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Abstract Let  )(*

2  LH  with )(: 21 RS , i.e.  is the boundary of the unit sphere. Let 

)(su  being a 2 periodic function and  denotes the integral from 0  to 2 in the 

Cauchy-sense. Then for )(: 2  LHu  with )(: 21 RS  and for real   the Fourier 

coefficients   


 dxexuu xi




)(
2

1
:

 
enable the definitions of the norms (e.g. [ILi] 11.1.5, [KBr0]) 
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We propose to replace current re-normalization techniques to overcome certain 

convergence issue concerning today’s ground state energy model by a modified (less 

regular) Hilbert space framework than current )(: 2  LH  Hilbert space.  

 

We propose an alternative ground state energy model based on the Hilbert space 
1H . The 

orthogonal projection from
01 HH 
 ensures consistency with today’s standard 2L model. 

The mathematical framework and the notation are given in [KBr3]. It is built on the operators 
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The Dirichlet integral  ),(:),( vuvuD   defines the inner product of the “standard” “energy 

space”. The proposed potential model concept of J. Plemelj ([JPl] §8) in combination with 

the Hilbert transform operator
0S  in the form 
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is applied to define an alternative inner product (and an alternative Hilbert space domain, 

which is less regular than 
1H ) by 

),(:)),((:),( 11 vSuSdvduvu E 

   

,

   
11 )(,  HSDvu  . 

 

In general, in this new Hilbert space framework the reverse Legendre transformation        

      

)()( dyddx
x

f
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is no longer valid. Therefore, in general the Hamiltonian and the Lagrangian formalisms are 

no longer equivalent, i.e. while the concept of “energy” of a mass element dm ([JPl] p. 12) in 

the form dm  is a valid definition in the sense of above, the concept of “force” may no longer 

be defined in corresponding (quantum mechanics) models. 
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Notations 

 

Let  )(*

2 LH   with )(: 21 RS , i.e.  is the boundary of the unit sphere. Let )(su  being a 

2 periodic function and  denotes the integral from 0  to 2  in the Cauchy-sense. Then 

for )(: 2  LHu  with )(: 21 RS  and for real   the Fourier coefficients   


 dxexuu xi
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enable the definitions of the norms (see e.g. [ILi] Remark 11.1.5, [KBr0]) 
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There is a natural representation of the Fourier decomposition 
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as Laurent series description in terms of a complex variable, defined on a circle 
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is the space of  2L periodic function in R .  

 

Remark: From [DGa] pp.63 and [SGr] 1.441, we recall  
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From [ILi] (1.2.34) we note the identity with a hyper singular integral equation of kernel of 

Hilbert type 
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This identity is related to the following integral operators ([ILi] (1.2.31)-(1.2.33), [Ili1]) 
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the following properties are valid: 

 

Lemma 

i) The operator H  is skew symmetric in the space )2,0(2 L  (e.g. [DGa], [BPe]) and maps the 
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iii) The operator A  is symmetric in its domain )(AD  and the Fourier coefficients of the 
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J. Plemelj’s suggestion ([JPl] XV, p. 12, p. 17), see also [JAh], [JNi]) is about a relationship 

between the differential form calculus and its application in physics (e.g. [HCa], [HFl]) and a 

modified representation of the potential in the form 

(*) 
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Plemelj‘s quote:  “Bisher war es üblich, für das Potential die Form (*) zu nehmen. Eine solche 

Einschränkung erweist sich aber als eine derart folgenschwere Einschränkung, dass dadurch 

dem Potentiale der grösste Teil seiner Leistungsfähigkeit hinweg genommen wird. Für 

tiefergehende Untersuchungen erweist sich das Potential nur in der Form (**) verwendbar.“    

The Dirichlet integral                         
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1, Hvu   

defines the inner product of the “standard” “energy space”. We apply the concept of J. 
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in order to define a Dirichlet integral like inner product (with alternative Hilbert space domain, 

which requires less regularity assumptions than 1H ) by 
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The “extension” of the Hilbert transform for 1n  is given by the Riesz transforms ([BPe], 

[ESt]). Those transforms enable the corresponding definition of the Dirichlet integral 
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












































n

j

jjjj

nn

dvRduR

dv

dv

dv

du

du

du

1

2

1

2

1

))(),((:))
...

