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In this note we report some basic convergence results for the semi- 
discrete finite element Galerkin approximation of the nonstationary 
Navier-Stokes problem. Asymptotic error estimates are ,mstablished for 
a wide class of so-called conforming and nonconforming elements as de- 
scribed in the literature for modelling incompressible flows. Since the 
proofs are lengthy and very technical the present contribution concen- 
trates on a precise statement of the results and only gives some of 
the key ideas of the argument for proving them. Complete proofs for 
the case of conforming finite elements may be found in a joint paper 
of J. Heywood, R. Rautmann and the author [5], whereas the noncon- 
forming case will be treated in detail elsewhere. 

1. The Navier-St0kes problem 

We consider the nonstationary Navier-Stokes problem 

(1) 

u t - vAu + u- Vu -Vp = f ] in ~ x (o,=) 
V-u : o J 

ul~ g = o , ult=o = a , 

where ~ c R n, n = 2,3, is a bounded domain, u = u(x,t) is the velo- 

city field in R n and p = p(x,t) the corresponding pressure function. 

For simplicity we assume homoseneou s boundary data and the domain ~ to 

be convex polyhedral. 

Throughout the paper LP(~) n denotes the Lebesgue space of n-vector 

functions with components being to the p-th power integrabel over ~. 

Hm(~) n is the m-th order Sobolev space of L2-funetions having general- 

ized derivatives up to order m in L2(~). The corresponding norms are 
m 

IIUlILP = ( f~ lulP dx)l/P ' llUllHm = (k=oK llvkuN29) 1/2L_ 

= ess sup lu(x)I , 
IJulIL~ × ea 
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where vku is the tensor of all k-th order derivatives of u. In the 

case p = 2 we set for convenience 

: (u,u) 1/2 
<u,v) : S u.v d× , Ilul[ : I[ul[2 

L 

Hl(~)no d e n o t e s  t h e  c l o s u r e  o f  t h e  s p a c e  C~(~) n o f  C ~ - v e c t o r  f u n c t i o n s  

having compact support in ~ and Jo is the subspace of all solenoidal 

functions in HI(~) n : 
o 

J = {v £ HI(~) n : V'v : o a.e. in ~} 
o o 

For time dependent functions into some Banach space X we use the 

notation 

LP(o,T;X) : {u = u(t) : (o,T) ~ X measurable : 

T 

o 
with the usual modification for p = ~. 

Finally we introduce the bilinear and trilinear forms, respectively, 

a(u,v) = v fVu- Vv dx , b(u,v,w) = f u.Vv -w dx , 
2 

where the dot "." denotes the usual tensor multiplication. 

Using these notation the weak formulation of problem (1) is as follows 

(2) Find some u : u(t) E J such that u(o) : a and 
o 

(ut, ¢) + a(u,~) + b(u,u,~) : (f,~) , V~ £ Jo 

It is well known (see Ladyzhenskaya [5] and Heywood [3]) that under 

the assumptions 

a E J , f £ L2(o,~L2(~) n) 
o 

there is an unique solution u £ L~(o,T~Jo ) of (2) on some time inter- 

val [o,T) where T > o. Furthermore, 

u [ L 2 ( o , T ; H 2 ( a )  n) , u t E L 2 ( o , T ; L 2 ( a )  n) 

and the corresponding pressure satisfying equation (1) is 

p E L 2 ( o , T ; H I ( ~ ) ) .  

Under the additional stronger conditions 

a £ H2(~) n , ft £ L2(o,~;L2(~) n) 
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one even has 

u £L~(o,T;H2(~) n) , utE L~(o,T;L2(~) n) N L2(o,T;HI(~) n) 

p E L~(o,T;HI(~)). 

In the following we shall study the convergence behavior of the 

finite element Galerkin method for approximating the weak solution 

u of problem (1) under the above minimal assumptions. 

2. Finite element Galerkin method 

Let ~h : {K} be finite "triangulations" of the polyhedral domain 

which satisfy the usual regularity conditions (see [1] and [2]) 

for mesh size h tending to zero, namely that each K [ ~h contains 

a n-ball of radius Kh and is contained in a n-ball of radius ~-lh. 

