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In this note we report some basic convergence results for the semi-
discrete finite element Galerkin approximation of the nonstationary
Navier-Stokes problem. Asymptotic error estimates are cstablished for
a wide class of so-called conforming and nonconforming elements as de-
scribed in the literature for modelling incompressible flows. Since the
proofs are lengthy and very technical the present contribution concen-
trates on a precise statement of the results and only gives some of
the key ideas of the argument for proving them. Complete proofs for
the case of conforming finite elements may be found in a joint paper
of J. Heywood, R. Rautmann and the author [5], whereas the noncon-
forming case will be treated in detail elsewhere.

1. The Navier-Stokes problem

We consider the nonstationary Navier-Stokes problem

Uy - vAu + ueVu - Vp = T 1 in 2 x (0,)
(1) Veu = 0 j
Ylag T ° 2 Yt=o T & >

where Q < Rn, n = 2,3, is a bounded domain, u = ul(x,t) is the velo-
city field in R® and p = p(x,t) the corresponding pressure function.
For simplicity we assume homogeneous boundary data and the domain @ to

be convex polyhedral.

Throughout the paper LP(2)™ denotes the Lebesgue space of n-vector
functions with components being to the p-th power integrabel over Q.
H™(9)" is the m-th order Sobolev space of LQ—functions having general-

ized derivatives up to order m in Lz(n). The corresponding norms are

= |ul® ax) /P s el 1/2
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where Vku is the tensor of all k-th order derivatives of wu. In the

case p = 2 we set for convenience
(v = fwevoax s, (lull = llall, = (u,w /2
Q L

Hi(ﬂ)n denotes the closure of the space C:(Q)n of C¥-vector functions

having compact support in € and JO is the subspace of all solenoidal
functions in Hg(ﬂ)n

J = {v € Hl(Q)n : Vey = 0o a.e., in @} .
o o

For time dependent functions into some Banach space X we use the

notation
Lp(o,T;X) = {u = u(t) : (0,T) » X measurable
T
S Hucofly dr<e)
o

with the usual modification for p = .

Finally we introduce the bilinear and trilinear forms, respectively,

alu,v) = v fVu. Yv dx , blu,v,w) = [ u:vv .w dx ,
9} Q
where the dot "." denotes the usual tensor multiplication.

Using these notation the weak formulation of problem (1) is as follows

(2) Find some u = u(t) € Jo such that wulo) = a and
(ut,¢} + alu,¢) + blu,u,¢) = (f,4) V¢ € JO .

It is well known (see Ladyzhenskaya [5] and Heywood [3]) that under
the assumptions

aeJ , fe 12 (0,m; L2 (™)
there is an unique solution u € Lm(o,T;JO) of (2) on some time inter-

val [o,T) where T > o. Furthermore,

uwe Lo, mEao™  , u e L(o,mLi(™

t
and the corresponding pressure satisfying equation (1) is
p)ELz(o,T;Hl(Q)).

Under the additional stronger conditions

a€ B’ @ , £ e L%o,mi@™
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one even has
W€ L™, T3HA(D™) , u € Lo, T3l ()™ n L2 (o, T3H (@)™
p € Lm(o,T;Hl(n)).
In the following we shall study the convergence behavior of the

finite element Galerkin method for approximating the weak solution

u of problem (1) under the above minimal assumptions.

2. Finite element Galevkin method

Let m = {K} be finite "triangulations” of the polyhedral domain
2 which satisfy the usual regularity conditions (see [1] and [2])
for mesh size h tending to zero, namely that each K € o, contains
a n-ball of radius «h and is contained in a n-ball of radius « In.

We consider finite element spaces JO n consisting of piecewise poly-
¥
nomial functions which are proper approximations of the basic space

Jo in the following sense:

(3) Each function th J satisfies
zaci Juner o on o,h =2E2ioEP
(%) f {v - v v} ds = o, v K,K'e 1n,_ ,
5K A 3K h|X h|K h
(ii) f v ds = o, Y KET ,
oK naa  PIK h

(iii) f Veuy dx = 0, VKET

Kk h

. 2 n .
Furthermore, there are operators ry: {J NH ()} e Jo,h - Jo,h such
that for 1<p £ =

