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Abstract

In a recent work of the author, a parabolic extension of the elliptic Ogawa type inequality has been established.

This inequality is originated from the Brézis-Gallouët-Wainger logarithmic type inequalities revealing Sobolev

embeddings in the critical case. In this paper, we improve the parabolic version of Ogawa inequality by allowing

it to cover not only the class of functions from Sobolev spaces, but the wider class of Hölder continuous functions.
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1 Introduction and main results

In [9], a generalization of the Ogawa type inequality [16] to the parabolic framework has been shown.
Ogawa inequality can be considered as a generalized version in the Lizorkin-Triebel spaces of the
remarkable estimate of Brézis-Gallouët-Wainger [4, 5] that holds in a limiting case of the Sobolev
embedding theorem. The inequality showed in [9, Theorem 1.1] provides an estimate of the L∞ norm
of a function in terms of its parabolic BMO norm, with the aid of the square root of the logarithmic
dependency of a higher order Sobolev norm. More precisely, for any vector-valued function f = ∇g ∈
W 2m,m

2 (Rn+1), g ∈ L2(Rn+1) with m,n ∈ N
∗, 2m > n+2

2 , there exists a constant C = C(m,n) > 0
such that:

‖f‖L∞(Rn+1) ≤ C

(
1 + ‖f‖BMO(Rn+1)

(
log+(‖f‖

W 2m,m
2

(Rn+1)
+ ‖g‖L∞(Rn+1))

)1/2
)

, (1.1)

where W 2m,m
2 is the parabolic Sobolev space (we refer to [15] for the definition and further properties),

and BMO is the parabolic bounded mean oscillation space (defined via parabolic balls instead of
Euclidean ones [9, Definition 2.1]). The above inequality reflects a limiting case of Sobolev embeddings
in the parabolic framework (see [10, 11] for similar type inequalities, and [4, 5, 6, 12, 13, 14, 16] for
various elliptic versions). By considering functions f ∈ W 2m,m

2 (ΩT ) defined on the bounded domain

ΩT = (0, 1)n × (0, T ), T > 0,
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we have the following estimate (see [9, Theorem 1.2]):

‖f‖L∞(ΩT ) ≤ C

(
1 +

(
‖f‖BMO(ΩT ) + ‖f‖L1(ΩT )

)(
log+ ‖f‖W 2m,m

2
(ΩT )

)1/2
)

. (1.2)

The different norms of f appearing in inequalities (1.1) and (1.2) are finite since

W 2m,m
2 →֒ Cγ,γ/2 →֒ L∞ →֒ BMO for some 0 < γ < 1, (1.3)

where Cγ,γ/2 is the parabolic Hölder space that will be defined later. Moreover, it is easy to check
that g is bounded and continuous.

The purpose of this paper to show that the condition f = ∇g ∈ W 2m,m
2 (vector-valued case), or

f ∈ W 2m,m
2 (scalar-valued case) can be relaxed. Indeed, inequalities (1.1) and (1.2) can be applied

to a wider class of Hölder continuous functions f = ∇g ∈ Cγ,γ/2, 0 < γ < 1 (vector-valued case), or
f ∈ Cγ,γ/2 (scalar-valued case). To be more precise, we now state the main results of this paper. Our
first theorem is the following:

Theorem 1.1 (Logarithmic Hölder inequality on R
n+1). Let 0 < γ < 1. For any f = ∇g ∈

Cγ,γ/2(Rn+1) ∩ L2(Rn+1) with g ∈ L2(Rn+1), there exists a constant C = C(γ, n) > 0 such that

‖f‖L∞(Rn+1) ≤ C

(
1 + ‖f‖BMO(Rn+1)

(
log+(‖f‖Cγ,γ/2(Rn+1) + ‖g‖L∞(Rn+1))

)1/2
)

. (1.4)

The second theorem deals with functions defined on the bounded domain ΩT .

