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Josef Bemelmans 

Abstract: A free boundary problem for the Navier-Stokes equations de- 

scribes the flow of a viscous, incompressible fluid in a domain that is 

unknown or partially unknown. In this paper several results for flows 

in drops or in vessels are presented. The free boundary is governed by 

self-attraction or surface tension, and dynamic contact angles may 

occur. 

AMS-Classification: 76 D 05 , 35 R 35 

§ I. The Equations of Motion 

To determine the shape of a fluid body is a classical problem in mathe- 

matical physics. If the liquid rotates about a fixed axis and is more- 

over subject to self-attraction the problem was already investigated by 

I.Newton as a model for the figure of the earth. Since it was treated 

for the first time in the Philosophiae Naturalis Principia Mathematica 

300 years ago it has stimulated research in various branches of mathe- 

matical analysis as for example potential theory, bifurcation theory 

for nonlinear integral equations, and more recently it was taken up 

again in connection with variational methods for free boundary pro- 

blems, see e.g. Friedman IF2] Chap.4. 

According to Newton, s law the force of self-attraction equals 

DU(x) = D I ~ dy , 

where p = const in the density, D c ~3 the domain occupied by the 

fluid, and g the gravitational constant. If the body rotates about 
3 

the x -axis the centrifugal force is 
2 

r 2 DR(x) = D --~ (x) , 

where ~ denotes the angular velocity and r(x) = [(xl) 2 + (x2)2] I/2 

the distance of a point x from the axis of rotation. With no other 

forces present the boundary ~ of D must be an equipotential sur- 

face: 
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2 
(i.i) ~ dy + ~ r2(x) = const Vx 6 

Q 

As the total mass is prescribed, too, we have the side condition 

(1.2) meas ~ = V o 

Relation (i.i) can easily be modified to cover other physical situa- 

tions, too, like compressible fluids, figures with prescribed angular 

momentum or variable angular velocity. In this sense (I.i) can be 

regarded as the basis for all investigations on equilibrium figures if 

treated as problems in hydrostatics. 

A related problem concerns rotating drops that are held together by 

surface tension rather than self-attraction. The boundary is now deter- 

mined by 

(1.3) 2~H(x) + p~2r2(x) = const Vx e ~ , 

where H(x) denotes the mean curvature of ~ at x , and ~ is a 

material constant. If ~ is assumed to be of a specific topological 

type, (1.3) can be transformed into a differential equation for a 

scalar function whose graph is ~ Solutions of the topological type 

of the sphere were investigated by E.HSlder [HI; toroidal figures are 

treated by R.Gulliver [G]. 

In §§3,4 we present some of the author's work on free boundary problems 

for the Navier-Stokes equations that can be regarded as dynamical ver- 

sions of (i.i) or (1.3) because now we allow relative motions inside 

the fluid body. For a viscous and incompressible fluid a stationary 

flow inside the unknown domain ~ is governed by the following equa- 

tions 

(1.4) in n -uAv + Dp + (v-D)v = f 

div v = 0 

v-n = 0 , tk.T~v,p)...n = 0 (1.5) on 

together with one of the following conditions on the free boundary 

(1.6) n.T(v,p)-n = 2~H on ~ , 

or 

(1.7) n.T(v,p).n = 0 on ~ , 

depending whether surface tension is present or not. Here v and p 

denote the velocity and the pressure at x,u is the kinematic viscosi- 

ty, and T(v,p) the stress tensor 

(1.8) Tij(v,p) = -P6ij + u{DivJ + Djv i} 

The exterior normal to ~ is denoted by n , and tl,t 2 span the tan- 

gent plane. The exterior force density f that generates the motion 

will be specified later. 

It is easily checked that for v = 0 (with respect to a suitable 

reference frame) the free boundary problem (1.4) - (1.6) reduces to 
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(i.i) if we only set f = DU , and similarly for (1.4), (1.5) and 

(1.7). The physical assumption then is that the hydrostatic pressure is 

replaced by the normal stress if we pass from a static to a dynamic 

problem. 

In the analogues to (i.i) and (1.3) the fluid occupies a bounded domain 

D , and its boundary ~ is a closed surface. The methods can be exten- 

ded to treat also a layer of fluid where the capillary surface is a 

graph over all of ~2 . In these problems there is no contact between 

the free boundary and a rigid wall, which means that contact angle 

phenomena are excluded. For such a situation, namely the steady flow in 

a capillary tube that is partly filled with liquid the free boundary 

value problem was first solved by D.H.Sattinger Is]; he assumed the 

contact angle under which the free surface meets the wall of the cylin- 

drical tube to be ~/2 . More general angles were studied by 

V°A.Solonnikov [SO]. In §5 we present some of the recent results 

obtained by D.KrSner [K] who studies the following two-dimensional 

problem: 
-~Av + Dp + (v-D)v = 0 

(1.9) in G 
div v = 0 

(i.i0) v'n = 0 on aG 
t.T(v,p).n = 0 

(i. Ii) on 
n.T(v,p).n = -~H 

UDl v2 v 2 = 0 on (1.12) + ~o F o 

(1.13) ~D2vl + ~v I = -~S on F 

(1.14) g(1) = 0 , g(0) = 0 

The domain G which is occupied by the fluid is given as 
1 (1.15) G = { (xl,x 2) 6 ~2 0 < x 2 < 1 ; g(x 2) < x I < Xo} , 

