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Abstract. Stability of stationary Navier-Stokes flows in �
n, n ≥

3, is discussed in the function space L1 or H1 (Hardy space). It is shown
that a stationary flow w is stable in H1 (resp. L1) if sup |x| · |w(x)| +
sup |x|2|∇w(x)| (resp. ‖w‖(n,1) + ‖∇w‖(n/2,1)) is small. Explicit decay

rates of the form O(t−β/2), 0 < β ≤ 1, are deduced for perturbations
under additional assumptions on w and on initial data. The proofs of
the results heavily rely on the theory of Hardy spaces Hp (0 < p ≤ 1)
of Fefferman and Stein.

1. Introduction

This paper continues our previous study in [17] on the long time behavior

of solutions to the incompressible Navier–Stokes equations on the entire

space �n. We are concerned with stability properties of solutions to the

stationary problem :

(S)

−∆w + w · ∇w = ∇ · F −∇p (x ∈ �n)

∇ ·w = 0 (x ∈ �n)

lim
|x|→∞

w(x) = 0.

Here, w = (w1, · · · , wn) and p denote, respectively, unknown velocity and

pressure ; the given external force is assumed to be of the form

∇ · F = (f1, · · · , fn), fj =
n∑

k=1

∂kFkj ;
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and we use the notation :

∇ = (∂1, · · · , ∂n), ∂j = ∂/∂xj (j = 1, · · · , n),

∆w =
n∑
j=1

∂2
jw, w · ∇w =

n∑
j=1

wj∂jw, ∇ ·w =
n∑
j=1

∂jwj .

When n ≥ 3, we proved in [17] that problem (S) admits a smooth solution

w satisfying

w ∈ Ln(�n) ∩L∞(�n), ∇w ∈ Ln/2(�n) ∩L∞(�n),(1.1)

provided that the tensor F = (Fjk) is smooth and suitably small in Ln/2.

On the other hand, it is shown in [4, 19] that if F is smooth and satisfies

|Fjk| ≤ C/(1 + |x|)µ−1, |∇Fjk| ≤ C/(1 + |x|)µ for some µ ≥ 3,

with a suitably small constant C > 0, then problem (S) has a smooth

solution w such that

|w| ≤ C/(1 + |x|)�−2,

|∇w| ≤ C/(1 + |x|)�−1 with � = min(n, µ).
(1.2)

A property closely related to (1.1) and (1.2) is :

(1.2′) w ∈ Ln
w(�n) ∩L∞(�n), ∇w ∈ Ln/2

w (�n) ∩L∞(�n),

where Lpw is the weak Lp space [1, 28]. Solutions satisfying (1.2′) are con-

structed in [14].

In the case of the exterior problem, stability properties in various Lr

spaces were discussed in [2, 4, 12, 14] for stationary flows w satisfying con-

dition (1.1), (1.2) or (1.2′). In particular, it is proved in [2, 4] that if

1 < r ≤ n/(n − 1), then any initial perturbation given in Lr ∩ L2 evolves

in time in all of the spaces Lq, r ≤ q ≤ 2, with some definite decay rates if

r < q ≤ 2. It is possible to show the same result in the case of the entire

space �n, n ≥ 3.

The purpose of this paper is to discuss the stability properties of station-

ary flows w satisfying (1.1) or (1.2) on the entire space �n and to examine

what happens in the limiting case of L1. We proved in [17] that the rest

state w = 0 is stable under perturbations belonging to the Lebesgue space
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L1(�n) as well as the Hardy space H1(�n). In this paper we extend these

stability results to the case w 
= 0, combining the methods of [2, 4, 17] and

invoking the techniques given in [5] for manipulating functions in Hardy

spaces.

We first consider a stationary flow w in �n satisfying

|w| ≤ C/(1 + |x|), |∇w| ≤ C/(1 + |x|)2.(1.3)

In order to estimate the size of w, we employ the norms

‖w‖ = sup(|x| · |w(x)|), ‖∇w‖ = sup(|x|2|∇w(x)|).(1.4)

In Section 4 we show that a stationary flow w is stable under perturbations

in the Hardy space H1(�n) provided that ‖w‖ + ‖∇w‖ is small enough.

Note that (1.2) implies (1.3) ; thus our stability result covers the class of

stationary flows satisfying (1.2). The same type of result can also be ob-

tained for flows satisfying (1.1) or (1.2′). Since this latter case is treated in

almost the same way, we omit the details.

If n ≥ 4 and µ > 3, then (1.2) implies

w ∈ L(n,1)(�n) ∩L∞(�n), ∇w ∈ L(n/2,1)(�n) ∩L∞(�n),(1.5)

where L(p,q) is the Lorentz space [1, 28]. It is evident that conditon (1.5) is

more stringent than conditon (1.1) or (1.3). In this connection, we show in

Section 2 that if n ≥ 3 and if F is smooth and belongs to L1(�n)∩L∞(�n),

then (1.1) implies

w ∈ Ln/(n−1)
w (�n) ∩L∞(�n), ∇w ∈ L1

w(�n) ∩L∞(�n) ;(1.6)

and so in this case the flows w with property (1.1) satisfy (1.5). In Section 5

we shall deal with the stability problem of stationary flows w satisfying

(1.5) and show that if the Lorentz norm ‖w‖(n,1) + ‖∇w‖(n/2,1) is small

enough, then w is stable under perturbations belonging to the Lebesgue

space L1(�n).

When w = 0, we deduced in [17] explicit time-decay rates of the form

O(t−β/2), 0 < β ≤ 1, of H1 and L1 norms of the weak solutions corre-

sponding to a specific class of initial data. In Section 6 we discuss the same

problem in the case w 
= 0 and deduce decay rates of the form O(t−β/2),
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0 < β < 1. Contrary to the case discussed in [17], it seems impossible to

deduce the decay rate O(t−1/2) if we assume merely (1.3) or (1.5).

To discuss the stability of stationary solutions, one needs careful analysis

of the corresponding linearized problem. The bulk of this task is carried

out in Section 3, by employing the theory of Hardy spaces as developed

in [7, 26]. It is now well known that the Hardy space H1(�n) is a good

substitute for the Lebesgue space L1(�n) with regard to the boundedness

properties of various potential operators and singular integrals, and so the

standard method of functional analysis can be effectively applied. Moreover,

it is shown in [5] that the nonlinear term w · ∇w of the Navier–Stokes

equations belongs to the Hardy spaces Hp(�n), n/(n + 1) < p ≤ 1, under

suitable assumptions on velocity fields w ; and this suggests the possibility

of effectively applying Hardy space theory to the mathematical treatment

of the Navier–Stokes equations. We deal in Section 3 with a stationary

flow w satisfying (1.3) and show that if the norm ‖w‖ + ‖∇w‖ is suitably

small, then any solution of the linearized equation tends to zero in the

Hardy space H1
σ of solenoidal vector fields. We further deduce some rates

of time-decay for the solutions in H1
σ, assuming in addition that the initial

data are in the Hardy space Hp(�n), n/(n + 1) < p < 1. Passing to the

adjoint equation, we then find that the solutions of the adjoint equation

decay in time with definite rates in the homogeneous Hölder spaces Cβ,

0 < β < 1, if the corresponding initial data belong to the space BMO of

functions of bounded mean oscillation. These decay properties will then be

applied in Sections 4 and 6 to show that a stationary flow w is stable under

H1-perturbations provided that the norm ‖w‖ + ‖∇w‖ is suitably small,

and that the perturbations decay in time in H1
σ with definite rates if the

initial data satisfy some additional condition.

To discuss the stability under perturbations belonging to L1, we have

to assume (1.5) instead of (1.3). Assuming (1.5), we discuss the linearized

problem in Section 5, prior to the discussion on stability for the nonlinear

problem. Applying again the Hardy space techniques, we show that if the

Lorentz norm ‖w‖(n,1) + ‖∇w‖(n/2,1) is small, then any solutions of the

linearized equation tend to zero in the Lebesgue space L1
σ of solenoidal

vector fields. Since condition (1.5) is stronger than (1.3), all the results

obtained in Section 3 are also valid in this case ; thus we can apply the same

Hardy space techniques as in Section 3 to deduce definite decay rates for
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solutions of the adjoint of the linearized problem, and this decay result is

then applied to get the desired stability results for the nonlinear problem in

the space L1
σ.

As mentioned above, we cannot deduce an L1 decay rate of the form

O(t−1/2) under the assumption (1.3) or (1.5). To see the situation more

closely, we study in Section 7 the perturbations of stationary flows satisfying

‖w‖ <
n− 2

2
, w ∈ L2(�n).(1.7)

We note that such flows w exist. A simple example is given by flows satisfy-

ing (1.2) with � = n and n ≥ 5. On the other hand, condition (1.6) implies

w ∈ L2, while the existence proof of [4, 19] gives stationary flows satisfying

(1.3). It is easy to see that these two kinds of flows coincide provided that

F is smooth, compactly supported and small in an appropriate sense. In

Section 7 we shall show that if w satisfies (1.7), then there exist weak solu-

tions of the perturbation equations which decay in L1
σ like t−1/2. It should

be noticed that in this section we impose no assumptions on the derivatives

∇w, although we invoke the very strong condition : w ∈ L2. The main tools

of the proof are the bootstrap argument developed in [2, 3, 4, 11, 22, 23] for

deducing L2 decay rates and the fact that the first derivatives of the heat

kernel belong to the Hardy space H1(�n), with norm ≤ Ct−1/2. Our L2

decay result given in Section 7 is just a part of the more general result of

Grunau [9]. Contrary to the treatment in the preceding sections, we need

no detailed analysis of the linearized operator. Section 7 is merely intended

to give a special case where perturbations decay in L1
σ like t−1/2, and no

generality is aimed at on conditions for w which ensure the same L1 decay

result.

2. A Result on Decay Properties of Stationary Flows

Hereafter Lpw(�n), 0 < p < ∞, denotes the space of measurable functions

f on �n satisfying

‖f‖p,w ≡ sup
t>0

t|{x : |f(x)| > t}|1/p < +∞

with |E| the n-dimensional Lebesgue measure of a measurable set E, and

Lp
w denotes the Lpw space of vector-valued functions.
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As stated in the Introduction, this section estabilshes the following

Theorem 2.1. Let F = (Fjk)
n
j,k=1 be smooth, bounded and belong to

L1(�n), and let w be a solution of problem (S) satisfying (1.1), i.e.,

(1.1) w ∈ Ln(�n) ∩L∞(�n), ∇w ∈ Ln/2(�n) ∩L∞(�n).

Then w satisfies (1.6), i.e.,

(1.6) w ∈ Ln/(n−1)
w (�n) ∩L∞(�n), ∇w ∈ L1

w(�n) ∩L∞(�n).

Remarks. (i) The existence of w satisfying (1.1) is shown in [17]

under the assumption that the function F is small in Ln/2, n ≥ 3. It is

also proved in [17] that if n = 3, then under the assumption of Theorem 2.1

stated above, (1.1) implies (1.6). In what follows we show that the argument

of [17] can be applied in all space dimensions n ≥ 3.

(ii) The method of proof stated below stems from the recent studies

on the exterior stationary problem in �n, n ≥ 3, as given in [4, 13]. When

n = 3, the properties (1.2) and (1.2′) are known to be optimal for exterior

stationary flows ; and moreover, one can show that property (1.1) implies

(1.6). This last result can be proved in the same way as stated below, and

the result itself improves [4, Theorem 2.5 (ii)]. The details are given in [18].

Proof of Theorem 2.1. We first note that (1.1) implies that the

velocity w and the associated pressure p are smooth on �n. This is easily

deduced by the standard bootstrap argument based on the a-priori estimates

for the linear Stokes system. Moreover, one also sees immediately that if

(1.1) is valid, then w is written as the convolution integral :

w = E · (∇ · F −w · ∇w) = (∇E) · (F −w ⊗w)(2.1)

by means of the Stokes fundamental solution tensor E = (Ejk)
n
j,k=1 with

components

Ejk(x) =
1

2ωn

(
δjk

n− 2
|x|2−n +

xjxk
|x|n

)
.(2.2)
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Here ωn is the area of the unit sphere {|x| = 1}. An associated pressure p

is given by

p = Q · (∇ · F −w · ∇w)

in terms of the vector function Q = (Qj)
n
j=1 such that

Qj(x) =
xj

ωn|x|n
.(2.3)

More generally, for any fixed R > 0, Green’s theorem applies to the domain

ΩR = {|x| > R} under our assumptions on w, and we get for x ∈ ΩR,

w(x) = (∇E) · (F̃ − w̃ ⊗ w̃) + w0,(2.4)

where F̃ = F in ΩR and F̃ = 0 outside ΩR, and

w0 =

∫
|y|=R

E · (T [w, p] −w ⊗w + F ) · νdSy +

∫
|y|=R

w · T [E,Q] · νdSy.