Theorem 1.2 (Logarithmic Hölder inequality on a bounded domain). Let 0 < γ < 1. For any
f ∈ Cγ,γ/2(ΩT ), there exists a constant C = C(γ, n, T ) > 0 such that

‖f‖L∞(ΩT ) ≤ C

(
1 +

(
‖f‖BMO(ΩT ) + ‖f‖L1(ΩT )

) (
log+(‖f‖Cγ,γ/2(ΩT ))

)1/2
)

. (1.5)

We notice that inequalities (1.4) and (1.5) directly imply (with the aid of the embeddings (1.3)) (1.1)
and (1.2).

Remark 1.3 The same inequality (1.4) still holds for scalar-valued functions f = ∂g
∂xi

∈ Cγ,γ/2(Rn+1)∩

L2(Rn+1), i ∈ 1, . . . , n + 1, with g ∈ L∞(Rn+1).

This paper is organized as follows: in Section 2, we give the definitions of some basic functional spaces
used throughout this paper. Section 3 is devoted to the proofs of the main results.

2 Definitions

Let O be an open subset of R
n+1. A generic element z ∈ R

n+1 has the form z = (x, t) with
x = (x1, . . . , xn) ∈ R

n. We begin by defining parabolic Hölder spaces Cγ,γ/2.

Definition 2.1 (Parabolic Hölder spaces). For 0 < γ < 1, we define the parabolic space of Hölder
continuous functions of order γ in the following way:

Cγ,γ/2(O) = {f ∈ C(O), ‖f‖Cγ,γ/2(O) < ∞},
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where
‖f‖Cγ,γ/2(O) = ‖f‖L∞(O) + 〈f〉

(γ)
x,O + 〈f〉

(γ/2)
t,O , (2.1)

with

〈f〉
(γ)
x,O = sup

(x,t),(x′,t)∈O, x 6=x′

|f(x, t) − f(x′, t)|

|x − x′|γ

and

〈f〉
(γ/2)
t,O = sup

(x,t),(x,t′)∈O, t6=t′

|f(x, t) − f(x, t′)|

|t − t′|γ/2
.

For a detailed study of parabolic Hölder spaces, we refer the reader to [15]. We now briefly recall
some basic facts about Littlewood-Paley decomposition which are crucial in obtaining our logarith-
mic inequalities. Given the expansive (n + 1) × (n + 1) matrix A = diag{2, . . . , 2, 22} (parabolic
anisotropy), the corresponding Littlewood-Paley decomposition asserts that any tempered distribu-
tion f ∈ S ′(Rn+1) can be decomposed as

f =
∑

j∈Z

ϕj ∗ f, where ϕj(z) = |detA|jϕ(Ajz), (2.2)

with the convergence in S ′/P (modulo polynomials). Here ϕ ∈ S(Rn+1) is a test function such that
supp ϕ̂ is compact and bounded away from the origin, and

∑
j∈Z

ϕ̂(Ajz) = 1 for all z ∈ R
n+1 \ {0},

where ϕ̂ is the Fourier transform of ϕ. The sequence (ϕj)j∈Z is mainly used to define parabolic
homogeneous Lizorkin-Triebel, Hardy and Besov spaces (see for instance [17, 18]). We only present
here the spaces that are used throughout the analysis. For 1 ≤ p ≤ ∞, we define the parabolic
homogeneous Lizorkin-Triebel space Ḟ 0

p,2 as the space of functions f ∈ S ′(Rn+1) with finite quasi-
norms:

‖f‖Ḟ 0
p,2(Rn+1) =

∥∥∥(
∑

|j|<∞

|ϕj ∗ f |2)1/2
∥∥∥

Lp(Rn+1)
< ∞. (2.3)

The space Ḟ 0
p,2 can be identified with the parabolic Hardy space Hp, 1 ≤ p < ∞ having the following

square function characterization stated informally as:

Hp(Rn+1) = {f ∈ S ′(Rn+1); (
∑

|j|<∞

|ϕj ∗ f |2)1/2 ∈ Lp}.