(iv) = v

"hVn

(v) llv-rthLp <ch

oo Yp€ o n o
2+n/P‘“/QI}vl12 , VVE Jor1H2(9>n

H

By these conditions the spaces Jo,h are approximations of JO of

order m = 1. They include a wide class of conforming and even noncon-
forming finite elements for modelling incompressible flows as studied
for instance by Crouxeiz and Raviart [2] and Fortin [3]. By (3i, ii)
it is guaranteed that the functions in Jo,h are at least approximately

Hg-functions, i.e. their jumps along the element boundaries 3K and

their Boundary values on 38 are in some sense small. Condition (3iii)
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means that even the divergence of functions in Jo,h is in some sense
small. Hence the spaces Jo,h are approximately admissible with re-
spect to the space Jo' The conditions (3iv,v) ensure that each
function in JO can be approximated arbitrarily close by a sequence

of functions in JO h for h tending to zero.
*

As examples of elements satisfying all the conditions (3i-v) we

mention the nonconforming linear element in two or even three dimensi-

ons with the corresponding nodal values:

values vh(bi) at the centers bi of b

(n-1)-faces of all K € Hh

and the conforming gquadratic element in two dimensions with the corres-

ponding nodal values:

values vh(ai) at the vertices a; and
line integrals | N ds over the sides of

. r
all triangles K € Hh. 1

ol

Using a so-called "bulb~-function" the order of the quadratic element
can be raised to m = 2 without increasing the dimension of the space
J . In all these cases the spaces J are of the type
O,h o,h
2 n .
Jdoop = {6 €L7% :1)¢|K€meorsomem21, K €

O, Hh,

ii) ¢ is continuous with respect to the pre-

scribed nodal values;

1iii) ¢ has vanishing nodal values along the

boundary 393
ivy [ v ¢ dx = o , VKET]T.
K

As operator r, one can choose the usual interpolation operator with
respect to the prescribed nodal values which maps the space Jon Hz(n)n

into JO n and leaves the spaces Js invariant by its special con-
b

h
b

struction. For a detailed description of these finite element spaces
and for further examples of even higher order m > 1 we refer to the

literature [2] , [3) and [8].
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For functions ¢ € JO ® JO the discrete gradient Vh¢ is de-

,h

fined piecewise with respect to the patchs K € Hh. In this sense we

can define the following bilinear and trilinear forms, respectively,

on the direct sum Jo® Jo,h of the spaces Jo and Jo,h:

a (vsw) = v(V v,V w) = I [ve - vu  dx
Ken X
h
by (u,v,w) = % T f {u- v ow - urYwev) dx
Ken, K

Obviously the forms bh are compatible with b in the sence
bh(u,v,w) = blu,v,w) , u,v,w € JO s

and they even satisfy

bh(u,v,v) = 0, u,v € Je ® Jo,h

Using these notations the semi-discrete analogues of problem (2)

are

(4) Find some uh=uh(t) € Jo,h such that uh(o) = ay and

(uht,¢h)+ah(uh,¢h)+bh(uh,uh,¢h) = (f,¢h) » V4, € Jo,h s

where ahG Jo,h

a€dJ satisfying uniformly for h-o

are appropriate approximations to the initial data

haapll s o B llal 5

provided that a € Hk(ﬂ)m.

If {¢£l), 1= 1,000,N = dim(J, 1)} is a basis of Jo,n » then pro-

blem (4) is equivalent to a system of first-order ordinary differen-

tial equations for the coefficient functions gi(t) in the represen-

tation Ny

uh(t) = .f gi(t)¢
i=1

(i)
h
For some of the spaces satisfying the conditions (3i-v) quasi-local

bases are known at least in two dimensions (see [3]). This problem
which is crucial for the numerical realization of the scheme (4) will

be discussed in a subsequent paper.

Setting ¢h = uh(t) in (%), we obtain the discrete energy inequality
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3 S5 e coll?

[\

sl v o7 < g ] fu, ol , £ 2o,

and from that via Gronwall's inequality the bound

Fu (OO, < c(h)]]uh(t)ll < c(t) , t=2zo0.
L

This guarantees the existence of unique discrete solutions ay, of
problem (4) which are in Lw(o,T';JO h) for all times T' > o.
3

For these approximate solutions Uy, we have the following basic
convergence results:

Theorem. Assume that the finite element spaces JO n are first-order

2
approximations of the space Jo in the sense described above. Further

assume that the data of problem (1) satisfy

aed , felio,mL @,

and let u € Lm(o,T;JO) and u, € Lm(o,T;JO h) for some T > o be the
3

h
corresponding unique solutions of problem (2) and (4), respectively.

