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1. Introduction

The fundamental solution in two spatial dimensions of the steady Stokes and Oseen
problems is known from the work of Lorentz [5] and Oseen [7]. Furthermore, a
substantial knowledge of their properties is available. See e.g. [1], [2], [8], [3]
and [4]. On the other hand, explicit formulae for the fundamental solutions of the
corresponding time dependent problems do not seem to be known. The purpose of
this brief note is two fold. One is to obtain explicit formulae for the fundamental
solution of the time dependent problems. The other is to illustrate a method for
the derivation of these fundamental solutions that might be of interest on its own.
This method uses an adjustment of the standard heat kernel in two dimensions
to render convergent, otherwise divergent integrals. This adjustment is sometimes
referred as “centering” in the probability literature. Our knowledge of such a trick
resulted from a visit by R. Bhattacharya to Oregon State University in the Fall of
2001.

Let’s first illustrate the basic idea that makes this centering trick a useful
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tool for calculations. Let I'(x;y,t) denote a fundamental solution of an evolution
equation. That is, regarding x € R? as a parameter, and with 0x(y) denoting the
Dirac mass at x, I' satisfies

or

ot
in the sense of distributions. Here L denotes a differential operator on R? with
coefficients that do not depend on ¢. Let f(t) be such that

E(xy) — / TRy, ) - f0)lde

is a convergent integral. If the convergence of this integral is such that the order
of integration and differentiation can be interchanged one has

LyE:/ LyI‘dt:/ I it — —6.(y).

Thus, E is a fundamental solution of the time independent problem. For example,
if Ly is the Laplace operator, I' is the heat kernel and the steps described above can
be justified if d > 3 with f(¢) = 0. However, while the heat kernel is not integrable
in time for d < 3, these steps can be justified using f(t) = (47t)~42e~1/t. We
illustrate this in the first section of this paper.

The same approach is applicable when one considers the time dependent lin-
earizations of Stokes and Oseen of the Navier-Stokes equations. However, due to
the incompressibility condition, one is naturally led to consider the projection, in
the sense of distributions, on the divergence free vector fields of the Dirac delta
function. Specifically, the time dependent Stokes and Oseen equations have the
form

- L, T =0, T'(x;y,0) =0x(y)

ou
i - u=
v u+Vp=0, V-u=0

where
Lu=Au—-U-Vu

and U denotes a constant vector in R? corresponding to a far field velocity. We
wish to determine u such that u(x,0) = §(x). Let P denote the projection onto
divergent free vector fields. Then w = Pu, satisfies

%—Vt"—Lervp:o, V.ou=0

with initial data
w(x,0) = Pd(x).

Throughout this paper, we denote by I'y(x;y, t) the solution of this problem, sup-
pressing the relation to the far field velocity in the case of the Stokes linearization
corresponding to U = 0.

This note is composed of two sections. In the first section, devoted to the
Stokes problem, a derivation of the steady state fundamental solution is presented
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as a time integral of the time dependent fundamental solution. As shown in that
section, this result also requires the use of the centering trick since the fundamen-
tal solution of the time dependent Stokes problem is not integrable with respect
to time. In the second section, the fundamental solution of the Oseen time depen-
dent problem is obtained. Its time integral gives a representation of the steady
state fundamental solution that appears to be different from those available in the
literature (see e.g. [3]). So, as a point of comparison, the asymptotic behavior of
the fundamental solution is also presented in this section. The Appendix contains
the details of some of the calculations needed for the second section.

2. Stokes flow

The fundamental solution of the Stokes problem

aa—ltl—Au—i—VW:O Vau=0 fort>D0, yER2 (2.1)

can be written as
I'(x;y,t) = —AyU(x;y, )l + HessU(x;y, ), (2.2)
where for each x € R?, ¢t > 0, ¥ satisfies

1 xeyi?
AyU(x;y,t) = —k(x;y,1), k(x;y,t) = He‘%

is the fundamental solution of the heat equation in R?, HessU denotes the matrix
of second order partial derivatives with respect to the y variable, and | denotes
the 2 x 2 identity matrix. Oseen in [7] appears to be the first one to write the
fundamental solution tensor for the steady problems in this form. More recently,
Solonnikov [9] uses a similar expression in his analysis of the time dependent
problem in R?, whereas the authors of this note used it in [10] to obtain an explicit
formula for the fundamental solution of different linearizations of the Navier—
Stokes equations also in R®.
To illustrate the centering idea mentioned above, one has

Lemma 2.1. Let a > 0 be an arbitrary real number. Then

& ]. X*yz a ].
A 4_7'(t <6| 4t ” —64‘> dt = E [lna—ln HX_yH2:| .
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Proof.