,
...

((
  

 

For corresponding physical models (e.g. Navier-Stokes equations, Maxwell equations and 

Einstein’s field equations) to apply variation theory in combination with this kind of inner 

product for differential forms (see e.g. [HFl]) to the physical science we refer to e.g. [ESc], 

[RSe]. For the relationship between differential forms and mathematical concepts like 

differential forms of geodesic curvature, total curvature and parallel transport, as well as the 

calculation of the total curvature of a surface by means of the first fundamental form we refer 

to e.g. [HCa]. For the method of Pfaffians in the theory of curves and surfaces in the context 

of conformal mapping and minimal surfaces we refer e.g. to [DSt].  

For nonlinear functional analysis we refer to e.g. [KDe]. 
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A differential form is a tensor field, Therefore its Lie derivative can be built enabled by a 

vector field. The Lie derivative of a differential form can be described by the exterior (Cartan) 

derivative. The Lie derivative of a differential form is again a differential form. The Lie 

derivative of a vector field Y with a vector field X is given by the Lie bracket of X and Y. 

Therefore, knowing the exterior derivative of a 1-form is the same as knowing the Lie bracket 

on a vector fields (see e.g. [SDo] 1.2).  

As a kind of conceptual counterpart to the operators 
101 ,, SSS
 ([KBr3]) we note Hodge’s main 

result ([HFl] 8.4).  

The Hodge theorem: Let   be any p form and   any  )1( p form. Putting 

   dnnp 1)1(: then ),(),(  d  and there is a  )1( p form  , a  )1( p form  and 

a harmonic p form 
 
such that 

  d  . 

The forms  ,,d  are unique. 

 

As an application of nonlinear variation of an “energy” functional we note the variation of total 

curvature of the Hilbert-Einstein functional: 

Let ),( gM be a compact Riemann manifold with
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In in contrast to the Ricci tensor the tensor RicSg 2/  is divergence free, which is also the 

case for RicSgg  2/  with Einstein’s very small cosmological constant , which he 

introduced to enable a static universe model. The proposed ground state energy for “objects” 

dm with its corresponding (“energy”) inner product might provide an additional rational for 

such a constant  . 

We note, that the Einstein field equations, which state that the matter, described by the 

energy-momentum tensor is generated by the curvature of the space-time, is an AXIOM. 
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For the equivalence of extremal problems for nonlinear problems, built on symmetric bilinear 

form and convex functionals and corresponding variational equations built on Gateaux 

differentials for nonlinear problems we refer to e.g. [WVe]. 

Proposition: The mathematical relationship between and the concept of “force” (modeled by 

the Lagrangian formalism) and the concept of “energy” (modeled by the Hamiltonian 

formalism) is given by the Legendre transformation, defined by    
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In case f  is well defined, the Hamiltonian and the Lagrangian formalism are equivalent. As a 

consequence, in the proposed new Hilbert space framework above, where on df is required 

to be an element of the domain of the Hilbert transform operator, the concept of force the 

above is no longer valid, resp. only then “existing”, when f  . According to J. PLemelj’s quote 

above this “dispossess the potential of his biggest efficiency”. 
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From [ESt1] IV 6.3, we note that a periodic function on R  in the form 
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The Hardy spaces 
pH  are equivalent to pL  for 1p  . For 1p  we note  BMOH 1 , which 

can be seen as proper substitution of 
1L  and 

L ([HAb] 4.7). Our concept above is about the 

alternative duality  


  11 HH  and 


  2/12/1 HH
 
of Hilbert spaces, embedded in a Hilbert scale 

framework with corresponding spectral theory instead of Banach spaces only.   
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Remark: There are several other relationships in the context of Fourier transforms and 

