observe that "¢) = a)" follows from the embedding
inequality

IN

Cllull pso,775za 2y el Lo (0,17 L0 (2 (1.9)

3 2/
C H“HLS(O,T';LQ(Q)) HVUHL/;I(QT/;B(Q)) HUHL{OO(QT/;LZ(Q)) )

[[uul ‘LQ(O,T’;LQ(Q))

IN

0<T <T,T" < oo, where C = C(£2) > 0 is a constant and s; = (3 — )71 ¢, =

(3 - %)_1; see [10, Lemma V.1.2.1, b)]. Note that the case s = 00, ¢ = 3 is included
in (1.8).

It is important in Definition 1.1 that, after redefinition on a null set of [0,7),
u:[0,T) — L2(R2) is weakly continuous, (1.10)

see [10, Theorem V.1.3.1]. Therefore, each value u(t) € L2(§2),t € [0,T), and, in
particular, the condition u’ 1—o = w(0) = ug are well defined.

A weak solution u as in Definition 1.1 is called a strong solution of (1.1) if Serrin’s
condition

2 3
ue L ([0,T); L)), 2< s <00, 3<q< 00, 5 + p =1 (1.11)
is satisfied. It is well known, see e.g. [10, Theorem V.1.8.2|, that a strong solution u
is regular in (0,77) x 2 and uniquely determined within the class of Leray-Hopf weak
solutions.

In this context we also consider the following restricted Serrin condition. The
weak solution u satisfies the local right-hand L*(L%)-Serrin condition in [0,7") if

2 3
u€ L¥(t,t+0;L9(2)),2<s<o00,3<qg<o0, —+-=1 (1.12)
s q
holds for each 0 < t < T with some § = §(t) > 0, t+J < T. Obviously, in this case
u is regular in each right-hand interval (¢,t 4 ¢6) C [0, 7).

Next we explain some notations. By (-, ), we denote the pairing of vector fields
in {2, and (-,-)p 7 means the corresponding pairing in [0,7") x (2. Given a vector
field u = (uy,ug,us) in 2, let u-Vu = (u- V)u = u; D1u + ugDou + ugD3 where
D; = %,j =1,2,3, = = (x1,29,23) € 2, V = (D1, D2, D3). Further let uu =

J

(uiuj)?;—y such that u - Vu = divuu = (Di(uruj) + Da(uguy) + D3(uzu;))i_; if

_ Ou

divu = V- u = Dyuy + Dauz + D3ug vanishes. Finally, we set us = 5.

With €5, (2) = {v € C(2) : dive = 0} we define LL(02) = Cgo ()1,
1 < g < oo, where |||, denotes the norm of the Lebesgue space L(§2). Further,

Wka(), k € N, and Wg’q(ﬂ) = CSO(Q)H'HW'“”Q) denote the usual Sobolev spaces.

3



Further we need the following spaces of solenoidal vector fields, see also [2, Theorem
3.2]. Let L™*(£2),1 <r < 00,1 < s < oo, with norm ||-||; .« denote the usual Lorentz
space, see [12, 1.18.6]. In particular, for r = 3, define

L3%(0Q) = W”'”L“, 1<s< oo,

cf. [1, (0.16)]. See [1, (0.17)] concerning L™ (£2) with r > ¢. Special Besov spaces
will be considered in §4.

We also need the Bochner spaces L*(0,7'; L9(£2)), 1 < s, ¢ < oo, with norm

T s
Flpoiozssaen = IHlyor = ( JAE szr) , (1.13)

and also the spaces L>(0,T, L4(2)), L.([0,T); L(§2)), and L*(0,T; W012<9))

loc

Let P, : LY(£2) — L& () denote the Helmholtz projection, and let A, = —P,A :
D(A,) — L%(£2) be the Stokes operator with domain D(A4,) = W24(£2)N Wol’q(Q) N
L3(£2) and range R(Aq) = L§(£2). Then AY : D(A) — L3(22), -1 < a <1,
denote the fractional powers with D(A,) C D(Ag‘) C Li(0), R(Ag‘) = LL(N) for
0 < a < 1. For a bounded smooth domain, the domain D(A;/4) C L2(02) will be
equipped with the norm HA;/ 41}’ g U E D(Al/ %), a norm equivalent to the usual graph
norm. Important is the embedding estimate