Then the error function e = u - u satisfies the estimate

h
t 2 1/2

(5) leCe)[| + (JI| 7pell © £ c(t)h , t € [o0,T),
ol

and, if additionally

a € B £.€ L2 (o,m; L2 (™)
even the pointwise estimate
,hl/u

for n = 3

(8) leto)|l _ < clt) | , t € [o,T)
. ih1/z|ln W2 for n = 2

Moreover, if the solution u also satisfies

u€ L2(o,TsH2 (™) b, € L2(o,T3HY(R))

then we have

t 2, \1/2
(7> the(t)li + e a0 gelt)h , t € [o,T),
and finally the improvedopointwise estimate
| ! hi/z for n = 3
(8 fleto]] L s () , t € [o,T).
L )1n n)t/? for n = 2

All the constants c¢(t) depend continuously on the specified data but

are independent on the mesh size h.
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In order to illustrate the statements of the theorem we add the

following remarks.

1. Note that the estimates (5) - (8) hold for any time T > o such

that the solution of problem (2) is known to be u € Lm(o,T;JO), regard-
less where this information comes from. In the case n = 2 or, if the
data of problem (1) are in a certain sense small enough, even in the
case n = 3 cne has T = o and the constants c¢{t) remain bounded for

t » o (see [7] for the behaviour of the solution u of problem (1)
and [5] for the behaviour of the discrete solutions u,_ for time t

h
tending to infinity).

2. The estimates (5) and (6) obviously hold under the above mentioned
minimal assumptions on the data a and f. The sharper results (7) and
(8) are a little problematic since the corresponding assumptions on

Uy and p, seem to be realistic only if certain global compatibility

conditions for the initial data a are satisfied (see [3]). These un-

natural strong assumptions on u are essentially forced by the

+2 Py

allowed nonconformity of the spaces JO If the spaces JO are fully

h h

>
conforming, i.e. J [ JO, then the estimates (7)), (8) even hold

under the same natugéi assumptions as made for the estimate (6).(This
corresponds with the estimates given by Rautmann [8] for the approxi-
mation of problem (1) by means of eigenfunctions of the Stokes opera=
tor.) It would be desirable to remove this weak point in our results.

3. For finite element spaces JO of higher order satisfying the con-

ditions (3i-v) in a stronger seﬁze corresponding higher order error
estimates hold provided the solution u is regular enough (seel[4]).

But again this a priori assumption might be problematic unless certain
compatibility conditions are satisfied by the initial data (see [3]).

4. Having already computed the approximation u, to the velocity vee-

h

tor u one can generate approximations to the corresponding

Pn
pressure p by a suitable Galerkin Ansatz. Since this procedure is

just the same as for the simplest steady state Stokes problem we only
refer to the literature [2], [9] for a further discussion of pressure

computation.

5. All the above results remain valid if the usual techniques for
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approximating curved boundary and nonhomogenecus boundary data are
used. The additionally required technical argument is again Jjust the
same as for the well known steady state Stokes problem or even as
for any of the usual elliptic model problems (see [1]).

6. Por time discretization several of the methods known for parabolic
problems may also be used for the Navier-Stokes problem (see [38]).
For instance the (nonlinear) Crank-Nicolson scheme is unconditionally

stable and of second order convergent. It has the form

1 (Uk k-1

AT h h ,¢h) + a (U

) + b (UK ‘Uk,¢h - (£F

n U ), Vo, € J

h)¢h ,¢h O,h >

where Ui is the discrete solution for the time level k-At and

kAt
U = Lol w2 - g T £()dr
(k-1)-4t

DPA
+

The error estimate

lu, (k- At) - UE|] < o(t) at? L, t =k -At € [0,T) ,

holds provided that Yet € LQCO,T;LZ(Q)D). This may be shown by stan-

dard technigques for time discretization of parabolic problems.
k-1 7k

e >Up>¢n
bh(Uﬁ,U§,¢h) is also stable (see [9}) but only of first order conver-—
gent.

The linearized C.-N. scheme using the term bh(U ) instead of

3. Proof of the theorem

In the following we present the key ideas of the argument for proving
the error estimates (5) - (8). Most of the technical complications
arise from the allowed nonconformity of the spaces Jo,h with respect
to the divergence condition "V.v = o" as well as with respect to the
continuity requirement "v € Hi(ﬂ)n". Since the techniques for over-
coming these problems are essentially the same as for the steady
state case (see [2] and [6]) we mainly concentrate on the argument

concerning the nonstationarity of the problem.

