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On the uniqueness of nondecaying solutions

for the Navier-Stokes equations

Jun Kato*

Department of Mathematics, Hokkaido University

Abstract

In this article, we obtain the uniqueness of solutions (u,p) of the Navier-Stokes

equations in the class
ue L2((0,T) x R?), p € Li,([0,T); BMO(R™))

for initial data in L*°(R™). Although there are a few results which treats the
uniqueness without decay assumption as |z| — oo ([5], [15], [14]), our result gives

the another characterization of condition on p.

1 Introduction and Main Result

We are concerned with the uniqueness of solutions for Navier-Stokes equations:

u—Au+(u,V)u+Vp=0 in (0,00) x R, (1.1)
divu=0 in (0,00) x R", (1.2)
with initial data wu|.—o = uo, where u = u(z,t) = (ui(z,t), - ,u.(z,t)) and p = p(z, 1)

stand for the unknown velocity vector field of the fluid and its pressure respectively, while

up = up(x) = (uy(z),- -+ ,ud(x)) is the given initial velocity vector field.

*JSPS Research Fellow



It is by now well known that for initial data ug € L*°(R"™) the equations (1.1), (1.2)

admits a unique time-local (regular) solution u with

p= Z R;R;u;u;, (1.3)

i, j=1
where R; = (—A)~%/29; is the Riesz transform [1], [13], [2], [8] (Recently, it is shown in [9]
that this solution can be extended globally in time when the space dimensions are two).

It is also well known that for L"-initial data (n < r < co) the equations (1.1), (1.2)
admits a unique time-local solution u with some p [11], [12], [6], - - -. Because of decay at
the space infinity of u the relation (1.3) follow (up to constant) a posteriori for L™-data
(n <r < o0).

For L*-initial data the constructed solution u is bounded and may not decay at the
space infinity. So even if u solves (1.1), (1.2) with some p the relation (1.3) may not
follow. In fact, if we consider u(t,z) = g(t) and p(t,z) = —¢'(t) - z, then (u,p) always
solves (1.1), (1.2) no matter what function g is. Here - denotes the inner product in R™.
This says the solution u with a constant initial data is not unique without assuming (1.3).
This example suggests that contrary to L"-case (n < r < oo) we need to impose some
condition on p to derive uniqueness other than on u.

In [7] we announced that the uniqueness holds for L*-data under the assumption that

u is bounded and p is of the form
P =To + Z RiRjTrij (14)
i,j=1
for some bounded functions 7, m;;. This result assures the uniqueness of solution (u, p)
for L*°-data with (1.3) under a priori assumption on p (1.4). This paper is based on the

work [7] and gives an improvement of the condition (1.4).

In this paper we consider solutions in the following sense.

Definition 1.1. We call (u, p) the solution of the Navier-Stokes equations (1.1), (1.2) on
(0,T) x R™ with initial data ug in the distribution sense if (u,p) satisfy divu = 0 in S’

for a.e.t and

[ 1(5),0.806) + (u(s).58(5) + (w)6), T(6)

+ (p(s), div &(s)) }ds = —(uo, ®(0)),

(1.5)
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for @ € C'([0,T] x R") satisfying ®(s, ) € S(R") for 0 < s < T, and ®(T,-) = 0, where
(u &® u, V@) = Zn (uiuj, 81<I)J> .

ij=1

Before stating our main result we prepare some notations. We denote by BMQO =
BMO(R") the space of functions of bounded mean oscillations. It is well known [16] that
BMO strictly includes L and the Riesz transformation R; is a bounded operator from
L*® to BMO and from BMO to itself. We denote by H! = H!(R") the Hardy space on
R™. It is also known [16] that the Hardy space H' is the dual space of BMO.

Now we are in a position to state our main result.

Theorem 1. Let uy € L* with divuy = 0. Suppose that (u,p) is the solution of (1.1),

(1.2) with initial data ug in the distribution sense satisfying

u € L=2((0,T) x R™), pe L ([0,T); BMO). (1.6)

loc

Then the solution (u, Vp) is unique.
Moreover, we have Vp =Y 7._ VR;Ru! in &', for a. e.t.

2,7=1

Remark 1.1. The condition (1.6) on p involves (1.4), since the Riesz transformations

are bounded.