3 3
[v]l, < CHA?;UHW, ve DAY, 1<y<gq 2a+ p = > 0<a<l. (1.14)

The operator —A, generates an exponentially decreasing analytic semigroup et

LLI(2) — LE(2), 0 <t < oo, such that for v € LI(2) and 0 < a < 1
HAg‘e_tAquq < Ct%e vl (1.15)

with C' = C(£2,¢q,a) > 0 and 6 = §(£2) > 0, see [5], [6], [7]. We may write A; = A,
P, = P if there is no misunderstanding.

If By, By are two Banach spaces with norms |[|-|[5,, |||, then we write By < Bs
if B is strictly contained in Bs and if

lvllp, < Cllvllg,, v e B,

holds with some constant C' > 0 not depending on v.

Our results are based in particular on Proposition 1.2 and Corollary 1.3 below
concerning initial value conditions for the existence of strong solutions at least in a
certain (sufficiently) small initial interval [0,7"),7" > 0. These conditions are optimal
in a certain sense, see [2, Theorem 1.1, Theorem 1.2]. Replacing [0,7") by some
interval [to,t9 + 0), d > 0, and the initial value ug by any u(tp),0 < tg < T', we try
to identify a given weak solution u locally in [to, %o + 0) by a strong solution. This
method of local identification of v with strong solutions enables us to obtain several
new uniqueness and regularity results for weak solutions (compare [2]) .
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Proposition 1.2: Let 2 < s < 00, 3 < ¢ < 00, %-1- 3 =1, and let ug € L2(12).
Then there exists a constant e, = ,(§2,q) > 0 with the following property: If

T Ys
</0 He_tAUOHZdt> < e, (1.16)

then the Navier-Stokes system (1.1) has a unique strong solution u €
Ly, ([0, T); LU(42)).

Conversely, ifu € L{ ([0,T); LL($2)) is a strong solution of the system (1.1), then

loc

it holds (1.16) with T replaced by some (sufficiently small) T' with 0 < T' < T.

Corollary 1.3: Let u be a weak solution as in Definition 1.1, let ty € [0,T), let
$,q,&« be as in Lemma 1.2, and let (1.4) be valid for ty and t € [ty,T). Suppose

s Ys
(/ HeTAu(tO)HZdT> <e, with §>0,t0+d<T. (1.17)
0

Then
u € L%(to, to + 9; LY(2)). (1.18)

In particular, u is regular in (tg,ty + 9).

Conversely, if u satisfies (1.18) then (1.17) is satisfied with § replaced by some
8 € (0,9).

In §2 we describe left-hand and right-hand side conditions for local and also
global regularity. Optimal initial value conditions in the L*(L9)-framework are given
in terms of Besov spaces, see §3. Conditions in the limit space L>(L?) to get unique-
ness and the local right-hand regularity (4.1) are found in §4; e.g., if u(t) € L3(2)
for all £ > 0 and wu satisfies the energy equality rather than the energy inequality,
then u satisfies the local right-hand Serrin condition. Finally §5 deals with general
unbounded domains where only the L?-theory of the Stokes operator can be used to
get results similar to those of §4.

2 New regularity conditions for weak solutions

Applying (1.17) for a.a. top € [0,7) we obtain the following regularity results. In the
following u is always a weak solution of the system (1.1) with initial value uy € L2(£2)
in the sense of Definition 1.1, and ¢, s, &, are given as in Proposition 1.2.

In the first result we suppose (1.17) for a.a. tg € [0,7") with a § > 0 independent
of to.



Theorem 2.1: Suppose it holds

5 Ys
</ e~ uto)| [} dT) <e, with fixed § > 0 (2.1)
0
for almost all ty € [0,7T') including to = 0. Then it holds uw € L ([0,T);L9(2));
hence u is regular in (0,T).