This identification (see Bownik [2]) can be stated as follows: for all 1 ≤ p < ∞, we have:

Ḟ 0
p,2(R

n+1) ≃ Hp(Rn+1). (2.4)

Now, for defining the inhomogeneous parabolic Besov space Bγ
∞,∞ used later in obtaining our results,

we use a slightly different sequence. Indeed, let θ ∈ C∞
0 (Rn+1) be any cut-off function satisfying:

θ(z) =

{
1 if |z|p ≤ 1

0 if |z|p ≥ 2,
(2.5)

where | · |p is the parabolic quasi-norm associated to the matrix A (see [9]). Taking the new function
(but keeping the same notation) ϕ0 defined via the relation

ϕ̂0 = θ, (2.6)

we can give the definition of the Besov space Bγ
∞,∞.
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Definition 2.2 (Parabolic inhomogeneous Besov spaces). Take the smoothness parameter 0 < γ < 1.
Let (ϕj)j∈Z be the sequence such that ϕ0 is given by (2.6), while ϕj is given by (2.2) for all j ≥ 1.
We define the parabolic inhomogeneous Besov space Bγ

∞,∞ as the space of all functions f ∈ S ′(Rn+1)
with finite quasi-norms

‖f‖Bγ
∞,∞

= sup
j≥0

2γj‖ϕj ∗ f‖L∞(Rn+1).

3 Proofs of theorems

The proof of Theorem 1.1 rely on the following two lemmas of different interest:

Lemma 3.1 Let 0 < γ < 1 and let N > 0 be a positive integer. Then for any f = ∇g ∈
Cγ,γ/2(Rn+1) ∩ L2(Rn+1) with g ∈ L2(Rn+1), there exists a constant C = C(γ, n) > 0 such that

∥∥∥
( ∑

j<−N

2−2γj |ϕj ∗ f |2
)1/2∥∥∥

L∞

≤ C‖g‖L∞ . (3.1)

Proof. We provide a proof of (3.1) in the general case N = 1. We use the fact that ∂ig = fi (for
which we keep denoting it by f , i.e. f = fi) for some i = 1, . . . , n + 1, with g ∈ L∞(Rn+1). For
z ∈ R

n+1, define
Φ(z) = (∂iϕ)(z), (3.2)

and
Φj(z) = |detA|jΦ(Ajz) for all j ≤ −1. (3.3)

Using (2.2) we obtain:

(∂iϕj)(z) =

{
2jΦj(z) if i = 1, . . . , n

22jΦj(z) if i = n + 1.
(3.4)

We now compute (see (3.3) and (3.4)):
∥∥∥(
∑

j≤−1

2−2γj |ϕj ∗ f |2)1/2
∥∥∥

L∞

≤ C sup
j≤−1

‖Φj ∗ g‖L∞ , (3.5)

where the constant C is given by:

C2 =





∑

j≤−1

22j(1−γ) if i = 1, . . . , n

∑

j≤−1

22j(2−γ) if i = n + 1,

which is finite 0 < C < +∞ under the choice

0 < γ < 1.

In order to terminate the proof, it suffices to show that

‖Φj ∗ g‖L∞ ≤ C‖g‖L∞ ,

which can be deduced, by translation and dilation invariance, from the following estimate:

|(Φ ∗ g)(0)| ≤ C‖g‖L∞ . (3.6)
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Indeed, define the positive radial decreasing function h(r) = h(‖z‖) as follows:

h(r) = sup
‖z‖≥r

|Φ(z)|.

From (3.2), we remark that the function Φ is the inverse Fourier transform of a compactly supported
function. Hence, we have:

h(0) = ‖Φ‖L∞ < +∞, (3.7)

and the asymptotic behavior

h(r) ≤
C

rn+2
for all r ≥ 1. (3.8)

We compute (taking Sn
r as the n-dimensional sphere of radius r):

|(Φ ∗ g)(0)| ≤

∫

Rn+1

|Φ(−z)||g(z)|dz

≤

∫ ∞

0

(∫

Sn
r

|Φ(−z)||g(z)|dσ(z)

)
dr

≤ C

(∫ ∞

0
rnh(r)dr

)
‖g‖L∞ . (3.9)