and its boundary consists of 

F ° = { (xl,x 2) 6 ~2: 0 < x 2 < 1 , x I = x~} 

(1.16) F { (xl,x 2) 6 ~2:0 < x I < x 1 
= o , Y ¢ {0,1}} 

= {(xl,x 2) £ ~2:0 < X 2 < 1 , X 1 = g(x2)} 

The domain G is bounded by a capillary surface ~ that is given as 

the graph of a function g , and by rigid walls F and F ° It is 

assumed that E ° moves with constant velocity S through the infinite 

cylinder { (xl,x 2) ¢ ~2: -~ < x I < ~ , 0 < x 2 < i} and pushes the 

fluid into the negative xl-direction; the boundary-value problem 

(1.9) - (1.14) then describes this flow in a coordinate system that 

moves with fluid. Of particular interest is the contact angle ~ at 

(0,0) and (0,i) , especially how it depends on S and on the bounda- 
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ry conditions on F In (1.9) ~ is a friction coefficient, and 

therefore (1.13) is derived under the assumption that there is a force 

on F which is proportional to the tangential velocity. If one imposes 

Dirichlet data on F , i.e. v I = -S , then only for ~ = 0 and ~ = 

physically reasonable solutions v • HI(G ) may exist, cf. 

V.V.Puchnachev - V.A.Solonnikov [PS] . 

§ 2. Approximation schemes 

Free boundary problems to the Navier-Stokes equations have been solved 

so far only under the assumption of small data. This contrasts the 

situation in fixed domains where according to Leray's existence theorem 

at least one solution exists to arbitrary data; the proof is based on 
r 

an a priori bound for Dirichlet's integral | I DvI2dx C(u,D, f,v*) 
J 

which holds for any solution to (1.4) that satisfies v = v on 0Q . 

If instead of Dirichlet data v a condition of Neumann type is 

imposed, Dirichlet's integral may not be finite any longer; a counter- 

example has been given by T.A.McCready [M] who showed the existence of 

solutions (Vn,Pn) to the Navier-Stokes equations -Av n + Dpn + 

kn(Vn'D)v n = 0 , div v n = 0 in ~ = { (xl,x 2) 6 ~2: r 2 < (xl)2 + (x2)2 

< ~2} such that J| ..IDVnl2dx --~ ~ as A --~ 
Q n 

Although this example depends strongly on the fact that the underlying 

domain is an annulus and therefore does not apply to the situations 

considered in this paper it suggests that a global estimate for 

I does not hold in general. Also physically seems quite IDvl2dx it 
Q 

plausible because Dirichlet's integral measures the deformation energy, 

and by imposing v = v on OD one assumes that the rigid boundary 

can resist arbitrary large stresses. For a drop as considered before, 

however, large stresses might result in large deformations of the shape 

and eventually the drop might break, a phenomenon that was already 

investigated by J.Plateau [P]. Clearly this implies that certain norms 

become unbounded. 

Therefore we investigate solutions that are perturbations of a known 

static configuration. As examples we may take a spherical drop held 

together by surface tension or self-attraction but without any interior 

relative motion. We then construct a sequence of successive approxima- 

tions {(Vn,Pn,~n)} , starting with the static figure v ° ~ 0 , 

Po ~ const , ~o = S = {x 6 ~3: Ixl < i} In the first step we solve 
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(1.4) - (1.5) in 9 ° , the domain that is bounded by ~o ; this solu- 

tion (vl,Pl) is then inserted into n-T(v,p).n in (1.6) or (1.7), 

and from this equation we determine E 1 . Then we solve (1.4) - (1.5) 

in D1 and obtain in this way the sequence {(Vn,Pn,~n)} 

As a solution is sought in a neighborhood of (vo,Po,~o) we can 

restrict ~ to be a graph over ~o " For ~o = S the free boundary 

will then be of the form 

(2.1) : {(f,p) e m3: f e s , p = i + [(f) , [:s -~ m} 

= { ([ ,p) :[ 6 S , 0 _< p _< [ (~) } can then be mapped onto 

= {x 6 ~3: Ixl < i} by the transformation 

(2.2) [ ] y = o(X) = a([,p) = ['I+[([) 

On B we introduce the new independent variables 

I C ooi]-i oOi(x) vj (X) u i(y) : [det?~j] 

8x ] 
(2.3) 

q(y) = p(x) 

where x 6 Q and y 6 B are related by y = a(x) . For two boundaries 

~n and ~n-I that are graphs of functions In and [n-i their dif- 

ference ~n-~n_l is defined to be {([,p): [ 6 S, p = 1 + In(I) - 

[n_l(~)} ; and furthermore we choose Un(Y) - Un_l(y ) as difference 

between Vn [onl (y) ] and Vn_l [Onll (y) ] 

A straightforward calculation gives for the transformed Navier-Stokes 

equations 

(2.4) 

(2.5) 

with 

(2.6) 

(2.7) 

-- • • fJ in B Lul + aijDjq + Ni(u'Du) = all 

D.u j = 0 in B ] 