1 lx—y)? a/4t _
/ — <e —e 4t>dt / / e *dsdt
o Amt At Jyypp e
a/4s
/ / —dtds
Ix—yl? /48

477 [lna —In|x—y]| }

1
= {1na— In Hx—sz} .
O

In particular, with the choice of @ = 1 one obtains the fundamental solution of
the Laplace equation in two spatial dimensions, as the time integral of an adjusted
heat kernel.

The representation of the fundamental solution of the Laplace equation in R?
obtained in the previous lemma, permits a simple calculation of ¥. Indeed, from
Lemma 2.1, one has

lIx=z]% Z\I
7 _1 1/|z —
Wixiy 1 /Rﬂm n(1/17 — y|)dz

lx—zl? z“2 > 1 _lz—yl? _a
e 4s —e % | dsdz.
R2 amt© o A4ms

Note that this last double integral is absolutely convergent since from Lemma 2.1

it follows that
/ / _lx—z)? zu2 1 _
— le
R2 47rt 4rs

_x—z2
- s L e

which is clearly integrable. Exchanging the order of integration in (2.3) and using
the semigroup property of the heat kernel, one has

& Ix=2]2 _ Jz—y|>
U(x:v.4) = - e
(x;y.1) /0 /Rz 4t 47?36 ¢ z
x—z|2 1
7/ —e~ e e i:dz| ds
R2 47Tt 4: s
l 1 Ix—y2 1 1
— TAtts) — — e 45 | d
/0 _47r(t—|—s)e drs© ] ’

. R 1 _lx—y|2 1 a1
= hm ————e 4t+s) — ——e s dS
R—oo Jy | 4m(t+ s) drs

(2.3)

lz—yl _ 1
4s — e 4s

dsdz
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To evaluate this limit, note that
R
1 (B 1 1
— e Atts) — —e 35| d
/0 [4#(7&—!—3)6 dms© } °
R+t R
1 x—y|? 1 1
:/ —e*%ds—/ —e isds
. 4drs o 4ms
/R“ 1 ey | d
s 4ms

0
t R+t
1 B 1
—/ —6_+ds+/ — e ads.
o 4ms r A4ms

Once again using Lemma 2.1 one has

R+t 2
B}me | {ﬁe% - 4—;865} ds=——1In|x— }’”2
Since
R+t
A% Jp ams® TS A GeR
one has

1 1 xeyi?
\Il(x;y,t) = _E [ln ||x—y||2 ‘*‘/0 ge* Is ds] .

In summary, with the substitution v = |x — }’"2 /4s, one has established the fol-
lowing.

Proposition 2.2. The function

1 o —u
wmmw:——-mh—yr+/ "
Am Ix—y|2/at U

satisfies for fited x € R and t > 0, AyU(x;y,t) = k(x;y,1).

A straightforward calculation gives

Hess¥ — ——— 1 [1 - e—\\x_y\\2/4t] l, _oxmy)@x - Y)]

2m |x — ] I~y

1 e Ix=yl?/4t x-y)®kx-y) .

2
dmt Ix =yl

Thus, from (2.2), the fundamental solution of the time dependent Stokes problem
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in R? is given by

I'(x;y,t) =k(x;y,t) [' - (x_y)®(x_Y)]

Ix - yl?
(2.4)

N ;2(1 - e*||x7y|\2/4t) [| _ 2(X -y)® (X2— y)] .
eyl Iyl

The fundamental solution of the steady state Stokes problem,
<x—y>®<x—y>]
2
Ix =yl

is known from the work of Lorentz [5]. From (2.4), it easy to see that the asymp-
totic behavior of T' for large values of ¢ is given by