Here, ν is the unit outward normal to ∂ΩR = {|x| = R}, and T [w, p] =

(Tjk[w, p])nj,k=1, with

Tjk[w, p] = −δjkp + ∂jwk + ∂kwj .

Now, the first equation of (S) is written as

∇ · (T [w, p] −w ⊗w + F ) = 0

and so applying the divergence theorem in the bounded domain {|x| < R}
yields ∫

|y|=R
(T [w, p] −w ⊗w + F ) · νdSy = 0.(2.5)

Therefore, w0 is written as

w0 =

∫
|y|=R

Ẽ · (T [w, p] −w ⊗w + F ) · νdSy(2.6)

+

∫
|y|=R

w · T [E,Q] · νdSy,

where

Ẽ(x, y) = E(x− y) − E(x) =

∫ 1

0

d

dt
E(x− ty)dt.
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Since |Ẽ(x, y)| ≤ C|x|1−n and |∇xẼ(x, y)| ≤ C|x|−n for large |x| uni-

formly in y ∈ ∂ΩR, and since the same estimates hold also for T [E,Q]

and ∇xT [E,Q], it follows from (2.6) that

|w0(x)| = O(|x|1−n) and |∇w0(x)| = O(|x|−n) as |x| → ∞.

Hence,

w0 ∈ Ln/(n−1)
w (ΩR) ∩L∞(ΩR), ∇w0 ∈ L1

w(ΩR) ∩L∞(ΩR).(2.7)

Now, fix n/(n − 1) < r < n, take a large R > 0 to be fixed later, and

consider the linear iteration scheme in ΩR :

vk+1 = (∇E) · (F̃ −w̃⊗ ṽk)+w0, v0 = w0, (k = 0, 1, 2, . . .).(2.8)

Applying the Hardy–Littlewood–Sobolev inequality [25, 26], we get from

(2.7) and (2.8)

‖vk+1‖r,ΩR
≤ ‖w0‖r,ΩR

+ Cr,n(‖F ‖rn/(r+n),ΩR
+ ‖w‖n,ΩR

‖vk‖r,ΩR
),

‖vk+1‖n,ΩR
≤ ‖w0‖n,ΩR

+ Cn,n(‖F ‖n/2,ΩR
+ ‖w‖n,ΩR

‖vk‖n,ΩR
),

and

‖vk+1 − vk‖r,ΩR
≤ Cr,n‖w‖n,ΩR

‖vk − vk−1‖r,ΩR
,

‖vk+1 − vk‖n,ΩR
≤ Cn,n‖w‖n,ΩR

‖vk − vk−1‖n,ΩR
.

Here ‖ · ‖q,ΩR
is the norm of Lq(ΩR). Since Cr,n and Cn,n are independent

of R > 0, we can take R > 0 satisfying

Cr,n‖w‖n,ΩR
≤ 1/2 and Cn,n‖w‖n,ΩR

≤ 1/2,

and see that the sequence {vk} converges in Lr(ΩR)∩Ln(ΩR) to a function

v satisfying

v = (∇E) · (F̃ − w̃ ⊗ ṽ) + w0 in ΩR.

Subtracting this from (2.4), we have

‖w − v‖n,ΩR
≤ 1

2
‖w − v‖n,ΩR

,
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and so v = w in ΩR. Since n/(n− 1) < r < n was arbitrary and since w is

bounded in �n, we conclude that w is in Lr(�n) for all r with n/(n− 1) <

r ≤ ∞.

Now, we see that w ⊗w ∈ L1(�n) ; so the Hardy–Littlewood–Sobolev

inequality as applied to L1 functions [25] gives

(∇E) · (F −w ⊗w) ∈ Ln/(n−1)
w (�n).

Furthermore, since ∇2E is a Calderón–Zygmund kernel [25], it follows that

(∇2E) · (F −w ⊗w) ∈ L1
w(�n).

Hence, w ∈ Ln/(n−1)
w (�n) and ∇w ∈ L1

w(�n) by (2.4) and (2.7). The proof

is complete. �

3. The Linearized Problem

We begin with an abstract formulation of our perturbation problem :

∂u

∂t
+ w · ∇u + u · ∇w + u · ∇u = ∆u−∇p (x ∈ �n, t > 0)

∇ · u = 0 (x ∈ �n, t ≥ 0)

u|t=0 = a, lim
|x|→∞

u = 0.

(3.1)

Let 1 < r < ∞. Using the Helmholtz decomposition

Lr(�n) = Lr
σ ⊕Lr

π,

with

Lr
σ = {v ∈ Lr(�n) : ∇ · v = 0}, Lr

π = {∇p ∈ Lr(�n) : p ∈ Lrloc(�
n)},

and the associated bounded projector P = Pr onto Lr
σ, we introduce the

operators

Au = −∆u and Bu = P (w · ∇u + u · ∇w) in Lr
σ.

The formal adjoint B∗ of B is given by

B∗u = −P (w · ∇u + (∇u) ·w),
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where (∇u) ·w is the vector field with components

((∇u) ·w)j = (∂ju) ·w (j = 1, · · · , n).

Note that B∗u does not involve the derivatives ∇w of w.

We next recall that the projector P is written in the form

Pu = (I + R⊗R) · u(3.2)

in terms of the Riesz transforms R = (R1, · · · , Rn) defined via the Fourier

transform as

R̂jf(ξ) ≡
∫

e−ix·ξ(Rjf)(x)dx =
iξj
|ξ| f̂(ξ) (i =

√
−1, j = 1, · · · , n).

Since each Rj is bounded on the Hardy space H1(�n) (see [25]), in view of

(3.2) we can deduce the Helmholtz decomposition of H1(�n) :

H1(�n) = H1
σ ⊕H1

π(3.3)

with

H1
σ = {v ∈ H1(�n) : ∇ · v = 0}, H1

π = {∇p : p ∈ L(n/(n−1),1)(�n)}.

Here and hereafter L(p,q) is the Lorentz space [1]. We note that the space

C∞
0,σ(�

n) of compactly supported smooth solenoidal vector fields is dense

in Lr
σ and in H1

σ. See [17] for the case of H1
σ ; the case of Lr

σ is treated

similarly.

Using these spaces and the linear operator

L = A + B,(3.4)

we can formally write equation (3.1) in the form

du

dt
+ Lu + P (u · ∇u) = 0 (t > 0), u(0) = a.(3.5)

Problem (3.5) is then formally transformed into the integral equation

u(t) = e−tLa−
∫ t

0
e−(t−τ)LP (u · ∇u)(τ)dτ,(3.6)
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by employing the semigroup notation. As will be shown below, we can

define the bounded analytic C0 semigroup {e−tL}t≥0 generated by −L in

the spaces Lr
σ, 1 < r < ∞, and H1

σ.

Consider next the heat semigroup

(e−tAa)(x) =

∫
Et(x− y)a(y)dy, Et(x) = (4πt)−n/2e−|x|2/4t.

As is well known, {e−tA}t≥0 is bounded-analytic in Lr
σ, and for any fixed ω

with 0 < ω < π/2 there is a constant Cr,ω > 0 such that, for j = 0, 1, 2,

‖∇j(λ + A)−1u‖r ≤ Cr,ω‖u‖r/|λ|1−j/2 (|arg λ| ≤ π − ω),(3.7)

where ‖ ·‖r is the Lr-norm. Furthermore, we know (see [17]) that {e−tA}t≥0

is also bounded-analytic in H1
σ and there is a constant Cω > 0 such that,

for j = 0, 1, 2,

‖∇j(λ + A)−1u‖H1 ≤ Cω‖u‖H1/|λ|1−j/2 (|arg λ| ≤ π − ω).(3.8)

Lemma 3.1. Let w be a stationary flow satisfying (1.3), and so the

norms ‖w‖ and ‖∇w‖ defined in (1.4) are finite.

(i) For 1 < r < n and 0 < ω < π/2 there is a constant C = Cr,ω > 0

such that for j = 0, 1,

‖∇j(λ + A)−1Bu‖r ≤ C‖w‖ · ‖∇u‖r/|λ|(1−j)/2(3.9)

(|arg λ| ≤ π − ω).

(ii) For 1 < r < n we have the estimate

‖B∗u‖r ≤ C‖w‖ · ‖∇2u‖r.(3.10)

(iii) For n/(n− 1) < r < ∞ and 0 < ω < π/2 we have

‖(λ + A)−1Bu‖r ≤ C‖w‖ · ‖u‖r.(3.11)

(iv) We have

‖w · ∇u‖H1 ≤ C‖w‖ · ‖∇2u‖H1 ,(3.12)

‖u · ∇w‖H1 ≤ C‖∇w‖ · ‖∇2u‖H1 ,(3.13)
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and therefore

‖Bu‖H1 ≤ C(‖w‖ + ‖∇w‖)‖∇2u‖H1 .(3.14)

Proof. (i) First we show that∥∥∥∥ u

|x|

∥∥∥∥
r

≤ C‖∇u‖r (1 < r < n).(3.15)

Indeed, since |x|−1 ∈ Lnw(�n), the weak Hölder inequality as given in [4]

yields ∥∥∥∥ u

|x|

∥∥∥∥
r,w

≤ C‖u‖rn/(n−r),w ≤ C‖∇u‖r

whenever 1 < r < n. Estimate (3.15) now follows from the Marcinkiewicz

interpolation theorem [25]. Now we take an arbitrary ϕ ∈ C∞
0,σ, to obtain

for j = 0, 1,

|〈∇j(λ + A)−1Bu, ϕ〉| = |〈Bu, (λ + A)−1∇jϕ〉|
= |〈w · ∇u + u · ∇w, (λ + A)−1∇jϕ〉|
≤ |〈u,w · ∇(λ + A)−1∇jϕ〉|

+ |〈w,u · ∇(λ + A)−1∇jϕ〉|.

By (3.14) we see that

|〈u,w · ∇(λ + A)−1∇jϕ〉| ≤ ‖w‖ ·
∥∥∥∥ u

|x|

∥∥∥∥
r

‖∇(λ + A)−1∇jϕ‖r′

≤ C‖w‖ · ‖∇u‖r‖∇1+j(λ + A)−1ϕ‖r′
≤ C‖w‖ · ‖∇u‖r‖ϕ‖r′/|λ|(1−j)/2

where 1/r′ = 1 − 1/r. Similarly we get

|〈w,u · ∇(λ + A)−1∇jϕ〉| ≤ C‖w‖ · ‖∇u‖r‖ϕ‖r′/|λ|(1−j)/2.

Hence

|〈∇j(λ + A)−1Bu, ϕ〉| ≤ C‖w‖ · ‖∇u‖r‖ϕ‖r′/|λ|(1−j)/2,

and this proves (3.9).
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(ii) By definition of B∗ and (3.15) we easily obtain

‖B∗u‖r ≤ C‖w‖ ·
∥∥∥∥∇u

|x|

∥∥∥∥
r

≤ C‖w‖ · ‖∇2u‖r (1 < r < n),

which proves (3.10).

(iii) Estimate (3.10) implies that if 1 < r < n, then

‖B∗(λ + A)−1u‖r ≤ C‖w‖ · ‖∇2(λ + A)−1u‖r ≤ C‖w‖ · ‖u‖r.

Estimate (3.11) is now obtained by duality.

(iv) Estimate (3.14) is obtained by combining (3.12) and (3.13) with

the boundedness of the projector P on H1. So we need only prove (3.12)

and (3.13). To do this, it suffices to prove the following estimates (3.16)

and (3.17), which are essentially due to [5] :

‖w · ∇u‖H1 ≤ C‖w‖ · ‖∇u‖(n/(n−1),1),(3.16)

‖u · ∇w‖H1 ≤ C‖∇w‖ · ‖u‖(n/(n−2),1).(3.17)

(Here and in what follows ‖ · ‖(p,q) is the L(p,q)-norm.) Estimates (3.12) and

(3.13) are then deduced via the Sobolev inequalities ([6, 10, 15]) :

‖∇u‖(n/(n−1),1) ≤ C‖∇2u‖H1 , ‖u‖(n/(n−2),1) ≤ C‖∇2u‖H1 .(3.18)

We shall prove only (3.16) ; (3.17) is proved similarly. Let ϕ ∈ C∞
c (�n) be

supported in the unit ball {|x| ≤ 1} and satisfy
∫
ϕdx = 1. Since ∇·w = 0,

we have w · ∇u = ∇ · (w ⊗ (u− c)) for any constant vector c. Integration

by parts thus gives

(ϕt ∗ (w · ∇u))(x) =
1

tn+1

∫
(∇ϕ)((x− y)/t) [w(y) ⊗ (u(y) − ut)] dy

where ut = |Bt(x)|−1
∫
Bt(x) u(y)dy is the average of u over the open ball

Bt(x) with radius t centered at x. We take α > 0 and β > 0 so that

1/α + 1/β = 1 + 1/n and 1/β∗ ≡ 1/β − 1/n > 0,

and apply the Hölder and the Poincaré-Sobolev inequalities, to get

|(ϕt ∗ (w · ∇u))(x)| ≤ C

tn+1

∫
Bt(x)

|w(y)| · |u(y) − ut|dy
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≤ C

tn+1

(∫
Bt(x)

|w|αdy
)1/α

·
(∫

Bt(x)
|u− ut|β

∗
dy

)1/β∗

≤ C

(
1

|Bt|

∫
Bt(x)

|w|αdy
)1/α

·
(

1

|Bt|

∫
Bt(x)

|∇u|βdy
)1/β

≤ C‖w‖M(|y|−α)1/αM(|∇u|β)1/β

where M(|f |) stands for the Hardy–Littlewood maximal function of |f |
([25, 26]). Now we fix α and β such that 1 < α < n and 1 < β < n/(n− 1),

and apply the duality relation :

‖M(|y|−α)1/αM(|∇u|β)1/β‖1

≤ ‖M(|y|−α)1/α‖n,w‖M(|∇u|β)1/β‖(n/(n−1),1).