We consider finite element spaces Jo,h consisting of piecewise poly- 

nomial functions which are proper approximations of the basic space 

Jo in the following sense: 

(3) Each function Vh£ Jo,h satisfies 

(i) S {Vhl K - VhiK,} ds = o, 
~K n ~K' 

(ii) S Vhi K ds = o, V K e ~h 
~K n~ 

(iii) 

V K,K' 6 H h , 

S v.~ h dx = o, ¥ K C H h 
K 

Furthermore, there are operato~ rh: {Jo N H2(~) n} @ Jo,h ~ Jo,h such 

that for l~p ~ 

(iv) rhVh : Vh ' VVhE Jo,h ' 

IILp h 2+n/p-n/2 n H2(~) n (v) II v-rhv ~ c II vl~ 2 , VvE Jo 

By these conditions the spaces Jo,h are approximations of Jo of 

order m = 1. They include a wide ciass of conforming and even noncon- 

forming finite elements for modelling incompressible flows as studied 

for instance by Crouxeiz and Raviart [2] and Fortin [3]. By (3i, ii) 

it ~ is guaranteed that the functions in Jo,h are at least approximately 

H~-functions, i.e. their jumps along the element boundaries ~K and 
v 

their boundary values on ~ are in some sense small. Condition (3iii) 
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means that even the divergence of functions in Jo,h is in some sense 

small. Hence the spaces Jo,h are approximately admissible with re- 

spect to the space J . The conditions (3iv,v) ensure that each 
o 

function in Jo can be approximated arbitrarily close by a sequence 

of functions in Jo,h for h tending to zero. 

As examples of elements satisfying all the conditions (3i-v) we 

mention the nonconformin $ linear element in two or even three dimensi- 

ons with the corresponding nodal values: 
/ %  

values Vh(b i) at the centers b i of / ~  ~b i 

(n-1)-faees of all K [ H h / f \ 

and the conformin$ quadratic element fn two dimensions with the corres- 

ponding nodal values: / ~  

values vh(a i) at the vertices a i and 

line integrals f v h ds over the sides of 

all triangles KFE ~h" "" ~i 

Using a so-called "bulb-function" the order of the quadratic element 

can be raised to m = 2 without increasing the dimension of the space 

Jo,h" In all these cases the spaces Jo,h are of the type 

Jo,h = { ~ E L2(~) n : i) ~I K E Pm fo~ some m ~ 1, K £ ~h' 

ii) ~ is continuous with respect to the Prg~ 

scribed nodal values; 

iii) ~ has vanishing nodal values alon$ the 

boundary a~; 

iv) S V" ~ dx : 0 , V K E Z h } . 
K 

As operator r h one can choose the usual interpolation operator ~ith 

respect to the prescribed nodal values which maps the space Jo N H2(~) n 

into Jo,h and leaves the spaces Jo,h invariant by its special con- 

struction. For a detailed description of these finite element spaces 

and for further examples of even higher order m > 1 we refer to the 

literature [2] , [3] and [8]. 
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For functions % E Jo @ Jo,h the discrete gradient Vh} is de- 

fined piecewise with respect to the patchs K E Hh" In this sense we 

can define the following bilinear and trilinear forms, respectively, 

on the direct sum Jo @ Jo,h of the spaces Jo and Jo,h: 

ah(v~w) = ~(VhV,VhW) : X Svv. vw dx 
K £ Zh K 

1 X S {u. Vv • w - u'Vw.v} dx bh(U'V'W) = T 
KEH h K 

Obviously the forms b h are compatible with b in the sence 

bh(U,V,W) : b(u~v,w) , u,v,w C Jo ' 

and they even satisfy 

bh(U,V,V) = o , u,v £ Jo ~ Jo,h 

Using these notations the semi-discrete analogues of problem (2) 

ape 

(4) Find some Uh=Uh(t) E Jo,h such that Uh(O) = a h and 

(Uht,~h)+ah(Uh,~h)+bh(Uh,Uh,~h) = (f,%h) , V%h E Jo,h 

where ahC Jo,h are appropriate approximations to the initial data 

a £ Jo satisfying uniformly for h~o 

ii.a_ahl I ~ o ~k IlalIH k 

provided that a E Hk(~) m. 

