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LIQUID DROPS IN A VISCOUS FLUID UNDER THE 

INFLUENCE OF GRAVITY AND SURFACE TENSION 

J. Bemelmans 

We consider the steady fall of a drop of fluid under 
its own weight in an infinite reservoir of another viscous 
fluid; the shape of the drop is determined by surface tension. 
For small data we prove existence and uniqueness of a classical 
solution to this problem. 

I. INTRODUCTION 

A drop of a viscous fluid in an infinite reservoir of 

another fluid will move under its own weight if the sur- 

rounding fluid has different density. This paper is con- 

cerned with steady motions, i.e. the motions of the two 

fluids are indeFendent of time with respect to an observer 

attached to the interface between them. We assume that the 

shape of this bounding surface is governed by surface ten- 

sion. 

The problem then consists in determining the velocity 

field and the pressure in the drop as well as in the outer 

fluid (which is at rest at infinity), the capillary surface 

and its speed of falling, when the volume of the drop and 

the gravitational field are given. 

The situation we investigate is realized in everyday I 

phenomena as raindrops. If the drops are small enough ex- 

periments indicate that the motion is practically indepen- 

dent of time. J.E. McDonald [7] has argued that the shape 
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2 BEMELMANS 

of falling drops can only be determined from dynamical con- 

siderations: the velocity field around the drop must be 

taken into account to get a shape that is in agreement with 

the experimental facts. This parallels the discussion about 

the shape of an axially symmetric body of least resistance 

moving with constant speed. I. Newton [8] who was the first 

to formulate this problem proceeded on the assumption that 

a solution could be found without knowing the flow around 

the body. This led him to a variational problem which he 

was able to solve. The solution however turned out not to 
z 

be in agreement with the experiments 

The aim of this paper is to prove existence and uni- 

queness of a solution to the problem of a falling drop pro- 

vided the data are small. This may be regarded as a first 

step of a mathematically rigorous treatment of }~cDonald's 

investigations. A typical example for the shape of a falling 

drop is given in figure 1. 

B~ x 

C C g Fig.l 

In order to compare our solution with the experiments one 

must be able to locate the extrema of the curvature at the 

points (or lines resp.) A~ B, C, cf. the discussion in 

McDonald's paper. The problem of a falling drop is closely 

related to the one of a falling rigid body; this was solved 

by H.F. Weinberger in [9]~ [I0]. 

z 
For a discussion of Newton's variational problem (in- 
cluding its criticism for purely mathematical reasons) 
we refer to P. Funk [4] pp. 616-621, where also referen- 
ces to hydrodynamical papers can be found which are re- 
levant for this problem 
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BEMELMANS 3 

2. FORMULATION OF THE PROBLEM 

Let ~ denote the region occupied by the drop of fluid 

whose density and viscosity are denoted by p] and nl; 

~ ~2 is the interface between the two fluids, and the 

fluid in ~ := ~3 (~ U S) is of density P2 and viscosity 

P2" We assume that there is a uniform gravitational field 

= (O,O,g), and that the drop g moves vertically down- 

ward with velocity ~ = (O,0,y). If the fluid in ~ is at 

rest at infinity then in a coordinate system that is attached 

to the drop the velocity at infinity is -~. Let ~ denote 

the difference between the velocity in ~ and the limiting 

velocity, and p the pressure in ~ ; then v and p 

satisfy the equations of motion 

-p2A~ + Vp + p2((v-y) �9 V)X = p2 ~ 
(2.1) in 

V �9 v = 0 

At infinity there holds 

( 2 . 2 )  _v(x) + o as  I~t + ~. 