Since ‖M(|y|−α)1/α‖n,w < +∞ and since ‖M(|∇u|β)1/β‖(n/(n−1),1) ≤
C‖∇u‖(n/(n−1),1) by the Hardy–Littlewood maximal theorem ([25, 26]), we

get sup
t>0

|ϕt ∗ (w · ∇u)| ∈ L1 and

‖w · ∇u‖H1 ≡
∥∥∥∥sup
t>0

|ϕt ∗ (w · ∇u)|
∥∥∥∥
1

≤ C‖w‖ · ‖∇u‖(n/(n−1),1).

This proves (3.16). �

Remarks. (i) When w satisfies (1.1), one can show that if 1 < r < n,

then

‖∇j(λ + A)−1Bu‖r ≤ C‖w‖n‖∇u‖r/|λ|(1−j)/2 (|arg λ| ≤ π − ω)

for j = 0, 1, and

‖B∗u‖r ≤ C‖w‖n‖∇2u‖r.
It is also easy to show that if n/(n− 1) < r < ∞, then

‖(λ + A)−1Bu‖r ≤ C‖w‖n‖u‖r.
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These are all easy exercises of the Hölder and Sobolev inequalities and du-

ality argument.

(ii) One can also show that

‖w · ∇u‖H1 ≤ C‖w‖n‖∇2u‖H1 , ‖u · ∇w‖H1 ≤ C‖∇w‖n/2‖∇2u‖H1 .

Indeed, for instance the first estimate is deduced via (3.17) if we show

‖w · ∇u‖H1 ≤ C‖w‖n‖∇u‖(n/(n−1),1).

To deduce this last estimate we proceed as in the proof of (3.15) to get

|ϕt ∗ (w · ∇u)| ≤ CM(|w|α)1/αM(|∇u|β)1/β .

Applying the Hölder and the maximal inequalities, we obtain

‖M(|w|α)1/αM(|∇u|β)1/β‖1

≤ C‖M(|w|α)1/α‖n‖M(|∇u|β)1/β‖n/(n−1)

≤ C‖w‖n‖∇u‖n/(n−1) ≤ C‖w‖n‖∇u‖(n/(n−1),1).

We thus conclude that Lemma 3.1 is also valid in this case even if we replace

‖w‖ and ‖∇w‖ by ‖w‖n and ‖∇w‖n/2, respectively.

(iii) In (i) and (ii) above, one can also replace condition (1.3) with

(1.2′). In the case of (i), the details are given in [4]. For (ii), we have only

to apply the duality relation ([1]) :

‖fg‖1 ≤ ‖f‖p′,w‖g‖(p,1) (1 < p < ∞, p′ = p/(p− 1)),(3.19)

in deducing assertions corresponding to Lemma 3.1 (iii).

Lemma 3.2. Let 1 < r < n and 0 < ω < π/2.

(i) There is a constant µ = µ(r, ω) > 0 such that if

‖w‖ ≤ µ,

then for all λ ∈ � \ 0 with |arg λ| ≤ π − ω, we have

‖∇j(λ + L)−1u‖r ≤ C‖u‖r/|λ|1−j/2 (j = 0, 1)

‖∇j(λ + L∗)−1u‖r ≤ C‖u‖r/|λ|1−j/2 (j = 0, 1, 2).
(3.20)
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(ii) There is a constant µ′ = µ′(ω) > 0 such that if

‖w‖ + ‖∇w‖ ≤ µ′

then for all λ ∈ � \ 0 with |arg λ| ≤ π − ω, we have

‖∇j(λ + L)−1u‖H1 ≤ C‖u‖H1/|λ|1−j/2 (j = 0, 1, 2).(3.21)

(iii) Let 1 < r < ∞. There is a constant µ′′ = µ′′(r, ω) > 0 such that if

‖w‖ ≤ µ′′,

then for all λ ∈ � \ 0 with |arg λ| ≤ π − ω, we have

‖(λ + L)−1u‖r ≤ C‖u‖r/|λ|
‖(λ + L∗)−1u‖r ≤ C‖u‖r/|λ|.

(3.22)

(iv) Under the assumption of (ii), the operator L is injective on H1
σ.

Proof. (i) We prove (3.20) with the aid of the (formal) expansions

∇j(λ + L)−1 = ∇j(λ + A)−1
∞∑
k=0

[−B(λ + A)−1]k

= ∇j
∞∑
k=0

[−(λ + A)−1B]k(λ + A)−1 (j = 0, 1),

∇j(λ + L∗)−1 = ∇j(λ + A)−1
∞∑
k=0

[−B∗(λ + A)−1]k (j = 0, 1, 2).

(3.23)

Assuming that ‖w‖ is small, we see from (3.9) that

‖∇j(λ + L)−1u‖r ≤
( ∞∑
k=0

[C‖w‖]k
)
|λ|(j−1)/2‖∇(λ + A)−1u‖r

≤
( ∞∑
k=0

[C‖w‖]k
)
‖u‖r|λ|−1+j/2

= C‖u‖r/|λ|1−j/2

which shows (3.20) for L. To deduce (3.20) for L∗, we note that

‖B∗(λ + A)−1u‖r ≤ C‖w‖ · ‖∇2(λ + A)−1u‖r ≤ C‖w‖ · ‖u‖r.
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Thus, if ‖w‖ is sufficiently small, we see from (3.23) that

‖∇j(λ + L∗)−1u‖r ≤ ‖∇j(λ + A)−1‖ ·
( ∞∑
k=0

[C‖w‖]k
)
‖u‖r

≤ C‖u‖r/|λ|1−j/2

for j = 0, 1, 2. This proves (i).

(ii) We again invoke (3.23) to see that for j = 0, 1, 2,

‖∇j(λ + L)−1u‖H1

≤ ‖∇j(λ + A)−1‖
( ∞∑
k=0

[C(‖w‖ + ‖∇w‖)]k
)
‖∇2(λ + A)−1u‖H1

≤ C‖u‖H1/|λ|1−j/2.

This proves (ii).

(iii) From (i) we obtain

‖(λ + L)−1u‖r ≤ C‖u‖r/|λ| (1 < r < n)(3.24)

and

‖(λ + L∗)−1u‖r ≤ C‖u‖r/|λ| (1 < r < n).(3.25)

Applying a duality argument to (3.25) gives

‖(λ + L)−1u‖r ≤ C‖u‖r/|λ| (n/(n− 1) < r < ∞).(3.26)

Since n/(n−1) < n because n ≥ 3, the result follows from (3.24) and (3.26).

(iv) From (3.21) with j = 2 we get

C1‖∇2u‖H1 ≤ ‖Lu‖H1 ≤ C2‖∇2u‖H1 for all u ∈ D(L).

The injectivity of L then follows immediately. The proof is complete. �

Lemmas 3.1 and 3.2 can be refined into a form which involves some

Hp-norms, 0 < p < 1.

Lemma 3.3. Let n/(n + 1) < p < 1. Then we have

‖w · ∇u‖Hp ≤ C‖w‖ · ‖∇2u‖Hp ,

‖u · ∇w‖Hp ≤ C‖∇w‖ · ‖∇2u‖Hp
(3.27)
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and therefore

‖Bu‖Hp ≤ C(‖w‖p + ‖∇w‖p)1/p‖∇2u‖Hp .(3.28)

Proof. As in the proof of Lemma 3.1, we use

sup
t>0

|ϕt ∗ (w · ∇u)| ≤ C‖w‖M(|y|−α)1/αM(|∇u|β)1/β

where

0 < α < n, 0 < β <
pn

n− p
, and

1

α
+

1

β
= 1 +

1

n
.

To estimate the right-hand side, we apply the duality relation (3.19) and

the fact that

‖f‖t(p,q) = ‖ |f |t‖(p/t,q/t), (0 < p < ∞, 0 < q ≤ ∞, 0 < t < ∞),

which is easily deduced from the definition of the Lorentz-norms (note that

‖ · ‖p,w = ‖ · ‖(p,∞)). We then obtain

‖M(|y|−α)1/αM(|∇u|β)1/β‖p
≤ ‖M(|y|−α)1/α)‖n,w‖M(|∇u|β)1/β‖(pn/(n−p),p)
≤ C‖∇u‖(pn/(n−p),p).

The first estimate of (3.27) now follows from the Sobolev inequality

([6, 10, 15])

‖∇u‖(pn/(n−p),p) ≤ C‖∇2u‖Hp .

The second estimate is deduced similarly. Finally, (3.28) immediately fol-

lows from (3.27), the boundedness of P on Hp(�n) and the fact that ‖ · ‖pHp

satisfies the triangle inequality. The proof is complete. �

Lemma 3.4. Let n/(n + 1) < p < 1 and 0 < ω < π/2. Then there is a

constant c > 0 such that if

‖w‖ + ‖∇w‖ ≤ c,

then

‖(λ + L)−1u‖H1 ≤ C‖u‖Hp/|λ|1−n(1/p−1)/2(3.29)

(|arg λ| ≤ π − ω).
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Proof. We apply the Mikhlin multiplier theorem [21; 25, p. 237] in Hp

spaces to see that

‖An(1/p−1)/2(eiθ + A)−1u‖Hp ≤ Cω‖u‖Hp

for all θ with |θ| ≤ π − ω. Substituting ut(x) = u(x/
√
t) in the above

estimate and writing λ = teiθ, we obtain

‖An(1/p−1)/2(λ + A)−1u‖Hp ≤ C‖u‖Hp/|λ|1−n(1/p−1)/2.

Applying the Hardy–Littlewood–Sobolev inequality ([6, 10, 15]), we obtain

‖(λ + A)−1u‖H1 ≤ C‖An(1/p−1)/2(λ + A)−1u‖Hp(3.30)

≤ C‖u‖Hp/|λ|1−n(1/p−1)/2.

Similarly, we have

‖∇j(λ + A)−1u‖Hp ≤ C‖u‖Hp/|λ|1−j/2(3.31)

(|arg λ| ≤ π − ω, j = 0, 1, 2).

The result is obtained from (3.28), (3.30) and (3.31), via the expansion

(3.23), as follows :

‖(λ + L)−1u‖H1 ≤
∞∑
k=0

‖(λ + A)−1[−B(λ + A)−1]ku‖H1

≤ C|λ|n(1/p−1)/2−1
∞∑
k=0

‖[B(λ + A)−1]ku‖Hp

≤ C|λ|n(1/p−1)/2−1

·
( ∞∑
k=0

[C(‖w‖p + ‖∇w‖p)1/p]k
)
‖∇2(λ + A)−1u‖Hp

≤ C‖u‖Hp/|λ|1−n(1/p−1)/2.

The proof is complete. �

To state the next result, we recall that (see [26, 28]) the space VMO is

defined to be the closure of C∞
c (�n) in the space BMO, and that we have

the duality relations [7, 26, 28] :

H1(�n)∗ = BMO, (VMO)∗ = H1(�n).
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Here and hereafter we write the quotient Banach space BMO/�n simply

as BMO ; so the (vector-valued) BMO functions f and g are identified if

and only if f − g is a constant vector. The operator P then defines a

bounded projector on both BMO and VMO, and so in particular we have

the Helmholtz decompositon ([17]) :

VMO = VMOσ ⊕ VMOπ

with

VMOσ = {u ∈ VMO : ∇ · u = 0}, VMOπ = {∇p ∈ VMO : p ∈ C1
0}.

Here Cα denotes the homogeneous Hölder–Zygmund space of order α ([28])

and Cα0 is the Cα-closure of C∞
c (�n). Furthermore, C∞

0,σ(�
n) is dense in

VMOσ ([17]), and we have

H1
σ = (VMOσ)

∗, H1
π = (VMOπ)

∗.(3.32)

On the other hand, it is true that

(H1
σ)

∗ = BMOσ = {u ∈ BMO : ∇ · u = 0},
(H1

π)
∗ = BMOπ = {∇p ∈ BMO : p ∈ C1},

but C∞
0,σ(�

n) is not dense in BMOσ.

