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1 Introduction

We study the incompressible Navier-Stokes equations in Rn × R+
ut + (u · ∇)u−∆u +∇p = 0
∇ · u = 0
u(0) = u0

(1)

where u is the velocity and p is the pressure. It is well known that the Navier-
Stokes equations are locally well-posed for smooth enough initial data as long
as one imposes appropriate boundary conditions on the pressure at ∞. For
instance it is easy to see (see [9] for much more general results) that if s > n

2

then for any Hs initial data there exists a unique C([0, t]; Hs(Rn)) local solu-
tion with a pressure p ∈ C([0, t]; Hs(Rn)). In the sequel we consider solutions
for less regular initial data. This has to be understood in the sense that the
map from the initial data to the solution extends continuously to rougher
function spaces.

The question we are interested in is the global well-posedness for small
data and local well-posedness for large data, with respect to a certain space of
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initial data u0. Kato [8] proved that this holds for initial data in Ln(Rn). Later
Giga and Miyakawa [5] and Taylor [15] proved the same result for initial data
in certain Morrey spaces. This was motivated to allow vortex rings and vortex
filaments for the initial data. A similar result has been obtained by Cannone
[4] and Planchon [12] for data in the Besov spaces B−1+n/p

p,∞ (Rn) (1 < p < ∞).
See also the recent articles by Iftimie [7] and by Lions and Masmoudi [11].

Here we search for the largest function space such that local or global
solutions exist. In order to make sense of the equation we want to have

u ∈ L2
loc(Rn × [0,∞)).

The Navier-Stokes equations are invariant with respect to scaling (here one
considers u as velocity). Hence we want a scale and translation invariant
version of L2-boundedness:

sup
x,R>0

|B(x, R)|−1
∫

B(x,R)×[0,R2]
|u|2 dy dt < ∞. (2)

Here |A| denotes the Lebesgue measure of A. Then it is natural to choose as
space of initial data the space of tempered distributions u0 in Rn for which
the caloric extension (i.e. convolution with the heat kernel) satisfies (2). This
space is well known: it consists of functions which are the divergence of a
vector field with components in BMO. Let us be more precise.

Let Φ(x) = π−n/2e−|x|
2

and Φt(x) = t−nΦ(x/t).

Definition 1.1. We say that the tempered distribution v is in BMO if

‖v‖BMO := sup
x,R>0

(
2|B(x, R)|−1

∫
B(x,R)

∫ R

0
t |∇(Φt ∗ v)|2 dt dy

)1/2

< ∞.

This is a Carleson measure characterization of BMO, which is equivalent
to the standard definition, see Stein [13]. Examples of elements of BMO are
functions in L∞(Rn) and ln |p| for all polynomials p.

Let w be the solution to the heat equation

wt −∆w = 0

with initial data v. It is uniquely defined under mild restrictions on v and w
by w(t) = v ∗ Φ√4t. Therefore

‖v‖BMO = sup
x,R

(
|B(x, R)|−1

∫
B(x,R)

∫ R2

0
|∇w|2 dt dy

)1/2

.
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We define the BMO−1 norm by

‖v‖BMO−1 := sup
x,R

(
|B(x, R)|−1

∫
B(x,R)

∫ R2

0
|w|2 dt dy

)1/2

.

Then BMO−1 is the space of tempered distributions for which the above norm
is finite. The expression ‖.‖BMO is not a norm: it gives zero when applied to
constants. This problem vanishes with BMO−1.

Clearly the divergence of a vector field with components in BMO is in
BMO−1. The following theorem asserts that the converse is also true.

Theorem 1. Let u be a tempered distribution. Then u ∈ BMO−1 if and only
if there exist f i ∈ BMO with u =

∑
∂if

i.

This result is proved in the last section.
Let now Q(x, R) = B(x, R)× (0, R2). The definition of BMO−1 motivates

the introduction of the spaces X and Y of functions in Rn × R+ with norms

‖u‖X = sup
t

t1/2‖u(t)‖L∞(Rn) +

(
sup

x,R>0
|B(x, R)|−1

∫
Q(x,R)

|u|2 dy dt

)1/2

(3)

and
‖f‖Y = sup

t
t‖f(t)‖L∞(Rn) + sup

x,R>0
|B(x, R)|−1

∫
Q(x,R)

|f |dy dt. (4)

Then our main result is:

Theorem 2. The Navier-Stokes equations (1) have a unique small global so-
lution in X for all initial data u0 with ∇ · u0 = 0 which are small in BMO−1.