A) Technical preliminaries

At first we provide some more technical tools which will be used below.

Let the Lz—projections Lh : LZ(Q)n -» J be defined by
o,h
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- . 2 n
(v—th,¢h) = 0o , V¢h € Jo,h ;v € L) s
and the (generalized) Stokes projections 8y ¢ JO ® Jo,h - Jo,h by
ah(v—Shv,¢h) =0 , V¢h € Jo,h 5y v € JO & Jo,h .

where again JO 8 J
Jo and Jo,h'
differentiation:

tht = (th)t , Shvt = (Shv)t

Furthermore, under our assumptions on the spaces JO h » One may prove
(+)

o.h denotes the direct sum of the vector spaces
3

Both of the projection operators commute with time

>
the following estimates (see for instance [2] and [51)

» A e
19, Ll ] 9, 5,vl] < e l[v,v] :

and

v - vl + alF, (-1 o) || 5 ¢ h2ﬂv|[H2

(10) , v eI 2o,

In
(¢]
o

v - Shv{]+ hHVh(V-ShV)H

Below we shall frequently use the Sobolev inequality for n < 3

vl g s ellvll, , v EET @Y,
L H

the Poincare inequality

vl o< ellwll ,  veH @,

and the a priori estimate

v, s e lavll . v € G I G
H o

where the latter holds on any bounded convex domain. This leads toge-
ther with the Hdlder inequality

1/2 1/2
W 7 vling

to the estimates

< cllvwelM? Jlavit? v e sl@™nr?@"

IFvli
L3

1/2 1/2
vl

vl g s el vl™? v . v e HX@M
L

which are useful for handling the nonlinear term u -Vu in equation (1),

(+)”c" always denoctes a generic constant which may change with the context.
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Similar inequalities as stated above even hold for the functions in the

discrete spaces Jo n o’ namely for n < 3:
b
(1) vpll e = ellopvpll s ¥ € 65 o
and
(12) {{th{ts < cI{Ahvhil R vy € Jo’h

Here Ah denotes a discrete analogue of the Laplacian & which is
defined by means of the eigenvalues {Aﬁl)} and the corresponding

: (i) . o
eigenvector systems {wh } e JO hoot* 1, WN, o= dlm(JO )y, of

, <y h

the discrete Stokes operator:

(1)

(i), (i)

apCwp ™ s #p) = AT T 00, Yy €0y
Using this notation we set for 2N € Jo,h
(13) A v, & o= gh x(i)(v w(i))w<i)

hn t % .5 th h*"h h

izl

By definition we have the discrete Green's formula
(1y4) (thh,Vhwh) = —(Ahvh,wh) . vh,wh€ Jo,h .

The estimates (11) and (12) will be proved for the conforming case,
Jo,h c Hi(ﬂ)n, in {4] and for the more complicated nonconforming case
in a forthcoming paper of the author (see also some similar estimates
derived in [8] and [9]1). A sketch of the proof of the presumably most
surprising estimate (12) will be given below in step (C).

B) Proof of the estimates (5) and (7)

Because of their nonconformity the functions ¢h € JO n ey not be

3
used directly as test functions in the weak formulation (2) of prob-
lem (1). To overcome this complication we note that under our assump-

tions equation (1) even holds in the strong sense

up - vAu + u *Vu + ¥Yp = f a.e. in @ x {(o0,T).

Then multiplying this identity with 2N € JO h and integrating then
k4

by parts leads to

(ut,¢h) + ah(u,¢h) + bh(u,u,¢h) = (f,¢h) + (p,Vh'¢n) + Th(u,u,¢h) 5
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where
- 1 _
Tplususgy) = % i1 {vu_+ F(u-n)u-pn} - ¢ ds
Ken 3K
h
(n = outer normal unit vector to 3K, u = %% normal derivative).