If the corresponding variables in 2 are u and q, we get 

-~lAU + Vq + p1((u-y) -V)u : plg 
(2.3) i n  C 

V'u : 0 

On the interface Z the velocity and the tangential com- 

ponents of the stress vector must be continuous. So if 

!k(X), k = 1,2, span the tangent plane at x c Z, if n is the 

normal and 

( 2 . 4 )  T i j ( v , p )  = - P 6 i j  + 2~2Dij(_v) ; 
1 /~v  i ~vJh 

D i j (  [ ]  = 7~-ixj -+ ~ x i / '  

the boundary conditions on Z are 

(2 . s )  v-u =- o, _z k �9 {T(v)-T(u]} ._n ~ 0 
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4 BEHEU~NS 

As E 

( 2 . 5 )  

(2.6)  

moves with uniform speed ! we have in addition to 

V "  n = U "n = y-n on E 

The unknown speed of falling is determined by equating the 

viscous force to the net weight of the drop. As ~ = V(~.x) 

we can write for the weight p11~I~ = @zp1(~-x)n d~, and 

the equilibrium of these forces is expressed by 

(2.7) 

where 

S E T ( x , ~ )  . n  do = ~ x T ( u , ~ )  . n  do , 

= p + p1~ -x , ~ = q + p2~ " x 

The surface tension produces a jump in the normal component 

of the stress which is proportional to the mean curvature 

H of g 

( 2 . s )  2~H = ~ �9 { ~ ( s  - ~ ( ~ , ~ ) )  . ~ on  z 

Finally, the volume of the drop is prescribed, too: 

(2.9) meas fl = V. 

For any closed surface E of mean curvature H there 

holds 

2~Hn do = 0 , 

which can be derived from the integration by parts formula: 

- 2 ~ z H n ,  de = $Z ~* do 

f o r  a l l  , E C I ( U ) ,  w h o r e  U i s  a ( t h r e e - d i m e n s i o n a l )  
c 

n e i g h b o r h o o d  o f  Z and  6 d e n o t e s  t h e  t a n g e n t i a l  c o m p o -  

n e n t  o f  t h e  g r a d i e n t :  ~* = V, - (V, '12)  ~ .  From ( 2 . 5 )  and  
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BEMELMANS 5 

(2.7) we infer that this necessary condition is satisfied 

by the prescribed mean curvature in (2.8). 

The result of the paper is contained in the following 

THEOREM 

Let Ipl-P2 I be small. Then there exists a unique 

solution (~,p,~,q,Z,~) of (2.]) - (2.9) with the regularity 

properties: 

2+~ 
v c C 

]+~ 
peC 

3+~ 
E c C 

(~ U Z) , u e C2+e(~ U Z) 

( &  U E) , q e cl+C~(f~ U Z) 

The solution is axially symmetric. The problem is also 

solvable for some exterior force densities. 

REMARK 

Once a regular solution is established we deduce higher 

regularity v E C k+~ etc. from the fact that the forces 

are regular; this follows immediately from classical regu- 

larity theorems for the Navier-Stokes equations and the 

equation for surfaces of prescribed mean curvature. 

The existence proof consists of an approximation pro- 

cedure similar to the one we used in [2] to study the flow 

of two viscous fluids which are separated by a capillary 

surface but which are subject to (otherwise arbitrary) ex- 

terior forces such that the viscous force on Z vanishes. 

It means that in [2] ~ is not an unknown of the problem 

but vanishes a priori. The method we use here to determine 

is due to Weinberger [10]. 

For pl-P2 = O the solution to (2.1) - (2.9) is ob- 

viously X ~ O, u ~ O, p = ci, q = c2~ ~ = O; ~ is the 

ball of radius R = (3V/4~) I/3, and the constants c I and 

c 2 satisfy the relation (2.7): 2KR -I = Cl-C 2. We call this 
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6 BEHEL~NS 

solut ion s o ~ (V_o,Po,_Uo,qo,2o,Zo) and construct  Sm+ ! 

from s in the following way. 
m 

From Xm,Pm,Um,qm, the solution to the Navier-Stokes 

equations (2.1), (2.3) in 2m-I' ~m-] with boundary con- 

ditions (2.2), (2.5), (2.6), (2.7), we ~et the new inter- 

face E m exactly as in [2] w by the variational Froblem 

<z.lo) ~s ~ 7~ I~  2 *u 

are the eigenfunctions to the Laplace-Beltrami oeerator 

on the unit sphere S to the ei~envalue 2. Here Z m 
is described as a graEh over the sphere S, E = 

{x = (r um: S ~ R} and for the mean curvature 

h ~ we have to insert 
m 

�9 _ , ~ r  ] 

-~(Em(~,Um_1(t)),qm(~,Um_1(~)))} "n(t,Um_](~)). 

