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Abstract. We present an integral equation formulation for the unsteady Stokes equations in
two dimensions. This problem is of interest in its own right, as a model for slow viscous flow, but
perhaps more importantly, as an ingredient in the solution of the full, incompressible Navier-Stokes
equations. Using the unsteady Green’s function, the velocity evolves analytically as a divergence-free
vector field. This avoids the need for either the solution of coupled field equations (as in fully implicit
PDE-based marching schemes) or the projection of the velocity field onto a divergence free field at
each time step (as in operator splitting methods). In addition to discussing the analytic properties
of the operators that arise in the integral formulation, we describe a family of high-order accurate
numerical schemes and illustrate their performance with several examples.
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1. Introduction. In this paper, we consider integral equation formulations for
time-dependent, linearized, viscous, incompressible flow (sometimes called unsteady
Stokes flow or the linearized Navier-Stokes equations):

∂u

∂t
= ∆u−∇p+ g,

∇ · u = 0 ,
(1.1)

in a domain D with smooth boundary S, subject to initial conditions

u(x, 0) = u0(x) for x ∈ D. (1.2)

and either Dirichlet (“velocity”) boundary conditions

u(x, t) = f(x, t) (1.3)

or Neumann (“traction”) boundary conditions(
∂ui(x, t)

∂xk
+
∂uk(x, t)

∂xi
− p(x, t)δik

)
nk(x) = f(x, t) (1.4)

for x ∈ S, t ≥ 0.
In some settings, the forcing term g is absent, and in others it is a given function.

The full incompressible Navier-Stokes equations can also be viewed as taking the
form (1.1), with g = −u · ∇u. Thus, new methods for the forced usteady Stokes
equations have the potential for yielding improved methods for the general problem of
incompressible flow, assuming only that the advective term u ·∇u is treated explicitly.

Integral equation methods have been used for more than a century to establish
existence and uniqueness results for a variety of elliptic, parabolic and hyperbolic
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partial differential equations (see, for example, [12, 37, 46, 49, 61, 62, 67, 74]). From
a computational perspective, they have been used most extensively in the elliptic
(steady state or time harmonic) case, because of their ability to handle complex
geometry, unbounded domains and radiation conditions [3, 5, 69] and because of the
availability of fast algorithms to reduce the cost of handling the dense matrices that
arise from their discretization. These algorithms include fast multipole methods, FFT
or precorrected-FFT based methods, and hierarchical compression-based methods
(wavelet and SVD-based schemes, H-matrices, HSS-matrices, etc.). The fundamental
issue is that discretization of an elliptic boundary integral equation yields a dense
N ×N matrix, where N denotes the number of degrees of freedom used to describe
some unknown surface density on the given boundary. The straightforward application
of a dense matrix to a vector requiresO(N2) work, while classical Gaussian elimination
techniques require O(N3) work to solve the system. The various fast algorithms listed
above provide the ability to apply the discretized integral operator to a vector in O(N)
or O(N logN) operations. When combined with modern iterative methods (such as
GMRES [70]), well-conditioned integral equation formulations have reduced the total
work required to O(N logN), bringing large scale simulations within practical reach
in electromagnetics, electrostatics, elasticity, fluid mechanics, and other application
areas. Since the literature on this subject is vast, we simply refer the reader to a
few relevant publications [11, 28, 29, 32, 33, 44, 54, 63, 66, 86, 87, 88]. (For ill-
conditioned problems or multiple right-hand sides, iterative methods are likely to
be supplanted by fast direct solvers, which are now under intensive development
[7, 8, 25, 57, 27, 39, 40, 42].)

In the case of parabolic or hyperbolic partial differential equations, integral equa-
tion methods have played an important role in analysis, especially for the isotropic
heat, wave and Maxwell equations [5, 11, 10, 37, 48, 67, 60]. The numerical obsta-
cles faced by integral equations in the time-dependent setting, however, are more
severe. With NT time steps and NS points on the spatial boundary, direct evalu-
ation of a space-time layer potential requires O(N2

T N
2
S) work, which is impractical

even for problems of modest size. Because of their ability to handle complex, moving
geometries and unbounded domains, however, substantial efforts have been made to
improve efficiency. There there now exist asymptotically fast algorithms for heat,
acoustic, electromagnetic, and elastic wave potentials [31, 34, 35, 52, 60, 79, 81, 82].

We should note that time-domain integral equation methods offer several advan-
tages over standard finite difference and/or finite element methods, aside from their
geometric flexibility. First, for problems like (1.1), (1.2), (1.3), the unknowns are lim-
ited to the boundary S, since the forcing term and initial conditions can be accounted
for analytically. This reduces the dimensionality of the problem by one and results
in asymptotically optimal performance when combined with suitable fast algorithms.
Second, it is easier to obtain high order accuracy in both space and time. Finally,
in the case of unsteady flow, the divergence free constraint on the velocity field is
incorporated into the representation itself. This avoids the need for either the solu-
tion of coupled field equations (as in fully implicit PDE-based marching schemes) or
the projection of the velocity field onto divergence free fields at each time step (as in
operator splitting methods).

The paper is organized as follows. In section 2, we discuss the analytic properties
of the governing Green’s function, following the work of [17, 18, 19, 38, 41, 72, 80].
In section 3, we describe integral equation formulations for the pure initial problem,
the inhomogeneous problem, the Dirichlet problem, and the Neumann problem. In
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section 4, a fast numerical algorithm is developed for solving the discretized integral
equations, followed by a brief presentation of numerical results and a discussion of
future work.

We note that Odqvist [64] first investigated the use of the double layer potential
to prove existence of the solution to the Dirichlet problem for the unsteady Stokes
flow in 1932. Fabes et al. [17, 18, 19] then studied the properties of the associated
singular integral operators in detail. Subsequently, Shen [71] provided a careful proof
of existence and uniqueness for the homogeneous (unforced) equations (1.1), (1.2),
(1.3), in Lipschitz domains. A more elementary, but fairly comprehensive study of
integral equation formulations for unsteady Stokes flow can be found in [43], which
we follow more closely here.

