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A NONLINEAR INTEGRAL EQUATION OCCURRING

IN A SINGULAR FREE BOUNDARY PROBLEM1

BY

KLAUS HOLLIG2 AND JOHN A. NOHEL

Abstract. We study the Cauchy problem

j u, = <j>(ux)x,       (x, ?) e R x R + ,

\"(,0)=/

with the piecewise linear constitutive function <J>(|) = £+ = max(0, |) and with

smooth initial data/which satisfy xf'(x) > 0, x e R, and/"(0) > 0. We prove that

free boundary s, given by ux(s(t)+, t) = 0, is of the form

s(t) = -xfi + o(ft),       t->0 + ,

where the constant k = 0.9034... is the (numerical) solution of a particular nonlin-

ear equation. Moreover, we show that for any a e (0,1/2),

^/W'))=o('°"').     '-o+.

The proof involves the analysis of a nonlinear singular integral equation.

1. Introduction and result. We study the Cauchy problem

(u, = <t>(ux)x,       (x,r)eRxR+,

U \u(-,0)=f

with the piecewise linear constitutive function <j>: R -> R+ given by <?>(£) = £+ =

max(|,0); the initial data/: R -» R are assumed smooth, specifically/ e C3(R) with

bounded derivatives, and satisfy the conditions

(xf'(x)^O,       xeR,

W \/"(0)>0.

Our motivation for the study of the Cauchy problem (1), (2) is its similarity to the

well-known one-phase Stefan problem (in one space dimension) [3,4,7,8] in which

one would assume f'(x) = -1 for x < 0, as well as f'(x) > 0 for x > 0, so that /'

has a jump discontinuity at x = 0. The assumption (2) yields a different behavior of
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146 KLAUS HOLLIG AND J  A NOHEL

the solution u and of the resulting free boundary. Indeed, here (cf. the Theorem

below), the free boundary s, given by ux(s(t)+, t) = 0, is of the form

(3) s(t) = -Kft + 0(tx/2+a),       t^0+,

where k is a positive constant and 0 < a < 1/2. Thus, the function s is not

(infinitely) differentiable at t = 0, contrary to the situation for the Stefan problem

[7].
The result (3) is established by solving a nonlinear integral equation (15) with

kernels which depend on the unknown function s and which are also singular in the

sense that the integral on (0, t) of the kernel does not approach zero as t -> 0+. One

consequence of this is that the integral operator defined by (15) is not compact in a

suitable Holder class.

The principal motivation for the study of the Cauchy problem (1), (2) is that it

serves as a prototype of nonlinear parabolic problems which arise as monotone

"convexifications" of nonlinear diffusion equations with nonmonotone constitutive

functions </> (see [5 and 6]); in [6, §4] the reader will also find the formulation and

preliminary analysis of such a convexified problem, corresponding to a piecewise

linear nonmonotone <|> (specifically, <J>'((-oo, a) U (b, oo)) > 0, $'(a, b) < 0, 0 < a <

b < oo). The analysis in [5] shows the existence the infinitely many solutions u of the

nonmonotone problem, each having ux bounded, and ux omitting values in [a, b];

thus each solution u exhibits phase changes. Numerical experiments further suggest

the conjecture that the " physically correct" solution of the nonmonotone problem is

the one which, as t -* oo, approaches the unique solution of the appropriately

related convexified monotone problem. However, for small r > 0 the behavior of the

solution of (1), (2) is qualitatively different (see (3)). The present study of (1), (2) is

intended as a step towards the understanding of this intriguing phenomenon. The

relation of the convexified problem in [6] to the Cauchy problem (1), (2) is clear (the

particular boundary conditions in [6] do not play a role in the analysis of the free

boundary curve).