€Combining this with the corresponding relation (4) for the discrete

solutions U, we get for the error e = u-uy the identity
(15) (et,¢h) + ah(e,¢h) = bh(uh,uh,¢h) - bh(u,u,¢h) + (p,Vh-¢h)+
+ rh(u,u,¢h) , v o € Jo,h

The two terms on the right hand side coming from the nonconformity of

JO h will be estimated as follows:
3

By assumption (3iii) we have

(p,9 o) = (pmqpVy o) < [lpmap [l [[9pe 1l

where qy, is any piecewise constant approximation to the pressure

p, and hence

(16) (p¥n- 8y s ch [[ 960 [l vpll

The boundary term may be rewritten as

Fh(u,u,¢h? = % { {vun + %(u-n)u—pn} '[¢h]ds ,

where the summation is taken over all (n-1)-faces of the K € My and
[¢h] is the jump of LN along such a face T . By assumption (3i,ii)
these jumps [¢h] have vanishing mean value on T and hence allow us

to insert appropriate mean values wn of the sum set in brackets:

Fh(u,u,¢h) = ? { {vun + %(u'n)u-pn—mr} ‘[¢h]ds

Applying a Poincare type inequality to the term in brackets as well
as to the jumps [¢h] we conclude

h1/2 1/2

2 2
ry(usu,¢,) < c Kz I Vh¢h|[ h="“(|vull +|| vull + || vRID.

Ty
Finally the estimates provided in step (A) lead us to

3
(A7) T Cuu,e) S e [l 96, Il Cllawll +1l vulf + ] valb.

Now in order to prove the estimate (5) we insert 0y Loe € J,

n h into
b
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the identity (12) and get by a simple rearrangement of terms

2
2 dt||eH vl Vel = (e su-Lw) + ap(e,u-Lyu) + by (uy oy slpe) -

= by (u,u, Ly e) + (p,v Ly e) + Ty (u,u, Ly e)
and furthermore

bhhmﬂmﬂmw—gﬁmuﬂmd =b“e@,HFPbHEﬂ“%F%%$U@,%G%

Now applying the estimates preserved in part (A), one concludes by a
somewhat lengthy but straightforward calculation that for any e € (o,1].

2

(20) b, (uy »Lye)-by (u,u,Lie) < eﬁlvhe + c HVuiﬁi[e\F

L N}

From the estimates (16) and (17) we have
2 2 2 6 2
(psVy * Lye) + ro(u,u,lie) < theti + o n ) aullt IvalP+ (vl .

Choosing e sufficiently small we arrive at

Sollel? + el s o n? I qivul? + e n(jjaul? +l vull® + [j Vol

From that the estimate (5) immediately follows by applying Gronwall's
inequality.

To prove the estimate (7) we insert = S e,  into the identity (15)

bn T Spey
and get again by a simple rearranging of terms

le (P + 5 S livgell = “S,uy) + 4 (e,u -8, u) + by (u )

Y7o t h Y2 5h 8t

>

- b (u,u, S ) + (p, Vh' Shet) + Fh(u,u,Shet)

By the definition of the Stokes projection we have

1
(21 apesu -8 u) = a (u-S,u,u -S,u) = 5 a— [lv (u-8 u)H
2
|[Vh(u—Shu)H

2 d [ch![AuH T, gy 5 5 <

h . .
[aul]

Furthermore, with any ¢ € (o,1],

- 2 2 2
(22) (e >u -Spu) < e]]etll + ¢ n® [[vu|
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The termsg representing the nonlinearity may be rearranged to
bh(uh,uh,Shet)—bh(u,u,Shet) = bh(e,e,Shet)—bh(e,u,Shet)—bh(u,e,Shet)

. 4 _ _ -
= 3% [bh(e,e,Shet) bh(e,u,shet) bh(u,e,Shet)I bh(et,e,Shet)

- bh(e,et,s )+bh(et,u,8het)+bh(e,u ,8, e )+bh(ut,e,8het) +

%t et

+ bh(u’et’shet)

t

Now again a rather lenghty calculation using the estimates provided
in part (A) and in addition the already proved basic error estimate
(5) leads us to (e € {0,11)

I

(23) b, (u )-b, (u,u,Ss [co<t>11vheiﬁl + el e

4
hoUn Shet net’) < 3% t

2 2
+ ca(t)ilvheli + e (t) h”,

where the constants c_(t) and c.(t) depend on {| suCt) || and ||Aut|| ,

respectively, but are bounded with respect to h.