To construct Xm+1' Pm+1' ~m+1' qm+1' ~m+1 we regard the 

underlying domains ~m+1 and ~ m+1 as fixed, and solve 

the Navier-Stokes equations there with boundary conditions 

(2.2), (2.5), (2.6), (2.7). As in (2.5) the difference of 

the boundary values is ~rescribed instead of the values 

for ~m+1' ~m+]' 7(Zm+1)' 7(~m+]) themselves we will use 

the following approximation procedure. To simplify the 

notation we let h be the interface that separates ~3 

into D and E. Then we condsider in D and E respo 

the boundary value problems 

(E;1)  

i -~2AVt + ?p~ + 02 (Vs .V)V_t = P2ff in E 
v . v  z : o 

V%(X) -~ 0 a s  I x  + 

Vs s163163 on F; ~A(T(V~)-&~)~ da:G 
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BEI~IELXANS 7 

where G = (pl-P2)Vs and ~k are the tangents at A. 

{ - ~ 1 A s 1 6 3  + VQs + ~ I ( ( s 1 6 3 1 6 3 1 6 3  = ~1s V . s 1 6 3  = 0 

( D ; 1 )  Us �9 n = _As . n  , Us . ! k  = Bks on A 

in D 

(E;I) describes the steady fall of a body D under its own 

weight but with boundary conditions and an additional force 

~A ~ .n d~ which corresFond to the behavior of fluid drops 

rather than rigid bodies. 

If we set 

( 2 . 1 2 )  I ~kO = o , ~0 = o , As = 2s  , 5ks = V _ s  

t ~ks = !k "--r(s "-n , ~s = ~(_Us I,Qs 

we get a sequence of functions {Vs163163163163 which 

converges to a solution (V,P,U,Q,~) of (2.1), (2.3) in 

E and D with (2.2), (2.5), (2.6), (2.7) on A. Choosing 

A = Zm and applying this procedure for every m E ~, we 

get (Zm+1,Pm+1,Um+1,qm+1,Zm+1,~m+1), the new element Sm+ I 

of the approximating sequence to our original problem. We 

+ is a contraction by proving con- show that T: s m Sm+ I 

tinuous dependence of the solutions (~m,Pm), (~m,qm) and 

on the data. 
m 

The method of proof parallels [2] w except for the 

boundary-value problem (E,I), which is essentially contained 

in H.F. Neinberger's contribution [I0]. In this paper two 

different problems for the steady fall of bodies in a fluid 

are investigated: either the shape and a downward orientation 

of the body B are given and one seeks a position of the 

center of mass which will result in a steady falling motion 

with the given downward orientation (the body is assumed to 

be hollow such that masses can be moved inside of it); or 

the mass distribution and the shape of B are given and 

one seeks a steady motion with an orientation to be deter- 
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8 BEMELMANS 

mined. In both cases the body will in general undergo both 

translation and rotation about the vertical axis. To the 

latter problem several types of symmetric bodies are con- 

sidered, cf. []O] w so if B is axially symmetric with 

respect to the x3-axis and if the center of gravity lies 

on this axis then there is a solution without rotation; the 

velocity field around B is axially symmetric, and the 

body moves in (-x3)-direction. For physical reasons, cf. 

(2.5), one cannot expect that a drop will rotate, and there- 

fore we will perform the successive approximations in the 

class of axially symmetric functions such that Weinberger's 

theorem can be applied. To do so one needs a minor modifi- 

cation of this theorem which is due to the inhomogeneous 

boundary conditions in (E;I). 

3. EXISTENCE AND UNIQUENESS 

To solve the boundary value problems (E;I) and (D;I) 

we first have to transform the boundary conditions into 

homogeneous ones such that all data remain in the class of 

axially symmetric functions. 

