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ABSTRACT. Consider the Navier-Stokes equations with the initial data a €
L2 (Rd). Let w and v be two weak solutions with the same initial value a. If

2 . .
Vu € L2-7 ((O,T) ; XT(Rd)d> where X, (R?) is the multiplier space (see the

definition in the text), then we have u = v.
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1. Introduction

Consider the Navier-Stokes equations in (0,7) x R? with 0 < T < oo and d > 3

u+ (u.V)u—Au+Vp = 0, (z,t) € R x (0,00),
(1.1) Vu = 0, (z,t) € R? x (0,00),
u(z,0) = a(x), z € RY

where u = u(x,t) is the velocity field, p = p(z,t) is the scalar pressure and a(x)
with div ¢ = 0 in the sense of distribution is the initial velocity field. For simplicity,
we assume that the external force has a scalar potential and is included into the
pressure gradient.

In their famous paper, Leray [8] and Hopf [3] constructed a weak solution u of
(1.1) for arbitrary a € L2. The solution is called the Leray-Hopf weak solution. In
the general case the problem on uniqueness of Leray-Hopf’ s weak solutions is still
open question. Masuda [9] extended Serrin’ s class for uniqueness of weak solutions
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and made it clear that the class L ((O, T); L? (Rd)) plays an important role for
uniqueness of weak solutions. Kozono-Sohr [5] showed that the uniqueness holds
in L*> ((0,7); L%).

Foias [1] and Serrin [10] introduced the class L* ((0,00); L?) and showed that
under the additional assumption

2 d
u € L¥((0,00); LY) for —4+—-=1 with ¢>d,
a q

u is the only weak solution.
The purpose of this note is to improve the criterion on uniqueness of weak solu-

tions to in the class L=+ ((0, T); X, (Rd)d). We know that for every a € L2 (R?),

there is at least one weak solution u of (1.1) satisfying the energy inequality. Here
1
we mean by the weak solution a function winu € L> ((0,T); L2)NL? ((O7 T); HU)

satisfying (1.1) in the sense of distributions (Definition 2). For more facts concern-
ing uniqueness of weak solutions, we refer to a celebrated paper of Kozono and Sohr
[5] (see also [2]).

Now, we give a description of the multiplier space X, introduced recently by
P.G. Lemarié-Rieusset in his work [6] (see also [7]). The space X, of pointwise

multipliers which map L? into H ™ is defined in the following way

d

5, we define the homogeneous space X, by

DEFINITION 1. For 0 <r <
XT:{feLfoc: Vge H ngLQ}

where we denote by HT (Rd) the completion of the space D (Rd) with respect to the

norm |[ul| ;- = H(—A)% u’ .

The norm of X, is given by the operator norm of pointwise multiplication

Iflly, = sup [Ifgll
gl <1

We have the homogeneity properties : Vay € R?
1+ 2ol = Il

1
IFOI ., =7 1fl%,, A>0.

Additionally, for 0 < r < %, we have the following inclusion relations :

L* (RY) c L7 (RY) c X, (RY).
where LP*° denotes the usual Lorentz (weak L?) space. For the definition and basic
properties of Lorentz spaces LP*? we refer to [11].
2. Uniqueness theorem

Before turning our attention to uniqueness issues, we start with some prereq-
uisites for our main result. Let

Ces, (RY) = {o € (Cg (RD)": div o = 0} € (G5 (RY))".
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The subspace
L2 (RY) =Cg, - {u e L? (RY)! : divu = 0}

obtained as the closure of Cg°, with respect to L*-norm |.|[,.. H} denotes the
closure of Cg, with respect to the norm

el e = Il 2+ (1 = )% ]| o for >0,
Our definition of Leray-Hopf weak solutions (see e.g. [5]) now reads :

DEFINITION 2 (weak solutions). Let a € L2 and T > 0. A measurable function
w s called a weak solution of (1.1) on (0,T) if u satisfies the following properties