The two terms coming from the nonconformity of the spaces J_ q are
5

estimated in a similar way using the estimates (16) and (17) as follows

(24) (p,V. S e )

_d . _ .
R {(p,¥,_*S, e D (pt,Vh She)

h "h™t
d 20 2 2 2 2 2
scd vl sl vely ¢ e n2llvp P + e livell
and
_d -
(25) Th(u,u,shet) = 3T Th(u,u,She) - I‘h(ut ,u,She) Fh(u,ut,She)

IA

[co(t)h2 + Vhelg]+ eCt)n? + cI%Vheif ,

where again the constants c_(t) and c(t) depend on the norms llAutl
and ||th||, respectively, but are bounded with respect to h.

Collecting all the estimates (21) - (25) we obtain for e, sufficiently

small,

e P + Sl vel’ = Spte (o vl + e on?] + oyt ]| vell .

From that one gets the desired estimate (7) again by applying the
Gronwall inequality.
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C) Proof of the pointwise estimates (6) and (8)

At first we give a short proof of the estimate (12) for the discrete
Laplacian A

h
To any given vy € JO h? which clearly has a vrepresentation of the form
3
N.
_ h (i)
vh = .g aiwh s Ay € R,
i=1

we attach a function vE€ Jo and a corresponding pressure ¢ by solving
the Stokes problem

-VvAv + Vg = - A v
(28) h'h } in @ , v = o on 3%.

v

I

o

Then vy turns out to be just the finite element approximation to v
which is defined by the discretized Stokes problem

(273 ah(v yo= - (A

hsth hvh 3¢h) b4 v ¢h e JO,h
For that there are the following error estimates available (see [2])
(28) {|v~vh1| + h|1vh(v-vh)\| < ceh(l] avi] + ||valp
Furthermore, we have
I thﬁlLS s{lvh(vh—rhv)lfLe +}IVh(rhv~v)I£6 + iin§IL6 >

and so-called "inverse" property of finite elements (see [1]) gives us

HVh(vh—rhv)HLe < ont th—rhv HLS

IA

-1 -1
ch “flv.-vil » *+ ¢ h Jjv-r, v
h LB h L6
Applying Sobolev's inequality
Wwvll g = clfvll
LG
and the estimate in assumption (3v)

}jv—rhvf}Ls + h})vh(v-rhv)}ILG < < hlilv HH2 s

we find

9wl 6 = cllvll
n'nl 6 52
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Now the usual a priori estimate for the Stokes problem (see [7])

yields
1|V!L2 +||Vq|\ < c||Ahvh§

and hence the desired estimate

HthhHLG < CHAhvhH ) V€ Jo n
For proving the pointwise error estimates we shall use the following

set of inequalities for functions v, € J
h o,h

w1l g S RPN
29 vl o < I
L
-1/2
nt/? /in h]“ZH vhvhHLG s cn Y thii(n:m
and
-1/2
vl ()
Go) vyl grc{
- |1n h[quiivhvh|[(n=2)

Proofs of these estimates will be given for the conforming case in [5]
and for the again more troublesome nonconforming case in a subsequent

paper of the author already annocunced above.

Now we use the discrete Sobolev inequalities (11) and (12) from part

(A) and conclude for the error e = u-uy in the case n = 3
1/4 -3/4
ell @ s llumul|l +llrell o+ h' leynel c+ch Iryell
| L h L h L h™h L6 h
1/4
s flummgull ot 0t Cllaulle syl
+ o Wl flelD

and even

el o < llumrpull o+ o 072w, Commpw [} +limpelD

Lco = h o h h h

Then assumptien (3v), combined with the already proved error estimates
(5) and (7}, lead to

lell o < e 0t dlaulle fagu]D) + ccom?

and to the desired estimate (8)

1/2

/4

flell , sc(tin
L
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In two dimensions, n = 2, one proceeds analoguously. So, in order to
prove also the estimate (6), we have to bound the norm HAhuh(t)I}for
all times t € [0,T). This may be done in a similar way as for the
norm || Au(t)|| by inserting

¢h = —Ahuht as test function into equa-

tion (4) (see [4] for the conforming case). This gives

2 1 d 2 _ d d
[Evhuhtil t 3 a%}!hhuhH = 3 Prluups8,u) + 5% (£,8,u)

= (Fsbpuy) = by Quppoup 8,00 = by (U suy e ,8uy)

By a somewhat complicated calculation the terms on the right hand

side may be estimated in terms of l[thhtll and llAhuhH such that
again Gronwall's inequality yields the desired bound
Il Ahuh(t)H < clt)y ,t € [o,T)
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