Lu i = -~Dk(aklDlUi ) + biklDk ul + cijuJ 

.u i + biklUku 1 Ni(u,Du ) = a-luJD] 

where D j 

variables 

namely 

means now partial differentiation with respect to the new 

y3 The coefficients depend on o and its derivatives, 
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0a i Oa j [ a°--~] -I -- 
= a = det = aaij 

aij ax h 8x h ' Ox3] ' aij 

- 61iAxak - 2 0°i oak ~ [a -I 8(a-l)rl 
(2.8) bikl = 61i Oy n auk ax r 8x s aoxs ay i J 

Oa i aA x [a-i 0(o -1)hi 
cij = 8x n @yJ J 

: 0o i : 0oi 0(a-l)m O [a-i O(a-l)n ] 

aij 0x j a , bikl Ox n 8yk Ox m oyl 

To indicate that L and its coefficients depend on a (and therefore 

on ~ ) we sometimes write L(~) , aij(~ ) etc. 

It is understood that the coefficients aij , a , and aij k etc. (see 

below) depend on ~ and its first derivatives, bik I , ~ij etc. on 

, Do , D2a , and finally cij on a and its derivatives up to order 

three. As new boundary conditions we obtain 

(2.9) aiui = 0 , aijkDiU] + ~jk u] = 0 on S,k = 1,2 . 

In principle, this reasoning applies also to (1.9) - (1.14), but due to 

the corners of the domain some modifications have to be made. If G is 

given and G is a domain of the same type, i.e. 
^ 2 x I 1 = { (xl,x 2) e ~2:0 < x 2 < 1 , g(x ) < < x } , again with 

A 

g(0) = g(1) = 0 , then one can use the transformation a:G -~ G , 

defined by 
2 ^ (2.10) (yl,y2) = a(xl,x 2) = (x I + K(xl)[g(x )_g(x2)],x 2) 

V (xl,x 2 ) • with a cut-off function K 6 C (-~,x I) that satisfies 6 

. m 1 i. 31 ~(X I) = 1 on ~- ,~Xo) and K(x I) - 0 for x I > ~x ° (It is assumed 

without loss of generality that inf g , inf g < ixl .) As the equa- 

tions of motion in (1.9) - (1.14) are two-dimensional, one can reduce 

the problem to a fourth-order equation for the stream function ~ ; 

therefore we can define ~ = @0a as transformation of the dependent 

variable. In the corner (0,0) for instance one uses a local transfor- 

mation such that the free boundary becomes a straight line segment. 

Then ~ can be controlled up to the boundary in suitably weighted 

HSlder spaces, which are defined as 

ck(G,M) :: {u:n -~ ~:Uull k := ~ sup IP(x) l -s+l~l'ID~u(x) l < "} 
Cs (G,M) l~l<_k x6~ 

c~+~(G,M):= {u c C k(G,M) : l,u,, = llull k+u 
C k+~ (G,M) C s (G,M) 
s 

+ ~ sup Ip(x)I -s+k+" sup ID~u(x)-DYu(x') I 

l~l=k xCG Ix-x' I<P(~ ) I×-~' I" 
< ~}. 



102 

As usual we have k e ~ , ~ 6 (0,i) , ~ is a multi-index, and 

p(x) = dist(x,M), s 6 ~ . 

We now state in what spaces the successive approximations will converge 

to a solution. If the free boundary is governed by surface tension we 

can solve (1.4) - (1.6) in C 2+N x C I+~ x C 3+B because in this case we 

have the estimates 

llUn+l_Unllc2+ +llqn+l_qnllcl+ ~ ~ Cll~n-~n+lllc3+# 
(2.11) , 

II~n-~n_lllc3+# ~ C {llUn-Un_lllc2+ +llqn-qn_lllcl+N } . 
For small data there holds C-C < 1 , and therefore we have conver- 

gence for {(Un,qn,[n) } . A solution (u,q) to (2.4) - (2.9) can be 

estimated as in (2.11) because on the right hand side of the Schauder 

estimates the C0+B-norm of the coefficients of L occurs, and this 

clearly contains third derivatives of [ ; similarly the C2+~-norm of 

the coefficients in the Dirichlet boundary condition (2.9) enters into 

it and this again leads to II[I[c3+~ . On the other hand, the equation 

for the free boundary (1.6) is of the form 

{ 1 giJDj ~ 0 ~ j ~  j2 
(2.12) 3- D. a~ ~g I+ = n'T'n , 

~ ~ l+ l~ f  12 
V~ £ S , where gij(~,p ) is the metric on aBp(0) , g = det gij , and 

g13 is the matrix of the adjoints; I~[12: = gl3Di[Dj[ . Equation (2.12) 

is a non-uniformly elliptic equation of second order, and u e C 2+~ , 

q e C I+~ implies T e C I+~ , and consequently li[]IC3+# can be estima- 

ted by llUllc2+~ + [lqllcl+~ as stated in (2.11). In this way the succes- 

sive approximations all lie in the same function space, hence for small 

data {(Vn,Pn,~n) } forms a Cauchy sequence. 