2. Analytical preliminaries. We will use small boldfaced letters (x,y,u,v) to
denote points (vectors) in R2. The magnitude of a vector v will be denoted by ‖v‖,
and the inner product of u and v by u · v. We will have occasion to use the Fourier
transform of a function in R2, and a point in the Fourier domain will be denoted by
ξ. We will use t or τ to denote temporal variables. We will denote by D a bounded
domain in R2, and its boundary ∂D by S. S is assumed to be a smooth curve (at
least twice differentiable). The outward unit normal vector at a point on S will be
denoted by n = (n1, n2). The space-time domain D × [0, T ] will be denoted by DT

and the space-time boundary S × [0, T ] will be denoted by ST . Since the Green’s
function for unsteady Stokes is a rather complicated tensor, we will make use of the
Einstein summation convention when the context is clear.

2.1. The unsteady Stokeslet. Fundamental solutions for unsteady Stokes flow
have been derived by several researchers (see, for example, [17, 18, 19, 38, 41, 65, 72,
80]). The velocity field due to a unit force vector is called the unsteady Stokeslet
(or Oseen’s tensor) and denoted by G(x, t; y, τ), while the associated pressure field is
called the pressurelet p(x, t; y, τ). They satisfy the equations

∂G

∂t
= ∆G−∇p + δ(x− y)δ(t− τ)I,

∇ ·G = 0,
(2.1)

where I is the 2× 2 identity matrix and all the spatial derivatives are with respect to
x. Explicit expressions for G(x, t; y, τ) and p(x, t; y, τ) (see, for example, [38, 41, 80])
are given by the formulae

G(x, t; y, τ) =
e−‖r‖

2/4(t−τ)

4π(t− τ)

(
I− r⊗ r

‖r‖2

)
− 1− e−‖r‖2/4(t−τ)

2π‖r‖2

(
I− 2

r⊗ r

‖r‖2

)
,

(2.2)

p(x, t; y, τ) =
r

2π‖r‖2
δ(t− τ), (2.3)

where r = x− y and the δ function is understood to satisfy
∫ t

0
δ(t− τ)dτ = 1.

We define the associate stresslet T by the formula

Tijk(x, t; y, τ) =
∂Gij(x, t; y, τ)

∂xk
+
∂Gkj(x, t; y, τ)

∂xi
− pj(x, t; y, τ)δik. (2.4)
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Note that Tijk = Tkji as required by the symmetry of the stress tensor.
Another useful representation for the unsteady Stokeslet can be found in [17],

G(x, t; y, τ) = GH(x, t; y, τ)I + R⊗R(GH(·, t− τ))(x− y), (2.5)

where GH is the fundamental solution of the heat equation

GH(x, t; y, τ) = GH(x− y, t− τ) =
e−
‖x−y‖2
4(t−τ)

4π(t− τ)
, (2.6)

and the Riesz transform R in two dimensions is defined by the formula

(Rf) (x) =
1

2π
p.v.

∫
R2

x− y

‖x− y‖3
f (y) dy (2.7)

for a function f defined on R2. (We have modified slightly the notation used in [17],
following the definition of R in [75, 76]). It is, perhaps, worth noting that (2.5) is valid
in higher dimensions, as well. In terms of the Fourier transform, the Riesz transform
is given by

R̂f (ξ) = − iξ

‖ξ‖
f̂ (ξ) . (2.8)

Thus, we have

Ĝ(ξ, t) = ĜH(ξ, t)

(
I− ξ ⊗ ξ

‖ξ‖2

)
(2.9)

and hence

G(x, t; y, τ) =
1

4π2

∫
R2

(
I− ξ ⊗ ξ

‖ξ‖2

)
e−‖ξ‖

2(t−τ)ei(x−y)·ξdξ. (2.10)

We also note that

p(x, t; y, τ) = −∇GL(x,y)δ(t− τ), (2.11)

where GL = − 1
2π ln ‖x− y‖ is the fundamental solution of the Laplace equation.

The following estimates for the unsteady Stokeslet can be derived from elementary
arguments, following the treatment of the heat kernel in [24].

Lemma 2.1. For any fixed t > τ and x ∈ R2, Gij(x, t; y, τ) is bounded and
absolutely integrable as a function of y over any compactly supported domain D ∈ R2.
Moreover, for any 0 < α < 1,

|Gij(x, t; y, τ)| ≤ const.

|t− τ |α‖x− y‖2−2α
, (2.12)

Similarly, for any 1/2 < α < 1,∣∣∣∣∂Gij(x, t; y, τ)

∂yk

∣∣∣∣ ≤ const.

|t− τ |α‖x− y‖3−2α
. (2.13)

¿From the first estimate we have that, for a fixed x ∈ D, G(x, t; y, τ) is absolutely
integrable on DT = D × [0, t] as a function of y and τ . We also have that for a fixed
x ∈ S = ∂D, G(x, t; y, τ) is absolutely integrable on ST = S × [0, t] as a function of

y and τ . ¿From the second estimate, we conclude that for a fixed x ∈ D, ∂G(x,t;y,τ)
∂yk

is absolutely integrable on DT as function of y and τ .
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2.2. Initial, volume, and layer potentials. The solution to the unsteady
Stokes equations can be expressed as the superposition of an initial potential, a volume
potential, and a combination of layer potentials. They are defined as follows:

Definition 2.2. Let f be a function defined on D. Then the initial potential
operator I is defined by the formula

I[f ](x, t) =

∫
D

G(x, t; y, 0)f(y)dy. (2.14)

Definition 2.3. Let g be a function defined on DT . Then the volume potential
operator V is defined by the formula

V[g](x, t) =

∫ t

0

∫
D

G(x, t; y, τ)g(y, τ)dydτ. (2.15)

Definition 2.4. Let φ be a function defined on ST . Then the single layer
potential operator S is defined by the formula

S[φ](x, t) =

∫ t

0

∫
S

G(x, t; y, τ)φ(y, τ)ds(y)dτ. (2.16)

The double layer potential operator D is defined by the formula

D[φ](x, t) =

∫ t

0

∫
S

D(x, t; y, τ)φ(y, τ)ds(y)dτ, (2.17)

where the kernel of the double layer potential is given by

Dij(x, t; y, τ) =

(
∂Gij(x, t; y, τ)

∂yk
+
∂Gik(x, t; y, τ)

∂yj

)
nk(y) (2.18)

+ pi(x, t; y, τ)nj(y)

= −
[(

∂Gij(x, t; y, τ)

∂xk
+
∂Gik(x, t; y, τ)

∂xj

)
(2.19)

− pi(x, t; y, τ)δjk

]
nk(y). (2.20)

The adjoint double layer potential operator Σ is defined by the formula

Σ[φ](x, t) =

∫ t

0

∫
S

σ(x, t; y, τ)φ(y, τ)ds(y)dτ, (2.21)

where the kernel of the adjoint double layer potential is given by the formula

σij(x, t; y, τ) = Tijk(x, t; y, τ)nk(x) (2.22)

=

[(
∂Gij(x, t; y, τ)

∂xk
+
∂Gkj(x, t; y, τ)

∂xi

)
(2.23)

− pj(x, t; y, τ)δik

]
nk(x). (2.24)
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Remark 2.5. Note that we have σij(x, t; y, τ) = Dji(y, t; x, τ). That is, the
adjointness of the operators is constructed with respect to the spatial variable, not the
temporal variable.