Proof: Applying (1.17) for a.a. ty € [0,T), including ty = 0, we are able to cover
[0,T) by intervals [to,to + ¢) as in Corollary 1.3 for a.a. tg € [0,7"). Then the result
follows from Corollary 1.3 0

Corollary 2.2: Suppose it holds
s N . Ys
. r _
16%1 </0 1E u(to)quT> =0 (2.2)

for to = 0 and uniformly for almost all tg € [0,T). Then u € Lj, ([0,T); L9(S2)), and
u is regular in (0,7).

Proof: Using (2.2) and the uniform condition we find for the given e,, some fixed
do > 0 such that (2.1) is satisfied with § replaced by given dyg. This proves the
corollary. O

Next we obtain so-called local regularity results.

Theorem 2.3: Suppose that at a € (0,T) the left-hand condition

6 ( / : |Au(®)]]; dt) "< (2.3)

holds with 0 < § < a, and some 0 < a < % Then there exists 0 < &' < § such that
uw€ L*(a—08,a+08;L1N)). Thus u is regular in (a — &', a +§') and a is a so-called
regular point.

Proof: Using (1.15) we obtain that

Lre ’ —TA $ 1 ° o, —TA f—«a S
il /0||e )| lyar)ar=5 [ /OHAe Aeu(o)|| dr ) di

C [ 5 q Y s e [® . . .
<O ([ Aa)lamwoluz e (o [ aole) < cz

with C' = C(£2,¢,a) > 0. We conclude that there is at least one ¢y € (a — §, a) such
that

1/S

</06 He_TAu(to)HZdT> < Cse, (2.4)
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and that (1.4) is satisfied for this ¢y. Otherwise we would obtain that

s 1 “ s 1 ¢ o —T s s
Cg*:5/11_605*dt<5/a_6 (/0 1E Au(t)quT)dtSCeS*

which is a contradiction. We may replace C/*c, by e, in (2.4), and use (1.17). This
shows that u € L*(to,to + 0; LY(£2)), and setting 6’ = min(a — to,to + 0 — a) we see
that [a — ¢',a+ &) C [to,to + 0). This proves Theorem 2.3. O

Setting o = 0 in (2.3) we obtain as a consequence the next corollary which has
been shown in [4].

Corollary 2.4: Suppose that the conditions
u € L%(0,600; LY($2)) with0 < §p < T and (2.5)

u € L*(t —0;t; LY(02)) for eacht € [6p, T) with0 < § = §(t) < dg (2.6)

are satisfied. Then Serrin’s condition
u € L, ([0,T); L9(£2)) (2.7)
is satisfied, and w is regular in (0,T).

Remark 2.5: Obviously (2.5) and (2.6) yield a strictly weaker condition than (2.7)
for general vector fields. Hence Corollary 2.4 gives a strict extension of Serrin’s
regularity class (2.7) for weak solutions.

The following corollary yields a local regularity result.

Corollary 2.6: Suppose that at a € (0,T)
a
_ 2
ol [ Ivuolfd <. (28)
a—

holds with 0 < 6 < a. Then there is some ¢’ € (0,0) such that u € L*(a — ¢',a +
8’3 LY(£2)). Thus u is regular in (a — ¢',a + 0') and a is a regular point.

Proof: Using (1.14) with ¢ = 12, v = 4, a = %, the multiplicative estimate

lvlla < CHVU”;/4HU||;/4 for v € WOI’2(Q), see [10, Lemma II.1.3.1 a)|, and the energy
inequality (1.4) with tg = 0, we obtain with s = § and for t € (a — §,a) that

A= u(®)|[2 < Cllu@)][]® < ClIVu@)f3 [[u@)]]3* < C1[Vu()]]3 |luol5

with some absolute constant C' > 0. Now the result follows from Theorem 2.3. O



We can treat (2.8) as an energy smallness condition. Thus a is a regular point if
the dissipation energy [ o ||Vu(t)] |3 dt in a left-hand neighborhood of a is sufficiently
small. Using the energy inequality and some sufficiently large § > 0 we conclude from
(2.8) in the case T' = oo the well-known result that u is regular for ¢ > Ty where
To = To(||uol|5) > 0 is sufficiently large. See [4] for further local regularity results.