Combining Lemmas 3.2–3.4 and the above duality results with the stan-

dard semigroup theory, we easily obtain

Corollary 3.5. (i) For each 1 < r < n there is a constant cr =

cr(n) > 0 such that if

‖w‖ ≤ cr,

then both {e−tL}t≥0 and {e−tL∗}t≥0 define bounded analytic C0 semigroups

on Lr
σ and we have

‖∇je−tLa‖r ≤ Ct−j/2‖a‖r (j = 0, 1),

‖∇je−tL
∗
a‖r ≤ Ct−j/2‖a‖r (j = 0, 1, 2).

(ii) For each 1 < r < ∞ there is a constant c′r = c′r(n) > 0 such that if

‖w‖ ≤ c′r,
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then both {e−tL}t≥0 and {e−tL∗}t≥0 define bounded analytic C0 semigroups

on Lr
σ.

(iii) There is a constant cn > 0 such that if

‖w‖ + ‖∇w‖ ≤ cn,

then {e−tL}t≥0 and {e−tL∗}t≥0 define, respectively, bounded analytic C0

semigroups on H1
σ and VMOσ. Hence, we have

‖Le−tLa‖H1 ≤ Ct−1‖a‖H1 , ‖L∗e−tL
∗
a‖BMO ≤ Ct−1‖a‖BMO(3.33)

for all t > 0.

Furthermore, for n/(n + 1) < p < 1 there is a constant cp ≤ cn such that if

‖w‖ + ‖∇w‖ ≤ cp,

then

‖e−tLa‖H1 ≤ Ct−n(1/p−1)/2‖a‖Hp .(3.34)

(iv) Under the assumption of (iii), we have

‖∇je−tLa‖H1 ≤ Ct−j/2‖a‖H1 for j = 0, 1, 2.(3.35)

See [20, 27] for basic results on the theory of analytic semigroups. We

here notice only that the operators e−tL and e−tL
∗

are defined, respectively,

by the Dunford integrals :

e−tL =
1

2πi

∫
Γ
etλ(λ + L)−1dλ, e−tL

∗
=

1

2πi

∫
Γ
etλ(λ + L∗)−1dλ.(3.36)

Here, the path of integration Γ = Γ+ ∪ Γ0 ∪ Γ− is defined by

Γ± = {re±iθ : t−1 ≤ r < ∞}, Γ0 = {t−1eiϕ : −θ ≤ ϕ ≤ θ},

for an arbitrarily fixed θ such that π/2 < θ < π − ω. Assertions (i) and

(ii) are well known (see, e.g., [4]) and follow from Lemma 3.2 (i) and (iii),

respectively, via (3.36). For (iii), the strong continuity of the semigroups

{e−tL}t≥0 and {e−tL∗}t≥0 follows from the fact that the space C∞
0,σ(�

n) is

contained in D(L) and in D(L∗), respectively, and so D(L) is dense in H1
σ
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and D(L∗) is dense in VMOσ. Estimates (3.35) are deduced via (3.36) from

(3.21) ; and estimate (3.34) follows via (3.36) from (3.29).

Corollary 3.6. Under the assumption of Corollary 3.5 (iii), we have

lim
t→∞

‖e−tLa‖H1 = 0 for all a ∈ H1
σ.(3.37)

Proof. It suffices to show that the range R(L) of the operator L is

dense in H1
σ. Indeed, observe first that if a ∈ R(L) with a = Lb for some

b ∈ D(L), then (3.33) gives

‖e−tLa‖H1 = ‖Le−tLb‖H1 ≤ Ct−1‖b‖H1 → 0 as t → ∞.

Suppose next that R(L) is dense in H1
σ. For any a ∈ H1

σ and any ε > 0,

we can find b ∈ R(L) such that ‖a− b‖H1 < ε. Hence, estimate (3.35) with

j = 0 gives

‖e−tLa‖H1 ≤ ‖e−tLb‖H1 + ‖e−tL(a− b)‖H1

≤ ‖e−tLb‖H1 + C‖a− b‖H1 ≤ ‖e−tLb‖H1 + Cε

with C > 0 independent of ε > 0, and so

lim sup
t→∞

‖e−tLa‖H1 ≤ Cε.

Since ε > 0 was arbitrary, this proves (3.32).

To show R(L) = H1
σ, we recall that estimates (3.14) and (3.20) together

imply

C1‖∇2u‖H1 ≤ ‖Lu‖H1 ≤ C2‖∇2u‖H1 for u ∈ D(L).(3.38)

Let D̂ be the completion of D(L) in the norm ‖∇2u‖H1 . Then, we see by

an easy calculation using the Sobolev inequalities (3.18) as well as (3.38)

that

D̂ = {u ∈ L(n/(n−2),1)
σ : ∇u ∈ L(n/(n−1),1)

σ , ∇2u ∈ H1
σ}(3.39)

and (3.38) is valid for all u ∈ D̂. This implies that L defines an isomorhism

between the Banach space D̂ and a closed subspace of H1
σ. Thus, if L :
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D̂ → H1
σ is surjective, it follows that the range of the original operator L

is dense in H1
σ. Therefore, we need only show the solvability (in D̂) of the

equation

Lu = f ∈ H1
σ,(3.40)

assuming that w is sufficiently small. We rewrite (3.40) in the form

u = Tu ≡ A−1(f −Bu),

where A−1 stands for the convolution with the Stokes fundamental solution

tensor E = (Ejk) as given in (2.2). Since the Riesz transforms are bounded

on H1(�n), the operator ∇2A−1 is bounded from H1
σ to H1(�n). Thus,

direct calculation using (3.14) gives

‖∇2Tu‖H1 ≤ C3‖f‖H1 + C4(‖w‖ + ‖∇w‖)‖∇2u‖H1 ,

and so the affine map T is bounded from D̂ to itself. The same calculation

shows

‖∇2(Tu− Tv)‖H1 ≤ C4(‖w‖ + ‖∇w‖)‖∇2(u− v)‖H1 ,

and therefore T defines a contraction map on the space D̂ provided w

is sufficiently small. The solvability of (3.40) in D̂ is thus proved for all

f ∈ H1
σ. This proves Corollary 3.6. �

Corollary 3.7. Under the assumption of Corollary 3.6, we have

lim
t→∞

‖e−tL∗
a‖VMO = 0 for all a ∈ VMOσ.(3.41)

Furthermore, L∗ is injective on VMOσ.

Proof. The injectivity of L∗ follows by duality from the fact that

R(L) is dense in H1
σ. On the other hand, since

‖e−tL∗
L∗b‖VMO = ‖L∗e−tL

∗
b‖VMO ≤ Ct−1‖b‖VMO → 0 as t → ∞,

it suffices to show that R(L∗) is dense in VMOσ in order to deduce (3.41).

To see this density property, suppose that a ∈ H1
σ = (VMOσ)

∗ satisfies

〈a, L∗b〉 = 0 for all b ∈ D(L∗).
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Then, for all b ∈ D(L∗) we have

0 = 〈a, L∗(I + L∗)−1b〉 = 〈a, (I + L∗)−1L∗b〉 = 〈(I + L)−1a, L∗b〉.

Since (I + L)−1a is in D(L), we get L(I + L)−1a = 0. The injectivity of L

then implies (I +L)−1a = 0, and so a = 0. Thus, R(L∗) is dense in VMOσ

by the Hahn–Banach theorem. The proof is complete. �

We conclude this section with the following, which is obtained from

Corollary 3.5 via the Sobolev embedding, duality, complex interpolation

and the semigroup property.

Corollary 3.8. (i) For 1 ≤ r < ∞ there is a constant c > 0 such

that if

‖w‖ + ‖∇w‖ ≤ c,

then we have the following : When 1 < r < ∞, both {e−tL}t≥0 and

{e−tL∗}t≥0 define bounded analytic C0 semigroups on Lr
σ. If r = 1, then

{e−tL}t≥0 and {e−tL∗}t≥0 define bounded analytic C0 semigroups on H1
σ

and VMOσ, respectively.

(ii) For 1 < r ≤ q < ∞ there is a constant c′ > 0 such that if

‖w‖ ≤ c′,

then
‖e−tLa‖q ≤ Ct−(n/r−n/q)/2‖a‖r
‖e−tL∗

a‖q ≤ Ct−(n/r−n/q)/2‖a‖r.

(iii) The estimate in (ii) for {e−tL}t≥0 holds for r = 1 if we replace

‖ · ‖r by ‖ · ‖H1.

(iv) For 1 < r < ∞ there is a constant c′′ > 0 such that if

‖w‖ + ‖∇w‖ ≤ c′′,

then

‖e−tL∗
a‖BMO ≤ Ct−n/2r‖a‖r.

This estimate holds for r = 1 if we replace ‖ · ‖r by ‖ · ‖H1.
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Remarks. (i) Using Corollary 3.8 and the fact that C∞
0,σ(�

n) is

dense in Lr
σ for all 1 < r < ∞, we see that if ‖w‖ is sufficiently small

depending on r, then

lim
t→∞

‖e−tLa‖r = 0 for all a ∈ Lr
σ and 1 < r < ∞.(3.42)

The same is true of the operator L∗. Consequently, the operators L and L∗

are both injective and have dense ranges in all Lr
σ. Indeed, if La = 0 or

L∗a = 0, then e−tLa = a or e−tL
∗
a = a ; and so

‖a‖r = lim
t→∞

‖e−tLa‖r = 0 or ‖a‖r = lim
t→∞

‖e−tL∗
a‖r = 0.

Hence, L and L∗ are both injective, and so by duality they have dense

ranges.

(ii) All the results of this section remain valid if we replace (1.3) with

(1.1) or (1.2′). Indeed, the whole results are based on Lemmas 3.1 and

3.3 ; and the conclusions of these lemmas remain valid if we replace ‖w‖
and ‖∇w‖ by ‖w‖n,w and ‖∇w‖n/2,w, respectively. This fact will be freely

used in Section 5 in discussing L1 stability of stationary flows w satisfying

condition (1.5), which is clearly stronger than (1.2′).
(iii) Obviously, we need no assumptions on the size of the derivatives

∇w to deduce Corollary 3.8 (i) for 1 < r < ∞.

4. Stability in H1
σ

We first introduce the standard notion of weak solution of problem (3.6),

which is essentially due to Masuda [16]. Let a ∈ L2
σ. A weakly continuous

function u : [0,∞) → L2
σ is called a weak solution of problem (3.6) if

u(0) = a ; u ∈ L∞(0, T : L2
σ) and ∇u ∈ L2(0, T : L2)

for all 0 < T < ∞; and if the identity

〈u(t), ϕ(t)〉 − 〈u(s), ϕ(s)〉 +

∫ t

s
〈∇u,∇ϕ〉dτ

=

∫ t

s
〈u, ϕ′〉dτ −

∫ t

s
〈Bu + u · ∇u, ϕ〉dτ

(4.1)

holds for all 0 ≤ s ≤ t and all ϕ such that

ϕ ∈ C1([s, t] : L2
σ) ∩C([s, t] : Ln

σ) and ∇ϕ ∈ C([s, t] : L2).
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The condition ϕ ∈ Ln
σ is needed in the case n ≥ 5 for the nonlinear term in

(4.1) to make sense. The existence of a global-in-time weak solution for an

arbitrary a ∈ L2
σ is now well known. But, the uniqueness and the regularity

of weak solutions still remain open.

In this section we shall prove the following, which is one of the main

results of this paper.

Theorem 4.1. There is a constant � > 0 such that if

‖w‖ + ‖∇w‖ ≤ �,(4.2)

then for each a ∈ H1
σ ∩L2

σ there is a weak solution u of (3.6) satisfying

u(t) ∈ H1
σ for all t ≥ 0,(4.3)

and

lim
t→∞

‖u(t)‖H1 = 0.(4.4)

Proof. Given an a ∈ L2
σ, the approximation method as given in

[11, 22, 23] provides a weak solution u satisfying the energy inequality

(E) ‖u(t)‖2
2 + 2

∫ t

0
(‖∇u‖2

2 + 〈u · ∇w,u〉)dτ ≤ ‖a‖2
2 for all t ≥ 0.

The Poincaré–Sobolev inequality∥∥∥∥ u

|x|

∥∥∥∥
2

≤ 2

n− 2
‖∇u‖2

implies

|〈u · ∇w,u〉| = |〈w,u · ∇u〉| ≤ ‖w‖ · ‖∇u‖2

∥∥∥∥ u

|x|

∥∥∥∥
2

≤ 2

n− 2
‖w‖ · ‖∇u‖2

2,

and so we have

‖∇u‖2
2 + 〈u · ∇w,u〉 ≥

(
1 − 2

n− 2
‖w‖

)
‖∇u‖2

2.