Some properties of these potentials are listed below.
Theorem 2.6.
1. For any t > 0, the kernel of the initial potential operator is a smooth function.

Thus, the initial potential operator I is a compact operator from L2(D) to
itself.

2. The volume potential operator V is a compact operator from L2(DT ) to itself.
3. The single layer potential operator S is a compact operator from L2(ST ) to

itself. The single layer potential S[φ] is continuous across the boundary S.
4. The double layer potential operator D is a bounded (parabolically) singular in-

tegral operator from L2(ST ) to itself. The double layer potential D[φ] satisfies
the following jump relation

lim
ε→0+

D[φ](x± εn(x), t) = D[φ](x, t)± 1

2
φ(x, t), x ∈ S. (2.25)

5. The adjoint double layer potential operator Σ is a bounded (parabolically)
singular integral operator from L2(ST ) to itself. The adjoint double layer
potential Σ[φ] satisfies the following jump relation

lim
ε→0+

Σ[φ](x± εn(x), t) = Σ[φ](x, t)∓ 1

2
φ(x, t), x ∈ S. (2.26)

Proof. The first three properties follow from Lemma 2.1. The facts that the
double layer potential operator and its adjoint are bounded (parabolically) singular
integral operators can be found in [18], along with an exposition of the theory of such
operators. Detailed derivations of the jump relations for the double layer potential
and its adjoint can be found in [43].

2.3. Green’s formula for unsteady Stokes flow. Following the analysis for
the heat equation [24], it is straightforward to establish a version of Green’s formula.

Theorem 2.7. Suppose that u, p satisfy the unsteady Stokes equations:


∂u

∂t
= ∆u−∇p+ g(x, t), (x, t) ∈ DT ,

∇ · u = 0, (x, t) ∈ DT ,

u(x, 0) = u0(x), x ∈ D, t = 0.

(2.27)

Then ∫ t

0

∫
S

G(x, t; y, τ)f(y, τ)ds(y)dτ −
∫ t

0

∫
S

D(x, t; y, τ)u(y, τ)ds(y)dτ

+

∫
D

G(x, t; y, 0)u0(y)dy +

∫ t

0

∫
D

G(x, t; y, τ)g(y, τ)dydτ

=

 u(x, t), x ∈ D,
1
2u(x, t), x ∈ S,
0, x /∈ D̄,

(2.28)
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where

fj(y, τ) =

(
∂uj(y, τ)

∂yk
+
∂uk(y, τ)

∂yj

)
nk(y)− p(y, τ)nj(y)

=

(
∂uj(y, τ)

∂yk
+
∂uk(y, τ)

∂yj
− p(y, τ)δjk

)
nk(y)

(2.29)

is the jth component of the surface force.

Proof. See [43]

Note that the four terms on the left side of (2.28) correspond to a single layer
potential, a double layer potential, an initial potential, and a volume potential, re-
spectively. This formula is the basis for the “direct” boundary integral approach.
That is, if velocity boundary conditions are specified, one can solve a boundary in-
tegral equation for the unknown f , while if traction (force) boundary conditions are
specified, one can solve an integral equation for the boundary values of u.

3. Indirect integral equation formulations for unsteady Stokes flow.
While the direct boundary integral formulation yields a second kind Volterra equation
for force/traction boundary conditions, the same is not true for velocity boundary
conditions, which lead to a first kind integral equation. To obtain a well-conditioned
equation, we will make use of abstract layer potentials whose densities are unknown
functions, with no immediate physical interpretation. First, however, we will use the
fact that the Stokes equations are linear and reduce the general problem to one with
zero inital and forcing data.

Theorem 3.1. (Unsteady Stokes flow in free-space). Suppose that u0 ∈ C2(R2)
is a divergence-free vector field compactly supported in the domain D ⊂ R2 and that
g ∈ C2

1 (R2× [0,∞)), also compactly supported in D. Then the solution to the problem
(2.27) is given by the formulae

u(IF )(x, t) = I[u0](x, t) + V[g](x, t)

p(IF )(x, t) =

∫ t

0

∫
R2

p(x, t; y, τ) · g(y, τ)dydτ + h(t).
(3.1)

Furthermore, I[u0](x, t) ∈ C2
∞(R2×(0,∞)), V[g](x, t) ∈ C2

1 (R2×(0,∞)), and p(IF ) ∈
C2

1 (R2 × (0,∞)). The proof of this theorem can be found in [43]. Note that the
representation (3.1) is an explicit integral transform using known data, not an integral
equation. No linear system of equations needs to be solved.

3.1. The Dirichlet problem. Let us now consider the Dirichlet problem, where
velocity boundary conditions are specified: (1.1), (1.2), (1.3). We seek to represent
the solution in the form

u(x, t) = u(IF )(x, t) + u(B)(x, t)

p(x, t) = p(IF )(x, t) + p(B)(x, t)

where u(IF ), p(IF ) are defined in (3.1) and u(B), p(B) constitute a solution to the
unsteady Stokes equations with zero initial and forcing data.
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The following theorem states that we may represent u(B), p(B) using a double
layer potential, resulting in a second kind boundary integral equation for an unknown
density.