Let us mention a few known results closely related to our uniqueness results. It was
shown in [5] that if u and Vu are bounded in (0,7) x R3, then the uniqueness of classical

solutions holds provided that for some C' > 0 and some £ > 0 the inequality
Ip(t,z)| < C(1+ |z[)'~° (1.7)

holds. Later it was shown in [15], [14] that if n = 2, 3 and Vu is bounded in (0,7) x R",
then the uniqueness holds provided that (1.7) holds with € = n/2. Our assumption (1.6)
do not imply (1.7), so it is not comparable with those results.

To prove Theorem 1 we reduce the problem to the uniqueness of solutions to the inte-
gral equation corresponding to (1.1), (1.2). In fact, if (u, p) is the solution of (1.1), (1.2)
in the distribution sense with (1.3), then we can observe that u is also the solution of the
corresponding integral equation. Thus, our main task is to show that p has a representa-
tion such as (1.3). However, there are some difficulties to treat the Riesz transformations
on L*, so we introduce the operators which approximates the Riesz transformations in

suitable sense.



This paper is organized as follows. In section 2 we introduce operators which approx-
imate the Riesz transformations. Its convergence properties are described in Theorem 2.
In section 3 we prove Theorem 1. In section 4 we give a proof of Proposition 2.1, which

is crucial to the proof of Theorem 2.

Acknowledgments. The author would like to thank Professor Yoshikazu Giga and Professor
Shin’ya Matsui for their support and useful advice. The author is also grateful to Okihiro
Sawada who pointed out him the possibility to remove the support assumption on ¢ in

Proposition 2.1 (2).

2 Preliminaries

The essential part of the proof of Theorem 1 is to determine the condition on p which
gives the unique representation (1.3) for merely bounded u. The difficulty comes from
the fact that the symbol calculus for Fourier multipliers does not work well in L*°. So we
introduce the operator R;; which approximates the operator R;R; in suitable sense.

Let k denote the fundamental solution of —A, i.e. —Ak = 4. Its explicit form is

k) = Cnlz[*™™, for n >3,
Csylog |z|, for n =2,

where 1/C, = (n — 2)|S™ ! for n > 3 and 1/C; = —27. Let v € C*°(R™) be a radial
function with 0 < ¢ < 1, ¢(z) = 0 for |z] < 1, and ¥(z) = 1 for |z| > 2. We set
A=1—1. For 0 < & < 1/2 we define ¢.(z) = ¥(z/¢e), A\(z) = A(ex), and k. = P Ak so
that supp k. C {z ; € < |z| < 2/e}.
Definition 2.1. For f € &', 0 < e < 1/4, we define R, f by RS, f = 0,0;kc  f.
Since it is known that

R.R;f = (p.v.0:0;k) * f — i f/n (2.1)
for f € S(R™), it is natural to expect that Rf; approximates R;R;. We describe its

convergence properties in the following theorem.

Remark 2.1. The equality (2.1) is based on the fact that inverse Fourier transform for

the symbol of R;R; is given by

&
€l

_7—“‘1[ ] = p.v.0;0;k — %5 in &',
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where § is the Dirac’s delta function.

Theorem 2. Let 1 <4,5,l < n.
(1) For f € L™, we have

lim(RS1,¢) = (RiBs )

for all o € S with [ ¢ =0. Moreover, we have

llfl(;l Rf@lf = aleR]f m Sl.

J

(2) For f € 8" with divf =0, 0 <e < 1/4, we have
Y Rjf;=0 inS.
j=1
(3) For f € BMO, we have
13612 R0;f = ~6if nS.
=
Remark 2.2. (1) For f € L*® we may define R;R; f via the identity

(RiR; f,0) = (f, RiR;¢p) (2.2)

for o € S with [ =0. (See [16, Chap. 1V, §4] for details.) Notice that the right hand
side of (2.2) makes sense, since p € H' and the Riesz transformations are bounded from
H to L' and from H' to itself.

(2) If we set P = (d;; + RS;), then the statements of Theorem 2 (2), (3) are rewritten as

leif(r)lPEu =y in&, ifueS withdivu=0,
laig)lPEVp =0 inS&, if pe BMO,

respectively.