Therefore, if ‖w‖ < (n− 2)/2, then the energy inequality (E) gives

‖u(t)‖2 ≤ ‖a‖2,

∫ ∞

0
‖∇u‖2

2dτ ≤ C‖a‖2
2.(4.5)
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On the other hand, if a ∈ L2
σ ∩H1

σ, then Corollary 3.8 gives

‖e−tLa‖2 ≤ Ct−n/4‖a‖H1 .

Furthermore, denoting by Eλ the spectral measure associated to the positive

self-adjoint operator A in L2
σ, we see by Corollary 3.8 that

‖e−tL∗
Eλv‖BMO ≤ Ct−1/2‖Eλv‖n

≤ Ct−1/2‖A(n−2)/4Eλv‖2 ≤ Ct−1/2λ(n−2)/4‖v‖2,

and so

|〈Eλe
−(t−τ)LP (u · ∇u), ψ〉| = |〈u · ∇u, e−(t−τ)L∗

Eλψ〉|
≤ C‖u · ∇u‖H1‖e−(t−τ)L∗

Eλψ‖BMO

≤ C(t− τ)−1/2λ(n−2)/4‖u‖2‖∇u‖2‖ψ‖2

for ψ ∈ C∞
0,σ(�

n). Here we have applied the following estimate, due to [5] :

‖u · ∇u‖H1 ≤ C‖u‖2‖∇u‖2.

Since (L2
σ)

∗ = L2
σ, we thus obtain

‖Eλe
−(t−τ)LP (u · ∇u)‖2 ≤ C(t− τ)−1/2λ(n−2)/4‖u‖2‖∇u‖2.

Therefore, the argument in [3] shows that if w is sufficiently small in the

sense of (4.2), then for any a ∈ L2
σ∩H1

σ there is a weak solution u satisfying

energy inequality (E) such that

‖u(t)‖2 ≤ C(1 + t)−n/4.(4.6)

A detailed proof of (4.6) will be given also in Section 6. We will now show

that this solution u satisfies (4.3) and (4.4). By the definition of weak

solution we have

〈u(t), ψ〉 = 〈e−(t−s)Lu(s), ψ〉 −
∫ t

s
〈u · ∇u, e−(t−τ)L∗

ψ〉dτ

for all ψ ∈ C∞
0,σ(�

n) and 0 ≤ s ≤ t. This is easily derived by setting

ϕ(τ) = e−(t−τ)L∗
ψ in (4.1). Due to the boundedness of the semigroup

{e−tL∗}t≥0 on VMOσ, we see that

|〈u(t), ψ〉| ≤
(
‖e−(t−s)Lu(s)‖H1 +

∫ t

s
‖u · ∇u‖H1dτ

)
‖ψ‖VMO

≤
(
‖e−(t−s)Lu(s)‖H1 + C

∫ t

s
‖u‖2‖∇u‖2dτ

)
‖ψ‖VMO.
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Since (VMOσ)
∗ = H1

σ and since C∞
0,σ(�

n) is dense in VMOσ, taking s = 0

we obtain

‖u(t)‖H1 ≤ ‖e−tLa‖H1 + C

∫ t

0
‖u‖2‖∇u‖2dτ

≤ ‖e−tLa‖H1 + C

(∫ t

0
‖u‖2

2dτ

)1/2 (∫ t

0
‖∇u‖2

2dτ

)1/2

< ∞,

and this proves (4.3).

We can now deduce (4.4). A similar estimate using (4.6) gives, for all

0 ≤ s ≤ t,

‖u(t)‖H1 ≤ ‖e−(t−s)Lu(s)‖H1 + C

(∫ t

s
‖u‖2

2dτ

)1/2 (∫ t

s
‖∇u‖2

2dτ

)1/2

≤ ‖e−(t−s)Lu(s)‖H1

+ C

(∫ ∞

0
(1 + τ)−n/2dτ

)1/2 (∫ ∞

s
‖∇u‖2

2dτ

)1/2

= ‖e−(t−s)Lu(s)‖H1 + C ′
(∫ ∞

s
‖∇u‖2

2dτ

)1/2

,

(4.7)

since n/2 > 1 (recall that n ≥ 3).

Now let ε > 0. By (4.5) there is an s > 0 so that the last term of (4.7)

is < ε. Hence,

‖u(t)‖H1 ≤ ‖e−(t−s)Lu(s)‖H1 + ε for all t with t > s.

Applying (3.31) thus gives

lim sup
t→∞

‖u(t)‖H1 ≤ lim
t→∞

‖e−(t−s)Lu(s)‖H1 + ε = ε.

Since ε > 0 was arbitrary, this proves (4.4). The proof is complete. �

5. Stability in L1
σ

In this section we consider the stationary flows w satisfying (1.5), i.e.,

w ∈ L(n,1)(�n) ∩L∞(�n), ∇w ∈ L(n/2,1)(�n) ∩L∞(�n),(5.1)

and show that w is stable under perturbations from the space

L1
σ = {u ∈ L1(�n) : ∇ · u = 0}
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provided ‖w‖(n,1)+‖∇w‖(n/2,1) is sufficiently small. Since L(r,q) ⊂ L(r,∞) =

Lr
w for all q ≤ ∞, and since the results of Section 3 are all valid with ‖w‖

and ‖∇w‖ replaced by ‖w‖n,w and ‖∇w‖n/2,w, respectively, we can freely

use the results of Section 3.

Although the idea of the proof is basically the same as that given in the

previous sections, we need some modifications of estimates given in Lemmas

3.1 and 3.3 in order to discuss the time-evolution of perturbations not in

H1
σ but in L1

σ. These modifications are given in the following, in which the

property (5.1) plays a decisive role.

Lemma 5.1. Let n/(n + 1) < p ≤ 1. Then we have the estimates

‖Bu‖1 ≤ C(‖w‖(n,1) + ‖∇w‖(n/2,1))‖Au‖1,

‖Bu‖Hp ≤ C(‖w‖p(n,1) + ‖∇w‖p(n/2,1))
1/p‖∇2u‖Hp .

(5.2)

Proof. To prove the first estimate, it suffices to show the following

two estimates

‖w · ∇u‖H1 ≤ C‖w‖(n,1)‖Au‖1,(5.3)

‖u · ∇w‖H1 ≤ C‖∇w‖(n/2,1)‖Au‖1.(5.4)

Indeed, (5.3), (5.4) and the boundedness of P on H1(�n) together imply

that

‖Bu‖1 ≤ C‖Bu‖H1 ≤ C(‖w · ∇u‖H1 + ‖u · ∇w‖H1)

≤ C(‖w‖(n,1) + ‖∇w‖(n/2,1))‖Au‖1,

and we get the first estimate of (5.2). To show (5.3), we proceed as in the

proof of Lemma 3.1 to get the estimate

|ϕt ∗ (w · ∇u)| ≤ CM(|w|α)1/αM(|∇u|β)1/β ,

where 0 < α < n, 0 < β < n/(n− 1), and 1/α + 1/β = 1 + 1/n. We apply

(3.19) to get

‖M(|w|α)1/αM(|∇u|β)1/β‖1 ≤ ‖M(|w|α)1/α‖(n,1)‖M(|∇u|β)1/β‖n/(n−1),w.
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Since

‖M(|w|α)1/α‖(n,1) ≤ C‖w‖(n,1) and

‖M(|∇u|β)1/β‖n/(n−1),w ≤ C‖∇u‖n/(n−1),w,

it follows that

‖w · ∇u‖H1 ≤ C‖w‖(n,1)‖∇u‖n/(n−1),w.

Estimate (5.3) now follows via the Sobolev inequality [25]

‖∇u‖n/(n−1),w ≤ C‖Au‖1.

Estimate (5.4) is similarly deduced with the aid of the Sobolev inequality

[25]

‖u‖n/(n−2),w ≤ C‖Au‖1.

Finally, the second estimate of (5.2) is obtained as in Section 3, since

‖u‖q,w ≤ ‖u‖(q,p) ≤ C‖∇2u‖Hp and

‖∇u‖r,w ≤ ‖∇u‖(r,p) ≤ C‖∇2u‖Hp

for 1/q = 1/p − 2/n and 1/r = 1/p − 1/n, respectively. The proof is

complete. �

Corollary 5.2. (i) For any 0 < ω < π/2 there is a constant η =

η(ω, n) > 0 such that if

‖w‖(n,1) + ‖∇w‖(n/2,1) ≤ η,

then there is a constant C > 0 such that, for all λ ∈ �\0 with |arg λ| ≤ π−ω,

‖Aj/2(λ + L)−1u‖1 ≤ C‖u‖1/|λ|1−j/2 (j = 0, 1, 2).(5.5)

Hence, {e−tL}t≥0 defines a bounded analytic C0 semigroup on L1
σ such that

‖Aj/2e−tLa‖1 ≤ Ct−j/2‖a‖1 (j = 0, 1, 2).(5.6)

(ii) Under the assumption of (i), L is injective and has a dense range

in L1
σ, and

lim
t→∞

‖e−tLa‖1 = 0 for all a ∈ L1
σ.(5.7)
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(iii) To each n/(n + 1) < p ≤ 1 and each ω with 0 < ω < π/2, there

corresponds a number η′ = η′(p, ω, n) > 0 with η′ ≤ η such that if

‖w‖(n,1) + ‖∇w‖(n/2,1) ≤ η′,

then we have

‖(λ + L)−1u‖H1 ≤ C‖u‖Hp/|λ|1−n(1/p−1)/2 (|arg λ| ≤ π − ω),(5.8)

and therefore

‖e−tLa‖H1 ≤ Ct−n(1/p−1)/2‖a‖Hp .(5.9)

Proof. (i) is proved in the same way as in Section 3, by using Lemma

5.1, the expansion

Aj/2(λ + L)−1 = Aj/2(λ + A)−1
∞∑
k=0

[−B(λ + A)−1]k,

and the estimate

‖Aj/2(λ + A)−1u‖1 ≤ C‖u‖1/|λ|1−j/2 (|arg λ| ≤ π − ω, j = 0, 1, 2).

This last estimate follows immediately from the fact that the semigroup

{e−tA}t≥0 is bounded analytic in the space L1
σ. Estimate (5.6) is obtained

via (3.36) from (5.5). Since C∞
0,σ(�

n) is dense in L1
σ (see [17]), the semigroup

{e−tL}t≥0 is strongly continuous in L1
σ.

(ii) Firstly, from Lemma 5.1 and estimate (5.5) with j = 2, we get

C1‖Au‖1 ≤ ‖Lu‖1 ≤ C2‖Au‖1.

Since A is injective in L1
σ, so is L. Secondly, we introduce the completion

D̂ of D(L) in the norm ‖Au‖1, and see that

D̂ = {u ∈ Ln/(n−2)
w (�n) : ∇u ∈ Ln/(n−1)

w (�n), Au ∈ L1
σ}.

We can always solve in D̂ the equation

Lu = f ∈ C∞
0,σ(�

n)
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assuming that ‖w‖(n,1) + ‖∇w‖(n/2,1) is small enough. Since C∞
0,σ(�

n) is

dense in L1
σ as was shown in [17], it follows that R(L) is dense in L1

σ ; and

so (5.7) is valid.

(iii) Estimate (5.8) is obtained in the same way as in Section 3 by

employing

‖Bu‖Hp ≤ C(‖w‖p(n,1) + ‖∇w‖p(n/2,1))
1/p‖∇2u‖Hp

instead of (3.28). Estimate (5.9) is deduced from (5.8) via (3.36). The proof

is complete. �

We can now prove our main result of this section.

Theorem 5.3. There is a constant � > 0 such that if

‖w‖(n,1) + ‖∇w‖(n/2,1) ≤ �,

then for each a ∈ L2
σ ∩L1

σ, problem (3.6) possesses a weak solution u such

that

u(t) ∈ L1
σ for all t ≥ 0,(5.10)

and

lim
t→∞

‖u(t)‖1 = 0.(5.11)

Proof. As in the proof of Theorem 4.1, we get a weak solution u

satisfying the energy inequality (E). Since

|〈u·∇w,u〉| = |〈w,u·∇u〉| ≤ ‖w‖n‖u‖2n/(n−2)‖∇u‖2 ≤ Cn‖w‖(n,1)‖∇u‖2
2,

we see that (4.5) holds provided ‖w‖(n,1) is small enough.

Now, an analogue of Corollary 3.8 gives

‖e−tLa‖2 ≤ Ct−n/4‖a‖1.

Furthermore, since

‖e−tL∗
Eλv‖BMO ≤ Ct−1/2‖Eλv‖n ≤ Ct−1/2‖A(n−2)/4Eλv‖2

≤ Ct−1/2λ(n−2)/4‖v‖2,
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which follows by duality from ‖e−tLa‖n/(n−1) ≤ Ct−1/2‖a‖1 ≤
Ct−1/2‖a‖H1 , we can show in the same way as in Section 4 that

‖Eλe
−(t−τ)LP (u · ∇u)‖2 ≤ C(t− τ)−1/2λ(n−2)/4‖u‖2‖∇u‖2.