-1
E(xy) = [ln x—yl1-

It is then possible to recover E(x;y) as a time integral of a properly modified
L(x;y,t).
Proposition 2.3. Let T' be defined by (2.4). Then
°° 11
I(x;y,t) — ~—e “*1| dt = E(x;y).
/O [ (xy,1) = 5 =€ (x:y)

Proof. Rewrite the integral as the sum of the following terms

1 < 1 5
. | — [e=Ix=yl/4t _ —e/4t) gy 9
2 /0 It e ] (2.5)
and
%] 2
1 . 1—9 (x—y)® (X27 y) / Ix -yl 67Hx*y”2/4t_1_~_€*|\xfyH2/4t it
2rlx — — 4t
wlx — 1 x—yl> |
(2.6)
From Lemma 2.1, (2.5) equals
1
o[- mix =y (2.7)

For the integral in (2.6), use the substitution u = [x — y|*/4¢ to get

11 < | x —y|?
_7/ =Y ey /o  y omteyi?/at| g
27 |x —y|* Jo 4

L[ a1 2.8
=% ; [ue™" — 147" Wdu (2.8)
—1

8_7-(-.
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The proposition follows from (2.7) and (2.8). O

Remark 2.4. It is simple to obtain the rate of convergence of the integral in this
last proposition. Indeed,

K 1 > 1
E(x;y) —/0 [I‘(x;y,s)—%e_e/‘lsl] ds = /t [I‘(x;y,s) - %6_6/4” ds
Ix—y /4t
N
4 0

_ 2
= (e/be v - ) 0y,

3. Oseen flow

The fundamental solution, I'y(x;y, ) of the Oseen problem

aa—l:—UoVququVﬂ:O Vau=0 fort>0, yecR? (3.1)

can also be written as
Ty(x;y,t) = k(x+tU;y, 1)l + HessUy(x;y,t),

where
Ay Ty = —k(x +tU;y,1).

It is simple to see that in fact
Ly(x;y,t) = T(x +tUsy, ).

This follows by repeating the proof of Proposition 2.1 and noting that by unique-
ness of solutions to the heat equation,

/ k(x + tU;z, t)k(z;y, s)dz = k(x + tU;y, t + s).
R2

Thus,
Ty(xy,t) = k(x + tUs y, 1) [I _Ertloy)ektil-y)
[x+tU -yl
(3.2)
B 1 (1_6—\\x+tU—y||2/4t) |_2(X+tU—y)®(x+tU—y) .
o7|x + tU — y|? |x +tU—y|”

Unlike the case of the Stokes problem,

Eu(x;y) = / T Doty )t (3.3)
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is well defined as the integral is absolutely convergent. The representation of Ey
obtained in this way provides a representation that clearly exhibits the symmetries
of the Oseen problem in terms of K, the modified Bessel functions of order v.

Recall that
L[ a4 s (1
K,(s) == t exp|—=(=+1t)|dt (3.4)
2 Jy 2\

e

x —yl|U] 2

and let
(3.5)

(See for example [6] for basic properties of the Bessel functions.)
Then, with detailed calculations provided in the Appendix,

1 1 [°
Ey(x;y) =5 |:€qUK0(O') — %/ e P Koy(s) ds} |
0

1

Ao

UoU x-y)®x-y)
Juj? Ix - y|?

] /0 s Ky (s)ds  (3.6)

1 x-y)oU+Us(x-y)
dro |x = ylV]

/ se” 1 Koy(s) ds.
0

Since this formula for Ey is not clearly identical to the ones available in the
literature (see e.g. [3]) the following proposition is needed.

Proposition 3.1. Let Ey(x;y) be given by (3.3) and let Q = 5=VIn(1/|x — y|).
Then, in the sense of distributions

U-VEy— AEy+VQ = dyx(y)l, V-Ey=0.