We supress the boundary condition for the pressure at infinity in the for-
mulation of the theorem. This boundary condition is implicitly chosen in our
construction of the solution.

In effect the proof gives more than that. We define the local BMO space
BMOR defined as BMO but where we only consider balls of size R and smaller.
We define also the similar versions of X, Y , BMO−1 which we denote by XR,
YR, respectively BMO−1

R . Let v ∈ BMO1. Then we say that1 v ∈ V MO if
and only if

‖v‖BMOR
→ 0 as R → 0.

Similarly we define V MO
−1

. Then

1Note that V MO is larger than the usual V MO space as there is no condition on cylinders
whose radius is away from 0.
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Theorem 3. There exists ε > 0 so that for all R > 0 the Navier-Stokes
equations (1) have a unique small solution in XR (up to t = R2) whenever

∇ · u0 = 0 and ‖u0‖BMO−1
R

≤ ε. In particular for all u0 ∈ V MO
−1

with

∇ · u0 = 0 there exists a unique small local solution.

Remark 1.2. To compare our result with earlier results we shall verify that
our function spaces BMO−1 and BMO−1

R contain the other function spaces
where local well-posedness has been proved before. This is done at the end
of the last section. It is not hard to find sufficient conditions for tempered
distributions to be in these function spaces. For instance Ln

unif ⊂ BMO−1
1 and

‖u‖BMO−1
R
→ 0 as R → 0 if u ∈ Ln(Rn). Here Ln

unif is the subspace of L1
loc(Rn)

of functions for which the norm on balls of radius 1 is uniformly bounded.

It seems hopeful that this regularity result allows to improve local criteria
for regularity, which have been used by Caffarelli, Kohn and Nirenberg [3],
Struwe [14] and Lin [10] to prove partial regularity.

There has been a strong interest in obtaining well-posedness under weak
conditions and there is some evidence that BMO is the right space in several
different problems. See Wu [16] for the relation between the regularity of the
boundary and the mapping of the Riemann mapping theorem.

Is the smallness assumption in Theorem 2 and Theorem 3 necessary? There
is an interesting open problem which exemplifies the difficulty. In two space
dimensions there exists always a weak solution to the initial data

u0(x) = κ|x|−2(x2,−x1).

Heuristically one can see that the solution should solve the heat equation.
Since the initial data is rotational (i.e. u = (h(r)x2,−h(r)x1)) and divergence
free, the corresponding solution to the heat equation

u(x, t) = κ
∫

Φ√4t(x− y)|y|−2

(
y2

−y1

)
dy

remains rotational and divergence free. But then (u ·∇)u is radial therefore it
is a gradient. Hence u solves the Navier-Stokes equations as well as the heat
equation.

This solution is unique according to Theorem 2 provided κ is small. We
do not know whether it is unique if κ is large. See Ben-Artzi [1], Brezis [2]
and Giga and Miyakawa [6] for approaches to Navier-Stokes equations in 2
dimensions based on vorticity.

We would like to thank M. Struwe for the observation in Remark 3.3.
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2 Preliminaries

We denote the heat semigroup by S(t) without specifying the domain. The
operator V is the parametrix for the inhomogeneous heat equation with 0
Cauchy data, i.e. u = V f iff

ut −∆u = f, u(0) = 0.

Then

V f(t) =
∫ t

0
S(s)f(t− s)ds

which, written in terms of the heat kernel, yields

V f(x, t) =
∫

Rn×(0,t)

1

(4πs)n/2
e−

|y|2
4s f(x− y, t− s)ds.

Then the solutions to the heat equation

ut −∆u = f, u(., 0) = u0

are given by
u(x, t) = (S(t)u0)(x) + V f(x, t).

The Fourier transform of u is denoted either by û or Fu, the inverse by
F−1u. If we take a symbol m ∈ L∞ then the corresponding multiplier

m(Dx)u = F−1(mû) (5)

is bounded in L2. Here we are interested in the projection operator Π to
divergence free vector fields, which is defined by its matrix valued Fourier
multiplier

m(η) = δij −
ηiηj

|η|2
. (6)

Then its symbol m satisfies the Mihlin-Hörmander condition

sup
η 6=0

|η||α||∂α
η m(η)| ≤ C (7)

for all multiindices α; hence, m(Dx) is a singular integral operator. This
implies with Φ as in Definition 1.1 that

|(ΠΦ)(x)| ≤ c(1 + |x|)−n

hence scaling shows that the kernel function kt(x) = ΠΦ√4t of ΠS(t) satisfies

|kt(x)| ≤ c(
√

t + |x|)−n.
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Similarly we get bounds for the kernel of Π∇S(t),

|Π∇Φ√4t(x)| ≤ c(
√

t + |x|)−n−1 (8)

since
∫
∇Φ dx = 0 and for the kernel of Π(I − S(t)),

|Π(δ0 − Φ√4t)| ≤ ct|x|−n−2 (9)

because
∫
(δ0 − Φt) dx = 0 and

∫
xi(δ0 − Φt) dx = 0.