, k = 1,2 , 

(i) i : 1 ,N h = dim(Jo,h)} is a basis of Jo,h , then pro- If {gh ' '''" 

blem_(4) is equivalent to a system of first-order ordinary differen- 

tial equations for the coefficient functions ~i(t) in the represen- 

tation Nh 
- (i) 

uh(t) = ~ ~i(t)~h 
i=1 

For some of the spaces satisfying the conditions (3i-v) quasi-local 

bases are known at least in two dimensions (see [3]). This problem 

which is crucial for the numerical realization of the scheme (4) will 

be discussed in a subsequent paper. 

Setting ~h = uh(t) in (4), we obtain the discrete energy inequality 
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12 dtd llUh ( t ) l l 2+ l l vhuh( t ) l l  2 ~ I I f ( t ) l t l l u h ( t ) I I  , t _> o ,  

and from that via Gronwall's inequality the bound 

l:[uh(t)ll L ~ S c(h)II uh(t)II s c(t) , t ~ o . 

This guarantees the existence of unique discrete solutions u h of 

problem (4) which are in L~(o,T';Jo,h ) for all times T' > o. 

For these approximate solutions u h we have the following basic 

convergence results: 

Theorem. Assume that the finite element spaces Jo,h are first-order 

approximations o_~f the space Jo in the sense described above. Further 

assume that the data of problem (1) satisfy 

a E Jo ' f [ L2(o,~;L2(~)n), 

and let u E L~(o,T;Jo ) and Uh[ L~(o,T;Jo,h ) for some T > o be the 

correspond/n@ unique solutions of problem (2) an___~d (4), respectively. 

Then the error function e = u - u h satisfies the estimate 

t )1/2 
(5) Ile(t)II + (SII vhei I• 2 d~ S c(t) h , t E [o,T), 

O 

and, if additionally 

a E H2{~) n , ft £ L2(o,~{L2(~) n) , 

even the Rointwise estimate 

[h 1]4 for n = 3 

(6) lle(t)ll L ~ ~ c(t) ihl/2iln hl 1/2 for n = 2' t E [o,T) 

Moreover, if the solution u also satisfies 

utE L2(°'T~H2(~)n) ' Pt E L2(o,T;HI(~)) , 

then we have 

t )1/2 
(7) IIVhe(t)ll + (f lletll 2 d~ S e(t) h , t E [o,T), 

• O • . and finally the improved polntwlse estimate 

(8) lle(t)II ~ S c(t) fhl/2 
for n 3 

L lhIln hi I/2 fo.r n = 2 , t E [o,T). 

All the constants c(t) dep.e.nd continuously on the specif...ie d data but 

are independent on the mesh size h. 
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In order to illustrate the statements of the theorem we add the 

following remarks. 

1. Note that the estimates (5) - (8) hold for any time T > o such 

that the solution of problem (2) is known to be u 6 L~(o,T;Jo ) , regard- 

less where this information comes from. In the case n = 2 or, if the 

data of problem (1) are in a certain sense small enough, even in the 

case n = 3 one has T = ~ and the constants c(t) remain bounded for 

t ~ ~ (see [7] for the behaviour of the solution u of problem (1) 

and [5] for the behaviour of the discrete solutions u h for time t 

tending to infinity). 

2. The estimates (5) and (6) obviously hold under the above mentioned 

minimal assumptions on the data a and f. The sharper results (7) and 

(8) are a little problematic since the corresponding assumptions on 

u t and Pt seem to be realistic only if certain global compatibility 

conditions for the initial data a are satisfied (see [3]). These un- 

natural strong assumptions on ut, Pt are essentially forced by the 

allowed nonconformity of the spaces Jo,h" If the spaces Jo,h are fully 

conforming, i.e. Jo,h c Jo' then the estimates (7), (8) even hold 

under the same natural assumptions as made for the estimate (6).(This 

corresponds with the estimates given by Rautmann [8] for the approxi- 

mation of problem (1) by means of eigenfunctions of the Stokes opera ~ 

tor.) It would be desirable to remove this weak point in our results. 

3. For finite element spaces Jo,h of higher order satisfying the con- 

ditions (3i-v) in a stronger sense corresponding higher order error 

estimates hold provided the solution u is regular enough (see[4]). 

But again this a priori assumption might be problematic unless certain 

compatibility conditions are satisfied by the initial data (see [3]). 