3 Optimal initial value conditions with norms in
Besov spaces

Consider a weak solution u of the system (1.1) with initial value u(0) = ug € L2(2)
as in Definition 1.1, and let ¢, s be as in Proposition 1.2.

We need the Besov spaces

—2/s (s / 1 - 1 I
IBq,s (‘Q) - (Bq/,sl(‘g)) ) 6 + ? - 17 g + ? - 17 (31)

which are defined as follows: Let B;{SS,(Q) be the usual Besov space, see [12, 4.2.1
(1)], here to be considered for vector fields with values in R®. Then the Besov space
IB%Z{SS,(Q) of solenoidal vector fields in B;{Sq,(ﬂ) is defined as the closed subspace

B/

! ol
q,s

(@) = B, (@) LL(Q) = {v e B, (2) : divo=0,N -v],, = 0}

= gl
q’s

where N - U’ oo means the (well-defined) normal component of v at 92 see [1,
(0.5),(0.6)] concerning this space. The space B,;i/s(ﬁ) is defined in (3.1) as the

dual space of B;{SS,(_Q). Further we need, among others, the interpolation space
(LE($2),D(Ag));_1 o cf. [12, 1.14.5 (2)].

Let ug € L2(£2) and ¢ > 2. Then e tAay, = e~tA2q is well-defined for ¢ > 0, but
need not be bounded in LZ(2) as t — 0+. However, if (1.16) holds, then

[e'S) T
/O HetAuoHZdth/O e~ uq|| dt < o0 (3.2)

by (1.15). Conversely, if fooo He‘muo‘ ‘Zdt < 00, then there is some 0 < T < 0o such
that the optimal initial value condition (1.16) is satisfied.

Using several well-known arguments we can prove the following equivalence result.

Lemma 3.1: Let ug € L2(£2),2 < s < oo, 2+ % = 1. Then the norms

00 1/s
</0 HetAUOqut> and HUOHJB;?S(Q) (3.3)



are equivalent. Therefore, if one of these norms is finite, then also the other one is
finite.

Proof: We use step by step the following arguments: First [12, 1.14.5 (2)] together
with (1.15), then the identity (A~ ug, Ap) o = (uo, @), ¢ € D(A), then [12, 1.11.2
(3a)], then [12, 1.3.3 (1)], then [1, Prop. 3.4, (3.18)|, and finally the definition [1,
(0.6)]. This proves the lemma. Note that this calculation slightly improves the
arguments in |2, Sect. 3. O

Lemma 3.2: Let2 < s<o00,3<q< 00, %Jr% = 1. Then there hold the following
embedding properties:

a) L3(02)— L3%(0), ifs>3, (3.4)
b) L3*(R) =B (), ifs>q, (3.5)
c) D(AV") — B 7(02), (3.6)

(3.7)

d) L>®(0) — qu/s(m, ifr > 3.

Proof: See [1, (0.16)] concerning (3.4), (3.5), and [1, (0.17)] concerning (3.7). To
prove (3.6) we use the embedding estimate (1.14) with o = 1 + 1 and [10, Lemma
IV.1.5.3] to get that

) 1/s 00
( / Hw%u;@ gC( [ | taare,
0 0

UNS D(A%), C = C(£2,q) > 0. This proves Lemma 3.2. O

) "

The next result follows from Proposition 1.2 using the norm equivalence of
Lemma 3.1, see [2, Theorem 1.2].

Proposition 3.3: Let ug € L2(12), let u be a weak solution of the system (1.1) in
[0,T) x £2 as in Definition 1.1, and let 2 < s < 00, 3 < q < 0o with % + g = 1. Then
the condition

up € B J*(12) (3.8)
is sufficient and necessary that
u € Lipe([0,T); LI(£2)) (3.9)

is a strong solution in some interval [0,T") with 0 < T' <T.

(£2) then (3.9) does not hold for each 0 <T' < T.