In the problem (1.9) - (1.14) we proceed basically in the same way; it 

becomes necessary, however, to give additional estimates of the beha- 

viour in the corners. The stream function @ satisfies 

(2.13) vA2@ = D2@DIA@ - DI@D2A@ in G 

(2.14) @ = 0 on aG 

(2.15) vD~ + ~D2~ = -~S on F 

(2.16) vD~ + ~oDl ~ = 0 on F ° 

(2.17) D~ - HD2~ = 0 on 
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(2.18) 
~l+lg ' l  2 

8 8 
(-mH + ~g') = D28 ~ DI@ - DI~ ~ D2~ 

8 92 0 
+ u ~ A~ + 2uOt 2 ~ on 

(2.19) g(1) = g(0) = 0 

The estimate which is analogues to (2.11) is 

(2.20) II~n+l-~nll=4+~(G,M ) Cllgn+l-gnll 4+# 
el+ ~ Ci+6((0, i) ,M) 

of the corners of 8G . If ~(x2) : = g(x 2) - go(x 2) where M consist 

denotes the deviation of ~ from the static configuration Z (that 
O 

is the graph of a function go ) then (2.18) implies for 

-(w'F' (gl))" + ~' = Ql + Q in (0,i) 

(2.21) 

o(X 2) = 0 for X 2 = 0,i 
t 

where F(t) = - -  and Qo depends on o and go and their deriva- LI-;Z, 2 
tives up to second order; Q is a nonlinear function in ~ and its 

derivatives up to third order, too. The solution to (2.21) with E as 

its right-hand side satisfies 

(2.22) Iloll < CIIEII 
~4+~ cl+~ ' 
1+6 -2+6 

and apart from the weights which we will discuss later the estimates 

(2.20) and (2.22) are to be expected from Schauder's theory for ellip- 

tic equations and the fact that (2.22) is a third order equation for 

. If we insert Qo + Q(~,...,D3~) into (2.22) then the estimates 

show that also for the free boundary problem (2.13) - (2.19) the 

successive approximations converge to a solution. 

In case there is no surface tension force the scheme from before will 

not yield approximations that lie all in the same space. If (1.7) can 

be solved at all for given v 6 C 2+~ , p e C I+~ , its solution ~ will 

not be more regular than T(v,p) , i.e. ~ 6 C I+~ , and consequently we 

encounter the "loss of derivatives", a phenomenon to which hard impli- 

cit function theorems are especially suited. But (1.7) will generally 

not admit any solution, as it describes Z only as a level set. We can 

turn (1.7) into an integral equation, however, for which existence can 

be shown, if we assume f to be of the form f = fo + h with fo(X) = 

DU(x) As the force of self-attraction fo can be absorbed into the 

pressure, (1.7) becomes 

Now the unknown f appears in the domain of integration D . According 
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to Lichtenstein [L] the integral can be written in the form 

(2.24) C°~(~) + ~S d(~,n)C(U) do(n) + N(~)(~) 

where c o = const and d(~,~) denotes the Euclidean distance between 

two points ~,U £ S . 

N([) is a nonlinear operator which we will discuss in §3. If fo is 

the dominating force, i.e. llhll << IIfoll , then n.T.n will be small, 

too, and the solvability of (1.8) follows from the fact that 

Co~ + ~ ~ do is invertible. In this way the introduction of fo as 

dominating force leads to an equation for the free boundary that can be 

handled. But also for physical reasons f must be regarded as necessa- 

ry. Self-attraction tends to hold the drop togethter and therefore 

balances other forces that possibly act in the opposite way. 

§ 3. Equilibrium figures with self-attraction 

In [B4] we proved the following result. 

Theorem i: Let fo(x) = DU(x) be the force of self attraction. For 

f = fo + h , h £ C k+~ with k > 6 and (in cylindrical coordinates 

r,8,x 3 ) 

h 8 = hS(r,x 3) = -hS(r,-x 3) , r 2 = (xl) 2 + (x2) 2 

(3.1) 
h 3 = h r = 0 , 

llhllck+~ " small enough, there exists a unique solution v 6 C5+~(~) , 

p 6 C4+~(~ , and 7. 6 C 6+~ to the free boundary problem (1.4), (1.5), 

(1.7) ; v and p are small in the sense that 

(3.2) HVI~c5+~ + llp-U11c4+~ < CllhlIck+~ , 

and ~ lies in a C 6+~ neighborhood of the unit sphere S ; the 

C6+~-norm of the distance of ~ from S can again be estimated by 

Cllhll 
C A +~ 

The proof is based on a suitable version of the hard implicit function 

theorem; we regard (1.4) , (1.5) , (1.7) as a nonlinear mapping 

F:~ ° x Zo --~ Ko which is defined by associating to 

z = (u,q,~) 6 Zo:= C2+~(B;~ 3) x C3+~(S;~) the right-hand side of these 

equations which then is an element of ~o := C0+~(B;£R 3) × C0+~(B;~) x 

C0+~(S;~) Here we have identified functions (v,p) and (u,q) that 
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are related by the transformation a as in (2.3). In this way F is 

defined on a set which admits an affine structure, and consequently one 

can compute the linearisation DF(f,z) of F with respect to the 

second argument, cf. [B4] (40) - (42) 

DFi(f,z)z = n([)~ i + ~ij([)Djq + lij(u,~)uJ 

(3.3) + lj(u,~)Dju i + i~ 3 1 (u,q.~)D~o 

+ ~ m (f,~)D~u , i = 1,2,3 

(3.4) DF4(f,z)z = D.u j 
J 

DF5(f,z)z = M~ + mo([)~ + ~ r (u,q,~)D~[ 
(3.5) 1~1~2 

+ mij([)Di ~j + m([)q e 

The boundary conditions for (u,q) are of the form (2.9). 