Theorem 3.2. Suppose that D is a bounded domain and that f is a continuous
function on ST , satisfying the following compatibility conditions

f(x, 0) = u0(x), x ∈ S,∫
S

f(y, t) · n(y)ds(y) = 0, t ∈ [0, T ].
(3.2)

Suppose further that the velocity u(B) and the pressure p(B) are represented via the
formulae

u(B)(x, t) =

∫ t

0

∫
S

D(x, t; y, τ)φ(y, τ)ds(y)dτ,

p(B)(x, t) =

∫
S

GL(x,y)
∂φ(y, t)

∂t
· n(y)ds(y)

+ 2

∫
S

∂2GL(x,y)

∂yj∂yk
nk(y)φj(y, t)ds(y),

(3.3)

respectively, where the kernel D is defined in (2.18). Then (3.3) is the solution to the
pure Dirichlet problem

∂u(B)(x, t)

∂t
= ∆u(B)(x, t)−∇p(B)(x, t), (x, t) ∈ DT

∇ · u(B) = 0, (x, t) ∈ DT

u(B)(x, 0) = 0, x ∈ D
u(B)(x, t) = f(x, t)− u(IF )(x, t), (x, t) ∈ ST

(3.4)

if the unknown density φ satisfies the equation

−1

2
φ(x, t) +

∫ t

0

∫
S

D(x, t; y, τ)φ(y, τ)ds(y)dτ = f(x, t)− u(IF )(x, t) (3.5)

for (x, t) ∈ ST . The proof of the above theorem can be found in [43].
Note that the original Dirichlet data f(x, t) has been replaced by f(x, t)−u(IF )(x, t)

so that u = u(IF ) + u(B) satisfies the desired boundary condition. If D were an un-
bounded (exterior) domain, then the boundary integral equations would have the
form

1

2
φ(x, t) +

∫ t

0

∫
S

D(x, t; y, τ)φ(y, τ)ds(y)dτ = f(x, t)− u(IF )(x, t). (3.6)

3.2. The Neumann problem. When force/traction conditions are specified,
we will make use of an abstract single layer potential, obtaining an integral equation
involving the adjoint double layer potential. That is, in order to solve: (1.1), (1.2),
(1.4), we again represent the solution in the form

u(x, t) = u(IF )(x, t) + u(B)(x, t)

p(x, t) = p(IF )(x, t) + p(B)(x, t) ,
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where u(B), p(B) is a solution to the unsteady Stokes equations with zero initial and
forcing data.

Theorem 3.3. Suppose that D is a bounded domain and that the velocity u(B)

and pressure p(B) are represented by the formulae

u(B)(x, t) =

∫ t

0

∫
S

G(x, t; y, τ)φ(y, τ)ds(y)dτ,

p(B)(x, t) =

∫ t

0

∫
S

p(x, t; y, τ) · φ(y, τ)ds(y)dτ

=

∫
S

∇yGL(x,y) · φ(y, τ)ds(y),

(3.7)

respectively. Then (3.7) is the solution to the pure Neumann problem

∂u(x, t)

∂t
= ∆u(x, t)−∇p(x, t), (x, t) ∈ DT

∇ · u = 0, (x, t) ∈ DT (3.8)

u(x, 0) = 0, x ∈ D,(
∂ui(x, t)

∂xk
+
∂uk(x, t)

∂xi
− p(x, t)δik

)
nk(x)

= f(x, t)− f (IF )(x, t), (x, t) ∈ ST

where

f (IF )(x, t) =

(
∂u

(IF )
i (x, t)

∂xk
+
∂u

(IF )
k (x, t)

∂xi
− p(IF )(x, t)δik

)
nk(x) ,

if the unknown density φ satisfies the equation

1

2
φ(x, t) +

∫ t

0

∫
S

σ(x, t; y, τ)φ(y, τ)ds(y)dτ = f(x, t)− f (IF )(x, t), (3.9)

for (x, t) ∈ ST , where σ is defined in (2.22).
The proof of the above theorem can be found in [43]. If D were an exterior

domain, the boundary integral equation would take the form

−1

2
φ(x, t) +

∫ t

0

∫
S

σ(x, t; y, τ)φ(y, τ)ds(y)dτ = f(x, t)− f (IF )(x, t) (3.10)

for (x, t) ∈ ST .

3.3. Nullspaces of the boundary integral equations. It was shown in [71]
that the boundary integral equation (3.9) for the interior Neumann problem has no
nontrivial nullspace, and therefore a unique solution. Since the boundary integral
equation (3.6) for the exterior Dirichlet problem is the adjoint of (3.9), it has a unique
solution as well. For the exterior Neumann problem, an argument similar to that of
[71] can be used to shown that the nullspace of the associated boundary integral
equation (3.10) consists of any function of the form f(t)n(x), where f ∈ L2[0, T ] and
n(x) is the unit outward normal vector. This, in turn, indicates that the boundary
integral equation (3.5) for the interior Dirichlet problem has a nullspace consisting of
functions of the form f(t)η(x), where f ∈ L2[0, T ] for some vector-valued function
η(x).
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4. Discretization and Numerical Evaluation of Layer Potentials. For
the sake of brevity, we will limit our presentation to the discretization and evaluation
of layer potentials, with a brief discussion in the conclusions concerning initial and
volume potentials. In other words, for the remainder of this paper, we are largely
concerned with the solution of the problems (3.4) and (3.8). (The initial and volume
potentials contribute to u(IF ) but are known functions.) For the sake of simplicity, we
will also assume that the boundary is stationary. Unlike with finite difference or finite
element methods, it is straightforward to design high order schemes in the integral
equation context, especially when the governing operators are second kind Volterra or
Fredholm operators. In that setting, the order of accuracy of the scheme is simply the
order of accuracy of the underlying quadrature rule. Here, we present quadratures
sufficient for 4th order accuracy in time and couple it with a sixteenth order scheme
in space. Higher order multistep schemes can be derived by analogy, although for
order greater than six or so, it is better not to use equal size time steps. Instead,
one can construct better-conditioned multi-stage marching schemes using composite
Chebyshev or Legendre grids (see, for example, [81]).

4.1. Discretization and evaluation of the single layer potential. We first
consider the evaluation of the single layer potential, following the treatment of the
heat equation in [31, 35, 53]. There are three fundamental observations to be made.
First, we can split the single layer potential S[φ] defined in (2.16) into two parts - a
local part and a history part:

S[φ] = SL[φ] + SH [φ], (4.1)

where the local part SL is defined by the formula

SL[φ](x, t) =

∫ t

t−δ

∫
S

G(x, t; y, τ)φ(y, τ)dτds(y), (4.2)

and the history part SH is defined by the formula

SH [φ](x, t) =

∫ t−δ

0

∫
S

G(x, t; y, τ)φ(y, τ)ds(y)dτ. (4.3)

Second, the Stokes kernels are sharply peaked at y = x and singular as τ approaches
t, which will require some care in quadrature. Third, when τ is bounded away from
the current time t, as in the history part, then the kernels (and resulting fields) are
smooth and admit a variety of simpler approximations.

In order to overcome the singular quadrature issues, we design special product
integration-based schemes, following the treatment in [53]. In that paper, it is shown
that for robustness, it is essential to interchange the order of integration in the layer
potentials and to carry out integration in time analytically for polynomial approxi-
mations of the layer potential density φ(y, τ).