LEMMA ] 

Let A be an axially symmetric surface as in w D 

the compact domain with ~D = A, E = ~3 ~. Let A (D) 

and A~CE) denote the class of solenoidal functions 

which are axially symmetric and which satisfy % �9 n = c �9 n 

on A, c = const. 
] 

(i) To every TV C AoCE ) N H2(E) there exists a vector field 

~0 E Ao(D) N HI(D ) with support in a neighborhood of A 

such that 

(3.1) _u o =_v on A 

(3.2) [lu o ]IH~CD ) ~ CEA)]IV HH~CE) 

(ii) To every U E A (D) n H~(D) there exists a vector 
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I(E) with support in a neighborhood XO ~ A o ( E )  n H 2 

s u c h  t h a t  

(5.3) 

( 3 . 4 )  

V 0 . n  = U �9 n , Ak " D ( V o )  " n  = ! k  " D(U)  - n  o n  A 

11 H ~ C(A)I[  U II H 

PROOF 

In a neighborhood of A we choose orthogonal coordi- 
1 2 3 3 

nates m , m , m such that A is given by m = O and 

the unit vector (O,O,I) coincides with the exterior normal 
2 

at A; ~ is chosen to be the azimuth, hence we require 
2 

the functions -oU and ~0 to be independent of ~ . 

2 
If the ~ -components of the data V and U vanish 

the problem reduces to extending the boundary data in the 

plane, and the proof of (i) is well known. For (ii) we refer 

to [2] lemma 3. This condition will be fulfilled in the 

proof of the theorem because the data solve the Navier- 

Stokes system under symmetry conditions for which theorem 5 

in Weinberger [10] applies. 

If we allow however an exterior force f which de~ends 
i 

only on the distance from the x3-axis and is not necessarily 

symmetric with respect to reflection in the (x2,x3)-plane, 

U and V will not have this symmetry either. Then we proceed 
3 

as follows. For m < 0 we define ~O to be 

I 2 V I 2 3 UO( l , 3) = ( l ,-~ c ( I 2, 3)) 

2( l, 2 3) = V2( 1 2 3 2 U O , , - a  c ( 1 , ~  , 3)) 

3 l 2 =_V 3 2 3 2 UO(~ ,~ ,aS) ( I,~ ,-a c ( I,~ , 3)) 

where we assume that V 3 = V �9 n vanishes on A. 

V i are the ~i-components of the vector V, and the 

definition holds in a neighborhood of A only. Now we 

determine the function c to make ~O solenoidal; if A 

were a part of the plane {x 3 = O} one could choose c ~ I. 
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10 BEMELMANS 

3 
Let A7 = ~ (~xj/~ai)2, 

]- j=1 

the s-coordinates reads as 

then the divergence onerato~" in 

Div v = A1A2A3S---t<( vl k+ ~ ( V  z k ~ { v 3 ~l 
- Ia~tA2A ~) 7(etA---(~ 7) + - - 7 - ~ t ~ ) I  

which gives for ~0 

/ z ~tkaal A 3 A-~3(V 1-v' 3c' 1) 

( ~ l___~vZ 1 (re vZ c z) + taZA1A J + ~  , ~  , ~  , 

~ i ~v 3 I + V 3 _c > ~3 AI~ 2) ~ ,~ ,sj 

The subscripts ,i denote differentiation with respect to 
i 
. This quasilinear equation has a unique solution c in 

-2s < 3 < 0 with initial data c ~ I on A because 

Div V = O for 3 > 0 and because ]Ai(~1,~2,~3),Ai(~1,~2,-~3)l 

is small. 

2 
If the coefficients do not depend on ~ the solution 

c will be independent, too. The vector field ~0 will be 
3 

cut off such that it vanishes for a = -2E. Consider a 

scalar function q E C~(~ 3) n A(~ 3) (where A denotes 

the set of axially symmetric functions) such that 

q(~) --- ] V~ E N = {( I, 2, 3): -s < 3 < E} 
g 

n(~) --- 0 v~ outside of N2s 

Clearly q~O E A and supp q~O c N2s = N2s A [. Let U* 

be the unique solution to 

(3.s) 
div U* = div(nU O) ~ ~0 ~ vn in N2s\N 

U~ = 0 on ~(N2 ~N ~) 

which satisfies the estimate 
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BEMELb~NS 1] 

(3.6) _ f  _ I v u ~ l  2 d~ ~ c _ f ! Z o . V ~ l  2 d~ 
N2\N ~ N 2 xN- 

C C 

cf. M. Giaquinta - G. Modica [5] theorem 0.3. Together with 

U ~ its derivative ~2 ~ U ~ is an element of (ker div) • 
- ~ 2  - ' 

2 
b y  d e f i n i t i o n  o f  ~ a l s o  ~2 v a n i s h e s  on  A, a n d  

therefore the unique solution of (3.5) to the data 

Hence U* E A and q~O ~ (which we call RO 

is the vector field which satisfies (3.1), (3.2). 