1
(1): we L>((0,T); L%) N L? ((O,T);HU> for all T > 0;
(2): u(t) is continuous in time in the weak topology of L% with

(u(t), ) — {a,¢) as t— 0"
for all ¢ € L?;

(3): for any 0 < s <t <T, u satisfies the identity
(21) / {_ <u7 6T¢> + <uvu7 ¢> + <Vu, v¢>} dr = — <u(t)7 ¢(t)> + <’U,(S), ¢(8)> )

forall ¢ € H' ((s,t); HL). Here (.,.) denotes the scalar product and ||.||
denotes the norm in L? (Rd)d.

REMARK 1. For u and ¢ as above, the integral

T
/ (u.Vu, @) dr
0
is well defined since we have by the Sobolev inequality
lull gy < C Vel

that

IN

T T
| wvusrar < [l 190l 00 dr
0 0

IN

T
2
C sup [élle [ [Vul}edr
o<t<T 0

Existence of weak solutions has been established by Leray in [8] for initial
velocity in L2 (Rd). The result is the following

THEOREM 1 (Leray - Hopf). Let T > 0. Then, for any given a € L% (R?),
there exits at least one weak solution u to (1.1) on (0,T) such that

t
(2.2) ()17 + 2/ IVu(s)|zzds < a2, 0<t<T.
0

and
|lu(t) —al - —0 as t — +0.
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Let us introduced the class L*® ((0,T); L7) with the norm ||.|

1
T s
|”U%mﬂww—<A M@M}dg .

The classical result on uniqueness of weak solutions in the class L* ((0,7T); L7) was
given by Foias, Serrin and Masuda [1], [10], [9].

L#((0,T); L)

THEOREM 2 (Foias-Serrin-Masuda). Let a € L2 (RY). Let u and v are two
weak solutions of (1.1) on (0,T). Suppose that u satisfies

2 d
(2.3) we L ((0,T); L") for E—I—;zl with d <~y < o0.

Assume that v fulfills the energy inequality (2.2) for 0 < t < T. Then we have
u=wv on [0,T).

REMARK 2. In Theorem 2, v not need belong to the class (2.3). On the other
hand, every weak solution w with (2.3) fulfills the energy identity

t
(2.0 @3 +2 [ 19u(s) s ds = el 0<¢<T,

It seems to be an interesting question whether every weak solution satisfies the
energy inequality (2.2).

REMARK 3. The class (2.3) is important from the view point of scaling invari-
ance for the Navier-Stokes equations. It can be easily seen that if is a pair of the
solution to (1.1) on R% x (0,T), then so is the family {ux,pr}y~, where

ur(z,t) = Mu(Az, \2t),  pa(z,t) = N2u(Az, \%t).
Scaling invariance means that there holds

(3+4)

luallze ooz = (A Nl ooz ) = lelle ooy for all A>0

if and only if
o
Y

We shall next deal with the critical case with s = co and v = d in (2.3).

® | N

THEOREM 3 (Masuda [9], Kozono-Sohr [5]). Let a € L2 (R?). Let u and v be
two weak solutions of (1.1) on (0,T). Suppose that

(2.5) ue L™ ((0,T);L%)
and that v fulfills the energy inequality (2.2) for all 0 <t < T. Then we have u = v
on [0,T).

REMARK 4. Masuda [9] proved that if u € L ((0,T); L%) is continuous from
the right on [0,T) in the norm of LY, then there holds w = v on [0,T). Later on,
Kozono-Sohr [5] showed that every weak solution in L* ((0,T);L%) of (1.1) on
(0,T) becomes necessarily continuous from the right in the norm of L%.
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The same result holds when, for v = +00, we replace the assumption
u € L?((0,T);L>)
by the weaker assumption
vue L2 ((0,7); X1 (R)).
The replacement of hypothesis u € L? ((0,7T); L>) by Vu € L? ((O, T); X, (Rd)d)
was recently discussed in a similar context by Gala [2]. Moreover, we have

THEOREM 4 (Gala). Let a € L2 (R?) and let u, v be two weak solutions of
(1.1) on (0,T). Suppose that

(2.6) Vu € L2 ((o,T) X, (Rd)d)

and that v fulfills the energy inequality (2.2) for 0 <t < T. Then we have u = v
on [0,T].