It is straightforward to verify the following interpolation result.
Lemma 4.1. Let f(τ) denote a smooth function on the interval [t, t− (k − 1)∆t]

for k ≥ 2. Then

f(τ) =
[
1 t−τ

∆t · · · (t−τ)k−1

∆tk−1

]
Ck


f(t)

f(t−∆t)
...

f(t− (k − 1)∆t)

+O(∆tk), (4.4)
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where the coefficient matrices Ck are given by the formulas:

Ck =



[
1 0
−1 1

]
, k = 2, 1 0 0

− 3
2 2 − 1

2
1
2 −1 1

2

 , k = 3,


1 0 0 0
− 11

6 3 − 3
2

1
3

1 − 5
2 2 − 1

2
− 1

6
1
2 − 1

2
1
6

 , k = 4.

(4.5)

4.1.1. Evaluation of the local part. Suppose now that the density φ(y, τ) in
SL is approximated by a polynomial of degree k − 1 with respect to time (for each
fixed y):

φ(y, τ) =
[
1 t−τ

∆t · · · (t−τ)k−1

∆tk−1

]
Ck


φ(y, t)

φ(y, t−∆t)
...

φ(y, t− (k − 1)∆t)

+O(∆tk). (4.6)

Exact integration using this approximation will yield kth order accuracy for the layer
potential, using the standard product integration formalism. That is, we substitute
(2.2) and (4.6) into (4.2) and integrate in time analytically. The result is

SL[φ](x, t) =

∫
S

[
G0

G1

∆t · · · Gk−1

∆tk−1

]
Ck


φ(y, t)

φ(y, t−∆t)
...

φ(y, t− (k − 1)∆t)

 ds(y) +O(∆tk),

(4.7)

where the kernels Gj (j = 0, · · · , k − 1) are defined by the formula

Gj(x,y) =
1

4π

(
I− r⊗ r

‖r‖2

)
G1
j −

1

8π

(
I− 2

r⊗ r

‖r‖2

)
G2
j , (4.8)
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with the functions G1
j and G2

j defined by the formulas

G1
j =

∫ t

t−δ
e−‖r‖

2/4(t−τ)(t− τ)j−1dτ

=

(
‖r‖2

4

)j ∫ ∞
ρ

e−λ

λj+1
dλ

(
λ =

‖r‖2

4(t− τ)

)

=



4

‖r‖2
e−ρ, j = −1,

E1(ρ), j = 0,

δ(e−ρ − ρE1(ρ), j = 1,

δ2

2

(
(1− ρ)e−ρ + ρ2E1(ρ)

)
, j = 2,

δ3

6

(
(2− ρ+ ρ2)e−ρ − ρ3E1(ρ)

)
, j = 3.

(4.9)

G2
j =

∫ t

t−δ

1− e−λ

λ
(t− τ)j−1dτ

=

(
‖r‖2

4

)j ∫ ∞
ρ

1− e−λ

λj+2
dλ

=



1− e−ρ

ρ
+ E1(ρ), j = 0,

δ

2

(
1− e−ρ

ρ
+ e−ρ − ρE1(ρ)

)
, j = 1,

δ2

6

(
2

1− e−ρ

ρ
+ (1− ρ)e−ρ + ρ2E1(ρ)

)
, j = 2,

δ3

24

(
6

1− e−ρ

ρ
+ (2− ρ+ ρ2)e−ρ − ρ3E1(ρ)

)
, j = 3.

(4.10)

Here ρ = ‖x−y‖2
4δ , and E1(x) =

∫∞
x

e−t

t dt is the exponential integral function (see,
for example, [1]).

Remark 4.2. The kernel G1
−1 is not needed for the single layer potential, but

it is needed for the evaluation of the double layer potential and included here for
completeness.

Since the exponential integral function is logarithmically singular at the origin,
we can use the quadratures in [2, 45] to discretize each of the spatial integrals in (4.5)
with high-order accuracy. Moreover, since the kernels are all smooth in the far field,
they are suitable for the application of a variety of fast summation algorithms, such
as the kernel independent fast multipole method [22, 26, 58, 84, 85, 89]). The total
computational cost for the local part is therefore O(NSNT ) where NS is the number
of discretization points on the boundary S and NT is the number of time steps.

4.1.2. Evaluation of the history part. For the history part, we first observe
that (2.10) gives a Fourier integral representation for the kernel G(x, t; y, τ). Note
that the integrand decays to zero exponentially fast when t− τ ≥ δ is bounded away
from 0. In [31], it was shown that an efficient sum-of-exponentials approximation for
the heat kernel exists in this case. Exactly the same idea can be applied here, with
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the result that NF ≈ 1/δ discrete Fourier modes are need to satisfy an estimate of
the form∣∣∣∣∣∣G(x, t; y, τ)− 1

4π2

NF∑
j=1

wj

(
I−

ξj ⊗ ξj
‖ξj‖2

)
e−‖ξj‖

2(t−τ)ei(x−y)·ξj

∣∣∣∣∣∣ ≤ ε, (4.11)

where ξj and wj (j = 1, · · · , NF ) are the quadrature nodes and weights, respectively.
The estimate (4.11) holds uniformly for all t− τ ≥ δ > 0 and ‖x‖, ‖y‖ ≤ R for some
fixed value of R.

Remark 4.3. In practice, the construction of [31], which uses tensor product
quadrature on dyadically scaled intervals can be improved through the use of generalized
Gaussian quadrature [6, 83, 55]. The number of Fourier modes needed depends on δ,
R, and the desired precision ε. For example, we need 21600 Fourier modes to achieve
13-digit accuracy for δ = 10−3 and R = 1.

Remark 4.4. For interior problems, one could use any of a variety of Green’s
functions which satisfy the defining equations (2.1) within the computational domain
D. For example, we could use the periodic unsteady Stokeslet on a larger box, as in the
original fast algorithm for the heat equation [35]. In that case, the discretized Fourier
integral discretization is replaced with a truncated Fourier series representation.