For the proof of Theorem 2, the following proposition is essentially used.

Proposition 2.1. Let 1 <i,j < n. We assume that ¢ € S. Then,

(1) Rg;p converges to R;R;p uniformly in every compact subset in R™.



(2) If ¢ additionally satisfies [ o =0, then
hmR]go R:Rjp inH'. (2.3)
In particular, we have lim. o Ak, x o = ¢ in H'.
We postpone the proof of this proposition until section 4. Here we give a proof of Theorem
2 using Proposition 2.1.

Proof of Theorem 2. (1) For ¢ € S with [ ¢ = 0 we have

(B5f,0) — (BaR; f )| = [(f, Bijo — RiR;0)]
< I fllz 1R550 — RiRjoll o1
< I fllzee [R50 — RiRjepll0n
—0 asel0,
by Proposition 2.1 (2). The convergence of R0, f is similarly proved, since [ 8 =0 for

any ¢ € S.
(2) By the definition of Rf; we obtain

Z = Qik. xdivf =0 in &,

since divf = 0.

(3) By the definition of R;; and Proposition 2.1 we have

hff)l R0, f, ) = hm<f Ak, * Oip) = ([, Oip)
for all p € S, since f € BMO and BMO is the dual space of H!. O

3 Proof of Theorem 1

In this section we prove Theorem 1 by the following strategy. First, for a solution (u, p)
of (1.1), (1.2) in the distribution sense we show that Vp is represented by using the
Riesz transforms and u. To derive such a representation of Vp Theorem 2 is used. Next,
using the above representation on Vp, we observe that u is also a solution of the integral
equation corresponding to (1.1), (1.2) with data wy. Finally, by the uniqueness of bounded
solutions to the integral equation, we obtain the uniqueness of u, and hence the uniqueness

of Vp follows.



Proof of Theorem 1. Let (u,p) be a solution of (1.1), (1.2) in the distribution sense such
that

u € L*((0,T) xR"), pe L (0,T); BMO).

Then we have

/0 {(u(s),852(s)) + (u(s),A%(s)) + ((u ® u)(s), V&(s))
+ (p(s), div ®(s)) }ds = —(uo, ®(0)),
for ® € C'([0,T] x R™) satisfying ®(s,-) € S for 0 < s < T, and (T,-) = 0.

Now, for £ > 0, 1 < < n, we take a test function ® whose jth component is Rj;p,
where ¢ € C*([0,T] x R™) satisfying ¢(s,-) € S for 0 < s < T, and ¢(7T,-) = 0. Then,
the first term on the left hand side of (3.1) equals to

/0 > _(Rijus(s), 05 (s))ds

and this turns out to be zero by Theorem 2 (2), since divu = 0. Similarly, the second
term on the left hand side of (3.1) and the right hand side of (3.1) equal to zero. Thus

we have .

/OT { Z (OiRj;ui(s)u )+ Z (0; Ri;p(s) ))}ds = 0.

ij=1
Letting € to zero, we obtain
T n T n
| 300w, 6ts0ds = [ Y @cRiRsu(s)usts). @le)ds (32
0 =1 0 ;=1
by Theorem 2 (1), (3). We notice that the above equality also holds if we change the
order of the indices 4, j, [ of the derivatives and the Riesz transforms. By the arbitrary
choice of ¢, we observe that
Vp = i VR;Rjuu; in &' (3.3)
ij=1
holds for a.e.t.
We next show that u satisfy the integral equation corresponding to (1.1), (1.2) with
data ug:

u(t) = ePug + /Ot V- e8P (u ® u)(s)ds (3.4)

using the representation Vp (3.3), where P = (4;; + R;R;). To begin with, we refer to the

following lemma.