Euler’s formula (see ([ETi] 2.1), [BPe]): Let  x  denote the largest integer not exceeding the 

real number x  and let    xxxx  ::)(  be the fractional part of x .  
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In [CBe] 8, Entry17(iv) its relationship to Ramanujan’s divergent series technique is 

mentioned: “Ramanujan informs us to note that 

)cot(
2

1
)2sin(

1

xx  


 , 

which also is devoid of meaning” .... “may be formally established by differentiating the well 

known equality” 

)sin(2log
2cos

1

x
x









   

. 
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A relationship to the Gamma function and the Euler constant is given by ([CBe] 8, entry 

17(iv), ([NNi] chapter II, §33)): 
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The Helmholtz Free Energy 

 

In this chapter we recall the mathematical background of the Helmholtz free energy of a 

quantum harmonic oscillator. Our proposal is to move current quantum theory models from a 

2L  based to a 1H  based Hilbert space environment, applying spectral theory to a 

corresponding self-adjoint and bounded (singular integral) operator.  

The function 

)sinh(2log:)( xxL   

plays a key role in the context of free energy, vacuum energy of electromagnetic fields, the 

density matrix for a one-dimensional harmonic oscillator and the Planck black body radiation 

law (concerning the notations we refer to [RFe]):  
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The spectrum for a self-adjoint operator is real and closed. If the operator is additionally 

compact, then the spectrum is discrete. In case the operator is not compact, but bounded 

(continuous), there is a spectral representation built on Riemann-Stieltjes integral over 

projection operator valued step functions (see also [KBr2], Lommel polynomials). In case of 

unbounded operators the closed graph theorem can be applied to build bounded operators 

with respect to the graph norm. The below indicates to analyze the graph norm for the 
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n A   . 

 

Remark: The equivalent norm 





 

1

2

1

2

12

22

*
),(),(

n

nn 
 

is proposed to be used to model spin effects. 

 

Remark: For  0H  it holds    

0),(),(),()),(( 
















 HHA

x
xx

x        
for all

 
0H  . 
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Remark: We note that e.g. in case of the harmonic quantum oscillator it holds in the 2L  

framework 

  ncE n 
2

1
0   

, 

which leads to the concept/requirement of “re-normalization” to ensure the existence of 

bounded Hermitian operators renormH , with  

0EHH renorm    
 . 

This is the analogue a priori representation of a physical state of a particle in the form 

   









1

2

1

),()(),(
n

nn

n

nn AdA  
 .

 

The later one can be interpreted as “ideal number” or “non-standard number” as analogue to 

a real number r  represented in the form ir   , whereby i denotes an infinitely small, finite 

non-real number, which is not equal zero, but smaller than any positive real number 
 R ([WLu]). 

 

Remark: The relationship of Hermitean commutators properties with respect to the norm 
2

 and the weaker 
1

 norm is given by (appendix resp. [SGr] 4.384, 1.441): 

i)  the norms 2

1

2

0

2

0 
  AHA  are equivalent   

ii)  the range of a “constant” operator is zero according to 

0
2

sin2log
2

1

20




dy
y


      

,

    

0
2

cot
2

1

20







dy
y




 .   

 

Remark: For the commutator  QP,  it holds 

       ,,, cQP         for all  
1H  . 

Therefore for the Ritz projection ([KBr3])  

 
010.1 : HHR 

 

      ),(:,:, 0.1  QPRQPQP
RR   

it holds 

0),(  h
 for all  

10  HH  . 
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Appendix 

From lecture notes, internet and literature 

 

The Eigenvalue problem for compact symmetric operators 

 

In the following H denotes an (infinite dimensional) real Hilbert space with scalar product 

 .,.  and the norm ... . We will consider mappings HHK : . Unless otherwise noticed the 

standard assumptions on K are: 

 

i)  K is symmetric, i.e. for all Hyx , it holds    KyxKyx ,, 

 
ii)  K is compact, i.e. for any (infinite) sequence  

nx  bounded in H contains a 

subsequence  
nx   

such that  
nKx   

is convergent, 

iii)  K is injective, i.e. 0Kx  implies 0x  . 