4. Having already computed the approximation u h to the velocity vec- 

tor u one can generate approximations Ph to the corresponding 

pressure p by a suitable Galerkin Ansatz. Since this procedure is 

just the same as for the simplest steady state Stokes problem we only 

refer to the literature [2], [9] for a further discussion of pressure 

computation. 

5. All the above results remain valid if the usual techniques for 
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approximating curved boundary and nonhomogeneous boundary data are 

used. The additionally required technical argument is again just the 

same as for the well known steady state Stokes problem or even as 

for any of the usual elliptic model problems (see [1]). 

6. For time discretization several of the methods known for parabolic 

problems may also be used for the Navier-Stokes problem (see [9]). 

For instance the (nonlinear) Crank-Nicolson scheme is unconditionally 

stable and of second order convergent. It has the form 

1 (U k u k - 1  . ) ~k ( ~ , ~ , ¢ h )  : ( f k , ¢  h) , V¢ h E J o , h  ~--t h- h '¢h + ah(Uh'¢h) + bh 

k is the discrete solution for the time level k-&t and where U h 

k-~t 
~k 1c~k+~k-l~ o = ah fk 1 S f(T)d~ 
Uh = ~'Uh Uh J ' Uh ' = A-~ (k-1).~t 

The error estimate 

llUh(k'~t) - U~ll ~ c(t) ~t ~ , t = ~ .~t C [o,T) , 

holds provided that Uht t £ L2(o,T;L2(2)n). This may be shown by stan- 

dard techniques for time discretization of parabolic problems. 

The linearized C.-N. scheme using the term bh(U~ -1,Uh,¢ h) Nk instead of 

bh(~,~,~h) is also stable (see [9]) but only of first order conver- 

gent. 

3. Proof of the theorem 

In the following we present the key ideas of the argument for proving 

the error estimates (5) - (8). Most of the technical complications 

arise from the allowed nonconformity of the spaces Jo,h with respect 

to the divergence condition "V.v = o" as well as with respect to the 

continuity requirement "v £ HI(~) n''. Since the techniques for over- 
o 

coming these problems are essentially the same as for the steady 

state case (see [2] and [6]) we mainly concentrate on the argument 

concerning the nonstationarity of the problem. 

A) Technical prelim,,inaries 

At first we provide some more technical tools which will be used below. 

Let the L2-projections Lh : L2(2)n ~ Jo,h be defined by 
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(V-LhV,~ h) = o , V~h £ Jo,h ; v E L2(~) n , 

and the (generalized) Stokes projections S h : Jo ~ Jo,h ~ Jo,h by 

ah(V-ZhV,% h) : o , V%h E Jo,h ; v E Jo @ Jo,h ' 

where again Jo ~ Jo,h denotes the direct sum of the vector spaces 

Jo and Jo,h o Both of the projection operators commute with time 

differentiation: 

LhV t = (LhV) t , ShV t = (%v) t • 

Furthermore, under our assumptions on the spaces Jo,h ~ one may prove 

the following estimates (see for instance [2] and [5]) (+) 

II Lhvll + ilShVl[ -< cllvtl + chll vhVl[ 
(9) , v £ J ~ J 

o o,h 
II VhLhVll +II VhShVll -< c llVhvll 

and 

(io) 
llv - ~vll + hl~h(V-Lhv)ll ~ c h211vlI H2 , v E J n H2(fi) n. 

O 

llv - ShVl I + hillVh(V-ShV)l I ~ c h211Vl!H2 

Below we shall frequently use the Sobolev inequality for n ~ 3 

IIvll L6 ~ C IIvll 1 , v E HI(~) n , 
H 

the Poineare inequality 

IIVIIH1 ~ oIIvvll v c H~<~) n 
O 

and the a ~riori estimate 

II vii 2 ~ c IIAvll v E HI(~) n n H2(~) n 
H ' o 

II VIIL3 

to the estimates 

where the latter holds on any bounded convex domain. This leads toge- 

ther with the HSlder inequality 

I! v II1X211 vll~ 2 

II vll 3 ~ c II~vll ~/2 II~vll ~/2 v E Hl(~)nn H2(~) n 
L ' o ' 

II wilL3 ~ cll vll ~/2 II vvll  ~ /2  , v c H~(~) n 

which are useful for handling the nonlinear term u -Vu in equation (1). 