Using (3.7) and (3.8) we deduce that:

∫ ∞

0
rnh(r)dr =

∫ 1

0
rnh(r)dr +

∫ ∞

1
rnh(r)dr

≤ C

(∫ 1

0
h(0)dr +

∫ ∞

1

rn

rn+2
dr

)

≤ C(‖Φ‖L∞ + 1)

which, together with (3.9), directly implies (3.6). As a conclusion, we obtain (see (3.5)):

∥∥∥(
∑

j≤−1

2−2γj |ϕj ∗ f |2)1/2
∥∥∥

L∞

≤ C‖g‖L∞ ,

and hence inequality (3.1) holds. 2

Lemma 3.2 Let N > 0 be a positive integer. Then for any f ∈ BMO(Rn+1) there exists a constant
C = C(n) > 0 such that: ∥∥∥(

∑

|j|<N

|ϕj ∗ f |2)1/2
∥∥∥

L∞

≤ C‖f‖BMO. (3.10)

Proof. The proof provides inequality (3.10) for all |j| < ∞ by showing that Ḟ 0
∞,2 ≃ BMO and then

using (2.3). Before starting the proof, we remind the reader that:

‖f‖BMO(Rn+1) = sup
Q⊆Rn+1

inf
c∈R

(
1

|Q|

∫

Q
|f − c|

)
, (3.11)
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where Q denotes any arbitrary parabolic cube. Using the result of Bownik [3, Theorem 1.2], we have
the following duality argument (that can be viewed as the parabolic extension of the well-known
isotropic result of Triebel [17], and Frazier and Jawerth [8]):

(
Ḟ 0

1,2

)′
≃ Ḟ 0

∞,2, (3.12)

where (Ḟ 0
1,2)

′ stands for the dual space of Ḟ 0
1,2. Applying (2.4) with p = 1 we obtain:

Ḟ 0
1,2 ≃ H1. (3.13)

Using the description of the dual of parabolic Hardy spaces Hp for 0 < p ≤ 1 (see Bownik [1, Theorem
8.3]), we get:

(Hp)′ = Cl
q,s (3.14)

with the terms p, l, q, s chosen such that:




l =
1

p
− 1,

1 ≤
q

q − 1
≤ ∞ and p <

q

q − 1
,

s ∈ N and s ≥ ⌊l⌋, ⌊l⌋ = max{n ∈ Z; n ≤ l}.

(3.15)

The function space Cl
q,s, l ≥ 0, 1 ≤ q < ∞ and s ∈ N (called the Campanato space), is the space of

all f ∈ Lq
loc(R

n+1) (defined up to addition by P ∈ Ps; the set of all polynomials in (n + 1) variables
of degree at most s) so that:

‖f‖Cl
s,q(Rn+1) = sup

Q⊆Rn+1

inf
P∈Ps

|Q|l
(

1

|Q|

∫

Q
|f − P |q

)1/q

< ∞. (3.16)

Choosing p = 1, l = 0, q = 1 and s = 0, we can easily see that conditions (3.15) are all satisfied, and
that (see (3.16) and (3.11)):

C0
1,0 ≃ BMO.

This identification, together with (3.14), finally give:

(
H1
)′
≃ BMO. (3.17)

The proof then directly follows from (3.12), (3.13) and (3.17). 2

Proof of Theorem 1.1. Let N ∈ N be any arbitrary integer. Using (2.2), we estimate ‖f‖L∞ in
the following way:

‖f‖L∞ ≤
∥∥∥
∑

j<−N

2γj2−γj |ϕj ∗ f |
∥∥∥

L∞

+
∥∥∥
∑

|j|≤N

|ϕj ∗ f |
∥∥∥

L∞

+
∥∥∥
∑

j>N

2−γj2γj |ϕj ∗ f |
∥∥∥

L∞

≤ Cγ2−γN

A1︷ ︸︸ ︷∥∥∥
( ∑

j<−N

2−2γj |ϕj ∗ f |2
)1/2∥∥∥

L∞

+(2N + 1)1/2

A2︷ ︸︸ ︷∥∥∥
( ∑

|j|≤N

|ϕj ∗ f |2
)1/2∥∥∥

L∞

+ C ′
γ2−γN

A3︷ ︸︸ ︷(
sup
j>N

2γj‖ϕj ∗ f‖L∞

)
, (3.18)
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where

Cγ =

(
1

22γ − 1

)1/2

and C ′
γ =

2−γ

1 − 2−γ
.