Proof. 1t is easier to show this result using elementary properties of the Fourier
transform. Let F(g)(§) = [go € %g(x)dx denote the Fourier transform of g and
recall that in the sense of distributions,

1

F(%ﬂmuhm)@*:EF

and hence

P9 (g maasm) o =-S5

In Fourier space, the projection operator onto divergence free vector fields is given
by the matrix

)
I
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and a calculation using (3.3) gives

1 ERE
F(E = -
(Eu)(e) 4Uf+MV< mf)
so that
F@»EU—AEw@>=I—ﬁj§
and so
F(U -Ey — AEy — VV(% ln(||x||)>>(£) =1

from which the result follows. O

Remark 3.2. Similar to the case of the Stokes problem, one has that for fixed
x #y, Eu(x;y) — fg Ty(x;y,s)ds = O(1/t). Indeed, the second term in (3.2)
determines the rate of convergence of the improper integral. This term can be
estimated, with an appropriate constant C', by

S C 0 C

72d5 = 3 5 3 dS
t |x+sU—y| t |x—y|"+2s(x—y) U+ s2|U|

o0 1
Q/ ; 5 dX
tJ1 x =yl /24 2X(x —y) - U/t + A2|U]|
< C
~ Ut

An alternative formula for Ey, that is more amenable for establishing its asymp-
totic behavior, is given by

l{(x—-y)®x-y) UsU
|- =
2( Ix— v +uwﬁ>

1
%e_qUKO(O')

Eu(x;y) =

+

x-y)eoU+Us((x-y) [((x-y)ex-y) UsU
Ix—yllul I - y[? Juj®

(3.7)

o

1
X o ; se” P Ky(s) ds

1

4o

x-yokx-y)  UsU

—1+ 5 5
|x =yl [Vl

+

/ e~ Ky(s) ds.
0

This follows from (3.6) recalling that

Ki(s) = K 1(s) = — 00
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so, in particular
(od (od (e
/ ce” 1 K1(0) ds = —oe” 17 Ky(o) —|—/ e P Ky(s) ds — q/ se” P Kqy(s)ds.
0 0 0

The asymptotic behavior of the integrals involving the modified Bessel functions
that appear in (3.7) is obtained in the following lemmata. Recall that as s — oo,

Ko(s) ~+/7/2(e"*/+/s) so that for large o,

67(‘I+1)U
e 1 Ko(o) ~ W/QT =m(q;0). (3.8)
For |g| < 1, let
arccos q dfo 1 arccos q
= — =——= l—¢g— 3.9
whereas

fo(l)y=1, f1(1)=1/3.

Lemma 3.3. Let —1 < ¢ < 1 and m(q; o) be define by (3.8). Then as o — o0,

/00 e ®Ko(s) ds ~ folq) — meo) , 1o (U;m)

(¢+1) q+1
/" se” ¥ Ky(s) ds ~ fi1(q) — omlg:o) + ! @) <L)
0 ’ T T Ve )

Proof. First, we show that for |¢| < 1

/oo e T Ko(s) ds = fo(q), /oo se” " Ko(s) ds = fi(q). (3.10)
0 0

To see this, it is sufficient to establish the first equality. The second follow by
differentiation with respect to ¢ since the integrals are absolutely convergent and
the exchange in the order of differentiation and integration can be easily justified.
Note that from (3.4)

oo oo 1 o0
/ e P Ky(s)ds = / —/ exp(—s(t? 4 2qt + 1)/2t) ds dt
0 o 2tJo
<1 2t
~ | Gareaiid
o 2012+ 2qt+1

from which the first equality in (3.10) follows.
A simple calculation shows that

[ eemire] [ -1eof)
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with the error term uniformly bounded with respect to q. Thus, the first asymp-
totic result follows using 3.10 since

ag oo o0
/ e P Ko(s)ds = / e PKy(s)ds — / e P Ko(s)ds.
0 0 o
Similar considerations can be used to obtain the second asymptotic result. O

The arguments used in the proof of Lemma 3.3 can not be applied in the case
q = —1, since the improper integral is divergent. Instead the following lemma is
needed.