It is simple to give a formal explanation for (3). We rewrite (1), (2) as the free

boundary problem

(u, = uxx,    s(t) < x < oo,        !GR+,

(4a) lux(s(t),t) = 0,

U(-,o)=/.
From the constitutive function <f> one also has the equation

lut(x,t) = 0,    -oo < x < s{t),       (GR+,
(4b) U-.OW-

Therefore, assuming the continuity of u across the free boundary s(t) and assuming

that s is monotone decreasing (cf. paragraph preceding the Theorem), we have

lu(s(t),t)=f(s(t)),       fER+,

w Uo) = o.
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A NONLINEAR INTEGRAL EQUATION 147

Differentiating (5) with respect to t and using ux(s(t)+, t) = 0, where " + " denotes

the limit from the right, we obtain

(6) f'(s(t))s'(t) = uxx(s(t) + ,t).

Since by the assumption (2)

f'(x)=f"(0)x + O(\x\2),       |x|->0 + ,

a simple calculation formally yields (3) with k = \f2 (provided one assumes continu-

ity from the right of ut and uxx up to the free boundary s).

The rigorous treatment of the problem consists of analyzing, in §3, the nonlinear

integral equation (15) for the free boundary x = s(t). Our analysis shows that (3)

holds, but that the constant k is the solution of the nonlinear equation (16); its

numerical value is k = 0.9034..., and not k = \/2 which was predicted by the above

formal calculation. It also follows that s(t) is smooth for t > 0 thus justifying (5)

and (6) for positive t; in particular, one sees from (6) that s is as smooth as the initial

function/is. We remark that for t > e > 0 the problem (1), (2) can also be viewed as

a one-phase Stefan problem; consequently, the results in Kinderlehrer and Niren-

berg [7] yield the regularity of the free boundary for t > 0.

The existence of a unique generalized continuous solution for problem (1), and

hence of a unique free boundary, follows from nonlinear semigroup theory for

m-accretive operators [1,2]. Approximating (1) by an implicit Euler scheme, one can

also show the existence of the free boundary s which is Holder continuous on [0, oo)

with exponent 1/2 and monotone decreasing. However, using such general methods,

it is not possible to analyze the precise behavior of s at t = 0.

Our main result is

Theorem. Define

(7) r(t) = df(s(t))/dt.

Then for any a e (0,1/2) there exists T > 0 such that r is continuous on [0, T] and

satisfies

(8) t[-a\r'(t)\^c(f),       0<t^T,

where c(f) > 0 is a constant which depends on the dataf. Moreover, (3) holds with

The constant k is the (numerical) solution of equation (16) in §3.

By the definition of k, the result (3) follows from (7) and the assertion (8). To see

this, we solve (7) for s. Let R(t) = /0V(t) dr and integrate (7), obtaining

R(t)=f(s(t))-f(0).

Define the function g implicitly by

g(-sign(xyf(x)-f(0)) = x.
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148 KLAUSHOLLIGANDJ. A. NOHEL

Since we assume that

(9) f(x)-f(0) = (32x2 + O(\xf),       |x|-»0

(R2 = f"(0)/2), g is well defined for small |x| and

(10) g(x) = ~R-lx + 0(\x\2),       \x\-*0.

For a small interval [0, T], the monotone decreasing solution of (7) is given by

(11) s(t) = g(]fRji)),       O^t^T,

and (3) folows from (8) and (10).

The Theorem describes the regularity of the free boundary at t = 0. It is sharp in

the sense that, unless/'"(0) = 0, the estimate (8) does not hold for a > 1/2 (cf. the

Remark at the end of §3).

It should also be observed that the second derivatives of the solution u are not

continuous at the point (x, t) = (0,0), because using (6), (7) and the definition of k

one has

lira uxx(s(t) + ,t) = r(0) = ^-/"(O) *   lim «„(*,<>) =/"(0).
r->0+ z- .v-0+

However, on the set {t: f'(s(t)) < 0} the free boundary s is as smooth as the function

/. This can be shown by a bootstrap argument, using standard regularity results for

the heat equation on a domain with curved boundaries. We believe that the Theorem

can be extended to a general monotone constitutive function <J> with <j>' discontinuous

at 0 and with $'(£) > c > 0, £ e R+; the corresponding value of k will depend on

<J,'(0+).
The Theorem is proved in §3 by solving an integral equation for the function r

derived in §2.