We note that DFl(f,z) , i = 1,...,4 is not just the Stokes lineariza- 

tion of (2.4), (2.5) - which would consist only of DjFi(f,z ) , i,j = 

1,...,4 - but contains the derivative of F i with respect to z 5 ~ [ , 

too; this results then in the third order operators in ~ , which is 

the transformation belonging to ~ similarly, in DF5(f,z) also 

operators in u and q occur. So in contrast to the approximation 

scheme from before the equations (3.3) - (3.5) no longer split into a 

boundary value problem for the velocity and the pressure and in a 

separate equation for the free boundary. On the other hand, it is not 

known how to invert DF(f,z) , and therefore we will use a variant of 

Moser's implicit function theorem which is due to E.Zehnder [Z], and 

which allows to work with (2.4), (2.5), (2.9), (2.24) instead of (3.3) 

- (3.5). It requires only the existence of an approximate inverse 

H(f,z) to DF(f,z) in the sense that 

DF(f,Zn)oH(f,Zn) --~ ~ , 

as z n tends to the solution z of the nonlinear equation. More 

precisely, the hypotheses for this implicit function theorem are as 

follows. Let {Zt}t> 0 be a one parameter family of Banach spaces with 

norms I. It such that for all t,t' with 0 < t' ~ t < ~ there holds 

2 ° D ~t' D Z t D Z~ ~ n 
t>0 

and 

Izlt, ~ Izl t Vz ~ ~t, ' t, ~ t 

The same properties are assumed to hold for {gt}t~ 0 and {~t}t> 0 . 

z ° = (O,Uo(x),o) , where Uo(x ) is the gravity potential of 

n ° = B(0) , satisfies F(fo,Zo) = 0 . We then postulate 
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(H.I) F is continuous in (f,z) and two times differentiable in z ; 

in ~o = { (f,z) : If-fol ° + IZ-Zol ° < i} these derivatives are 

bounded. 

(H.2) F is Lipschitz continuous in the first argument. 

(H.3) F is of order s , where s is related to the loss of deriva- 

tives in (H.4) ; this means that if (f,z) becomes more regular 

its image F(f,z) is more regular, too: F(~ ° N (~t × Zt)) c ~t 

V t 6 [l,s] . 

Hypotheses (H.I) - (H.3) can easily be verified because they are conse- 

quences of the regularity of the coefficients in (2.4), (2.5), (2.9), 

(2.24) 

(H.4) For every (f,z) 6 ~ there exists a linear map 

H(f,z) : • --~ ~o such that . . . IH(f,z) (~) I O < Mol~ I.. V ~ E 

H(f,z) is furthermore continuous from ~t into ~t-~ " H(f,z) 

is an approximate inverse in the sense that 

(3 .6)  I [ D 2 F ( f , z  ) o H ( f , z )  - ~ ] ( @ ) I o  < M o l F ( f , z  ) l~I@l~ 

f o r  a l l  ~ E 

Theorem 2: (E.Zehnder [Z]) Let F satisfy (H.I) - (H.4). Then there 

exists an open neighborhood 9A = {f 6 9A: I f-folA < c} and a mapping 

~: ~k --~ Zp such that for all f e ~k 

(3.7) F(f,z) = 0 with z = ~(f) 

and 

(3.8) Iz-zol ° < c-Zlf-folx 
The numbers X and p can be chosen t o  be p = 3 , X > 6 . 

To verify (H.I) - (H.4) we choose first the underlying function spaces 

to be 

~t = ct+~(B;~3) x ct+~(B;R 3) x ct+~(S;~) 

9t = ct+~(~3;~3) 

Zt = ct+2+~(~;~3) × ct+l+~ (~;~3) × ct+3+~(S;~) 

To define the approximate inverse H(f,z) we first consider the opera- 
, 

tot D F(f,z) which consists of the linearized equations (2.4), (2.5), 

(2.9) in its first four components and of the linearization of (2.24) 

in ~ It is of the form (3.3) - (3.5), but with 1 D~o , m D~o , 

r D~ , mijDiuJ and mq left out. D*F(f,z) is invertible, and we 

call its inverse H(f,z) To prove the estimate (3.6) we showed in 

[B4] that the terms 1 D~ etc. tend to zero if {Zn} approaches its 
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limit; the main idea in doing so consists in choosing suitable repre- 

sentations: when Zn+ 1 is constructed we choose nn_ 1 as reference 

domain, such that [n+l measures the distance between ~n+l and ~n-i 

along the normals to ~n-i " 

That D F(f,z) is invertible or equivalently that the approximations 

(Un,qn) and ~n can be constructed as claimed in §2 follows from 

Lemma 3 and Lemma 4. 