Substituting (4.11) into (4.3) and rearranging terms, we see that the history part
SH can be written as follows:

SH [φ](x, t) u
1

4π2

NF∑
j=1

wj

(
I−

ξj ⊗ ξj
‖ξj‖2

)
eix·ξjHj(ξj , t), (4.12)

where the history modes Hj (j = 1, · · · , NF ) are defined by the formula

Hj(ξj , t) =

∫ t−δ

0

e−‖ξj‖
2(t−τ)Fj(τ)dτ (4.13)

with

Fj(τ) =

∫
S

e−iξj ·yφ(y, τ)ds(y). (4.14)

For each fixed τ , the integral in (4.14) can be discretized using the trapezoidal
rule, that is

Fj(τ) u
LS
NS

NS∑
l=1

e−iξj ·ylφ(yl, τ)s(yl) (4.15)

with LS the total length of the boundary S, s(yl) the Jacobian at yl, and NS the
number of discretization points on the boundary S. The trapezoidal rule is spectrally
accurate since the integrand is smooth and periodic and the sum can be computed
rapidly using the nonuniform Fast Fourier Transform (NUFFT) (see, for example,
[4, 14, 15, 21, 23, 30, 50, 68]). The total computational cost for evaluating Fj for
j = 1, · · · , NF at NT time steps is O(NT (NF +NS) log(NF +NS)).

The reader may have noticed that we replaced the history-dependent part SH [φ](x, t)
with what appears, at first glance, to be an even more complicated history-dependent
representation, namely (4.12). Once the Fj have been computed, however, the history
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modes Hj(ξj , iδ) can be seen to satisfy a simple recurrence relation [31, 35, 52]. More
precisely, for a kth-order multistep schemes, we have

Hj(ξj , t) =

∫ t−δ

0

e−‖ξj‖
2(t−τ)Fj(τ)dτ

= e−(k−1)‖ξj‖
2∆tHj(ξj , t− (k − 1)∆t)

+ e−‖ξj‖
2δ

∫ t−δ

t−δ−(k−1)∆t

e−‖ξj‖
2(t−δ−τ)Fj(τ)dτ.

(4.16)

We need to be careful, however, in computing the last integral on the right-hand side
of (4.16) because we are nearing the singular point τ = t. We rely, again, on product
integration.

For a kth-order scheme, we approximate Fj(τ) by an interplation polynomial of
degree k − 1

Fj(τ) =
[
1 t−δ−τ

∆t · · · (t−δ−τ)k−1

∆tk−1

]
Ck


Fj(t− δ)

Fj(t− δ −∆t)
...

Fj(t− δ − (k − 1)∆t)

+O(∆tk).

(4.17)
Substituting (4.17) into (4.16) and integrating analytically, we obtain∫ t−δ

t−δ−(k−1)∆t

e−‖ξj‖
2(t−δ−τ)Fj(τ)dτ

=
[
W 0
j W 1

j · · · W k−1
j

]
Ck


Fj(t− δ)

Fj(t− δ −∆t)
...

Fj(t− δ − (k − 1)∆t)

+O(∆tk+1),

(4.18)

where the weights W i
j (i = 0, · · · , k − 1) are given by the formulas

W i
j =

1

∆ti

∫ t−δ

t−δ−(k−1)∆t

e−‖ξj‖
2(t−δ−τ)(t− δ − τ)idτ

=
1

∆ti

∫ (k−1)∆t

0

e−‖ξj‖
2xxidx, (x = t− δ − τ)

= (k − 1)i+1∆t ·



1− e−β

β
, i = 0,

1− e−β − βe−β

β2
, i = 1,

2− 2e−β − 2βe−β − β2e−β

β3
, i = 2,

6− 6e−β − 6βe−β − 3β2e−β − β3e−β

β4
, i = 3,

(4.19)

where β = (k − 1)‖ξj‖2∆t.
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The preceding formulas are subject to catastrophic cancellation when β is small.
They can be computed accurately, however, by replacing them with their Taylor
expansions. For β < 10−3, we use

W i
j = (k − 1)i+1∆t ·



1− 1

2
β +

1

6
β2 − 1

24
β3 +

1

120
β4, i = 0,

1

2
− 1

3
β +

1

8
β2 − 1

30
β3 +

1

144
β4, i = 1,

1

3
− 1

4
β +

1

10
β2 − 1

36
β3 +

1

168
β4, i = 2,

1

4
− 1

5
β +

1

12
β2 − 1

42
β3 +

1

192
β4, i = 3,

(4.20)

which is accurate to about 12 digits.
If NF = O(NS), then the total computational cost for the evaluation of the history

part is O(NTNS logNS). This is possible, for example, when taking large time steps
with δ = ∆t = ∆x, where ∆x is the mesh spacing on the the boundary S.

4.2. Evaluation of the double layer potential. The evaluation of the double
layer potential is analogous to that of the single layer potential, with minor changes
in the nature of the kernels for the local part and a slightly different Fourier represen-
tation for the history part. As before, we split the double layer potential D[φ] into a
local part DL and a history part DH :

D[φ] = DL[φ] +DH [φ]

:=

∫ t

t−δ

∫
S

D(x, t; y, τ)φ(y, τ)dτds(y)

+

∫ t−δ

0

∫
S

D(x, t; y, τ)φ(y, τ)ds(y)dτ.

(4.21)

In more detail, we first write the double layer kernel as follows:

D(x, t; y, τ) =
n(y)⊗ r + (n(y) · r)(I− 2 r⊗r

‖r‖2 )

8π

e−λ

(t− τ)2
+

r⊗ n(y)

2π‖r‖2
δ(t− τ)

−
n(y)⊗ r + r⊗ n(y) + (n(y) · r)(I− 4 r⊗r

‖r‖2 )

8π

1− e−λ − λe−λ

λ2(t− τ)2
,

(4.22)

where λ = ‖r‖2
4(t−τ) . As above, this leads to an approximation of the form:

DL[φ](x, t) =

∫
S

[
D0

D1

∆t · · · Dk−1

∆tk−1

]
Ck


φ(y, t)

φ(y, t−∆t)
...

φ(y, t− (k − 1)∆t)

 ds(y) +O(∆tk),

(4.23)
where the kernels Dj (j = 0, · · · , k − 1) are defined by the formula

Dj(x,y) =
n(y)⊗ r + (n(y) · r)(I− 2 r⊗r

‖r‖2 )

8π
D1
j

−
n(y)⊗ r + r⊗ n(y) + (n(y) · r)(I− 4 r⊗r

‖r‖2 )

8π
D2
j +

r⊗ n(y)

2π‖r‖2
δj0

(4.24)
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with the functions D1
j and D2

j defined by the formulas

D1
j =

∫ t

t−δ
e−‖r‖

2/4(t−τ)(t− τ)j−2dτ

= G1
j−1.