Lemma 3.1 ([3], [10], [8]). There exists a constant C > 0 such that
V2P S| pe < CtV2||fllLe, fort >0, fe L™

Combining (3.1) and (3.2), we have

T
| {(s),0.2()) + (u(s), AB() ~ (V- Plu@ w)(s), #(s)) s = i, B(0)).
0
Now, for t € (0,T), § > 0 with ¢t + 6 < T, we take a test function of the form
n(s) (el 20 (1), 0<s<t+d,
O(s,z) =
0, t+0<s<T,

where n € C'(R) with suppn C (—oo,t +§), and ¢ € S(R"). Then, we have

/ {{u(s), )et=s+080) (V. P(u@u)(s), n(s)els+9A o) bds
—(ug, %), (3.5)
since
Bu(n(s)et T2 %) = (B,n)(s5)el 2, — p(s)Aelt=s+98 .
Now we further set _
n(s) = /s pe(s' —t)ds',

where p € C(R) with p > 0, suppp C (=1,1), [p = 1, and p.(s) = e *p(s/e) for
0 < e < 4. Then we have 9,n(s) = —p.(s — t) and

o

1ii(1)1 pe(s' —t)ds' = X(=o0,t1(8)

for s # t. For such 7, the first term on the right hand side of (3.5) equals to
T
- / (u(s), "2 ) (s — t)ds
0
and converges to —(u(t),e’®¢) as e | 0 for a.e.t. In fact, for ¢/ > ¢,

|/ =8 0\ o (s — t)ds — (u(t),eéASO)'

TG — (u(s), e 2) b (s — t)ds|

+] / TR0 pe(s — t)ds — (u(t), el 93)| (3.6)

+ [(u(t), e TI20) — (u(t), )],




and the second term on the right hand side of (3.6) converges to zero for a.e.t as € — 0.

The first and the third term on the right hand side of (3.6) are easily bounded by

Clluflz==[[e"=9%¢ — ]| 1

and converge to zero as t' — t. Meanwhile, the second term on the right hand side of

(3.5) converges to
t
/ (V- el=2P(u ® u)(s), 2 p)ds
0

as € | 0. Therefore, letting ¢ | 0, we obtain

t
(u(t) — g + / V- P g ) (s)ds, ) = 0,
0

for a.e.t. By the arbitrary choice of ¢ € S(R"), we observe that u satisfies the integral
equation (3.4). We notice that u is identified with the L>°(R™) valued continuous function
n (0,7).
Finally, the uniqueness of solutions of (3.4) follows by Lemma 3.1 and the Gronwall
type inequality. In fact, if v and v are solutions of (3.4) in L>((0,T) x R™) for the same

initial data, then

[u(t) = (@)l 2~ < C/ “2(lu(s)llze + flo(s)llze)llu(s) = v(s)llz=ds,

by Lemma 3.1. Thus, applying Gronwall type inequality, we obtain the desired result.
(See [4, Lemma 8.1.1], for example.) This completes the proof of Theorem 1. O

4 Proof of Proposition 2.1

In this section, we give a proof of Proposition 2.1. In what follows, we repeatedly use the

following properties on k, v, and A which is defined in section 2.

Lemma 4.1. (1) Let 1 <4,j < n. We have

0
[@dw@k@ds = @) @) o) @)z~ (@)
In the case n = 2, we especially have
d;

[@awwne /(aw )O3k (@)dz = 2, (4.2)



fore > 0.
(2) Let R > 2 and let |z| > R. We suppose ¢ € C*(R") satisfies suppVe¢ C {1 < |z| < 2}
and define ¢.(x) = ¢(ex) fore > 0. Then we have

(0%¢e)(z — y)(0°k)(z — y) — (0%¢e) (2)(0°k) ()|

Clyl|z|"®log|z|, if n=2and 8=0,
<
Clyl|z|™™!, otherwise,

for lyl <|z|/2,0<e < 1/2, a, B € Z7 with o+ §| = 2.

Proof. (1) The first equality of (4.1), (4.2) is easily obtained using integration by parts.
As for the first equality of (4.2), we notice that 9;(k(ez)) = (0;k)(z) holds for € > 0, since
n=2.

To obtain the second equality, we also apply integration by parts. Then we have

- / (0:)(2)(85k)()de = _/

) [5”\

z;

(8,k)(2)dS, + / $()(B0;k)(z)de,  (43)

since ¢Y(z) = 1if |z| = 2.

The second term of the right hand side of (4.3) is equal to zero, since ¥ is a radial
function and [, ,(8;0;k)(w)dS. = 0.

The first term of the right hand side of (4.3) is equal to

—/ wi(8;k)(w)dS, = |S" /wiwdew = %
gn—1

Therefore, we obtain (4.1) and (4.2).