U is 

- 22 (v �9 vn) 
~ 2 -- 

again) 

To show (ii) we proceed in the same way and define for 

>0 

Io 2 3 _U ] 2 I 2 3 V ( 1,~ ,~ ) = ( 1,a ,_ 3d( ~ ,~ ,a )) 

V2(cz I,cz2,~ 3) = _U2(~ I,c~ 2,-~3d(al,a2 a3)) 

3 2 1 2 3 V (~1,~2,cz3) = U3(czI,~ ,-c~3d(cz ,c~ ,~ )) 

To solve (D;I) and (E;I) we introduce the following function 

spaces. 

DEFINITION ] 

Let <'(E) be the space of smooth, solenoidal vector 

fields <p in E which vanish outside BR(O), R large 

enough and have boundary values of the form <p- n = r "n, 

: (0,0,4) = const; <~(E) denotes the supspace of vector 

fields which are axially symmetric with respect to the 
3 x -axis. The closure of K'(E) and <~(E) with respect 

to the norm 

E 

is denoted by K(E) and <A(E) resp. 

H'(D) consists of all smooth, solenoidal vector fields 

with compact support in D, and HA(D) contains the 

axially symmetric functions. H(D) and HA(D) are their 
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12 BEMEL)JNNS 

closures under the norm (3.7). 

DEFINITION 2 

Let ~O E A (E) N H~(E) 

d a t a :  

be an extension of the boundary 

V O ._n = 0 , ! k  " T ( V o ) ' n  = m k  on & 

Then ~ = ~ - ~0 is called a weak solution to (E;.)with 

data mk' ~' N if W E KA(E ) and if for all ~ E K'(E) 

there holds 

4PzO(W'm) - Pz f w - v S .  (w-r)dx = - 4 P 2 ~ ( ~ o , ~ ]  
E 

+ P2 / r ~ [ O ! ' V ) S o  + ( ~ o ' V ) ~  ] dx 
E 

+ r "Go  + ~ (m+*) " Z k  ak de  
A 

w h e r e  ~ i s  t h e  c o n s t a n t  v e c t o r  s u c h  t h a t  m .  n = # o n ,  

and  ~O = -P2A meas  D + fi + ~ A . n  d o .  
A 

DEFINITION 3 

L e t  ~O E Ao(D) a H~(D) be  an  e x t e n s i o n  o f  t h e  b o u n d a r y  

d a t a :  

~0 "~ = A �9 n ' ~0 "~k = Bk on A o 

Then ~ = U - ~0 is called a weak solution to (D;o) with 

data ~ = const, Bk, ~ if Z E HA(D ) and if for all 

E H'(D) there holds 

( 3 . 9 )  

4 ~ I ~ ( z , ~ )  - Pl / - z ' v * "  (Z -A )dx  - Pl J" a "  ~ ax 
D 

= -4~ I~( -Uo,~)  + Pl I ~ ' [ ( - U o ' V ) - z -  (z~ " 
D 

The definition of a weak solution for the Navier-Stokes 

equations with a Dirichlet condition on the boundary is 
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BEMELNANS 13 

well known whereas definition 2 needs a short explanation. 