(4.25)

D2
j =

∫ t

t−δ

1− e−λ − λe−λ

λ2(t− τ)2
(t− τ)jdτ

=

(
‖r‖2

4

)j−1 ∫ ∞
ρ

1− e−λ − λe−λ

λj+2
dλ

=



4

‖r‖2
1− e−ρ

ρ
, j = 0,

1

2

(
1− e−ρ − ρe−ρ

ρ2
+ E1(ρ)

)
, j = 1,

δ

3

(
1− e−ρ − ρe−ρ

ρ2
+ e−ρ − ρE1(ρ)

)
, j = 2,

δ2

8

(
2

1− e−ρ − ρe−ρ

ρ2
+ (1− ρ)e−ρ + ρ2E1(ρ)

)
, j = 3.

(4.26)

Here ρ = ‖x−y‖2
4δ , and E1(x) =

∫∞
x

e−t

t dt is again the exponential integral func-
tion.

For the history part DH [φ], we will need the Fourier representation of the double
layer kernel. Differentiating (2.10) with respect to y, we obtain

D̃(x, t; y, τ) =
−i
4π2

∫
R2

[
(n(y) · ξ)

(
I− 2

ξ ⊗ ξ

‖ξ‖2

)
+ n(y)⊗ ξ

]
· e−‖ξ‖

2(t−τ)ei(x−y)·ξdξ,

(4.27)

where D̃(x, t; y, τ) is the double layer potential kernel without the pressure part
((2.18)). Pressure does not contribute to the history part, since the pressurelet p
is instantaneous and contributes only to the velocity at the current time t. We use
exactly the same quadrature nodes and weights as in (4.11) to discretize (4.27) and
obtain an efficient sum-of-exponentials approximation for D̃(x, t; y, τ):

D̃(x, t; y, τ) u
−i
4π2

NF∑
j=1

wj

[
(n(y) · ξj)

(
I− 2

ξj ⊗ ξj
‖ξj‖2

)
+ n(y)⊗ ξj

]
· e−‖ξj‖

2(t−τ)ei(x−y)·ξj .

(4.28)

Substituting the above equation into the expression for the history part, we obtain

DH [φ](x, t) u
−i
4π2

NF∑
j=1

wje
ix·ξjHd

j (ξj , t), (4.29)

where the history modes Hd
j (j = 1, · · · , NF ) are defined by the formula

Hd
j (ξj , t) =

∫ t−δ

0

e−‖ξj‖
2(t−τ)F dj (τ)dτ (4.30)
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with

F dj (τ) =

∫
S

e−iξj ·y
[
(n(y) · ξj)

(
I− 2

ξj ⊗ ξj
‖ξj‖2

)
+ n(y)⊗ ξj

]
φ(y, τ)ds(y). (4.31)

The rest of the procedure for evaluating the history part of the double layer potential
is entirely analogous to that for the single layer.

Remark 4.5. The evaluation of the adjoint double layer potential Σ[φ] is similar.
The necessary formulas are obtained easily from the symmetry between the kernels D
and σ (see Remark 2.5).

4.3. Treatment of initial and volume data. When either the initial or forcing
data are nonzero, we need to compute the solution u(IF ). For short times, the fast
Gauss transform can be used to evaluate the initial potential and for longer times, the
initial potential can be folded into the (smooth) history part. The volume potential
can be treated by a decomposition into local and history parts as well, relying on the
same fast algorithms as above.

4.4. Solution of the integral equation. With the machinery for evaluating
layer potentials in place, we turn to the solution of the Dirichlet problem (3.4), using
the integral equation (3.5). At time t, note that all previous values of the density
(φ(y, t−∆t),φ(y, t− 2∆t),φ(y, t− 3∆t), . . . ) have already been computed.

For the kth order scheme, we need to solve the following boundary integral equa-
tion for φ(x, t)

− 1

2
φ(x, t) +

∫
S

k−1∑
j=0

Dj

∆tj
Cj,1k φ(y, t)ds(y)

= −
∫
S

k∑
l=2

k−1∑
j=0

Dj

∆tj
Cj,lk φ(y, t− (l − 1)∆t)ds(y)−DH [φ] + f(x, t),

(4.32)

where Cj,lk is the (j, l) entry of the interpolatory coefficient matrix given in (4.5) and f
is the given Dirichlet data. Note that the terms on the right side of (4.32) are known
at the current time t.

Theorem 4.6. For any k ≥ 2, the boundary integral equation (4.32) is a second
kind Fredholm equation with a one-dimensional nullspace.

Proof. Close inspection shows that Dj(x,y) defined in (4.24) (j ≥ 1) involves

E1(ρ), 1−e−ρ−ρe−ρ
ρ2 , and other smooth terms. The exponential integral function E1 is

logarithmically singular at the origin (see, for example, [1]), and a simple calculation

shows that limρ→0
1−e−ρ−ρe−ρ

ρ2 = 1
2 . Therefore, the kernels Dj are at most weakly

singular (and integrable) for j ≥ 1.
Thus, we only need to consider D0. Combining (4.9), (4.24)- (4.26), we obtain

D0(x,y) =
n(y)⊗ r + (n(y) · r)(I− 2 r⊗r

‖r‖2 )

2π‖r‖2
e−ρ

−
n(y)⊗ r + r⊗ n(y) + (n(y) · r)(I− 4 r⊗r

‖r‖2 )

2π‖r‖2
1− e−ρ

ρ
+

r⊗ n(y)

2π‖r‖2
.

(4.33)

Since e−ρ − 1−e−ρ
ρ = O(ρ) = O(‖r‖2) and 1− 1−e−ρ

ρ = O(ρ) = O(‖r‖2), it is easy to

see that terms involving n(y) ⊗ r and r ⊗ n(y) are both bounded. Furthermore, a
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classical result in potential theory states that n(y) · r is O(‖r‖2) when both x and y
are on the boundary. Thus the terms involving n(y) · r are also bounded. It follows
from the above facts that D0 is bounded for x,y ∈ S. Thus, the kernel in (4.32) is at
most weakly singular and the corresponding operator is compact, which implies that
(4.32) is a system of second kind Fredholm equations.

Since the fully time-dependent boundary integral equation (3.5) for the interior
Dirichlet problem has a nullspace consisting of functions of the form f(t)η(x) for any
f ∈ L2([0, T ]) and a fixed function η, it is easy to seen that this implies that the
semidiscretized equation (4.32) has a one-dimensional nullspace spanned by η alone.