(2) By mean value theorem, we have

(0°¢.)(z — y)(0%k)(z — y) ~ (0°¢.)(2)(07k)(z)

—— [(vors)(a — )@ )a - )t -y

1
- [ @600 - o) (vOR) @~ 630 -y
0
Since we can estimate
(0% ¢.)(z — 8y)| < Clz|*, (4.4)
, Clz|loglz|, if n=2and 8 =0,
(07 k) (z — Oy)| < {

p— — ! -«
Clz|™+* ¥l otherwise,

10



for |z| > R, |y| < |z|/2, 0 <6 < 1, we obtain the desired result.

The estimate (4.4) is obvious if & = 0. As for |o/| > 0, we first notice that
(0% ¢c)(z — Oy) =0, if |z| > 4/e.

In fact, the support of (0% ¢, )(z—0y) is contained in {1/e < |z—0y| < 2/} by assumption,
and we have

lz — Oy| > |z|/2 > 2/e, ifd/e <lz| <|y|/2. (4.5)

Thus, we can estimate
(0% ¢e)(z — 0y)| < Ce*! < Clar| 1.

The estimate on (0% k)(z — fy) is obtained by using the monotonicity of |(9% k)| and the
first inequality of (4.5). O

Proof of Proposition 2.1 (1). We first derive the representation of R;R;¢ using k, the
fundamental solution of —A. Recall that (2.1), we have

8
RiRjp(z) = lim (0:0;k)(z — y)p(y)dy — —¢(z)
&0 Jlz—y[>e n

for z € R™. Then applying integration by parts, we obtain

RiRjp(z) = / (0K (@ — 1)(0u0) (4, (4.6)

since the integration over |z — y| = ¢ and —d;;0(x)/n are canceled as € |, 0.

From the definition R = (8;0,k.) * ¢ and k. = ¥ A.k. Thus, by Leibnitz rule,

)

+ 10059 )k} * ¢ +1(95A)(0:k)} * o + {(8:0A )k} * ¢ (4.7)

Applying Lemma 4.1 (1), we observe that the second term and the third term of the right
hand side of (4.7) uniformly converges to —d;;¢/n, d;;p/n, respectively. We also observe
that the fourth term and the fifth term of the right hand side of (4.7) uniformly converges

to zero over any compact subset in R™. Thus, it suffices to show that

lim sup
€0 |z|<R

/ (1= o)A () 0;k) () (0s0) (& — y)dy| = 0 (48)

11



for R > 1. For |z| < R, the above integral is bounded by

[ amvnrars [ ol o

lyl>2R

and (4.9) converges to zero as € | 0. To obtain the bound (4.9) we used the estimate
|(Ds0)(z — y)] < Cly|™2 for |y| > 2R, since |z — y| > |y|/2 in this range. Therefore, we
obtain (4.8) and hence the proof is completed. O

To prove Proposition 2.1 (2), we prepare the following lemma.

Lemma 4.2. Let 0 < a < 1. If a function f satisfies
wof € L', (14 |2)™f € L®, and /f o, (4.10)
then f € H. Moreover, there exists a constant C > 0 such that

£l < CCN2* o + 11T+ )™ fllzee)- (4.11)

Remark 4.1. The case o = 1 has been proved in [8] with additional assumption that the
support of f is compact. The use of a € (0,1) is a key point for the proof of Proposition
2.1 (2).

Proof. We assume n € § with [n # 0 and set
n(z) =t""n(z/t) (t>0, z€R").
Then it is known that the norm of the Hardy space H' is given by
[[£ll2r = |lsup |me * £ 2
>0
We first prove
Iz * fllre < C([ll2l* fllor + l2l™* fllze) (4.12)

for all ¢ > 0, f satisfying (4.10). To prove (4.12) we fix z € R™ \ {0} and we divide the

domain of integration as follows:

2" Ty x f(z) = <A,|<If_l + /|y|>m ) lz|* " ny(z — v) f(y)dy. (4.13)

12



The second term of the right hand side of (4.13) is easily bounded by C|||z|*** f|| L=, since
we have |z|"** < Cly|**® in the domain of integration and ||n]jz: = ||n|lz:. We observe

that the first term of the right hand side of (4.13) is equal to

o [ nte=nswdr= [ (el onte =) = el () s

' Lk (12" ~ |z — y"*)ne(e — y) F(u)dy

1=l
2

- / @) W)y
= I1(z) + L(z) + Is(z),

since [ f = 0.