If V solves (E;-) then W satisfies 

(3 .10 )  
-~2A~5 + VP + p 2 ( ( w - r ) . v ) ~  = P2E + ~2AXO 

+ oz(ff.V)Vo + p z ( V o . V ) E  

and on the boundary 

W .n = O , Zk "r(w) ._n = O 

If we multiply (3.10) by 

we get 

e K'(E) and integrate over E 

We have 

4V2~(W' r  + P2 f ~ . V ~  �9 ( W - F ) d x  = f P 2 X ' ~  d x  
E E 

- 41a21)(-VO'-~) + P2 f -~" [(~! 'V)V-o + (-Vo'V)E] dx 
E 

+ $ q~. _T(W,P) -  n d e  + $ q~ �9 _T(Vo,O) . n  d a  
A A 

O 2 f _W "N d x  = P2 f ~ -  V(_~,-x) d x  
E E 

= P2 ~ ( t [ ' x ) ( O - _ n )  d~ 
A 

= P2 ~ ( g ' x ) ( 4 ~ - n )  d o  
A 

= -p2_~ . f  X dx 
D 

= -P2 ~ "~ meas D 

t0 -T_(W,P)  - n  dc~ + ~ %o. _T(Vo,O ) " n  d o  
A A 

= ~; m ' _ T ( V , P )  -_n  a ~  
A 

= ~ (~+~O)  �9 T ( V , P )  . n  d e  - ~ - O  " _T(V,P) �9 n d e  
A A 

117 



14 BEMELN~,NS 

(3.1]) 
2 

= _ $ ,  4 T ( V , P )  , n  d o  - 4 ~ ~O , ~Ck c~ k dc~ 
.z~ A k = l  

because ~O = ~ - s is a vector field which is tangential 

to A: Using (2.12) we get the definition of weak solution 

of (E ; . ) .  

For s E v(E) its boundary values are of class L2(A) , 

such that for regular a k the last integral in (3.11) is 

well defined. For the constant ~ there holds 

LEHMA 2 

L e t  W E K ' ( E )  

~ .  n = ~ - n .  T h e n  

and let ~ be the constant such that 

Is C(A) f IV l 2 dx 
E 

where C is independent of ~. 

The lemma shows that also for functions in i<(E) their 

normal component is the inner ~roduct of a constant vector 

and the normal itself. That boundary values of the form 

+ TAX are preserved under completion has been shown by 

Weinberger [10]. Here a similar, but simpler proposition 

follows along the same lines. 

PROOF 

Let h: E § N be the solution of 

kh = 0 i n  E , h ( x )  § O a s  Ix l  + 

h = ~ �9 n o n  A 

Clearly h has finite Dirichlet integral D(h) = / {Vhl2dx, 
E 

a n d  t h e  L 2 ( A ) - n o r m  o f  h c a n  b e  b o u n d e d  i n  t e r m s  o f  D ( h )  

I<) . n l  2 do  < C 1 D ( h )  
k 
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BEMELMANS 15 

With a constant depending only on A we get 

I 12 c 2 @ 

If we choose a smooth vector field N that coincides with 

the normal on & and vanishes outside a large sphere, the 

function N �9 ~ has the same boundary values on A than h. 

Therefore Dirichlet's principle leads to 

lq~l 2 < C]C 2 D(h)  < C1C 2 D ( N -  m) 

< C D(_~) , 

and the lemma is proved. 

LEMMA 3 

The boundary value problem (E;.) has a unique solution 

E KA(E) N C2+~(E), P E CI+~(~) provided the data in (2.12) 

are derived from a regular vector field U E HA(D), and if 

, are small. 

PROOF 

The existence of a solution V follows immediately 

from [10] Theorem 4 and the symmetry consideration on 

p. 439. As in [I0] (6.1) we show that there is a V E ~A(E) 

such that (3.8) is satisfied for all ~! E K~(E) because 

for smooth ~k the boundary integral is a bounded functional. 

If R denotes rotation through some angle @, S reflection 

in the (x2,x3)-plane, and TV(x) = R-IV(Rx), SV(x) = S-I~(Sx), 

then all expressions in (3.8) which are of the same type 

than the ones in [10] (6.1) do not change if ~ is replaced 

by T~ or S~. Choosing instead of [I0] (6.2) the vector 

field @(~ + S~) we find that (3.8) is satisfied for all 

e ~' (E). 

The prescribed boundary values are of mixed type, and 

H~-regularity up to the boundary is well known. As A does 

not rotate a fundamental solution to the Oseen linearization 
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16 BEMELMANS 

of (E;-) can be given explicitely; therefore K.I. Babenko's 

result [1] can be applied, and the solution is known to be- 

long to the class of PR-solutions: 

I 

(3 .~s )  I~(x)-21 < clx{ z 

2 This class was introduced by R. Finn, and as the H2-estimate 

g i v e s  a b o u n d  f o r  t h e  C - n o r m  o f  V on  t h e  b o u n d a r y  we 

c a n  u s e  F i n n ' s  r e p r e s e n t a t i o n  f o r m u l a s  f o r  t h e  D i r i c h l e t  

p r o b l e m ,  c f .  E3] .  H i g h e r  r e g u l a r i t y  as  w e l l  as  u n i q u e n e s s  

o f  t h e  s o l u t i o n  a r e  t h e n  w e l l  k n o w n .  