REMARK 5. By Theorem 2, every weak solution in L? ((0,T); L>) is unique.

Our result on uniqueness of the weak solution now reads :

THEOREM 5. Leta € L? (Rd)d with V.a = 0 Assume that there exists a solution
u for the Navier-Stokes equations on (0,T) x R? (for some T € (0, +00] with some
initial data a so that

1
we 1= ((0,7); 12 (R") ") n 12 ((O,T)  H, (Rd)d> ,
and .
Vu e L2 ((o,T) ;XT(Rd)d) forall 0<r<1.
Then, u is the unique Leray-Hopf solution associated with a on [0,T).

The following corollary, which is an immediate consequence of Theorem 5 gives
a simpler sufficient condition in term of Lorentz spaces.

COROLLARY 1. Let a € L? (Rd)d with V.a = 0 Assume that there exists a
solution u for the Navier-Stokes equations on (0,T) x R (for some T € (0,+00]
with some initial data a so that

u€ L™ ((0, T); L? (Rd)d) NL? <(0,T) ; Hj, (Rd)d> ;
i Vue L7r ((o,T) L L5 (Rd)d) ,

where LP>*>° denotes the usual Lorentz (weak LP) space. Then, u is the unique
Leray-Hopf solution associated with a on [0,T).

The same result again holds when the assumption
Vu e LT ((O,T) : Lg’“(Rd)d)
is replaced by
we L7 ((O,T);L% (Rd)d) .

We are now in a position to proof the main result.
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PROOF. Let v be another weak solution of (1.1) associated to a on (0,T") (with
associated pressure p) such that

ve L™ ((O,T);L?, (Rd)d) N L2 <(O,T);Hi (Rd)d>
and
Vu e LT ((O,T);XT(Rd)d) .

We consider the difference w = u — v and we obtain

t
lu(t)|2. +2 / IVu(s)|2 ds

IN

2
lallz2

IN

2
llallzs -

t
()12 +2 / IVo(s)|2. ds

On the other hand, we have
t

(u(t),v(t)) + 2/0 (Vu(s), Vu(s)) ds = Ha||2L2 —l—/o (w.Vu,w) (s)ds

for all 0 <t < T. Combining the above inequalities, we obtain
t
w @ +2 [ Vw3 ds
Ot
= Ol +2 [ V()2 ds + (o)
t 0 t
+2/ V()| ds — 2 (u(t), v(1)) —4/ (Vu(s), Vo(s)) ds
0 0

t
(2.7) < —2/ (w.Vu,w) ds.
0
We thus observe that by Young inequality
(ao‘bl_o‘ <aa+(1—a)p<a+bwitha,b>0and 0 < a < 1),
it follows that

[ wvnalas < [ ovuss ol ds
< )l Va6 el o s
< [ IO Vw6 9l )l ds
< t (nw(s)niz |Vul X) (Vw3 ds
< 5 IVt + S [ ol IV i

where we used the following ones (0 < r < 1)

1 ~ -
[wll ;m = —— IIE]" Bl < llwllzz" IVwllza -
2
s
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Hence by (2.7) there holds

t t 2
2 2 2 2—r
)3+ [ 1Vulfsdr <€ [l 19057, dr

for all £ > 0. Since Vu € L77 ((O,T);XT(Rd)d) and since w(0) = 0, it follows
from the Gronwall inequality that

¢ 2
Ol < 0Ol exp (€ [ 1977, ds)

and thus
lw)|7. =0, 0<t<T

and implies uniqueness of weak solutions. O
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