For a ∈ C∞ supported in B(0, 1) we define S(−t)a(t
1
2 Dx) in the obvious

way. Its kernel function kt is a Schwartz function and scaling implies

|kt(x)| ≤ cN t−n/2

(
1 +

|x|√
t

)−N

(10)

for all N ≥ 1.
For simplicity we will not be precise about the domain of operators. In the

end it is not hard to verify that this does not cause difficulties.

3 Proof of Theorem 2

We set up the problem so that we can use a fixed point argument. We can
rewrite the Navier-Stokes equation as

u(x, t) = S(t)u0(x)− (V∇ΠN(u))(x, t), N(u) = u⊗ u. (11)

For small initial data we want to solve this in X using a fixed point argument.
Since N is quadratic, the small Lipschitz constant follows for small initial data
if the nonlinearity has the correct mapping properties. Hence the result is a
consequence of the following two lemmas:

Lemma 3.1. N maps X into Y .

The proof is straightforward.

Lemma 3.2. V∇Π maps Y into X.

Proof. Step 1. Scaling and localization: We need to prove the pointwise
estimate

|V∇Πf(x, t)| ≤ ct−1/2‖f‖Y

and the L2 estimate

‖V∇Πf‖2
L2(Q(x,R)) ≤ c|B(x, R)| ‖f‖2

Y .
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Both estimates are scale invariant and translation invariant, therefore it suffices
to show that

|V∇Πf(0, 1)| ≤ c‖f‖Y1 (12)

and
‖V∇Πf‖L2(Q(0,1)) ≤ c‖f‖Y1 . (13)

Let χ be the characteristic function of B(0, 2)× [0, 1]. Then f = χf +(1−χ)f .
Clearly both components are still in Y . From (8) we see that the kernel K of
V∇Π satisfies

|K(x, t)| ≤ c(
√

t + |x|)−n−1. (14)

Then
‖V∇Π(1− χ)f‖L∞(Q(0,1)) ≤ c sup

x∈Rn

∫
Q(x,1)

|f | dx dt

which is much stronger than what we actually need. Hence, it suffices to look
now at χf ; namely, without any restriction in generality, we can and do assume
in the sequel that f is supported in B(0, 2)× [0, 1].
Step 2. The pointwise estimate: If f is supported in B(0, 2)× [0, 1] then
the pointwise estimate (12) follows easily from the kernel bound (14). Indeed,
for the part of f in B(0, 2)×[0, 1

2
] we can use the L1 bound on f combined with

the boundedness of the kernel away from 0. For the part of f in B(0, 2)× [1
2
, 1]

we can use the L∞ bound on f combined with the integrability of the kernel
at 0.
Step 3. Cutting off high frequencies: We shall in effect prove an estimate
which is stronger than (13), namely∫ 1

0

∫
Rn
|∇V f |2dx dt ≤ ‖f‖Y ‖f‖L1(Rn×R). (15)

Here we have dispensed with Π, which is a bounded operator in L2 and
which commutes with ∇V . Also we have removed the restriction on the sup-
port of f .

Let a ∈ C∞
0 satisfy a(ξ) = 1 if |ξ| ≤ 1 and a(ξ) = 0 if |ξ| ≥ 2. We consider

the multipliers At = a(t
1
2 Dx) which cut off the frequencies larger than t−

1
2 .

Then, for t ≤ 1,
‖(1− At)g‖H−1(Rn) ≤ ct1/2‖g‖L2(Rn),

and the L2 estimate

‖V∇(1− At)f‖2
L2(Rn×(0,1)) ≤ c

∫ 1

0
‖(1− Atf)‖2

H−1(Rn) ≤ c‖f‖Y ‖f‖L1(Rn×(0,1))

follows immediately.

7



Step 4. The key estimate: It remains to look at Atf . Let kt(x) be the kernel
of S(−t)At, which is well defined since the range of At consists of functions
with compactly supported Fourier transform. Then, for all N ≥ 1, we have
from (10),

|kt(x)| ≤ cN t−
n
2

(
1 +

|x|√
t

)−N

.