 

A first consequence is 

Lemma: K is bounded, i.e. 

x

Kx
K

x 0

sup:



   . 

Lemma: Let K be bounded, and fulfill condition i) from above, but not necessarily the two 

other condition ii) and iii). Then K  equals 

 

x

Kxx
KN

x

,
sup)(

0


   . 

Theorem: There exists a countable sequence  
ii  , of eigenelements and eigenvalues 

iiiK    with the properties 

i)  the eigenelements are pair-wise orthogonal, i.e.

  

 
kiki ,,  

 
ii)  the eigenvalues tend to zero, i.e. 

i
i




lim

 

iii)  the generalized Fourier sums    xxS i

n

i

in 



1

,:  with n for all Hx  

iv)  the Parseval equation 

 



i

ixx
22

,  

holds for all Hx . 
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Hilbert Scales 

 

Let H be a (infinite dimensional) Hilbert space with scalar product  .,. , the norm ...  and 

A be a linear operator with the properties 

i)  A is self-adjoint, positive definite 

ii)  
1A is compact. 

 Without loss of generality, possible by multiplying A with a constant, we may assume 

  xAxx ,

       

for all )(ADx  

The operator 1 AK has the properties of the previous section. Any eigenelement of K is 
also an eigenelement of A to the eigenvalues being the inverse of the first. Now by replacing 

1 ii  we have from the previous section 

i)  there is a countable sequence  
ii  ,  with 

iiiA    
 ,

   

 
kiki ,,   and  

i
i




lim

 

ii)  any Hx is represented by  

(*)      
i

i

ixx 





1

,   and     



1

22
, ixx  . 

 

Lemma:  Let )(ADx , then  

(**)   
i

i

ii xAx 





1

,   ,     



1

222
,

i

ii xAx  ,

 

    
i

i

ii yxAyAx  ,,,
1

2





. 

Because of (*) there is a one-to-one mapping I of H to the space Ĥ of infinite sequences of 

real numbers 

 ,...),(ˆˆ:ˆ
21 xxxxH   

defined by 

Ixx ˆ    with    
ii xx ,  .    

If we equip Ĥ with the norm  

 



1

22
,ˆ

ixx   

then I is an isometry.  
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By looking at (**) it is reasonable to introduce for non-negative the weighted inner products 

     



i

iiii

i

ii yxyxyx 

  ,,ˆ,ˆ  

and the norms 

 
xxx ˆ,ˆˆ

2
  

Let Ĥ denote the set of all sequences with finite  norm. then Ĥ is a Hilbert space. The 

proof is the same as the standard one for the space 
2l . 

Similarly one can define the spaces
H : they consist of those elements Hx such that 

HIx ˆ  with scalar product  

     



i

iiii

i

ii yxyxyx 
  ,,,

 

and norm   

 
xxx ,

2
 . 

Because of the Parseval identity we have especially 

   yxyx ,,
0
  

and because of (**) it holds 

 0
2

2
, AxAxx   ,

 
)(2 ADH  . 

The set  0H  is called a Hilbert scale. The condition 0  is in our context necessary 

for the following reasons: 

Since the eigen-values
i tend to infinity we would have for 0 : 0lim i

. Then there exist 

sequences ,...),(ˆ
21 xxx  with 


2

2
x̂  , 

2

0
x̂  . 

Because of Bessel’s inequality there exists no Hx   with xIx ˆ . This difficulty could be 

overcome by duality arguments which we omit here. 
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There are certain relations between the spaces 0H  
for different indices: 

Lemma: Let   . Then 


xx   

and the embedding 
 HH  is compact. 

 

Lemma: Let   . Then 








xxx   for 

Hx  

with 








  

and  








 . 

 

Lemma: Let   . To any 
Hx  and 0t  there is a )(xyy t according to 

i) 





xtyx    

ii) 


xyx   ,
  

xy 
 

iii) 





xty )( 

  
.
 