Using (3.1), we assert that:
A1 ≤ C‖g‖L∞ , (3.19)

while (3.10) gives:
A2 ≤ C‖f‖BMO. (3.20)

In order to estimate A3, we proceed in the following way:

A3 ≤ sup
j≥1

2γj‖ϕj ∗ f‖L∞ ≤ sup
j≥1

2γj‖ϕj ∗ f‖L∞ + ‖ϕ0 ∗ f‖L∞ , ϕ0 is given by (2.6),

hence (see Definition 2.2)
A3 ≤ ‖f‖Bγ

∞,∞
.

Using the well known result (see for instance [7])

Bγ
∞,∞ = Cγ,γ/2,

we finally obtain
A3 ≤ ‖f‖Cγ,γ/2 . (3.21)

Inequalities (3.18), (3.19), (3.20) and (3.21) imply:

‖f‖L∞ ≤ C
(
(2N + 1)1/2‖f‖BMO + 2−γN (‖f‖Cγ,γ/2 + ‖g‖L∞)

)
. (3.22)

We optimize (3.22) in N by setting:

N = 1 if ‖f‖Cγ,γ/2 + ‖g‖L∞ ≤ 2γ‖f‖BMO.

Then it is easy to check (using (3.22)) that

‖f‖∞ ≤ C‖f‖BMO

(
1 +

(
log+ ‖f‖Cγ,γ/2 + ‖g‖L∞

‖f‖BMO

)1/2
)

. (3.23)

In the case where ‖f‖Cγ,γ/2 + ‖g‖L∞ > 2γ‖f‖BMO, we take 1 ≤ β < 2γ such that

N = N(β) = log+
2γ

(
β
‖f‖Cγ,γ/2 + ‖g‖L∞

‖f‖BMO

)
−

1

2
∈ N.

In fact this is valid since the function N(β) varies continuously from N(1) to N(2γ) = 1 + N(1) on
the interval [1, 2γ ]. Using (3.22) with the above choice of N , we obtain:

‖f‖∞ ≤ C

[
21/2

(
log+

2γ

(
β
‖f‖Cγ,γ/2 + ‖g‖L∞

‖f‖BMO

))1/2

‖f‖BMO +
2γ/2

β
‖f‖BMO

]

≤ C

[
2

(γ log 2)1/2

(
log+

(
‖f‖Cγ,γ/2 + ‖g‖L∞

‖f‖BMO

))1/2

‖f‖BMO +
2γ/2

β
‖f‖BMO

]
,
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where for the second line we have used the fact that

log+ β < log+ ‖f‖Cγ,γ/2 + ‖g‖L∞

‖f‖BMO
.

The above computations again imply (3.23). By using the inequality:

x
(
log
(
e +

y

x

))1/2
≤

{
C(1 + x(log(e + y))1/2) for 0 < x ≤ 1,

Cx(log(e + y))1/2 for x > 1,

in (3.23), we directly arrive to our result. 2

We now present the proof of Theorem 1.2 that involve finer estimates on the Hölder norm.

Proof of Theorem 1.2. For the sake of simplifying the ideas of the proof, we only consider 1-
spatial dimensions x = x1. The general n-dimensional case can be easily deduced. Following the
same notations of [9], we let Ω̃T = (−1, 2) × (−T, 2T ), Z1 ⊆ Z2 ⊆ Ω̃T such that

Z1 = {(x, t); −1/4 < x < 5/4 and − T/4 < t < 5T/4}

and
Z2 = {(x, t); −3/4 < x < 7/4 and − 3T/4 < t < 7T/4}.