—2/s

In particular, if uy ¢ IBSq,

By Lemma 3.2 we obtain the following local regularity properties.



Lemma 3.4: Let ug,u,s,q be as in Proposition 3.3. Then each of the following
conditions is sufficient for the Serrin condition (3.9) in some interval [0,7"),0 < T' <
00:

a) wup € L3(0), (3.10)
b) wup € L3%(), s>gq, (3.11)
¢) uge D(AYY), (3.12)
d) wye L)™®(2), r>3. (3.13)

4 Uniqueness and local right-hand regularity
The class L2 ([0,7); L3(42)) is the limit case s = oo,q = 3 of the usual Serrin class
Ly ([0,T); L4(£2)), 2 < s < 00, 3 < g < oco. Therefore, it is interesting to develop
uniqueness and regularity properties of weak solutions u in this class. Seregin [11]
and Mikhailov-Shilkin [9] proved the complete regularity of a weak solution u €
L2 ([0,T); L3(£2)) under some additional assumptions in particular on the pressure

p. Our result below does not contain such assumptions but yields, on the other hand,
only the uniqueness and a local right-hand regularity property.

In the following u is a weak solution of the system (1.1) in [0,7") x {2 with initial
value u(0) = ug € L2(§2) in the sense of Definition 1.1, and 2 < s < 00, 3 < ¢ < 00
are given satisfying % + % =1.

We say that u satisfies the local right-hand L*(L%)-Serrin condition in [0,T) if

ue L(t, t+0; LY(2)) for each t € [0,T) with 6 =46(t) >0, t+6 < T. (4.1)

Theorem 4.1: Suppose that the given weak solution u satisfies

u € L5 ([0, T); L3(£2)). (4.2)
a) Then u is unique in the sense that there is no other weak solution of the system
(1.1) with initial value ug, and

b) w satisfies in [0,T) the local right-hand L*(L%)-Serrin condition (4.1) with 2 <
s<oo,3<q<oo,%+%:1.

Proof: By (1.8) with s = 00,q = 3 we conclude that u satisfies the energy equality
(1.5) for all 0 <ty <t < T. Using (4.2), (1.10) and weak convergence arguments we
see that ug € L3(£2). Hence (3.10) in Lemma 3.4 allows to conclude that u satisfies
Serrin’s condition (3.9) at least in some initial interval [0,7"),0 < T" < T.
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Suppose there is another weak solution v with v(0) = ug in the sense of Definition
1.1. Then Serrin’s uniqueness result shows that u = v for ¢ € [0,7"). To prove the
same result on (0,7 let t, € (0,7] be defined by

te =sup{t € (0,7) : u(r) = v(7) for all 7 € [0,t]}; (4.3)

note that u(t) — v(t) is well-defined in L2 (£2) for each ¢ € [0, T) because of (1.10). If
t, = T, the theorem is proved. Thus we assume that 0 < t, < T and we get from
(1.10) that u = v holds in [0, t,].

Since (1.4) holds for v and for a.a. ty € [0,7), we obtain a sequence

O<ti <ta<...<tj<...<tly, jEN, (4.4)
with lim ¢; = t, such that
Jj—00
1 2 t 2 1 2
3 @Iz + t IVolly dr < Slo()lly, t =t (4.5)
J

holds for each j € N. Since t; < t, we obtain using (1.5) for v = v in [0, ¢,] that

1 2 b 2 1 2 :
o3+ [ Il dr =3Il Gen.

tj

which shows that lim Hv(t])Hg = ||v(t4)|[3, and from (4.5) we obtain that
j—00

1 t 1
2M@%+Lﬁwm%hngm@,tzw (4.6)

Now Serrin’s uniqueness result implies that 4 = v also holds in some interval
[ts, T") with t, < T"” < T, which is a contradiction to (4.3). Therefore, u is uniquely
determined in [0, 7).