We are grateful for helpful discussions with our colleagues Tom Beale, Carl de

Boor, Michael Crandall and Emmanuel DiBenedetto; we also thank Fred Sauer for

the numerical computations.

2. The integral equation for the free boundary. Let

K,.,)^JLr«/1«P(-£)

denote the fundamental solution of the heat equation. Let v := ux be the solution of

the problem

(vt = vxx,       (x,()6Br:= {(x,t):x>s(t),t^(0,T)),

(4a') U,(0,0 = 0,

U-,0)=/'
and assume that the free boundary s satisfies s e C[0, T] n C'(0, f\.  Integrating

Green's identity

^(r(x -i,t- t)v(U,t) -^r(x -Lt- r)v(l,t))

-!-{T(x-i,t-T)v(i,T)) = 0
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A NONLINEAR INTEGRAL EQUATION 149

over the domain A, we obtain, for x > s(t), the representations
/•OO /•(

(12)    v(x,t)=       T(x-Z,t)f\£)di- I T(x-s(T),t-r)vi(s(r),r)dT,

(13)

T(x - |, /)/"(*) di-\Tx{x- s(r), t - t)v((s(t), t) dr.
0 ■'0

Passing to the limit x -» s(t)+ in (13) yields

(14)    r(r) = 2/   r(5(0-^0/"U)^-2/rx(.(0-5(r),?-T)r(T)JT,
•'o •'o

where (see (6) and (7)) /•(?) = df(s(t))/dt = ux(.?(r), 0- The justification for this

passage to the limit is contained in the following result.

Lemma 1. If s e C([0, T]) n C1((0, f\) andr e C([0, T]), we/iai>e/or f < T

lim  /'[rx(^(0 - ,(T), t - t) - T,(x - *(t), / - t)]/-(t) rfr = jr(?).

Proof. We write

ft...]r(T) jT = _L f-fiOziM[exp(_ (* - ^(O)21
V       J 4vWo   (/-t)V2   [      \       4(r-r)    j

/    (.(Q-s(t))2\1
-eXP["      4(r-r)       JJr(T)</T

1     r,x-s(t)\      I    (x-s(t))2\ I    (x-s(t)f\\   ,  . J

4^/tt Jo (t - T)3/2       \      4(t - t)    J „=1^o

In view of the assumptions on 5 and r it is easy to see that, for v = 1,2,

|/'/J < I/'  /J + I f'~SIv < 0{J8) + cso(\x - s(t)\)

which implies that

lim   j'lv = 0,       v= 1,2.
x\s(t)Jo

Finally,

implies that

lim   f'l3 = ^r(t).
x\s(t)->0 z
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150 KLAUS HOLLIG AND J. A. NOHEL

3. Proof of the Theorem. We write the integral equation (14) in the form

1    r\ A(s, t,r)        i    „, ,2\   /    x   ,
+ 1=1       i     '      exP{-A(s,t,T)2)r(tr)d7

]/7T  J0 l        T

= :(Fr)(t)+(Kr)(t),

where

Ms t r)= s^~s^

("   }-      2(t-tr)^-

It will be convenient to introduce the class of functions %a[0, T], 0 < a < 1,

defined by

•XQ[0, T] = { p: [0, T] - R: \p\a :=    sup  tx-«\P'(t)\ < oo} .
v o<r<r '

The class %" is obviously contained in the Holder-class with exponent a.

The Theorem is a consequence of

Proposition. For any a e (0,1/2), the integral equation (15), with s related to r by

(7), has a solution r e %a[0, T] for some T > 0. The constant k:= y/(0) /B

(B2 = \f"(0)) does not depend on f and is implicitly determined by the equation

KM-(f+{)V
(16) J, 1      (XK 1_ /     K2   1  ~ // \   J    \

= K[l+frl2JT^{i + fi)^\-TT7W)dr)'

the numerical value of k is 0.9034 —

Remark. The Proposition does not assert uniqueness of the function r (hence of

the free boundary s) which could be established by showing that the operator F + K

in (15) is a strict contraction; this is technically even more complicated than our

proof. However, the uniqueness of r is a consequence of the uniqueness of solutions

of the original problem (1) discussed in the Introduction.