We also take the cut-off function Ψ ∈ C∞
0 (R2), 0 ≤ Ψ ≤ 1 satisfying:

Ψ(x, t) =

{
1 for (x, t) ∈ Z1

0 for (x, t) ∈ R
2 \ Z2.

(3.24)

The main idea of the proof consists in extending the function f to a suitable function of the form Ψf̃
where f̃ is defined on Ω̃T . We then apply inequality (1.4) (the scalar-valued version with n = 1) to Ψf̃
and we estimate the different norms in order to get the result. However, away from the complicated
extension (Sobolev extension) of the function f̃ that was done in [9], we here consider a simpler
symmetric extension. Indeed, we first take the spatial symmetry of the function f :

f̃(x, t) =

{
f(−x, t) for −1 < x < 0, 0 ≤ t ≤ T

f(2 − x, t) for 1 < x < 2, 0 ≤ t ≤ T ,
(3.25)

and then the symmetry with respect to t:

f̃(x, t) =

{
f(x,−t) for −1 < x < 2, −T < t ≤ 0

f(x, 2T − t) for −1 < x < 2, T ≤ t < 2T .
(3.26)

We claim that Ψf̃ ∈ Cγ,γ/2(R2) with

‖Ψf̃‖Cγ,γ/2(R2) ≤ ‖f‖Cγ,γ/2(ΩT ). (3.27)

In this case, we apply the scalar-valued version of inequality (1.4) (see Remark 1.3) to the function
Ψf̃ with i = 1 and g(x, t) =

∫ x
0 Ψ(y, t)f̃(y, t)dy. This, together with the fact that Ψ = 1 on ΩT , lead

to the following estimate:

‖f‖L∞(ΩT ) ≤ ‖Ψf̃‖L∞(R2) ≤ C

(
1 + ‖Ψf̃‖BMO(R2)

(
log+(‖Ψf̃‖Cγ,γ/2(R2) + ‖g‖L∞(R2))

)1/2
)

. (3.28)
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It is worth noticing that choosing i = 1 above is somehow restrictive. In fact, we could also have used
the inequality with i = 2 and g(x, t) =

∫ t
0 Ψ(x, s)f̃(x, s)ds.

In [11] it was shown that ‖Ψf̃‖BMO(R2) ≤ C(‖f‖BMO(ΩT ) + ‖f‖L1(ΩT )), while it is clear that

‖g‖L∞(R2) ≤ C‖f̃‖L∞(Ω̃T ) ≤ C‖f‖Cγ,γ/2(ΩT ). These arguments, along with (3.27) and (3.28), directly

terminate the proof. The only point left is to show the claim (3.27). Recall the norm

‖Ψf̃‖Cγ,γ/2(R2) = ‖Ψf̃‖L∞(R2) + 〈Ψf̃〉
(γ)
x,R2 + 〈Ψf̃〉

(γ/2)
t,R2 .

It is evident that
‖Ψf̃‖L∞(R2) ≤ C‖f‖L∞(ΩT ),

hence we only need to estimate the two terms 〈Ψf̃〉
(γ)
x,R2 and 〈Ψf̃〉

(γ/2)
t,R2 . We only deal with 〈Ψf̃〉

(γ)
x,R2

since the second term can be treated similarly. We examine the different positions of (x, t), (x′, t) ∈ R
2.

If (x, t), (x′, t) ∈ R
2 \ Z2, x 6= x′, then (since Ψ = 0 over R

2 \ Z2):

|(Ψf̃)(x, t) − (Ψf̃)(x′, t)|

|x − x′|γ
= 0. (3.29)

If both (x, t), (x′, t) ∈ Ω̃T , x 6= x′, then the special extension (3.25) and (3.26) of the function f
guarantees the existence of

(x̄, t̄), (x̄′, t̄) ∈ ΩT

such that:
f̃(x, t) = f(x̄, t̄), f̃(x′, t) = f(x̄′, t̄). (3.30)