Consider any to € [0, 7). Then u(ty) € L3(£2) is well defined and since L3 (£2) C
B;i/s(()), s > ¢, we obtain from Proposition 3.3 - with [0, 7") replaced by [tg,T") and
ug replaced by u(tg) € IB%;?S(Q) - a local strong solution u* € L*(to,to + 9; L1(2))
in some interval [to,to +9), 6 = 6(tg) > 0, to + 9 < T, which can be identified with

u by Serrin’s uniqueness result using (1.5). This proves the right-hand L*(L?)-Serrin
condition. The proof of Theorem 4.1 is complete. ]

Remark 4.2: a) The result of Theorem 4.1 is "very close" to the complete regular-
ity of the given weak solution u. Indeed, if the right-hand local regularity condition
(4.1) holds for u with some fixed 0 < dyg = d(t) for each t € [0,T), then we conclude
from the proof of Theorem 4.1 that uw € Lj ([0,T"); LY(£2)).

loc

b) More general, if the local right-hand condition (4.1) holds for w with fixed

11



d(t) = do > 0 only for almost all t € [0,T), then the proof above implies that
we L (0, T); L1(2)).

c¢) Consider a general weak solution u as in Theorem 4.1. Then, omitting the con-
dition (4.2), we can use the arguments in its proof because of (1.2) at least for
almost all ty € [0,T), and we obtain that u* = w € L*(tg, to + 6; L9(£2)) holds with
d=0(tg) >0, to + 0 < T. In this case these local regularity intervals need not cover
the whole interval (0,T"). The union T C (0,T") of such intervals yields a dense open
subset of regular points of (0,71"). The complement S = (0,T)\7 is the null set of
singular points in (0,T'), which is (in the case t = 00 ) always bounded because of the

regularity property in (2.8).

To extend Theorem 4.1 to an even larger class than L ([0,T'); L3(§2)) recall that
each of the conditions uu € L2 ([0, T); L*(£2)) or u € L ([0,T); L*(£2)) is sufficient

for the energy equality (1.5), see (1.6), (1.7). Note that in Theorem 4.3 below u need
not satisfy any Serrin condition; actually, it holds % + % =1+ %.

Theorem 4.3: Consider a weak solution u with initial value ug € L2(§2), and
suppose that

a) u(t) € L3(2) foreacht € [0,T), (4.7)
1 ¢ 1
b) ﬂm@@+/ﬁwwgmzzmmm@ forall 0<ty<t<T. (4.8)
to

Then v is uniquely determined in the class of weak solutions with initial value ug
and it holds the local right-hand L*(LY%)-Serrin condition with some 2 < s < 00,
3<q<oo,%+%:1.

Proof: Suppose there is another weak solution v of (1.1) with v(0) = wg. Since
up = u(0) € L3(£2) we argue as in the proof of Theorem 4.1 that u satisfies (3.9) and
that u = v holds in some initial interval [0,7"),T" > 0.

Using t, as in (4.3)-(4.6) we obtain in the same way that « = v holds in [0,7),
and the same argument as in the proof of Theorem 4.1 also yields the property (4.1).
This completes the proof. ]

The same arguments are valid if L3(£2) (or equivalently L2 (2)) in (4.7) is replaced
by one of the spaces (3.11)-(3.13), or in the most general case by the space in (3.8).
This finally yields the following result.

Theorem 4.4: Consider a weak solution u with initial value ug € L2(£2) and
suppose that

2
a) u(t) eIB%;ﬁ/S(Q), 2<s<00, 3<q< 00, s+2_1 for all t €[0,T), (4.9)

1 t 1
b) ﬂm@@+/ﬁww§m:2mm@@ forall 0 <ty<t<T. (4.10)
to
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Then w is uniquely determined and it holds the local right-hand L*(L9)-Serrin con-
dition as in Theorem 4.3.