{{ ~ {{ C3+~ 

(3.11) 

Lemma 3: 

domain with boundary of class C 3+~ . Then the boundary value problem 

n([)~i + ~ij([)Dj ~ + lij(u,[)~j + lj(u,~)D~i9 = i 

Dju j = 0 in (3.9) D, 

i=i,2,3 

(3.10) ai([)ui = 0 , aijk([)Diu] + ~kj([)uJ = 0 on De , k = 1,2 

with operators as defined in (2.6), (2.8), admits to ~ 6 C O+~ 

classical solution u 6 C2+~(Q) , q 6 CI+~(5) as long as llull 
C2+U 

are small enough. The solution can be estimated by 

ck+2+~ + llqJiCk+l+~ ~ C[u,k, il@Diick+3+~ , Jl[ilck+3+U , 

Let u £ C2+~(Q) , [ E C3+~(@D) be given, when D is a 

a 

and 

ilUllck+2+~] ll~lJck+~ 

for all k > 0 . 

The lemma states essentially that the Stokes equations are solvable if 

mixed boundary conditions as in (1.5) are prescribed rather than 

Dirichlet data; for a proof see [SS], [BI] 

Let ~ be a closed surface in a C2+~-neighborhood of S Lemma 4: 

Then 

~(~) 
(3.12) @~(~)~(~) + d(~,~) da(n) = 0 

for at most 6 eigensolutions ~i,...,~6 . Here +~ is the normal deri- 

vative of the Newtonian potential of the body D that is bounded by 

. 

[i,~2,~3 are the infinitesimal translations in the directions of the 

coordinate axes, and ~4,~5,~6 are the rotations about these axes. If 

is rotationally symmetric with respect to the x3-direction, then 

~3+i is not an eigensolution. 
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The proof is classically known for equilibrium figures, and requires 

therefore only some perturbation arguments. 

Remark: (i) Lemma 4 is not restricted to surfaces near S Actually 

the proof only uses that the sphere is an equilibrium figure to a value 

for which no bifurcation occurs. So if ~ lies near an equilibrium 

figure that is locally unique, Lemma 4 holds, too. 

(ii) The restriction (3.1) on h in Theorem 1 guarantees that there r 
holds I hdx = 0 Physically this means that the resultant of the 

D 

forces vanishes which is obviously a necessary condition for the exis- 

tence of stationary configurations. We will investigate this question 

again in § 4. 

§ 4. Closed surfaces of prescribed mean curvature and free boundaries 

governed by surface tension 

The solution to the free boundary problem (1.4) - (1.6) where the free 

boundary is now determined by surface tension can be obtained by the 

approximation scheme that we outlined in §2. Therefore it remains to 

prove existence for solutions (Vn,Pn) to (1.4), (1.5) in a fixed 

domain nn_ 1 and ~n to (1.6) or equivalently In to (2.12) where T 

is evaluated at (Vn,Pn) . To show existence, uniqueness and regularity 

of solutions to the Navier-Stokes equations with mixed boundary condi- 

tions one can proceed in a way that is very close to the case of 

Dirichlet data. 

To indicate the main difficulty in the problem of closed surfaces with 

prescribed mean curvature we start with the following formula for inte- 

gration by parts on the surface: 

(4.1) -2 ~ Hgnda ~ + ~gd~ V g 6 C 1 c(U(~) ) 

Here U(~) is a three-dimensional neighborhood of ~ , and 

~g = Dg - (Dg.n)n denotes the tangential part of the gradient of g 

If ~ is a closed surface we can choose g to be one on ~ , and 

hence 

(4.2) + Hnda = 0 . 

It turns out that (4.2) poses a restriction to the data H , for which 
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a surface with this H is its mean curvature exists, l) For 

H = -I + 6x 3 , which is only a perturbation to the mean curvature of 

the unit sphere, equation (4.2) obviously cannot hold. 

If H , however, can be interpreted in physical terms as in (1.6), 

condition (4.2) is always satisfied, cf. [B2]. As in the remark to 

Lemma 4 we require the force f in (1.4) that generates a motion 

of D to be balanced: I f(x)dx = 0 . inside Therefore 

0 = I-DAV + Dpdx + I (v.D)vdx 

= + T(v-p).n da 

As the tangential part of T.n vanishes pointwise on ~ , cf. (1.5), 

means 0 = ~ (n.T.n)nda ~ 2~ ~ Hndu . The restriction (4.2) this to 
J 

the purely geometric problem of constructing a closed surface of pre- 

scribed mean curvature is eventually quite natural if interpreted in 

physical terms. As (4.2) involves the data H and the solution ~ it 

still remains to find conditions on H alone such that (2.12) is 

solvable. 