In particular ‖kt‖L1(Rn) < ∞ uniformly in t. Hence, (with the mild abuse of
notation (S(−t)Atf)(x, t) = (S(−t)Atf(., t))(x)

‖S(−t)Atf‖Y ≤ c‖f‖Y , ‖S(−t)Atf‖L1(Rn) ≤ c‖f(t)‖L1(Rn).

Let w(t) = S(−t)Atf(t). Then v(t) = ∇V Atf can be described by

v(t) = ∇S(t)
∫ t

0
w(s)ds. (16)

To conclude we need to prove the estimate

‖v‖2
L2(Rn×(0,1)) ≤ c‖w‖Y ‖w‖L1(Rn×(0,1)). (17)

We compute

‖v‖2
L2(Rn×(0,1)) =

∫ 1

0

∥∥∥∥∇S(t)
∫ t

0
w(s)ds

∥∥∥∥2

L2(Rn)
dt

= −2
∫ 1

0

∫ t

0

∫ s

0
< ∆S(2t)w(s), w(θ) >L2(Rn) dθ ds dt

= −2
∫ 1

0

∫ 1

s

∫ s

0
< ∆S(2t)w(s), w(θ) >L2(Rn) dθ dt ds

=
∫ 1

0

∫ s

0
< (S(2s)− S(2))w(s), w(θ) >L2(Rn) dθ ds

=
∫ 1

0
< w(s), (S(2s)− S(2))

∫ s

0
w(θ)dθ >L2(Rn) ds

≤
∫ 1

0
‖w(s)‖L1(Rn)

∥∥∥∥(S(2s)− S(2))
∫ s

0
w(θ)dθ

∥∥∥∥
L∞(Rn)

ds

Here we use (16) for the first, integration by parts for the second, Fubini
for the third, ∂tS(t) = ∆S(t) and the fundamental theorem of calculus for the
fourth and selfadjointness of S(t) for the fifth equality.

If we could now prove the t independent bound∥∥∥∥S(2t)
∫ t

0
w(θ)dθ

∥∥∥∥
L∞(Rn)

≤ c‖w‖Y , (18)
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then we get
‖v‖2

L2(Rn×(0,1)) ≤ c‖w‖Y ‖w‖L1(Rn×(0,1))

which implies (17).
Step 5. Estimate (18): To obtain (18) we start with

|B(x, R)|−1

∥∥∥∥∥
∫ R2

0
w(θ)dθ

∥∥∥∥∥
L1(B(x,R))

≤|B(x, R)|−1
∫

Q(x,R)
|w(x, t)|dxdt≤‖w‖Y .

(19)
The operator S(2t) has a kernel k(x) which satisfies

k(x) = cnt
−n/2e−

|x|2
8t

therefore it acts as an averaging operator on the scale of
√

t. Hence if we use
(19) on a lattice of cubes of size

√
t then we get∥∥∥∥S(2t)

∫ t

0
w(θ)dθ

∥∥∥∥
L∞(Rn)

≤ c‖w‖Y

∑
q∈Zn

e−|q|
2 ≤ c‖w‖Y .

This implies (18) and completes the proof.

Remark 3.3. There is a different argument leading to estimate (15), which
has been pointed out to us by M. Struwe. We claim that

‖V f‖L∞ ≤ c‖f‖Y (20)

and
‖∇V f‖2

L2 ≤ ‖f‖L1‖V f‖L∞ . (21)

Both inequalities together imply (15).
Estimate (20) is reduced to the estimate for t = 1 and x = 0 by scaling.

There it is obvious. Estimate (21) follows from the standard energy inequality.

4 Equivalent norms and function spaces

Here we prove Theorem 1 and verify the imbeddings mentioned in the intro-
duction. Its main part consists of Lemma 4.1 below, which is more or less an
elementary alternative proof of the boundedness of singular integral operators
in BMO, using the Carleson measure definition of BMO.

Here we can not make use of the boundedness of singular integral oper-
ators, since we need boundedness of singular integrals for the equivalence in
Theorem 1.
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Proof of Theorem 1. Suppose that f i ∈ BMO, 1 ≤ i ≤ n. Let vi be the
caloric extension. Then

|B(x, R)|−1
∫

Q(x,R)

n∑
i=1

|∂iv
i|2 dx dt ≤

∑
‖f i‖2

BMO

by the definition of BMO. This implies ∇·f ∈ BMO−1. The converse follows
from the following

Lemma 4.1. Let m ∈ C∞(Rn\{0}) be homogeneous of degree zero. Then

‖m(Dx)f‖BMO−1 ≤ c‖f‖BMO−1 .