(+)'c" always denotes a generic constant which may change with the context. 
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Similar inequalities as stated above even hold for the functions in the 

discrete spaces Jo,h , namely for n S 3: 

(~1) IIvhIIL6 < cll vhvhll ' ~h ~ J - o~h 

and 

IIVhVlIL6 ~ cH AhVhll ' Vh E Jo,h 

Here A h denotes a discrete analogue of the Laplacian A which is 
(i) 

defined by means of the eigenvalues {l h } and the corresponding 

(i) i = 1, ,N h = ~im(Jo, h) of eigenvector systems tw h } ~ Jo,h ' "'" 

the discrete Stokes operator: 

a (w (i) (i)( (i) 
h h ' @h ) : lh w h ,%h ) , V%h { Jo,h " 

Using this notation we set for v h E Jo,h 

Nh ~(i) (i) (i) 
(13) AhV h : = Z (v h )w h i:1 Ah 'Wh 

By definition we have the discrete Green's formula 

(14) (VhVh'VhWh) : -(AhVh'Wh) ' Vh'WhE Jo,h 

The estimates (11) and (12) will be proved for the conforming case, 

c HI(~) n, in [4] and for the more complicated nonconforming case Jo,h o 
in a forthcoming paper of the author (see also some similar estimates 

derived in [6] and [9]). A sketch of the proof of the presumably most 

surprising estimate (12) will be given below in step (C). 

B) Proof of the estimates (5) and (7) 

Because of their nonconformity the functions }h E Jo,h may not be 

used directly as test functions in the weak formulation (2) of prob- 

lem (1). To overcome this complication we note that under our assump- 

tions equation (1) even holds in the strong sense 

u t - vAu + u -Vu + 7p : f a.e. in ~ × (o,T). 

Then multiplying this identity with @h E Jo,h and integrating then 

by parts leads to 

(ut,@ h) + ah(u,¢ h) + bh(U,U,¢ h) = (f,¢h) + (P,Vh'¢ n) + Fh(U,U,¢ h) , 
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where 
1 

= + z w(u'n)u-pn} " Ch ds rh(U,U,¢ h) X f {vun 
K C ~h ~K 

Su 
(n = outer normal unit vector to ~K, Un= ~-~ normal derivative). 

Combining this with the corresponding relation (4) for the discrete 

solutions Uh, we get for the error e = u-u h the identity 

(15 )  (et,@ h) + ah(e,¢ h) = bh(Uh,Uh,¢ h) - bh(U,U,¢ h) + (P,Vh.¢h) + 

+ rh(U'U'¢h) ' ¥ Ch £ Jo,h " 

The two terms on the right hand side coming from the nonconformity of 

J will be estimated as follows: 
o,h 

By assumption (3iii) we have 

( p , V h ' ¢ h )  = ( p - q h , V h - ¢ h )  ~ IIp-qhll IlVff'~hll , 

where qh is any piecewise constant approximation to the pressure 

p, and hence 

( 1 6 )  ( P ~ h "  % )  ~ e h II VhChll II vpll 

The boundary term may be rewritten as 

1 
Fh(U,U,¢h! = X S (vun + -~(u.n)u-pn} "[¢h]dS , 

F F 

where the summation is taken over all (n-1)-faces of the K E Hh and 

[¢h ] is the jump of Ch along such a face F . By assumption (3i,ii) 

these lumps [¢h ] have vanishing mean value on F and hence allow us 

to insert appropriate mean values ~F of the sum set in brackets: 

1 
, = + 7(u.n)u-pn-~F} "[¢h]dS rh(U,U Ch ) x S {vun 

F F 

Applying a Poincare type inequality to the term in brackets as well 

as to the jumps [¢h ] we conclude 

rh(U,U,  % )  ~ o z h l / 2  I I V h % l l h l / 2 ( l l V 2 u l l + l l V u 2 1 t +  I IVPlI ) .  
K E H h 

Finally the estimates provided in step (A) lead us to 

( 1 7 )  Fh(U,U,6 h) -< e h II VhChll ( II~utl +{I vull 3 +11 vpll) .  