As there is a volume constraint (1.2) to be satisfied by the solution 

to (2.12) we will apply variational methods. (2.12) is the 

Euler-Lagrange equation to 

(4.3) I(~) = ~ ~I+,~, 2 ~g d~ + ~ H(~,~) g~ d E 

S S 

where 

i~ (~) (4.4) H(~,~) = - 2h(~,t)t2dt ; 
O 

for h we have to insert the prescribed mean curvature 

which after it is calculated for a specific approximation 

we may extend to be constant along rays. 

n.t (v,p) .n 

(v k, Pk ) I~k 

The area integral A(~) = f~ f~l+l~[12 U4g dE in (4.3) grows linearly in 

S 

IDa' I , but not uniformly with respect to [ : 

2 ~g,I le~'l 2 Co if2 + Clff IDOl _< l+ < Co ~2 + Cl ~2 + Clff21Dffl 

Therfore the space of functions of bounded variation does not seem to 

A 

I) The role of (4.2) and an example for H that is even constant 
on rays such that there is no graph over S whose mean cur- 
vature is H was communicated to me by Henry C. Wente. 
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be appropriate as in the case of the Euclidean area functional 

I ~l+IDul 2 . Hence we another space a dx introduce function which is 
D 

variant of BV(~) by exploiting the following (formal) relation 

~g(~,~) ~l+g ij (~,~)DifDj~ = ~4+~2g*iJDi~Dj~ 

= 2 1 *ij~ ,r2~ (~2) +~ wi~ ;mj ([2) 

2 
If we now regard [ as the new dependent variable we can extend A([) 

2 
in terms of [ onto the function space 

BVR(S) = {~6L2(S) : ~ i ,(~2) I ~Wg, < ~} where 
S 

(4.5) S 

1 2 cl 1 ,~ (S) , g*ij i j ~ 1 . 

J 

On BVR(S ) we now define the area integral to be 

.iJ i 20j   sup + 
S 

(4.6) 0, 1, 2 £ C 1 (S) , 
l ( o ) 2  + g * i j  i j ~ 1t . 

The approximations to the free boundary can now be obtained by the 

following variational problem: minimize I(~) in the class of func- 

tions 

C = BVR(S ) D ~: y ~ = V ° ~: = 0 

S S 

where ~i ' i = 1,2,3 are the eigenfunctions to the Laplace-Beltrami 

operator A on S to the eigenvalue 2. 

Remarks: (i) Because we use BVR(S ) instead of BV , the volume con- 

straint ~ d~ = V ° becomes a compact side condition; for 

according to the Sobolev embedding theorem BVR(S ) is continuously 

embedded in L4(S ) and hence compactly in Lp(S) , p < 4 . 

- ~ (~-i)~ i g~ dE = 0 guarantees that the (ii) The side condition 

center of mass of the fluid body stays in the origin, for ~i are the 

infinitesimal translations in the coordinate axes. This side condition 

leads to Langrange multipliers but as we will restrict the exterior 

forces to be balanced, the corresponding Lagrange multipliers will 
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vanish if (Vn,Pn,~n) tends to the solution. 

(iii) The introduction of spaces of BY-type where instead of the func- 

tion u itself an expression ~(u) has bounded variation turns out to 

be useful in other variational problems, too. See e.g. [BD], where the 

degenerate variational integral [ u41+IDul 2 dx , u ~ 0 a.e. in 

D 

D C ~n , is studied. 

For fluid bodies whose free boundary is governed by surface tension we 

obtain the following result. 

Theorem 5: The free boundary problem (1.4) - (1.5) admits a unique 

solution v 6 C2+~(~) , p 6 CI+#(~) , ~ e C 3+~ , if the force density 

f is of class C °+~ and satisfies (3.1). 

One can easily extend this result to the case of two immiscible fluids 

of the same density, where the drop D is immersed in a second fluid 

that fills a fixed container. 

Higher regularity v e C k+2+~ , p 6 C k+l+~ , ~ 6 C k+3+~ can be shown 

easily if the forces are more regular, too, like f £ C k+~ Further- 

more, in [BF] analyticity is proved. 

Theorem 6: Let (v,p,~) be a solution to (1.4) - (1.6) and f an 

analytic force density. Then v,p and ~ are real analytic, provided 

llvll is small. 
CI+~ 

Standard techniques for proving analyticity in free-boundary problems 

do not seem to apply and therefore the proof had to be based on 

Friedman's method to show analyticity for solutions of elliptic and 

parabolic equations, cf. IF1]. All derivatives are estimated succes- 

sively, and this required the smallness of v . 

In [B3] we investigated the problem of a drop Q that falls down under 

its own weight in an unbounded reservoir of a second viscous fluid of 

smaller density. In this case the flow can be stationary only in a 

reference frame that is attached to ~ Its speed ~ relative to a 

fixed Galilean frame is a further unknown of the problem. The condition 

that in the moving frame the net weight of the drop D is balanced by 

the viscous forces determines ~ uniquely. 

If (v,p) , (u,q) denote the velocity and the pressure in D and its 

complement ~ , resp., we obtain 

Theorem 7. If the difference of the densities of the two fluids is 

small then exists a unique solution (v,p,u,q,~) to the problem of a 

falling drop. The regularity of the velocities v,u , the pressures 
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p,q and the free boundary ~ is the same as in Theorem 5. The solu- 

tion is axially symmetric with respect to the direction of the (uni- 

form) gravitational field. 

The proof uses results of H.F.Weinberger [W] on the steady fall of a 

rigid body in a Navier-Stokes fluid; there a weak formulation is given 

by which also ~ can be determined. 

§ 5. A free boundary problem with a dynamic contact anqle. 