Indeed, suppose that u ∈ BMO−1. Let Rij = ∂i∂j∆
−1 and

uij = Riju.

Then uij ∈ BMO−1 and there exist functions f i with ∂jf
i = uij since, by

construction ∂kuij = ∂iukj. Now f i ∈ BMO by construction and u =
∑

∂if
i.

This completes the proof of Theorem 1.

Proof of Lemma 4.1: Let u ∈ BMO−1 and let v be the caloric extension of u.
We need to prove, with T = m(Dx), that

|B(x, R)|−1‖Tv‖2
L2(Q(x,R)) ≤ c‖u‖2

BMO−1

which by rescaling and translation reduces to

‖Tv‖L2(Q(0,1)) ≤ c‖u‖BMO−1 .

We first claim that
|v(x, t)| ≤ ct−1/2‖u‖BMO−1 . (22)

By scaling and translating it suffices to prove this for x = 0 and t = 1. There
the claim reduces to mere boundedness, which is a consequence of the fact
that the heat kernel, evaluated at t = 1, lies in the Schwartz space.

For 0 < t ≤ 1 write

Tv(t) = TS(t)u

= T (S(t)− S(1))u + TS(1)u

= T (S(t)− S(1))u +
∫ ∞

1
T∆S(s)u ds

= T (1− S(1− t))v(t) +
∫ ∞

1
T∆S(s/2)v(s/2) ds
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The operators T (1− S(1− t)) are bounded in L2, and their kernels kt satisfy
by (9) the uniform bound

|kt(x)| ≤ c|x|−n−2.

This implies that the first term above can be estimated as

‖T (1− S(1− t))v(t)‖L2(B(0,1)) ≤ c sup
x∈Rn

‖v(t)‖L2(B(x,1))

uniformly in 0 < t < 1. On the other hand, for the second term above we can
use (22) to get the stronger L∞ bound∥∥∥∥∫ ∞

1
T∆S(s/2)v(s/2) ds

∥∥∥∥
L∞(Rn)

≤ c
∫ ∞

1
s−1‖v(s/2)‖L∞(Rn) ds

≤ c‖u‖BMO−1

which holds since the kernel k(t) of T∆S(t) satisfies

‖k(t)‖L1(Rn) ≤ ct−1.

This completes the proof.

Remark 4.2. This argument has to be modified for local spaces. Then we use

Tu = (R−2 −∆)−1u

and
u = −∇(∇Tu) + R−2Tu.

A modification of the proof above shows that

BMO−1
R = ∇ · (BMOR)n.

Other function spaces. Let p > n. The space B−1+n/p
p,∞ (Rn) can be defined

in terms of the caloric extension. The tempered distribution u lies in B−1+n/p
p,∞

iff its caloric extension v satisfies

‖v(t)‖Lp(Rn) ≤ ct−
1−n/p

2 for 0 < t ≤ 1.

The norm can be defined to be the best constant. Let R ≤ 1. Then(
|B(x, R)|−1

∫
Q(x,R)

|v|2 dx dt

)1/2

≤ |B(x, R)|−n/p

(∫ R2

0
‖v(t)‖2

Lp(Rn) dt

)1/2

≤
√

p/n|B(x, 1)|−n/p sup
0<t≤R2

t
1−n/p

2 ‖v(t)‖Lp(Rn).
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Moreover, by standard kernel estimates and Young’s inequality

(4πt)
1−n/p

2 ‖v(t)‖Lp ≤ ‖u‖Ln(Rn)

hence
Ln(Rn) ⊂ B−1+n/p

p,∞ (Rn) ⊂ BMO−1. (23)

The Morrey spaces Mp
q (1 ≤ q ≤ n) are defined as subspace of L1

loc(Rn) of
functions u for which

sup
x,R

Rn/p

(
|B(x, R)|−1

∫
B(x,R)

|u|q dx

)1/q

< ∞ for R ≤ 1.

Clearly Mp
p = Lp

unif (Rn) and u ∈ Mn
1 iff u ∈ L1

unif and |u| ∈ B−1
∞,∞. It follows

from the analysis of Taylor [15] and the previous results that Mn
q ⊂ BMO−1

1

for 1 < q ≤ n. Hence his spaces are included in ours. It is clear that his
smallness assumption does not imply ours. On the other hand we do not know
whether our smallness condition implies the one of Taylor [15].
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