By mean value theorem we have
||z —y""n(z — y) = |2[" ()| < Cly|*. (4.14)
In fact, the left hand side of (4.14) is bounded by
¢ [ ™ nte — )l + 1o~ =1V — 03)) ol
< C (M2l nellzee + 2™ Ve[ o) /01 |z — Oy~ db [y,

and we can estimate |z — fy| > |y| for |y| < |z|/2, 0 < § < 1. Here, we notice that

"1l oo = ||| oo, ||2|" T V| oo = |||2]|"T* V|| oo Thus, we obtain
[Ii(@)] < Clliz]* -
Similarly, we have
[zl 2 —yI™*e| < Clz ~ y* + [yI")yl®
for |y| < |z|/2 and hence we obtain

112(z)] < CCIlel nel| oo 1|2 Fll 2 + [Imellze |27 f || o)
< Ol fllze + 2" |z )-

Meanwhile, I3 is bounded by C|||z|*f||z:, since |z|* < |y|* in the domain of integration.

Therefore we obtain (4.12).
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Finally, (4.11) is obtained using (4.12). In fact,

[ fll2r = | sup |m: * fll| 1
>0
:/ ||~ *sup |z|*"*|n; * f(:v)|da:+/ sup |n; * f(z)|dz
|z|>1 >0 |z|<1 t>0

< C(sup |||lz[***n, * fllLe + sup [l * fllLe)
>0 >0

< C(M2l*flley + Nz * fllzee + [ fllz=). O

Proof of Proposition 2.1 (2). The H' convergence follows if we prove
t 1+ [ol)*(Rijp — RiRy)lz =0 (4.15)
for some a € (0,1). In fact, applying Lemma 4.2 we have
|Rsp — Rislla < ClIQL+ o) (B0 — RiRyi) e, (4.16)

and hence we obtain the desired result by (4.15). More precisely, to obtain (4.16) we
apply Lemma 4.2 for o which is less than a and each terms corresponding to the right
hand side of (4.11) is bounded by the right hand side of (4.16).

By (4.6), (4.7), we observe that

R0 — RiRjo = {(WeAe — 1)0;k} % 8y + ({(8;¢e) ik} * 0 + 8;5 /)
+ ({(8:059e)k} * @ — 65 0/n) + {(B;A) 05k} * o + {(0:0;A )k} + 0, (4.17)

and then we denote by I} the {th term of the right hand side of (4.17). To prove (4.15) it
is sufficient to show that

Liga || 1 || Lo qiaf>p) = O (4.18)
for some a € (0,1), I =1,---,5, since we have
15%1 | RS0 — RiRjoll Loo((jai<ry) = 0

by Proposition 2.1 (1), where R > 2.
To prove (4.18) we divide the domain of integration of I{ = {(¢.Ac — 1)0;k} * ¢ into
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four parts

@)= [ O - DER0GNE -y
o RO RRICRIOICICEE
w0 - D@R) e )iy (4.19)

* / ol (Ae(y) — 1)(95k)(y)(Osp)(z — y)dy
lz—y|>5, E<|y|<2l|

for |z| > R and we denote by J; the lth term of the right hand side of (4.19). As for Jg,
J3, and Jj, we can use the decay of ¢ to eliminate the weight |z|"**, since |z —y| > |z|/2
i each domain of integration. As for Jf, instead of the decay of ¢, we can make use of
the decay of the integral kernel (1 — A.)k, since [ = 0. We first observe that J¢(z) = 0
if |z| < 1/2¢. In fact, although the domain of integration of J¢(z) is

|z —yl <lzl/2, |yl > 1/e,

we have |z — y| > |z| when |z| < 1/2¢, |y| > 1/e. Thus, we may only consider J¢(z) for
lz| > 1/2e.
Using integration by parts,

5@ = [ Ode =) - @8R - )iy
#0200 - @R~ vty

i — Y
N /|z—y|=% 2y W) ~ DERW)e()dS,
= Ji1(z) + Jio(2z) + Ji5(2).