REMARK 

(D;-) is a Dirichlet problem in a bounded domain~ and 

therefore the existence and uniqueness of a solution 

E C2+~(D) N A Q ~ CI+~(D) n A follows as for (E;.). 

LEMMA 4 

For given A, ~, p]~ P2 ~ ~]~ P2 there exists a sequence 

of functions {Vz,Pz~U~Qz} which are solutions to (E;!), 

(D;I), (2.]2). If the data are small this sequence converges 

to an axially symmetric solution of (2.1) (2.7) in given 

domains D and E. 

The proof follows as in [2] w because the difference 

of two solutions in E or D resp. can be estimated by 

the difference of their boundary values. 

PROOF OF THE THEOREM 

First we note that the approximation procedure that 

was defined in w can be carried out in the class of axially 

symmetric functions. As far as the velocity fields and the 

pressures are concerned this is contained in lemma 3. That 

Zm is axially symmetric for h~m c A follows from the 

minimum property of Z m = {(r162 Um: S § ~}. Choose 

coordinates r = (r162 on S such that r is the 
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azimuth and associate to every (smooth) function u: S § N 

its symmetrization u O by 

2~ 2w 3 2 f u3(g l , r  2 = f Uo(gl)dr 
0 0 

By construction u O encludes the same volume and 

h*(~l )u3(r  gv~ d~ = ~ h*(~l)Uo3(~1) ~/~ d~ 
S S" 

for axially symmetric functions h*. As A(u) is the peri- 

meter of ~ = {(~,p): ~ E S, O ~ p < u(~)}, we get A(u) 

A(uo) hence u O is in BVR(S) again. So we finally get 

for the functional 

+ 2 h.u 3 : ACu) ACu) : r /TA  2 
S 

that its value decreases if u is replaced by u o. As u 

is the uniquely determined minimum it must coincide with Uo, 

i.e. u is axially symmetric. 

Hence there exists a sequence (Zm,Pm,Um,qm,Zm,Ym}, 

where (~m,Pm,Um,qm,Ym) is the unique solution to (2.1) - 

(2.7) in ~ m-1 and 2m_i, and Zm is the interface given 

by (2.8), (2.9) with ~ = ~m' ~ = ~m' p = Pm' q = qm" The 

convergence of this series follows as in [2]. It is perhaps 

worth to mention that the continuous dependence of ~m' Pm 

(and similarly of ~m,qm ) on the underlying domain m-1 

can be shown without referrinff to propositions on general 

elliptic systems. Once it is shown that this can be done 
2 

in the H2-norm we can use the representations of Finn [3] 

Vm(X):~ 
Z m-1 

=g(x,y) -Vm(Y)day + f Vg(x,y).Vm(Y)-Vm(Y) dy 
~m-1 

and apply to it the results of Lichtenstein [6], who studied 

in several papers the behavior of such integrals when Zm_ I 
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and m-I v a r y .  Depending  on the  s i n g u l a r i t y  o f  Vg one 

gets a bound in the C -norm which can be used to estimate 

Vm(X) = ~ g ( x , y )  _Vm(Y)dOy + f g ( x , y )  o [ ( v ( y ) o g ) v ( y ) ] d y  

m-I m-1 

in the C2+~-norm finally. 

REMARK 

Let f be an exterior force density which is axially 

symmetric and depends only on the distance r from the 
3 

x -axis. We assume f to be smooth and to influence the 

flow inside the drop only (e.g. a drop of a charged fluid 

in a magnetic field). We then have to solve (D;L) with 

plg + ~ on the right hand side. The problem is no longer 

invariant with respect to reflection in the (x2,x3)-plane, 

hence the solution satisfies only U(Rx) = R~(x). This 

follows again from theorem 4 in [10]. As also such functions 

can be continued across A, cf. lemma ], the rest of the 

proof follows as before. 
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