Obviously, see Lemma 3.2, Theorem 4.4 remains valid if B, i °(2) in (4.9) is
replaced by each of the following spaces: either

L35(0),s>q, or D(AJ) CL(R) or L™(02),r>3. (4.11)

5 A uniqueness and regularity result for general
domains
In this section let 2 C R3 be a completely general domain, i.e. an open and connected

subset of R3. In this case we have to modify slightly the definition of a weak solution
u for the system

—Au+u-Vu+Vp=0, divu=0, u}t:(]:uo (5.1)
in [0,7)x 2,0<T < 0.
Let up € L2(12) = Cgo, ()12 and W2(02) = Cgo, () 17172 Then
w € LX(0,T; L5(2)) N Lo (0, T); Wo 5(12)) (5.2)
is called a (Leray-Hopf type) weak solution of the system (5.1) if the relation
—(w,wi)or + (Vu, Vw)or — (uu, Vw) o r = (uo, w(0)) o (5.3)
holds for each w € C§°([0,T); Cg5,(£2)), and if the (simple) energy inequality
1 2 ! 2 1 2
I3 + [ Ivull dr < 5 ol (5.4

holds for all t € [0,7). A weak solution w is called a strong solution if Serrin’s
condition (1.11) is satisfied.

Without loss of generality we may assume that w in this definition is weakly
continuous as in (1.10); see [10, Theorem V.3.1.1| concerning the existence of a weak
solution. It is an open problem whether each weak solution w satisfies the strong
energy inequality (1.4). However, if (2 is of uniform C2-type, see [3], there exist weak
solutions satisfying (1.4). If a weak solution satisfies additionally one of the conditions
(1.6), (1.7) or (1.8), then the energy equality (1.5) holds for all 0 < ¢y <t < T, see
[10, Theorem V.1.4.1]. The proof is the same as for bounded domains.

Our result for general domains rests on |2, Theorem 4.1| which shows that Propo-
sition 1.2 can be extended to the general domain 2 for the special exponents s = 8,
q = 4. Thus it holds for this domain the following result even with some absolute
constant £, > 0 (independent of the domain):
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Lemma 5.1: |2, Theorem 4.1] Let 2 C R? be a general domain and let ug € L2(2),
0 < T < 0o. There exists some absolute constant €, > 0 such that if

T A 18 1/8
(/0 e g [® dt> <e., (5.5)

then system (5.1) has a uniquely determined strong solution u € L} ([0, T); L*(£2))

loc
with ’U,‘t:() = UuQ-

In this case we essentially use the L?-approach to the Stokes operator A = Aj.
Further, using (1.14) and [10, Lemma IV.1.5.3], we obtain with ug € D(AY*) the
estimate

2

o 1/8 oo 8 1/s
([ e o ([ e sanall ) <ol
0 0 2
(5.6)

see 2, p.109], with some absolute constant C' > 0. Moreover, using the embedding
estimate (1.14) with o = I, ¢ = 3, v = 2, we obtain for ug € D(AY%) C L2(2) that

I

[uolls = || A5 AY g, < C| A u, (5.7)
with some absolute constant C' > 0. This shows that

. 1
D(AY*) C L3(2) with |- I pary = HA2/4 | (5:8)

>
The properties (5.5)-(5.8) enable us to carry out the proof of Theorem 4.1 with L3 (£2)
replaced by the space D(A"*) which means a certain restriction. Another restriction

is given by the fact that a weak solution u in (5.1)-(5.4) need not satisfy the strong
energy inequality (1.4).

Suppose ug € D(A*). Then (5.6) shows that I He_tAu()Hi dt < oo, and we
find some 0 < T' < oo such that (5.5) is satisfied. This yields a strong solution u
as above with u(0) = ug. If additionally u € L{° ([0,T); D(AY*)) is satisfied, we
conclude using (5.8) and (1.8) that u satisfies the energy equality (1.5).

Using these arguments, modifying slightly the proof of Theorem 4.1, we obtain

the following result.

Theorem 5.2: Consider a weak solution u of the system (5.1) in [0,T) x 2 with
u(0) = ug € L2(£2) satisfying (5.2)-(5.4), and suppose that

u € Li%,(0,7); D(A]").

a) Then w is uniquely determined in the sense that if there is another weak solution
v € L= ([0,T); D(AY")) with v(0) = ug, then u = v.

loc

b) w satisfies in [0,T) the local right-hand L*(L9)-Serrin condition (4.1) with s =8,
q=4.
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