Two cases can be considered. Either x̄ = x̄′ (see Figure 1), then we forcedly have

f̃(x, t) = f̃(x′, t),

and therefore

������

��

Ω̃T

0

T

ΩT

x′ xx̄

t

t̄

Figure 1: Case (x, t), (x′, t) ∈ Ω̃T with x̄ = x̄′.

|(Ψf̃)(x, t) − (Ψf̃)(x′, t)|

|x − x′|γ
≤ 〈Ψ〉

(γ)

x,Ω̃T
‖f̃‖L∞(Ω̃T )

≤ C‖f‖L∞(ΩT ) ≤ C‖f‖Cγ,γ/2(ΩT ), (3.31)
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Ω̃T

0

T

ΩT

x′ xx̄′x̄

t

t̄

������

���������� ��

�����������
�
�
�
��

Ω̃T

0

T

ΩT

xx̄′x̄

t

t̄

Figure 2: Case (x, t), (x′, t) ∈ Ω̃T with x̄ 6= x̄′. On the right: x′ = x̄′. On the left: x′ 6= x̄′.

or x̄ 6= x̄′, then we forcedly have (see Figure 2)

|x − x′|γ ≥ |x̄ − x̄′|γ . (3.32)

In this case, we compute:

|(Ψf̃)(x, t) − (Ψf̃)(x′, t)|

|x − x′|γ
≤

|f̃(x, t)||Ψ(x, t) − Ψ(x′, t)|

|x − x′|γ
+

|Ψ(x′, t)||f̃(x, t) − f̃(x′, t)|

|x − x′|γ

≤ ‖f̃‖L∞(Ω̃T )〈Ψ〉
(γ)

x,Ω̃T
+

|f̃(x, t) − f̃(x′, t)|

|x − x′|γ
. (3.33)

Using (3.30) and (3.32), we deduce that:

|f̃(x, t) − f̃(x′, t)|

|x − x′|γ
=

|f(x̄, t̄) − f(x̄′, t̄)|

|x − x′|γ
≤

|f(x̄, t̄) − f(x̄′, t̄)|

|x̄ − x̄′|γ
≤ 〈f〉

(γ)
x,ΩT

,

therefore, by (3.33), we obtain:

|(Ψf̃)(x, t) − (Ψf̃)(x′, t)|

|x − x′|γ
≤ ‖f̃‖

L∞(Ω̃T )
〈Ψ〉

(γ)

x,Ω̃T
+ 〈f〉

(γ)
x,ΩT

≤ C‖f‖Cγ,γ/2(ΩT ). (3.34)

The remaining case is when (x, t) ∈ Z2 and (x′, t) ∈ R
2 \ Ω̃T (see Figure 3). In this case, we have

(Ψf̃)(x′, t) = 0 and

|x − x′|γ ≥

(
1

4

)γ

, (3.35)

hence
|(Ψf̃)(x, t) − (Ψf̃)(x′, t)|

|x − x′|γ
≤ 4γ‖f̃‖L∞(Z2) ≤ C‖f‖Cγ,γ/2(ΩT ). (3.36)

From (3.29), (3.31), (3.34) and (3.36), we finally deduce that

〈Ψf̃〉
(γ)
x,R2 ≤ C‖f‖Cγ,γ/2(ΩT ).

Arguing in exactly the same way as above, we also find that:

〈Ψf̃〉
(γ/2)
t,R2 ≤ C‖f‖Cγ,γ/2(ΩT ),

10



����

Ω̃T

0

T

ΩT

Z2

xx′

t

1/4

T/4

Figure 3: case (x, t) ∈ Z2 and (x′, t) ∈ R
2 \ Ω̃T .

with a possibly different constant C that depend on T . Indeed, the term T enters in estimating

〈Ψf̃〉
(γ/2)
t,R2 since (3.35) is now replaced (see again Figure 3) by

|t − t′|γ ≥

(
T

4

)γ

.

This shows the claim. 2

Remark 3.3 In the case of multi-spatial coordinates xi, i = 1, . . . , n, we simultaneously apply the
extension (3.25) to each spatial coordinate while fixing all other coordinates including t. Finally,
fixing the spatial variables, we make the extension with respect to t as in (3.26).
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