Hence, as in [3] one can deduce the estimate

‖u(t)‖2 ≤ C(1 + t)−n/4.(5.12)

A detailed proof of (5.12) will be given also in Section 6. We next substitute

in (4.1) the function ϕ(τ) = e−(t−τ)L∗
Pψ, ψ ∈ C∞

c (�n), s ≤ τ ≤ t, to get

〈u(t), ψ〉 = 〈e−(t−s)Lu(s), ψ〉 −
∫ t

s
〈u · ∇u, e−(t−τ)L∗

Pψ〉dτ,(5.13)

since Pu = u and Pe−tL = e−tL. We set s = 0 in (5.13) and estimate the

right-hand side, to obtain (see Remarks below)

|〈u(t), ψ〉| ≤ ‖e−tLa‖1‖ψ‖∞ + C

(∫ t

0
‖u · ∇u‖H1dτ

)
‖Pψ‖BMO

≤ ‖e−tLa‖1‖ψ‖∞ + C

(∫ t

0
‖u‖2‖∇u‖2dτ

)
‖ψ‖BMO

≤
(
‖e−tLa‖1 + C

∫ t

0
‖u‖2‖∇u‖2dτ

)
‖ψ‖∞.

(5.14)

Here we have used the boundedness of P in BMO and the fact that L∞ ⊂
BMO with continuous injection. This shows that u(t) is a finite Borel

measure on �n for all t ≥ 0, so we find that u(t) ∈ L1
σ for all t ≥ 0, and

this shows (5.10). The same calculation gives

‖u(t)‖1 ≤ ‖e−(t−s)Lu(s)‖1 + C

∫ t

s
‖u‖2‖∇u‖2dτ,

for all 0 ≤ s ≤ t ; and the desired decay result (5.11) is now obtained in

the same way as in the proof of Theorem 4.1, by applying (4.5), (5.7) and

(5.12). This completes the proof. �

Remark. A comment on the duality argument in (5.13) and (5.14)

will be in order. As we have shown in [17], any a ∈ L1
σ has mean value zero

on �n. Thus, in (5.13) with s = 0, the first term on the right-hand side

indicates the duality between the space L1
0 of L1 vector-functions with mean
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value zero and the quotient space L∞/�n, while the second term means the

duality between H1(�n) and BMO/�n. Now, the operator P defines a

continuous linear operator from BMO/�n to itself, while the continuous

inclusion L∞ ⊂ BMO gives rise to the continuous inclusion L∞/�n ⊂
BMO/�n. So, estimate (5.14) implies that the map ψ �→ 〈u(t), ψ〉 defines

a continuous linear functional on L∞/�n. But, obviously, the canonical

projection from L∞ onto L∞/�n is continuous. We thus conclude, by taking

ψ from C∞
c (�n), that the map ψ �→ 〈u(t), ψ〉 defines a finite Borel measure

on �n, and so the function u(t) is in L1
σ. This argument will be applied

also in Section 6.

6. Decay Rates of Perturbations in H1
σ and in L1

σ

When w = 0, we proved in [17] that if

‖e−tAa‖H1 = O(t−β/2) or ‖e−tAa‖1 = O(t−β/2)

as t → ∞ for some β > 0, then there is a weak solution u satisfying,

respectively,

‖u(t)‖H1 = O(t−γ/2) or ‖u(t)‖1 = O(t−γ/2), with γ = min(1, β).

This result is deduced with the aid of the result of Wiegner [29], which

asserts that

‖u(t)‖2 = O(t−n/4−γ/2).

As is shown in [24], the largest exponent n/4+γ/2 = (n+2)/4 in the above

decay estimate is optimal. By carefully examining the idea of the proof,

we readily see that this largest exponent comes from the exponent of the

elementary estimate

‖e−tAa‖C0,1 ≤ ‖∇e−tAa‖∞ ≤ Ct−(n+2)/4‖a‖2,(6.1)

where ‖ · ‖C0,1 is the norm of the homogeneous Lipschitz space C0,1(�n). In

this section we deal with the decay problem in the case w 
= 0 and prove

the following

Theorem 6.1. (i) Suppose that w satisfies (1.5). For each 0 < β < 1

there is an η > 0 such that if

‖w‖(n,1) + ‖∇w‖(n/2,1) ≤ η,
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then we have the following : For each a ∈ L2
σ ∩L1

σ satisfying

‖e−tLa‖1 = O(t−β/2) as t → ∞,(6.2)

there is a weak solution u such that, as t → ∞,

‖u(t)‖2 = O(t−n/4−β/2) and ‖u(t)‖1 = O(t−β/2).(6.3)

(ii) Suppose that w satisfies (1.3). For each 0 < β < 1 there is an

η′ > 0 such that if

‖w‖ + ‖∇w‖ ≤ η′,

then we have the following : For each a ∈ L2
σ ∩H1

σ satisfying

(6.2′) ‖e−tLa‖H1 = O(t−β/2) as t → ∞,

there is a weak solution u such that, as t → ∞,

(6.3′) ‖u(t)‖2 = O(t−n/4−β/2) and ‖u(t)‖H1 = O(t−β/2).

Remark. When w = 0 we have shown in [17] that the result holds

also for β = 1. However, when w 
= 0, our method cannot be applied, since

we know nothing about the validity of the estimate

‖e−tLa‖H1 ≤ Ct−1/2‖a‖
H

n/(n+1)
w

,(6.4)

where Hp
w denotes the weak Hardy space. If w = 0, then (6.4) is valid

(see [17]) ; and this fact was effectively applied in [17] to get the decay

result including β = 1. To deduce (6.4) by means of the Neumann series

expansion for the resolvent, we have first to show that

‖Bu‖
H

n/(n+1)
w

≤ C(‖w‖
n

n+1 + ‖∇w‖
n

n+1 )1+ 1
n ‖∇2u‖

H
n/(n+1)
w

or

‖Bu‖
H

n/(n+1)
w

≤ C(‖w‖
n

n+1

(n,1) + ‖∇w‖
n

n+1

(n/2,1))
1+ 1

n ‖∇2u‖
H

n/(n+1)
w

.

However, the validity of these two estimates is an open problem. We here

note only that these estimates are valid if we replace ‖∇2u‖
H

n/(n+1)
w

by

‖∇2u‖Hn/(n+1) .
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To prove Theorem 6.1, we need a few preliminary lemmas. The next

lemma gives us the key tool for deducing decay rates of ‖u(t)‖2.

Lemma 6.2. Let Eλ, (λ ≥ 0), be the spectral measure associated with

the positive self-adjoint operator A on L2
σ. If 0 ≤ β < 1, β = n(1/p − 1)

and 1/q = 1/p− 1/2 = 1/2 + β/n, then we have

‖Eλe
−(t−τ)LP (u · ∇v)‖2 ≤ Cβ(t− τ)−(β+1)/2λ(n−2)/4‖u‖q‖∇v‖2(6.5)

provided that ‖w‖ + ‖∇w‖ or ‖w‖(n,1) + ‖∇w‖(n/2,1) is sufficiently small,

depending on β.

Proof. Taking ψ ∈ C∞
0,σ, we apply a duality argument to get, by

(3.29),

|〈Eλe
−(t−τ)LP (u · ∇v), ψ〉|
= |〈e−(t−τ)L/2P (u · ∇v), e−(t−τ)L∗/2Eλψ〉|
≤ C(t− τ)−β/2‖u · ∇v‖Hp‖e−(t−τ)L∗/2Eλψ‖BMO

≤ C‖u‖q‖∇v‖2(t− τ)−β/2‖e−(t−τ)L∗/2Eλψ‖BMO.

But,

‖e−(t−τ)L∗/2Eλψ‖BMO ≤ C(t− τ)−1/2‖Eλψ‖n
≤ C(t− τ)−1/2‖A(n−2)/4Eλψ‖2

≤ C(t− τ)−1/2λ(n−2)/4‖ψ‖2,

and so the result is proved. �

Finally, Lemma 6.3 below enables us to apply a bootstrap argument

with respect to the exponent β for completing the proof of Theorem 6.1.

Lemma 6.3. Under the assumption of Theorem 6.1, suppose that w

satisfies (1.5). Then for each a ∈ L2
σ ∩ L1

σ with property (6.2), there is a

weak solution u such that ∫ ∞

0
‖∇u‖2

2dt < +∞ ;(6.6)

‖u(t)‖2 ≤ C(1 + t)−n/4−β/2 + Ct(1−n−β)/4
(

1

t

∫ t

0
Fdτ

)1/2

(6.7)
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with

F (t) =

∫ t

0
(t− τ)−(β+1)/2‖u(τ)‖2

qdτ, 1/q = 1/2 + β/n ;(6.8)

and

‖u(t)‖1 ≤ C(1 + t)−β/2 + Ct−β/2
(∫ t/2

0
‖u‖2

qdτ

)1/2

(6.9)

+ C

(∫ t

t/2
‖u‖2

2dτ

)1/2

.

Let w satisfy (1.3). Then, if a ∈ L2
σ ∩H1

σ satisfies (6.2′), there hold (6.7)

and

(6.9′) ‖u(t)‖H1 ≤ C(1 + t)−β/2 + Ct−β/2
(∫ t/2

0
‖u‖2

qdτ

)1/2

+ C

(∫ t

t/2
‖u‖2

2dτ

)1/2

.

Proof. We first prove (6.6) and (6.7). To do so, we assume that u is

smooth so that the calculations below are all legitimate. The rigorous proof

of (6.6) and (6.7) is then carried out first by applying the argument below

to approximate solutions as given, e.g., in [11, 22, 23] and then passing to

the limit.

The argument below is essentially due to [22] (see also [3, 4, 11, 23, 29]).

We start with

d

dt
‖u‖2

2 + 2(‖∇u‖2
2 + 〈u · ∇w,u〉) = 0.

Applying the estimate

|〈u · ∇w,u〉| = |〈w,u · ∇u〉| ≤ ‖w‖n‖u‖2n/(n−2)‖∇u‖2

≤ Cn‖w‖(n,1)‖∇u‖2
2,

we obtain

‖∇u‖2
2 + 〈u · ∇w,u〉 ≥ (1 − Cn‖w‖(n,1))‖∇u‖2

2.
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Thus, if w is small as assumed in Theorem 6.1, then

d

dt
‖u‖2

2 + 2C0‖∇u‖2
2 ≤ 0(6.10)

for some C0 > 0. Integrating this gives (6.6). Furthermore, for an arbitrary

; > 0 we have

‖∇u‖2
2 = ‖A1/2u‖2

2 =

∫ ∞

0
λd‖Eλu‖2

2 ≥
∫ ∞

%
λd‖Eλu‖2

2

≥ ;

∫ ∞

%
d‖Eλu‖2

2 = ;(‖u‖2
2 − ‖E%u‖2

2),

and so (6.10) implies that

d

dt
‖u‖2 + C0λ‖u‖2 ≤ λ‖Eλu‖2.(6.11)

To estimate the right-hand side we invoke the integral equation

u(t) = e−tLa−
∫ t

0
e−(t−τ)LP (u · ∇u)(τ)dτ.(6.12)

By Lemma 6.2, the boundedness of the semigroup {e−tL}t≥0 in L2
σ, and the

fact that

‖e−tLa‖2 = ‖e−tL/2e−tL/2a‖2 ≤ Ct−n/4‖e−tL/2a‖1 ≤ Ct−n/4−β/2

for large t > 0, we obtain

‖Eλu‖2 ≤ ‖e−tLa‖2 +

∫ t

0
‖Eλe

−(t−τ)LP (u · ∇u)‖2dτ

≤ ‖e−tLa‖2 + Cλ(n−2)/4
∫ t

0
(t− τ)−(β+1)/2‖u‖q‖∇u‖2dτ

≤ C(1 + t)−β/2−n/4 + Cλ(n−2)/4F (t)1/2G(t)1/2,

where

G(t) =

∫ t

0
(t− τ)−(β+1)/2‖∇u‖2

2dτ.

We substitute this in (6.11), take λ = m/(C0t) with m = n+2
4 , multiply

both sides by tm, and integrate in t, to get

‖u(t)‖2 ≤ C(1 + t)−β/2−n/4(6.13)

+ Ct(2−n)/4
(

1

t

∫ t

0
Fdτ

)1/2 (1

t

∫ t

0
Gdτ

)1/2

.
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But, direct calculation using (6.6) gives

1

t

∫ t

0
Gdτ ≤ Ct−(β+1)/2

and so we get (6.7) from (6.13).