Lemma 3.4. With the notation of (3.4),

o R0 o [ e ats) as] -

e r?
47m{ \/_2—|—p3/2]

Ly
— +ol = ).
dmo o
Proof. Note that by (3.4) one has

/ansKo(s) ds = /a/ooexp(fs(lft)z/%)@ .

exp(—s(1 —t)?/2t) ds—

\

- / (1~ (o= 0 /20))d

A similar calculation gives

e’ Ky(o) = /0oo exp(—a(1 —t)%/2t) % = /0 exp(—a(1 —t)%/2t) %

With the substitution p = (1 —¢)?/2t, one has

de___dp
t P2+ p

In particular

e”Ko(o (3.11)

/IW 7
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whereas integration by parts gives
o © 1 _eoP
e’ Ko(s) ds = ——d
/O 0( ) \/0 p3/2 /—2+p p
2 / e / [
=20 | —G——=dp— | (=53 dp
0o VPV2Ep 0 P2+ p)32
[ i
+ ——— dp.
o P2+ p)2

Thus from (3.11),

1 [° 1 [ 1
Ko (o) — — SK - s
e’ Ko(o) 20/0 e*Ko(s) ds 20/0 P2+ p)3l2 dp

1 /°° e
20 Jo \/ﬁ(2+p)3/2 p-

The lemma follows since

> 1
———dp=1
/o v+ ppr

and the other integral in the last equality is uniformly bounded by an integrable
function and pointwise convergent to zero. |

A further consequence of the previous Lemma, is that

1 7 1 1 1 1

— SKo(s)ds ~ —/7T/2— — — - . 3.12
4o |, ¢ Ko(s) ds 2 ™/ Vo o dro to <0) (3.12)
To obtain the asymptotic behavior of the fundamental solution tensor Ey, let

Ue U UgU"+U"®U Uteu*

=——F, A= = and Agy = ————

11 5 A2 21 5 ) 22 D)
[Vl 2|U| [Vl
The contraction
Eij = Eu: Ay =Y (Eu)jr(Aij)i (3.13)
ik

is the ij component of Ey in a system of coordinates such that e; = U/|U| and e; =
Ut /JU|. As a summary of the asymptotic behavior of the fundamental solution
tensor one has;

Proposition 3.5. For x,y,U # 0 € R?, let ¢q,0 and m(q; o) be given by (3.5)
and (3.8) respectively. Then, the asymptotic behavior as o — oo of E;; defined by
(3.13) s given by

l—gq

q
Eii(q;0) ~ Ino + ?m(q;a)
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1— 2 1— 2
Eolgio) = Eafgi) ~ Y1 V1)

To 47
1+
Exs(q;0) ~ —4i dtq) m(gq; o).
To 47
Proof. A calculation using (3.7) gives
1 —qo
Eusl4:0) = 5-(1 = )¢ " Ko(o)
1 7 1 i
—q(1—¢? I Ko(s) ds + —q° I K(s) d
+ 47mq( q )/0 se o(s) ds+ 1o /0 e o(s) ds

1
Ei2(g;0) = Eai(g;0) = V1= q*e” 1 Ky(o)

1 g
+—V1-¢*(1 - q2)/ se” ¥ Ky(s) ds
4o 0
1 a
+—qv1- q2/ e Ko(s) ds
Ao 0

1
Ex(q;0) = E(l +¢*)e " Ko(0)

1 7 1 7
——q(1 - q2)/ se” P Koy(s) ds — —q2/ e P Koy(s) ds.
0

Ao dmo 0

The proposition follows using the estimates obtained in Lemma 3.3, Lemma 3.4
and (3.8). For example for —1 < ¢ < 1, the behavior of Ey; for large o follows
from Lemma 3.3, and (3.8) leading to

E11(00) ~ -1 = (i) + a1~ ) [ ) - T

Ao (g+1)
()

1, m(q; o)
t [fo(Q) - W} +0
~ ﬁm(q; o)(1—q)+ ﬁ [C](l - q2)f1(Q) + q2f0(Q)]
(1-49) q

= @)t g

where in the last equality we have used that ¢(1 — ¢?)f1(q) + ¢*fo(q) = ¢. Finally,
using (3.12) one has that for ¢ = —1,

(e

1 1 1
Ell(_13‘7) = E ; BSKO(S) ds ~ —% + gm(—l;a')

as claimed.