Now in order to prove the estimate (5) we insert Ch = Lhe E Jo,h into 
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the identity (12) and get by a simple rearrangement of terms 

12 dtd lleil2 + vl I Vhell2 = (et,U_LhU) + ah(e,U_LhU ) + bh(Uh,Uh,Lhe ) _ 

- bh(U,U,Lhe) + (P,Vh'Lhe) + Fh(U,U,Lhe) 

and furthermore 

bh(Uh,Uh,Lhe)-bh(U,U,Lhe) = bh(e,e,Lhe)-bh(e,U,Lhe)-bh(U,e,Lhe). 

Now applying the estimates preserved in part (A), one concludes by a 

somewhat lengthy but straightforward calculation that for any ~ E (o,1]. 

(20) bh(Uh,Uh,Lhe)-bh(U,U,Lhe) -< a llVhe]l 2 + c llVuiI41i ell 2 . 

From the estimates (16) and (17) we have 

(p,V h • Lhe) + Fh(U,U,Lhe) < a [IVhell 2 + c h2( il Auli 2+ llVuil 6+ [IVPll 2 

Choosing a sufficiently small we arrive at 

_ h 2 d 12 d t  l ie l l2  + ] lVh ell2 < e ~ i lVu l  + e h2(  iI Aul j  2 +11 Vull 6 + li vp l l  2 ) .  

From that the estimate (5) immediately follows by applying Gronwall's 

inequality. 

To prove the estimate (7) we insert 0h = She t into the identity (15) 

and get again by a simple rearranging of terms 

+ ld I let  1t2 7 d-t tiVh el12 = (et'ut-ShUt) + ah(e'ut-ShUt) + bh(Uh'Uh'Shet) - 

- bh(U,U,She t) + (p,V h • She t) + Fh(U,U,Shet ) • 

By the definition of the Stokes projection we have 

: i d 
(21) ah(e,ut-ShU t) = ah(U-ShU,Ut-ShUt ) [ ~-[ II Vh(U-ShU)112 

I[ Vh (U-ShU)II 2 
-< c .  

Ch:: h 2 li~uli 2 
= h2 aTd [o h t l A u l l  2] , 

Furthermore, with any e E (o,1] , 

(22) (et,ut-ShUt) -< ell etll 2 + c h 2 IlVutll 2 
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The terms representing the nonlinearity may be rearranged to 

bh(Uh,Uh,Shet)-bh(U,U,She t) : b h ( e , e , S h e t ) - b h ( e , U , S h e t ) - b h ( U , e , S h e t )  

d 
= ~-~ [bh(e,e,Shet)-bh(e,U,Shet)-bh(U,e,Shet)] -bh(et,e,She t) - 

- b h ( e , e t , S h e t ) + b h ( e t , U , S h e t ) + b h ( e , u t , S h e t ) + b h ( U t , e , S h e t )  + 

+ bh(U,et,She t) 

Now again a rather lenghty calculation using the estimates provided 

in part (A) and in addition the already proved basic error estimate 

(5) leads us to (E E (o,1]) 

d 
(23) bh(Uh,Uh,Shet)-bh(U,U,She t) ~ T{[Co(t)ll vheil 2] + ~li et.12 + 

+ c (t)IIvheli 2 + c~(t) 5 2 , 

where the constants Co(t) and c~(t) depend on II Au(t)ll and II Autil 

respectively, but are bounded with respect to h. 

The two terms coming from the nonconformity of the spaces Jo,h are 

estimated in a similar way using the estimates (16) and (17) as follows 

(24) 

and 

d 
p,Vh. She t) : ~-~ (P,Vh'She t) - (pt,Vh-She] 

d 2 12 h 2 c ~ (h li VPl +il vheli 2) + c llVptll 2 + c llVhell 2 

(25) d 
h(U,U,She t) = ~-~ Fh(U,U,She) - rh(U t , U,She) Fh(U,ut,She) 

d__ 
dt [Co(t)h2 + II 7hell 2]+ c(t)h2 + c IIvheil 2 

where again the constants Co(t) and c(t) depend on the norms II ~utll 

and II VPtll , respectively, but are bounded with respect to h. 

Collecting all the estimates (21) - (25) we obtain for E, sufficiently 

small, 

Iletll 2 + d~ll Vhell 2 ~ ~--{[Co(t)]I Vheli 2 + cl(t)h 2] + e2(t)ll Vhell 2 

From that one gets the desired estimate (7) again by applying the 

Gronwall inequality. 
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C) Proof .of the pointwise estimates (6) and (8) 

At first we give a short proof of the estimate (12) for the discrete 

Laplacian A h . 