To prove (6.9) we invoke

〈u(t), ψ〉 = 〈e−tL/2u(t/2), ψ〉 −
∫ t

t/2
〈u · ∇u, e−(t−τ)L∗

Pψ〉dτ

with ψ ∈ C∞
c (�n), to get

|〈u(t), ψ〉|

≤ ‖e−tL/2u(t/2)‖1‖ψ‖∞ + C

∫ t

t/2
‖u‖2‖∇u‖2‖Pψ‖BMOdτ

≤ C

(
‖e−tL/2u(t/2)‖1 +

∫ t

t/2
‖u‖2‖∇u‖2dτ

)
‖ψ‖∞

≤ C

‖e−tL/2u(t/2)‖1 +

(∫ t

t/2
‖u‖2

2dτ

)1/2(∫ t

t/2
‖∇u‖2

2dτ

)1/2
 ‖ψ‖∞,

so that, by (6.6) and Remark at the end of Section 5,

‖u(t)‖1 ≤ ‖e−tL/2u(t/2)‖1 + C

(∫ t

t/2
‖u‖2

2dτ

)1/2

.(6.14)

On the other hand, from (6.12) we have

〈e−tL/2u(t/2), ψ〉 = 〈u(t/2), e−tL
∗/2Pψ〉

= 〈e−tL/2a, e−tL∗/2Pψ〉

−
∫ t/2

0
〈u · ∇u, e−(t/2−τ)L∗

e−tL
∗/2Pψ〉dτ

= 〈e−tLa, ψ〉 −
∫ t/2

0
〈e−(t−τ)LP (u · ∇u), ψ〉dτ

so that, by (3.29) and (6.6),

|〈e−tL/2u(t/2), ψ〉| ≤ ‖e−tLa‖1‖ψ‖∞
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+ C

∫ t/2

0
(t− τ)−β/2‖u‖q‖∇u‖2‖ψ‖BMOdτ

≤
[
‖e−tLa‖1 + Ct−β/2

∫ t/2

0
‖u‖q‖∇u‖2dτ

]
‖ψ‖∞

≤

‖e−tLa‖1 + Ct−β/2
(∫ t/2

0
‖u‖2

qdτ

)1/2
 ‖ψ‖∞.

Therefore,

‖e−tL/2u(t/2)‖1 ≤ C(1 + t)−β/2 + Ct−β/2
(∫ t/2

0
‖u‖2

qdτ

)1/2

.

Combining this with (6.14) gives (6.9). Estimate (6.9′) is deduced similarly.

This proves Lemma 6.3. �

Proof of Theorem 6.1. We give a detailed proof of assertion (i) ;

assertion (ii) is proved similarly by employing (6.9′) instead of (6.9).

(I) Since ‖e−tLa‖2 ≤ C(1 + t)−n/4, we already know that

‖u(t)‖2 ≤ C(1 + t)−n/4 and lim
t→∞

‖u(t)‖1 = 0.

Hence ‖u(t)‖q ≤ ‖u(t)‖2β/n
1 ‖u(t)‖1−2β/n

2 ≤ C(1 + t)β/2−n/4. This implies

that

1

t

∫ t

0
Fdτ ≤


Ctβ/2−1 (β > n/2 − 1, n = 3)

Ct−(β+1)/2 (0 < β < n/2 − 1)

Cδt
−3/4+δ (β = 1/2, n = 3)

for any small δ > 0. From (6.7) we see that, for any small δ > 0,

‖u(t)‖2 ≤ C(1 + t)−β/2−n/4(6.15)

+


C(1 + t)−1 (β > n/2 − 1, n = 3)

C(1 + t)−β/2−n/4 (0 < β < n/2 − 1)

Cδ(1 + t)−1+δ (β = 1/2, n = 3).

(II) Suppose 0 < β < n/2 − 1 so that ‖u(t)‖2 ≤ C(1 + t)−β/2−n/4 by

(6.15). Then (6.9) gives

‖u(t)‖1 ≤ C(1 + t)−β/2 + C(1 + t)1/2−β/2−n/4

+ Ct−β/2
(∫ t/2

0
‖u‖2

qdτ

)1/2

.
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But, (6.15) and the boundedness of ‖u(t)‖1 together imply that

‖u(t)‖2
q ≤ C(1 + t)−(1−2β/n)(β+n/2) = C(1 + t)−n/2+2β2/n,

and so

‖u(t)‖1 ≤ C(1 + t)−β/2 + C(1 + t)1/2−β/2−n/4

+ C(1 + t)β
2/n+1/2−n/4−β/2.

Since 0 < β < n/2 − 1, this proves the desired result for ‖u(t)‖1.

(III) Consider next the case β ≥ 1/2 and n = 3. From (6.15) we have

‖u(t)‖q ≤
{

C(1 + t)−1+2β/3 (β > 1/2)

Cδ(1 + t)−2(1−δ)/3 (β = 1/2)

for any small δ > 0. Then (6.9) gives

‖u(t)‖1 ≤ C(1 + t)−β/2 +


C(1 + t)−β/2 (β < 3/4)

Cδ(1 + t)−3/8+δ (β = 3/4)

C(1 + t)−1/2+β/6 (β > 3/4)

(6.16)

for any small δ > 0. Thus, for 1/2 ≤ β < 3/4, estimate (6.16) gives the

desired bound for the norm ‖u(t)‖1. In this case we have

‖u(t)‖2
q ≤ Cδ(1 + t)−2β2/3+2(−1+δ)(1−2β/3)

for any small δ > 0. Since 2β/3 < 1/2, we can take δ > 0 so that the last

term is integrable in t ∈ (0,∞). We thus have

(
1

t

∫ t

0
Fdτ

)1/2

≤ Ct−(β+1)/4

and so (6.7) gives the desired result for ‖u(t)‖2 with 1/2 ≤ β < 3/4 and

n = 3.

(IV) If 3/4 ≤ β < 1 and n = 3, then (6.16) and (6.15) together yield

‖u(t)‖2
q ≤

{
C(1 + t)−2+2β/3+2β2/9 (β > 3/4)

Cδ(1 + t)−11/8+δ (β = 3/4)
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for any small δ > 0. Thus, ‖u‖2
q is integrable in t ∈ (0,∞), and so

(
1

t

∫ t

0
Fdτ

)1/2

≤ Ct−(β+1)/4.

Substituting this in (6.7) gives

‖u(t)‖2 ≤ C(1 + t)−β/2−n/4

and this shows the desired result for ‖u(t)‖2. Since ‖u‖2
q is integrable in

t ∈ (0,∞), the desired bound for ‖u(t)‖1 in the case 3/4 ≤ β < 1 is now

obtained from (6.9). This completes the proof of Theorem 6.1. �

As is seen from the above argument, estimates (3.34) and (5.9) play a

crucial role for deducing the exponent β. Thus, to improve our decay result,

it would be desirable to improve (3.34) and (5.9) to the form which covers

some exponent p ≤ n/(n + 1). However, even if this is the case, it seems

impossible to get an improved decay rate for solutions to the nonlinear

problem. Indeed, we have the followng

Proposition 6.4. Let u ∈ L2
σ ∩ Lq

σ and ∇u ∈ L2 ∩ Lr for some

1 < q < ∞ and 1 < r < ∞ with

1/q + 1/r = 1 + 1/n.

If u · ∇u ∈ Hn/(n+1), then u ≡ 0.

Because of Proposition 6.4, we cannot apply our method in order to de-

duce an improved decay rate from the nonlinear term∫ t
0〈u · ∇u, e−(t−τ)L∗

Pψ〉dτ . In this sense, our decay result seems to be

optimal in the case w 
= 0, insofar as (1.3) or (1.5) is assumed.

Proof of Proposition 6.4. The assumption implies u ∈ Hn/(n+1)∩
L1. We thus see that (see [26, p. 128]) the function |x| · |u ·∇u| is integrable

on �n and∫
xju · ∇u�dx =

n∑
k=1

∫
xj∂k(uku�)dx = 0 for j, � = 1, · · · , n.(6.17)



Stationary Navier-Stokes Flows 109

Here we take ψ ∈ C∞
c (�n) such that ψ(x) = 1 for |x| ≤ 1, ψ(x) = 0 for

|x| ≥ 2, and set ψN (x) = ψ(x/N) with N > 0. An integration by parts then

gives

n∑
k=1

∫
xj∂k(uku�)dx

= lim
N→∞

n∑
k=1

∫
xjψN∂k(uku�)dx

= − lim
N→∞

n∑
k=1

[∫
δjkψNuku�dx +

∫
N≤|x|≤2N

xj(∂kψN )uku�dx

]
≡ − lim

N→∞
(I1,N + I2,N ).

Since u is in L2, an elementary calculation shows

lim
N→∞

I1,N = lim
N→∞

n∑
k=1

∫
δjkψNuku�dx = lim

N→∞

∫
ψNuju�dx =

∫
uju�dx,

and, with M = sup |∇ψ|,

|I2,N | ≤ 2nMN−1
∫
N≤|x|≤2N

N |u|2dx

= 2nM

∫
N≤|x|≤2N

|u|2dx → 0 as N → ∞.

Hence, (6.17) gives

0 =

∫
xju · ∇udx = −

∫
uju�dx for j, � = 1, · · · , n,

and therefore u ≡ 0. This completes the proof. �

7. More on Decay Rates in L1
σ

Up to the previous section we have treated stationary flows w satisfying

(1.3) or (1.5). However, the flows satisfying (1.2) or (1.6) contain more

informations on the spatial decay. For example, property (1.6) implies w ∈
Lr for n/(n − 1) < r ≤ ∞ ; and when n ≥ 5 and � = n, property (1.2)
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implies w ∈ Lr for 2 ≤ r ≤ ∞. With these examples in mind, we shall

consider in this section the flows w satisfying

‖w‖ <
n− 2

2
, w ∈ L2(�n),(7.1)

and discuss the time-decay of perturbations in L2
σ and in L1

σ. As will be

seen from the argument below, one can replace (7.1) by

(7.1′) w ∈ L2(�n) ∩Ln(�n), and ‖w‖n is sufficiently small.

Assuming (7.1) or (7.1′), we shall show that there are lots of weak solutions

of the perturbation problem which decay in L1
σ like t−1/2. Furthermore, it

should be noticed that we will need in this section neither conditions on the

derivative ∇w, nor detailed analysis on the linearized operator L = A+B.

Indeed, the result will be directly obtained from the integral equation :

u(t) = e−tAa−
∫ t

0
e−(t−τ)ABu(τ)dτ −

∫ t

0
e−(t−τ)AP (u · ∇u)(τ)dτ

= e−tAa−
∫ t

0
P∇e−(t−τ)A(w ⊗ u + u⊗w + u⊗ u)(τ)dτ.

(7.2)

The result is stated as follows.

Theorem 7.1. (i) Under the assumption (7.1) or (7.1′), there exists

for each a ∈ L2
σ a weak solution u such that

lim
t→∞

‖u(t)‖2 = 0.(7.3)

Furthermore, if ‖e−tAa‖2 ≤ C(1 + t)−α for some α > 0, then

‖u(t)‖2 ≤ C(1 + t)−β with β = min (α, (n + 2)/4).(7.4)

(ii) For any a ∈ L2
σ ∩L1

σ, the weak solution u treated in (i) lies in L1
σ

for all t ≥ 0 and satisfies

lim
t→∞

‖u(t)‖1 = 0.(7.5)

Furthermore, if ‖e−tAa‖1 ≤ C(1 + t)−α for some α > 0, then

‖u(t)‖1 ≤ C(1 + t)−γ with γ = min (α, 1/2).(7.6)
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Remarks. (i) Part (i) of Theorem 7.1 is due to Grunau [9]. He

treated the case where

n = 3, ‖w‖ < (n− 2)/2, w ∈ Lr(�n) (2 ≤ r < n)

and proved that if ‖e−tAa‖2 ≤ C(1 + t)−α, there is a weak solution u such

that

‖u(t)‖2 ≤ C(1 + t)−β with β = min (α, (n + 2)/4, 1/2 + n/2r).(7.7)

Our proof of Theorem 7.1 given below can be adapted to deducing (7.7) in

the case of general space dimensions n ≥ 3.

(ii) Part (ii) is intended merely to show the existence of a weak solution

u which decays in L1
σ like t−1/2 under the assumption (7.1) or (7.1′), and

we aim at no generality on the conditions to be satisfied by the stationary

flows w.

(iii) Examples of initial velocities a ∈ L1
σ ∩ L2

σ satisfying ‖e−tAa‖1 ≤
C(1 + t)−α are furnished by (higher-order) derivatives of vector fields in

C∞
0,σ(�

n). Indeed, such vector fields satisfy the moment condition∫
xγa(x)dx = 0 (|γ| ≤ m)

for some integer m ≥ 0, and this implies the estimate

‖e−tAa‖1 ≤ C(1 + t)−(m+1)/2.

The case m = 0 is discussed in [17].

Proof of Theorem 7.1. We consider only the case where w satisfies

(7.1). The other case that w satisfies (7.1′) is treated similarly.