Similar considerations apply for the other components. Note that in particular,
from Lemma 3.4 one has

Exa(—1;0) = QL |:60KO(U) - QL /0" e*Ko(s) d } ~ 0

s g o
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The asymptotic behavior established in this proposition is in agreement with
the known asymptotic behavior of Ey (see e.g. [3], p. 376-378). In particular, using
Proposition 3.5 the uniform bounds

1
El?(qaa) = O<_>7 1= 1a2a |q‘ S 17
g

and .
Eii(qio) = O(ﬁ)’ lgl <1

follow immediately.

4. Appendix

The calculations leading to the expression (3.6) are presented here.
Note that T'y(x;y,t) given in (3.2) can be written as

[k(x +tUsy,t) — Fﬁl)(x;y,t)} 1+ TP (xy, )(x+tU —y) © (x +tU —y)

where
1 4t 2
r'Yixv. i) = 1 _ o Ix+tU—y|*/4 4.1
U (X7Y7 ) ]t ||X+tU—y||2( € ) ( )
and
T (x;y, 1) = — — 4 A (1 eyl /an
Ant At | |x +tU —y[* | [x +tU —y|”

(4.2)

_ 6||x+wy2/4t” ,

The time integral of each of these terms is the content of the following lemmata.
From (3.4)

> I _xeyyupe [0 I —yI* _ tu)®
k(x + tU;y,t)dt = —e ) U/Q/ = — - dt
/0 (x+tU;y,1) i Lo m 1

1 :
= 2_6_(X_Y) V2K (JUllx — y1/2)
™

1 _ o
= %6 q KO(U)

(4.3)

Lemma 4.1. Let q,0 and I‘E})(x;y,t) be defined by (3.5) and (4.1) respectively.
Then

oo 1 o
/ I‘Ejl)(x;y,t) dt =— | e ¥Ky(s) ds.
0

dmo o
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Proof. Since fol e P?ds = (1/p)(1 —eP) one has

> 1 o[>~1 [t >
/ F(l)(X'y t)ydt = — —/ e sIxHtU=yI/4t go g4
o U7 8r Jo tJo
[e%s) 2 2
. i le—s(x—y).U/Q/ lexp _S”X — y" _ St"U” dt ds
87 0 0 t 4t 4
1 1
= g5 | TR sl — v /2) ds.
The lemma follows using the substitution s’ = so. O

Lemma 4.2. Let 1“512) (x,y,t) be defined by (4.2). Then

/ Fg)(x;y,t) (x+tU-y)®x+tU—y) dt

0
= x-yok-y) UsU L/Use_qu (s) ds
Ix— y|? |UP | 470 Jy '
x—y)eoU+Usx-y)| 1 /" 4
— SK, ds.
% <=yl Tno Jo *¢ " Kols) ds

Proof. Since

! 1[1
/ se P ds = — [—(1 —eP) —ep] )
0 b p

the integral involving I‘Ef) is a combination of the following integrals

00 1
(Xi_yi)(s(xj_yj)/ %2/ se—sIxrU—y I/t 4o
m 0 0

1
(Xi _Yi>Uj /Ool/ Se—s||x+tu—yH2/4t ds dt

1
U;U; /OO/ se sl HU—yI*/at go gy
167 Jo Jo

Each of these integrals can be written in terms of modified Bessel functions after




16 R. B. Guenther and E. A. Thomann JMFM

a change of order of integrations and using (3.4). Indeed,

(xi —yi) (x5 —y;) |V] /1 —sU-(x—y)/2
se” S Ki(s|U||x —¥y|/2) ds
oo —yp) B (s1Ulx— y1/2)

= (xi —yi)(x; —¥)) 1 /U||XY||/2 se” 1K1 (s) ds
x—yl?  2xlUllx =yl Jo

R ) 1
Gi —yi)U; / se V2K (s| U] [x — y]/2) ds

87'(' 0
(xi —y)U, 1 /||U| beviz

= se P Ky(s) ds
[UlT% — vl 2#1U1% — y1 ols)

and 1
Uil Ix —y]|

O 1V R

U;U; 1 Iulllx—yI/2 )

B TIK_4(s) ds.

Juj® 27r||U||||><—3’||/o se 1(s) ds

se V2K (s|Ul|x — y|/2) ds

O

Combining the results of (4.3) and Lemmas 4.1 and 4.2, one obtains the first
expression of Ey given in (3.6).
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