We prove the Proposition by iterating the integral equation (15) in the form

(17) r„+x=Frn + Krn,       n e N,

with r(0) = k2B2, where k is the solution of (16) and B2 = \f"(0).

We shall show as a consequence of Lemmas 2 and 3 that, for r e %a with

r(0) = k2B2,

(18) Urn (Fr)(t) = -L ("expf-^K + £)2h/?2^,

<">   ,SH*>">-£jCf /TTTO + ff) "-(-TTTf )'y ^
Since k is the solution of (16), this implies that rn(0) = k2B2 for n e N.
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A NONLINEAR INTEGRAL EQUATION 151

Moreover, we shall establish the a priori estimates: for r e %a[0, T], 0 < a < 1/2,

(20) \Fr\a ^ c(T) + (cx(a) + c(T))\r\a,

where cx(a) = (kJtt(1 + a))"1 exp(- ^k2), and

(21) \Kr\a ^ {c2(a) + c(T))\r\a,

where c2(a) = c2x(a) + c22(a) with

K       fl Ta I     K2   1   -  ff\   J
«2i «  =7F      /.-,,-FTexP~T~;-F   Jt'

2/tt •'0 /l - t(1+/t)        \    4i + vVj

K(l + 1/(2 +2a))  /-il -T'/2 + a/        K2 ! _ ^ \

C22^; " ^(2 + 4a)        4  (1 - T)3/2 \   ~    2   , + /j: j

/   K2 1 - /F \ ,
Xexp-—   Jt,

and where c(T) is a constant such that c(T) -» 0 as T -> 0+, uniformly for r e (p:

|P(0)| + |p|« < const}.

We first use the estimates (20), (21) to complete the proof of the Proposition.

Combining the estimates (20) and (21) one has

(22) |rn+1|a < c(T) + (cx(a) + c2(a) + c(T))[r„\a.

Crucial for the following argument is the fact that

c,(i) + c2(i) = 0.339...+ 0.453... =:« < 1.

Set w := (1 + w)/2 < 1 and choose a e (0,1/2) close to 1/2 and T > 0 such that

for all r e 3Ca with r(0) = k2)62 and \r\a < 1/(1 - w)

cx(a) + c2(a) + c(T) < u.

It should be observed that if one chooses a > 1/2 then one cannot prove the crucial

estimate (20), cf. e.g. (24). By (22), we have

\rn\a < 1/(1 -s),       n e N.

Hence we can select a subsequence of rn which converges in C[0, T] to a function

/■„ e 3C"[0, T] with ^(0) = k2/?2. Set s„:= g(/flj. To pass to the limit in (17)

note that by Lemmas 2 and 3 the expressions exp(-^(s„(t)/ -ft - £)2) and

(A(sn, t, t)/(1 - T))exp(-^4(5n, r, t)2) converge pointwise (for n -» 00) and are

majorized by integrable functions, uniformly in n e N. This completes the proof of

the Proposition and the Theorem.

It remains to establish the assertions (18)—(21). We require two auxiliary results.

We denote by c a generic constant which may depend on a, \r\a and T, and we

assume throughout that T = T(\r\a, a) is sufficiently small.

Lemma 2. For r e %a, a e (0,1/2), with r(0) = k2B2 we have

\s(t) + k/F|< ctx/2+a.
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152 KLAUSHOLLIGANDJ. A. NOHEL

Proof. Note that \r(t) - r(0)\ < cta and therefore \R(t) - r(0)t\ < ctx+a. Using

(10), (11) and this inequality one has

\s(t) + kV7| = \g({R(tj) + nft\ < \-B~x{R(t) + Kft\ + ct < ctx/2 + a + ct.