(i) Assuming (7.1), we obtain as in Section 6

d

dt
‖u‖2

2 + 2C0‖∇u‖2
2 ≤ 0,

and so

‖u(t)‖2
2 ≤ ‖a‖2

2 ;

∫ ∞

0
‖∇u‖2

2dτ ≤ C‖a‖2
2.(7.8)
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In the same way as in Sections 4, 5 and 6, we introduce the spectral measure

Eλ associated with A2 in L2
σ, to deduce

d

dt
‖u‖2 + C0λ‖u‖2 ≤ λ‖Eλu‖2.(7.9)

But, since Eλe
−tA = e−tAEλ, from (7.2) we get

‖Eλu‖2 ≤ ‖e−tAa‖2 +

∫ t

0
‖EλBu‖2dτ +

∫ t

0
‖EλP (u · ∇u)‖2dτ.

Here we invoke the following

Lemma 7.2. Under the assumption (7.1), we have

‖EλBu‖2 ≤ Cλ(n+2)/4‖w‖2‖u‖2 ;

‖EλP (u · ∇u)‖2 ≤ Cλ(n+2)/4‖u‖2
2.

(7.10)

Proof. For ϕ ∈ L2
σ, we have Eλϕ ∈ C∞(A) ⊂

∞⋂
m=1

Wm,2(�n), and so

|〈EλBu, ϕ〉| = |〈w ⊗ u + u⊗w,∇Eλϕ〉| ≤ 2‖w‖2‖u‖2‖∇Eλϕ‖∞ ;

|〈EλP (u · ∇u), ϕ〉| = |〈u⊗ u,∇Eλϕ〉| ≤ ‖u‖2
2‖∇Eλϕ‖∞.

Since the Gagliardo–Nirenberg inequality ([8]) gives

‖∇Eλϕ‖∞ ≤ C‖∇Eλϕ‖1/2
2n ‖∇2Eλϕ‖1/2

2n ≤ C‖A1/2Eλϕ‖1/2
2n ‖AEλϕ‖1/2

2n

≤ C‖A(n+1)/4Eλϕ‖1/2
2 ‖A(n+3)/4Eλϕ‖1/2

2 ≤ Cλ(n+2)/4‖ϕ‖2,

we obtain (7.10) via the duality (L2
σ)

∗ = L2
σ. This proves the lemma. �

Now we combine (7.10) with (7.9) to get

d

dt
‖u‖2 + C0λ‖u‖2(7.11)

≤ Cλ

(
‖e−tAa‖2 + λ(n+2)/4

∫ t

0
(‖u‖2 + ‖u‖2

2)dτ

)
.
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We set λ = m[C0(1 + t)]−1 with m > 1 + n+2
4 in (7.11), multiply both sides

by (1+ t)m, and then integrate the resulting inequality with respect to t, to

get

‖u(t)‖2 ≤ C

t

∫ t

0
‖e−τAa‖2dτ(7.12)

+ C(1 + t)−(n+2)/4
∫ t

0
(‖u‖2 + ‖u‖2

2)dτ.

Since ‖e−tAa‖2 → 0 as t → ∞ for all a ∈ L2
σ, and since ‖u‖2 ∈ L∞(�+) by

(7.8), it follows from (7.12) that

‖u(t)‖2 ≤ C

t

∫ t

0
‖e−τAa‖2dτ + C(1 + t)1/2−n/4 → 0 as t → ∞.

This proves (7.3).

Suppose now that ‖e−tAa‖2 ≤ C(1+ t)−α for some α > 0. Since ‖u‖2 ∈
L∞(�+) by (7.8), we get from (7.12)

‖u(t)‖2 ≤ C[(1 + t)−α + (1 + t)1/2−n/4].

Hence, ‖u(t)‖2 = O(t−α) if α < 1/4. In the opposite case we have ‖u(t)‖2 ≤
C(1 + t)−1/4; so∫ t

0
‖u‖2dτ ≤ C(1 + t)3/4,

∫ t

0
‖u‖2

2dτ ≤ C(1 + t)1/2,

and therefore by (7.12)

‖u(t)‖2 ≤ C[(1 + t)−α + (1 + t)1/4−n/4].

Thus, ‖u(t)‖2 ≤ C(1 + t)−α if α < 1/4 − n/4. If α ≥ 1/4 − n/4, then

‖u(t)‖2 ≤ C(1 + t)1/4−n/4 ; so

∫ t

0
‖u‖2dτ ≤


C(1 + t)1/2 (n = 3)

C(1 + t)1/4 (n = 4)

C log(1 + t) (n = 5)

C (n ≥ 6),

and ∫ t

0
‖u‖2

2dτ ≤
{

C log(1 + t) (n = 3)

C (n ≥ 4).
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By (7.12) we see that

‖u(t)‖2 ≤ C(1 + t)−α +


C(1 + t)−n/4 (n = 3)

C(1 + t)−(1+n)/4 (n = 4)

C(1 + t)−(n+2)/4 log(1 + t) (n = 5)

C(1 + t)−(n+2)/4 (n ≥ 6).

(7.13)

Hence, if n ≥ 6, we conclude that

‖u(t)‖2 ≤ C(1 + t)−β with β = min(α, (n + 2)/4),(7.14)

and (7.4) is deduced in all cases of α. When n = 4 or n = 5, we see from

(7.13) that ∫ t

0
‖u‖2dτ ≤ C,

∫ t

0
‖u‖2

2dτ ≤ C.

Hence we get (7.14) via (7.12) and so (7.4) is completely proved also for

n = 4, 5. When n = 3 and α ≥ n/4, we have ‖u(t)‖2 ≤ C(1 + t)−n/4 =

C(1 + t)−3/4, and so∫ t

0
‖u‖2dτ ≤ C(1 + t)1/4,

∫ t

0
‖u‖2

2dτ ≤ C.

Thus, (7.12) gives

‖u(t)‖2 ≤ C[(1 + t)−α + (1 + t)−1].

This shows ‖u(t)‖2 ≤ C(1 + t)−α if α < 1. In the opposite case we have

‖u(t)‖2 ≤ C(1 + t)−1, so that∫ t

0
‖u‖2dτ ≤ C log(1 + t),

∫ t

0
‖u‖2

2dτ ≤ C.

Hence (7.12) yields

‖u(t)‖2 ≤ C[(1 + t)−α + (1 + t)−5/4 log(1 + t)].

This gives ‖u(t)‖2 ≤ C(1 + t)−α if α < 5/4. When α ≥ 5/4, we have

‖u(t)‖2 ≤ C(1 + t)ε−5/4 for all ε > 0, and so∫ t

0
‖u‖2dτ ≤ C,

∫ t

0
‖u‖2

2dτ ≤ C.
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We thus get (7.14) via (7.12), and so (7.4) is completely proved also for

n = 3.

(ii) To deduce L1-decay rates, we start with the second equality of

(7.2) :

u(t) = e−tAa−
∫ t

0
P∇e−(t−τ)A(w ⊗ u + u⊗w + u⊗ u)dτ.(7.15)

The integral on the right-hand side is estimated in L1
σ with the aid of the

following

Lemma 7.3. The kernel function Kt of the operator ∇e−tA belongs to

the Hardy space H1(�n), with norm

‖Kt‖H1 ≤ Ct−1/2,

where C > 0 is independent of t > 0.

Admitting Lemma 7.3 for a moment, we continue our discussion. From

(7.1), Lemma 7.3 and (7.15) it follows that

‖u(t)‖1 ≤ ‖e−tAa‖1 + C

∫ t

0
(t− τ)−1/2(‖w ⊗ u‖1 + ‖u⊗ u‖1)dτ

≤ ‖e−tAa‖1 + C

∫ t

0
(t− τ)−1/2(‖u‖2 + ‖u‖2

2)dτ.
(7.16)

Since ‖e−tAa‖2 ≤ C(1+t)−n/4 for a ∈ L2
σ∩L1

σ, part (i) shows that ‖u(t)‖2 ≤
C(1 + t)−n/4. Thus, (7.16) implies

‖u(t)‖1 ≤ ‖e−tAa‖1 + C

∫ t

0
(t− τ)−1/2[(1 + τ)−n/4 + (1 + τ)−n/2]dτ

≤ ‖e−tAa‖1 +


C(1 + t)−1/4 (n = 3)

C(1 + t)−1/2 log(1 + t) (n = 4)

C(1 + t)−1/2 (n ≥ 5).

Since lim
t→∞

‖e−tAa‖1 = 0 because
∫
a(x)dx = 0 for all a ∈ L1

σ (see [17]), we

conclude that

lim
t→∞

‖u(t)‖1 = 0,

and so (7.5) is proved.
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Suppose next that ‖e−tAa‖1 ≤ C(1 + t)−α for some α > 0. Then

‖e−tAa‖2 ≤ C(1 + t)−α−n/4, and so part (i) gives ‖u(t)‖2 ≤ C(1 + t)−β−n/4

with β = min (α, 1/2). Suppose first n ≥ 4. Then β + n/4 > 1, and so

(7.16) gives

‖u(t)‖1 ≤ C[(1 + t)−α + (1 + t)−1/2].

This proves (7.6) for n ≥ 4. Suppose next n = 3. If α < 1/4, then (7.16)

gives

‖u(t)‖1 ≤ C(1 + t)−α + C

∫ t

0
(t− τ)−1/2[(1 + τ)−α−3/4

+ (1 + τ)−2α−3/2]dτ

≤ C[(1 + t)−α + (1 + t)−α−1/4] ≤ C(1 + t)−α.

If α = 1/4, then from (7.16) we have

‖u(t)‖1 ≤ C[(1 + t)−1/4 + (1 + t)−1/2 log(1 + t)] ≤ C(1 + t)−1/4.

If α > 1/4, then β + n/4 > 1 ; so (7.16) implies

‖u(t)‖1 ≤ C[(1 + t)−α + (1 + t)−1/2].

We have thus proved (7.6) for all α in the case n = 3. The proof of Theo-

rem 7.1 is complete. �

Proof of Lemma 7.3. Consider the function g(x) = π−n/2∇e−|x|2 =

−2π−n/2xe−|x|2 . Then

Kt(x) = (4πt)−n/2∇e−|x|2/4t = (4t)−(n+1)/2g(x/
√

4t) ≡ (4t)−(n+1)/2gt(x).

Thus, if g ∈ H1(�n), then Kt ∈ H1(�n) and

‖Kt‖H1 = (4t)−(n+1)/2‖gt‖H1 = (4t)−(n+1)/2+n/2‖g‖H1 = Ct−1/2,

and the proof will be complete.

It thus remains to show that g ∈ H1(�n). Let ϕ ∈ C∞
c (�n) be supported

by the unit ball centered at the origin, satisfying
∫
ϕdx = 1 ; and set ϕt(x) =

t−nϕ(x/t) for t > 0. Observe first that Young’s inequality gives |ϕt ∗ g| ≤
‖ϕ‖1‖g‖∞ ; so we get

sup
t>0

|ϕt ∗ g| ∈ L∞(�n) ⊂ L1(B1),(7.17)
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where B1 is the unit ball centered at the origin. To find an appropriate

estimate for |x| > 1, we write g = ∇f with f = π−n/2e−|x|2 , to get

(ϕt ∗ g)(x) =
1

tn

∫
Bt(x)

ϕ

(
x− y

t

)
g(y)dy

=
1

tn+1

∫
Bt(x)

(∇ϕ)

(
x− y

t

)
f(y)dy.

For any x ∈ �n with |x| > 1 and any t ≥ (1 + |x|)/2, we get

|(ϕt ∗ g)(x)| ≤ A

tn+1

∫
Bt(x)

|f(y)|dy ≤ A(1 + |x|)−n−1‖f‖1,

with A > 0 depending only on n and ϕ. If 0 < t ≤ (1 + |x|)/2, then we get

|(ϕt ∗ g)(x)| ≤ C

|Bt(x)|

∫
Bt(x)

|g(y)|dy ≤ C sup
|y−x|<(1+|x|)/2

|g(y)|

≤ C sup
|y|>(|x|−1)/2

|g(y)|,

with C > 0 depending only on n and ϕ. Since g is in �, for 0 < t ≤ (1+|x|)/2
we have

|(ϕt ∗ g)(x)| ≤ C sup
|y|>(|x|−1)/2

(1 + |y|)−n−1 ≤ C(1 + |x|)−n−1,

where C > 0 depends only on n, ϕ and g. We thus conclude that

sup
t>0

|(ϕt ∗ g)(x)| ≤ A(1 + |x|)−n−1 whenever |x| > 1,

with A > 0 depending only on n, ϕ, f and g. Combining this with (7.17)

gives

sup
t>0

|ϕt ∗ g| ∈ L1(�n) ; and so g ∈ H1(�n).

This proves Lemma 7.3. �

Remark. The above proof actually shows that if g = ∇f and f ∈ �,

then g ∈ Hp(�n) for all p with n/(n + 1) < p ≤ 1, and even more, g ∈
Hn/(n+1)

w (�n). The same method applies to showing that if g = ∇kf for

some integer k > 1 and f ∈ �, then g ∈ Hp(�n) for all p with n/(n + k) <

p ≤ 1, and even more, g ∈ Hn/(n+k)
w (�n).
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