In order to solve (4.32) numerically, we first add a rank-one term to the left-hand
side as follows:

− 1

2
φ(x, t) +

∫
S

k−1∑
j=0

Dj

∆tj
Cj,1k φ(y, t)ds(y)

− αz(x)

∫
S

n(y) · φ(y, kδ)ds(y)

= −
∫
S

k∑
l=2

k−1∑
j=0

Dj

∆tj
Cj,lk φ(y, t− (l − 1)∆t)ds(y)−DH [φ] + f(x, t),

(4.34)

where α is a nonzero constant and z is an arbitrary function satifying the constraint∫
S

n(y) · z(y)ds(y) = 1. (4.35)

One convenient choice for z is n/LS , where LS is the total arclength of the boundary
S. This modification is discuss in detail in [69] (page 123). The modified equation
always has a unique solution and its solution satisfies the original equation (4.32) so
long as the right-hand side satisfies the compatibility condition (i.e., that the integral
of the normal component of the right hand side over S is zero).

In short, (4.34) is now a second kind integral equation with a trivial nullspace
and can therefore be solved efficiently using iterative solvers like GMRES. A good
starting vector for the iterative solver is simply the solution at the previous step.

Remark 4.7. For stationary boundaries (and a fixed ∆t), we need to solve a
linear system with the same governing matrix but a different right hand side at each
time step. In that setting, one can achieve even faster solution times by using fast
direct solvers as described in [27, 42, 56, 57]. That is, one can construct a sparse
representation for the inverse matrix (once) and simply apply it to the right-hand side
vector when marching in time.

Remark 4.8. The spectrum of the discretized system plays a critical role in
the stability of the overall scheme. Using the quadrature scheme in [2] to discretize
(4.34) and the fourth order interpolation scheme in time, we have not observed any
instability. We have not, however, carried out a detailed analysis of this issue.

The solution of the Neumann problem is nearly identical, differing only in the
use of the adjoint kernels in the integral operators, as discussed in Remark 4.5). For
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the interior Neumann problem, the rank-one modification is not needed since it has
a trivial nullspace. The modification is necessary for the exterior Neumann case.

5. Numerical examples. In this section, we illustrate the performance of the
integral equation method in the case of the pure Dirichlet problem, where u(IF ) = 0.
We consider four simple boundary curves: a circle, an ellipse with aspect ratio 2:1,
a crescent, and a smooth hexagram, shown in Figures 1–4, respectively. The final
time is set to T = 10. Each domain is of approximately unit area. We use 64
spatial discretization points for the circle, 128 points for the ellipse and crescent,
and 256 points for the hexagram. We use a sixteenth-order accurate quadrature
for logarithmically singular integrands [2], so that the accuracy is dominated by the
discretization error in time.

In each of the following tables, ∆t is the time step, K is the condition number of
the linear system that needs to be solved at each time step, E is the relative L2 error
of the numerical solution at the final time, and r is the ratio of relative L2 errors on
successive time step refinements - that is, r(j) = E(j − 1)/E(j).

Remark 5.1. We construct exact solutions by placing unsteady Stokeslet sources
randomly outside the computational domain.

∆t K E r

2.00e0 1.97e0 1.13e-3 0.00e0

1.00e0 1.94e0 1.06e-4 1.07e1

5.00e-1 1.90e0 4.39e-6 2.41e1

2.50e-1 1.85e0 3.55e-7 1.24e1

1.25e-1 1.84e0 2.46e-8 1.44e1

6.25e-2 1.94e0 1.71e-9 1.44e1

Fig. 5.1. Numerical results for a circle geometry.

∆t K E r

2.00e0 4.95e0 2.73e-3 0.00e0

1.00e0 4.78e0 1.96e-4 1.39e1

5.00e-1 4.53e0 4.40e-6 4.47e1

2.50e-1 4.30e0 3.29e-7 1.33e1

1.25e-1 4.14e0 2.09e-8 1.58e1

6.25e-2 4.02e0 1.51e-9 1.38e1

Fig. 5.2. Numerical results for a 2-1 ellipse geometry.

∆t K E r

2.00e0 5.51e0 7.04e-3 0.00e0

1.00e0 5.25e0 4.74e-4 1.48e1

5.00e-1 4.94e0 7.45e-6 6.36e1

2.50e-1 4.65e0 4.68e-7 1.59e1

1.25e-1 4.48e0 2.10e-8 2.23e1

6.25e-2 4.37e0 1.46e-9 1.43e1

Fig. 5.3. Numerical results for a crescent geometry.
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∆t K E r

2.00e0 1.42e1 1.95e-3 0.00e0

1.00e0 1.35e1 1.30e-4 1.50e1

5.00e-1 1.27e1 4.15e-6 3.13e1

2.50e-1 1.18e1 3.24e-7 1.28e1

1.25e-1 1.07e1 2.11e-8 1.54e1

6.25e-2 9.77e0 1.39e-9 1.52e1

Fig. 5.4. Numerical results for a smooth hexagram geometry.

Several observations about Figures (5.1)-(5.4) are in order. First, there is no
stability issue in taking large time steps. Indeed, the largest time step in our sim-
ulation is 2. Second, the linear systems which need to be solved have very modest
condition numbers, which are more or less independent of the time step. Finally, the
convergence rates are consistent with fourth order accuracy.

6. Conclusions. We have presented well-conditioned second kind integral equa-
tion formulations for two standard boundary value problems governed by the unsteady
Stokes equations. For either the Dirichlet problem (velocity boundary conditions) or
the Neumann problem (force/traction boundary conditions), this involves explicit ini-
tial and volume potentials and the solution of an integral equation for an unknown
density on the domain boundary. (In the absence of boundary conditions, the solution
is explicit and involves only the initial and volume potentials with known data.)

We have also described numerical methods based on these integral representations
and demonstrated that high order accuracy is straightforward to achieve (although
the corresponding quadratures are somewhat technical). The numerical algorithms
we presented can be carried out in optimal (or near optimal time) using suitable fast
algorithms, which we have only sketched out here. We have restricted our attention
mainly to the analytic foundations of the method and the order of accuracy in time.

The integral equation formulations and associated algorithms are easily general-
ized to the three dimensional case. An important advantage of our approach is that it
can be extended to moving and free boundary problems as well as a variety of interface
problems. Finally, as noted in the introduction, the forced unsteady Stokes problem
is a driver for solvers of the full incompressible Navier-Stokes equation, assuming only
that the advective term is treated explicitly. These applications are currently under
investigation.
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