Lemma 3. For reX° with r(0) = k2B2 we have

\A(s, t, t) < c   - = c--p.
/I   - T 1   +  /t

Proof. Using//^)^' = /-, (9) and Lemma 2, we obtain

\s(t) - s(tr)\ =  (' J,{a,\,do < c ('{2B2K{o - ca'/2+a)"' do < c(V7 - /r7);
/T/(i(a)) /T

this establishes the claim by the definition of A(s, t, t).

Lemma 3 shows that the kernel corresponding to the operator K in (15) is

integrable. Moreover, we see from Lemma 2 that

(23) A0(r):=   lim A(s, t, r) = -y ^=-
t^O* ^   /l   - T

Using this and Lemma 2, we can pass to the limit in (15), thus establishing (18) and

(19).
Proof of (20). To estimate the norm of Fr, use the definition in (15) to form

As t \ 0, the term in square brackets tends (use (9)) to

- --^/jJexp(-|«!) - 2(1 + a)K0!c,(a).

Therefore,

(24) |rf(^|<rt.,/a + (2(1+a)^i(a) + s(0)|||i^ij.

It remains to estimate (d/dt)(s(t)/ ft). Using (7), Lemma 2, (9) and (10) we have

£l0_i£(0  =r3/2_!_   ?r(/)--*(rU'(40)

^ r^r'/^jS-^-1 + c(r))[|<r(0 - yS25(02| + c/3/2]

< r'j^-V + c(0)[l^(0 - *(0I + ^3/2].
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A simple calculation shows that

(25) H0-tf(0l<7T^,+>L,

and this yields

<26> |l(^)|*'*i^-V' + *>)(7T^«H
Combining (24) and (26) proves (20).

We next turn to the proof of (21). We write (cf. (15))

ft(Kr)(t) = l/^ilBK-ilV'W dr

-:   (Kxr)(t) + (K2r)(t)

and estimate each term separately.

(i) Since |r'(fT)| < (try x\r\a, it follows from (23) that

(27) \(Kxr)(t)\^(c2X+c(t))t°-x\r\a.

(ii) To estimate K2r we first consider the term dA(s, t, i)/dt. Using the definition

of A and (7), we obtain

2(t-tr)^d[\s{t)-s{tTA
dt\2 (t-try/2J

= ts'(t) - (tr)s'(tr) - -s(t) + ^s(tr)

=l'Tjo-(as'(a)~r(a))da

i.e.

(28) *± = lt~x(t - try,/2f\Qx(o) + Q2(o)) do

with

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



154 KLAUS HOLLIG AND J. A. NOHEL

We estimate each term separately. By Lemma 2 and (9), we have

(29)      f\Qx(o)\do^fo °pr\        do
Jtt JtT  2B k\Io - co '

* (i vh^1*'2^+ c(<))<,/2+ao - Ti/2+a)kia.

We write Q2 in the form

Since by (9), (10) and Lemma 2,

\{f\g{{R^))))2-2B2R(o)\\      ca3/2)

\or(o)f"(s(o))-2B2or(o)\        )

we obtain, also using (25),

(30)

* (l(i+n)(U+»)rv'+c(')),,/"*(l - tW")w-

Combining (29) and (30) with (28), it follows that

(31)

i^'XOi AvhrJ-^\x + 2-rhY1 + ««»'-vi.

X^f]~rX/2J"(\ - 2^0(T)2)exp(-/l0(T)2)(l + c(t))r(0) dr.
H Jo (i - T)v

Adding the estimates (27) and (31) proves (21).

Remark. We conjecture that, for smooth initial data /, the function r(t2) is

smooth, i.e.

(32) r(t) = K2B2 + rx/2Jt+ rxt +....

Assuming an expansion of the form (32), we can calculate the coefficients r]/2, rx,...

from the integral equation (15). In particular, /'"(0) * 0 implies that rx/2 =*= 0. This

shows that (8) is, in general, not valid for a > 1/2.
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