To any given v h E Jo,h' which clearly has a representation of the form 

Nh a w ( i )  
v h = X i h , a i E R , 

i=1 

we attach a functian v£ J 
o 

the Stokes prob lem 
and a corresponding pressure q by solving 

-v Av + Vq = - AhV h 
(26) ~ in ~ , v = o on 3~. 

] 
v = o 

Then v h turns out to be just the finite element approximation to v 

which is defined by the discretized Stokes problem 

(27) ah(Vh~h) =- (AhVh'~h) ' ¥ %h E Jo,h 

For that there are the following error estimates available (see [2]) 

(2s) llV-Vhll + hllVh(V-Vh)li S ch(llmv]l + IlVqlI) • 

Furthermore, we have 

II VhVhllL6 ~ tl Vh(Vh-rhv)II L6 + llVh(rhv-v)llL6 + il Vvli L6 , 

and so-called "inverse" property of finite elements (see [1]) gives us 

llVh(Vh-rhv)HL 6 S c h - ~  llvh-rhv IlL6 

c h - l l l  Vh-VIIL6 + c h-lllv-rhvll 
L 6 

Applying Sobolev's inequality 

II Vv IlL6 _< cll vii H2 

and the estimate in assumption (3v) 

II v - rhv l l  L6 + hi[ Vh(V-rhV)l I  LG -< e h llv IIH2 , 

we find 

II VhVhllL6 < c I lvl l  H2 
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Now the usual a priori estimate for the Stokes problem (see [7]) 

yields 

I1vlh2 + l t v q l l  s oll~h~hll 

and hence the desired estimate 

tlVhvhllL6 ~ cl[~hVhli  , Vh~ Co, h 

For proving the pointwise error estimates we shall use the following 

set of inequalities for functions VhE Jo,h 

hl/4 II VhVhilL6 + ch-3/4 Ii v h II (n=3) 

<29) t lvh l I  ~ ~ f 
L ~ h 1/2 j ln  h11/21]  VhVh]t L6 + c h - 1 / 2 ] l V h ] l  (n=2) 

and 
h-1/2 lJ VhVh I I (n:3) 

<3°) II Vh II -<~ o { 
n~ Ii~ h 1-1/z iI vhv h i[ (n :Z)  

Proofs of these estimates will be given for the conforming case in [5] 

and for the again more troublesome nonconforming case in a subsequent 

paper of the author already announced above. 

Now we use the discrete Sobolev inequalities (11) and (12) 

(A) and conclude for the error e = u-u h in the case n = 3 

from part 

-< I lu - rhu  II ~+ I l rheI IL~ + hl/4 I lVhrhel lL6+ e h-3 /41irhel l  II ell~, ~ T, 

-< l lu-rhUl lLM h1/4( I1~1t+ It%uhll) + 

+ o h -3 /4 ( l lU - rhut l+  Ilett) 
and even 

II elln~ -< tl u-rhu 11~+ ° h-:/2< l lVh(u-rhu) i I  +llVheli)-  

Then assumptian (3v), combined with the already proved error estimates 

(5) and (7), lead to 

_< e hl/4(IIAulI÷'jIAhUhl i ) + e(t)h 1/4 llelIT. 
and to the desired estimate (8) 

IIeli ~ -<c(t)h 1/2 
L 
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In tuo dimensions, n : 2, one proceeds analoguous!y. So, in order to 

prove also the estimate (6), we have to bound the norm llAhUh(t)il for 

all times t ( [o,T). This may be done in a similar way as for the 

norm II Au(t)ll by inserting ~h : -AhUht as test funci&on into equa- 

tion (4) (see [4] for the eonforming case). This gives 

1 d 2 : d__ bh ( ,AhUh) + d [I VhUhtl[ 2 + ~ ~-~[I ~hUhl[ dt Uh'Uh d-{ (f'AhUh) - 

- (ft'AhUh) - bh (uht'uh'Ahuh) - bh (uh'uht'Ahuh) 

By a somewhat complicated calculation the terms on the right hand 

side may be estimated in terms of II VhUhtll and II AhUhll such that 

again Gronwall's inequality yields the desired bound 

II AhUh(t)ll ~ c ( t )  , t E [o,T) 
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