Since [ =0,
Ka@) = [ A0 =) = DR )~ Oul) - DO o)
+ [ Ode) = D3R ety
lyl>5%
Then applying Lemma 4.1 (2), we obtain

o1 < Clal ™ [l leldy+Ce [ wi™lotlldy,  (420)

ly|>F5
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and the right hand side of (4.20) is bounded by Ce'~?, since |z| > 1/2¢. Similarly, we
obtain |z[**¢|J5 ,(z)| < Ce'~.
Over the domain of integration of J§ ;(x), the estimate |¢p(z — y)| < C|z|=" holds for
any N > 1. Thus, taking N > 2n + a — 1,
ol 5(2)] < Clal |
lo—yl=15], lv]>

S Csn—1|x|—N+2n+a.

T e(z - y)ldS,

£

From the above arguments we obtain
™I oo (gjar>my) < CE™
We use the following estimates on ¢ for J§, Jg, and Jj:

Clz|™¥, for ly| < R/2 or |z —y|> |z|/2,
|(Gip)(z — y)| < N ,
Clz[™" (1 + |y])~%, for |y| > 2|z,

where |z| > 1 and N > n+ a + 2. Using the above estimates, we have

2| J5 (2)] < CIxI_N““'/ (1= e (y))ly| ™+ dy, (4.21)

R
|yl<7

and

a5 @)] < Clal Vet [ A @)+ )2y, @22)

and the right hand side of (4.21), (4.22) goes to zero as ¢ |, 0 uniformly on |z| > R. Before
the estimate of JZ, we notice that J(z) = 0 if |z| < 1/2¢, since the integrand is equal to
zero when |y| < 1/e. Thus, we may only consider J§(z) for |z| > 1/2¢ and hence
ol (@) < Claf Vit [y
ly|<2z|

S CR—N+n+a+2 €.

Therefore, we obtain (4.18) for [ = 1.
We can treat 5 and I5 in the same way, so we only prove about I here.

By Lemma 4.1 (1) we have
@) = | [ 0w @kw)ele — )y — Lo(a)
< [, Jew6IER6) e - ) - oy

16



Since ¢ € S, we can estimate
lo(z — ey) — o(z)] < Ce(l+ =)™ *|y|
for |y| < 2 by mean value theorem. Thus, we obtain
2™ I3 || oo ({101 >Ry < Ce.

We can also treat I and If in the same way, so we only prove about I§ here.

For |z| > 1, we observe that
Ii(z) = / (0;2)(z — ) (0:k) (z — ) w(y)dy
- /|y|<'“°7'{(aj/\5)(x — y)(8:k)(z ~ y) = (05A) (@) (9:k) (@) o (y)dy
+ [ 00E —0@RG = ey

_ /| A OICLIOROM

T
= Ki(z) + K3(z) + K5(z),
since [ ¢ = 0.
Here we notice that K(z) = 0 if 2] < 2/3¢. In fact, 9;A.(z — y) = 0 in this case,
because
|z —y| <3|z]/2< 1/e
for [y| < |z]/2. Of course 9;A.(z) = 0, since |z| < 1/e. Thus, we may only consider K¢(z)

for |z| > 2/3¢, and hence we obtain

ol i@ <ol [ 10 = 9O - )~ GANEER)E) o)y

=]

lyl<5
< C ]t / 9] ()| dy

S CEl—a,
by Lemma 4.1 (2). We also obtain

2| KG(2)] < Celaf™ / z — ()| dy
lyl>12, Lcjz—y|<2

<Ce / ™o () d.
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Similarly,

2" | K3 (2)] < Celof* / o(y)ldy

]

lyl>5
<Ce / ly[2+] () dy.

Thus, we conclude that

| I ]| oo (ot mpy < Ce' ™

Combining the above arguments, we obtain (4.15).

Finally, the %! convergence of Ak, * ¢ to ¢ is obtained by (2.3). In fact,

. 1 e . ) ) . . 1
lgglAks*w—lg{)lz;Rjjw—ZRJR]go—w in H-.
]:

j=1

This completes the proof.
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