In the free boundary value problem (1.9) - (1.14) the core of the 

investigation by D.KrSner [K] lies in the estimates near the singular 

points of the boundary. As in the theorems of §§ 3,4 existence for the 

Navier-Stokes equations with boundary conditions rather than Dirichlet 

data in smooth domains poses no particular difficulty, also after the 

perturbation of the operators by the transformations onto a fixed 

domain. 

In this context the first goal is to establish precise asymptotic 

estimates for the function g that represents the free boundary under 

the following hypotheses 

(5.1) v 6 H~(~) and v is smooth in ~ \ M , 

where M denotes the set of singular boundary points, 

-4+~ ([o,z]) (5.2) g 6 C 1 

and 

- --~ 0 , (5.3) Hg(y) g'(0)ylf 4+u([0,a] ) 
c 1 

as a tends to zero. 

The assumption on v means that the energy of the flow is finite. In 

addition to the weighted HSlder spaces defined in (2.10) we need to 

work also in Sobolev spaces with weights. They are defined as 

w~'P(~;M) : {u: ,u,J k :: 
W 'P(D ;M) 

( 5 . 4 )  j.z 
-% 

I pp("-k+p) I D~ulPdx < "~ 
I~l~k ] 

are polar coordinates with the singular point as its where (p,~) 

center. The main result on the regularity of is contained in 

Theorem 8: Let {~,g} be a solution of (2.13) - (2.19) and let 

(5.1) - (5.3) be satisfied. Then there holds 
_4+v 

(5.5) ~ 6 ci+ 6 (~) 



113 

(5.6) 

where k(y) = g' (0)y - g(y) and 

(5.7) ~o > { 31 - E/~o 

~o denotes the contact angle, i.e. 

~ c ~ ([o,1]) 
3-~o 

if ~ < ~o < [[ 

if 0 < ~o < ~ 

~o = ~ - arctan g' (0) 

As a consequence one gets the following asymptotic expansion. 

Theorem 9: 

is of the form ~ = #as + ~o 

(5.8) ~o e w4(n) 
U 

with a > 

and 

(5.9) 

Under the assumptions of Theorem 8 the stream function 

2~ 
u3(r,~ ) if 0 < ~o ~ --5 

~'~ S O 

2IT 3IT 
~as(r,~) = u3(r,~ ) + r ~ log rPs(r log q r,~) if -~ < ~o -< -~ 

s=0 

-- S O 

r ~° o 3 r [  
log rPs(r log q r,~) if -~ < ~o < IT 

s=0 

r 6 (0,i) , ~ e [0,~o] and an integer q " Ps and Ps are with 

polynomials in r log q r with smooth coefficients and 
~S 

u3(r,~ ) = ~ r2a(r,~) with 

~-~o sin2 (~-~o) 

~o sin 2 ~o ' if ~o ~ 
a(r,~) = 

2 
{ (~-~o) (cos 2(~-~o )+l)+sin 2(~-~o )lOg r , if ~o = 

To show the result of Theorem 8 one improves on the regularity of 

in several steps. The first estimate is v 6 C ° for all 
-1+6 

5 6 (0,i) Because of the assumptions on g one can perform the 

trans format ion 

w(z) = v(rz) , q(z) = rp(rz) , ~ (y) = 1 g(ry) 

and then apply Lp-stimates in a fixed annular domain. Due to the 

regularity of g the transformed equations have smooth coefficients 

which finally gives ~ 6 _4+v uI_5(Q ) . To improve on the regularity of 

and to obtain (5.5) one applies a method used by V.A°Kondratev which 

allows to estimate solutions of linear elliptic equations in corners of 

3 ~ if 0 < ~o < [ 
2 2~ ° - 2 

7 3~ if ~ 
2 2~ ° 2 < ~o < ~ ' 

with 
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the domain. As g and , are related by the boundary condition (2.18) 

this results in an improved estimate for g in the singular point as 

stated in (5.6). 

The existence of a unique solution {,,g} to (2.13) - (2.19) which has 

the properties stated in theorems 8 and 9 is shown to exist in a neigh- 

borhood of a hydrostatic capillary problem with a contact angle ~s 

provided the data are small which means that the fluid is pushed 

through the tube such that I~sI in (2.15) is sufficiently small. 

Theorem i0: Let go be the parametrization of a static configuration 

' (0,~) Let a ~ ~s > 0 with contact angle ~-arctan go(0) = ~s 6 . = - , 

0 < 6 < min{2~_aa , i} , and p,~,~,~,~o 6 ~+ Then there exists an 

e ° > 0 such that for all values of ~S with I~sI < 6 ° the free 

boundary problem (2.13) - (2.19) is uniquely solvable. The solution 

{@,g} satisfies ~ 6 ~4+~t°;M)-l+6'- , g 6 Cl+6([0,1],M) for all 

e ( o , i )  
The proof is based on solving the equations of motion in fixed domains 

and the equation for the free boundary to given data, as outlined in 

§2. One starts with weak solutions to the linearization of (2.13) - 

(2.17) ; then estimates up to the boundary are given in weighted H5ider 

classes, as required in (2.20) such that eventually a fixed point 

argument gives the solution to the free boundary problem. 
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