 

Corollary: Let   . To any 
Hx  and 0t  there is a )(xyy t according to 

i) 





xtyx      for     

ii) 





xty )(         for      . 

 

Remark: Our construction of the Hilbert scale is based on the operator A with the two 

properties i) and ii). The domain )(AD of A equipped with the norm  

 



1

222
,

i

ii xAx   

turned out to be the space
2H which is densely and compactly embedded in 

0HH  . It can 

be shown that on the contrary to any such pair of Hilbert spaces there is an operator A with 
the properties i) and ii) such that 

                       2)( HAD 

 
0)( HAR   and  Axx 

2
. 

 

 



 15 

We give three examples of differential operator and singular integral operators, whereby the 
integral operators are related to each other by partial integration:  

 

Example 1: Let  )1,0(2LH   and  

uAu :  

with  

)1,0()1,0(:)1,0()(

2

2

1

2

2

2 WWWAD 
 

. 

Building on the orthogonal set of eigenpairs   
ii  ,  of

iA , i.e. 

iii    
   0)1()0(  ii   

it holds the inclusion  

)1,0()1,0()( 2

1

21 LHHAD WA 


. 

 

Example 2: Let  )(*
22 LH   with )(: 21 RS , i.e.   is the boundary of the unit sphere. Then 

H

 

is the space of  integrable periodic function in R  . Let 

dyyuyxkdyyu
yx

xAu )()(:)(
2

sin2log:))((  


     

and   

)()( *
22 LHAD   . 

The Fourier coefficients of this convolution are 




uukAu
2

1
)( 

 

i.e. it holds   )()( 2/1  HHAD A
 . 

 

A relation of this Fourier representation to the fractional function is given by 

  



1

2sin

2

1



x
xx  
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Remark: We give some further background and analysis of the even function 

2
sin2log:

2
sin2ln:)(

xx
xk 

  . 

Consider the model problem 

0 U          in   

      fU         on  :  , 

whereby the area   is simply connected with sufficiently smooth boundary. Let 

 1,0)(  ssyy  be a parametrization of the boundary  . Then for fixed z  the functions 

zxxU  log)(

 

are solutions of the Lapace equation and for any  )(1 L  integrable function )(tuu   the 

function 

dttuxxAu 





)(log:))((

 

is a solution of the model problem. In an appropriate Hilbert space H  this defines an integral 

operator, which is coercive for certain areas    and which fulfills the Garding inequality for 

general areas   . We give the Fourier coefficient analysis in case of  )(*

2 LH   with 

)(: 21 RS , i.e.  is the boundary of the unit sphere. Let ))sin(),(cos(:)( sssx   be a 

parametrization of )(: 21 RS  then it holds 

2
sin4

2
sin22))

2
2cos(1(2)cos(22

)sin()sin(

)cos()cos(
)()( 22

2

2 tststs
ts

ts

ts
txsx










 
















   

and therefore 

)(
2

sin2log)()(log tsk
ts

txsx 


  . 

The Fourier coefficients k  of the kernel )(xk  are calculated as follows 











 




   kdtt
t

dte
t

dxexkk tixi )cos(
2

sin2log
2

2

2
sin2log

2

1
)(

2

1
:

0

2

0

    

As  0
2

sin2log
0





  partial integration leads to     

dt
t

tt

dt
t

t
t

tk 






















000

2
sin2

)
2

12
sin()

2

12
sin(

1

2
sin2

2
cos)sin(2

1
)sin(

1
  










1
)))1cos(()..cos(

2

1
)cos()..cos(

2

1
(

1

0


















  dtttttk

. 
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Extension and generalizations 

 

For 0t we introduce an additional inner product resp. norm by 







1

2

)( ),)(,(),(
i

ii

t

t yxeyx i 


    

2

)(

2

)(
),( tt

xxx   . 

Now the factor have exponential decay 
tie


 instead of a polynomial decay in case of 

i . 

Obviously we have 


 xtcx

t
),(

)(
  for 

Hx  

with ),( tc  depending only from  and 0t . Thus the normt )(  is weaker than 

any norm . On the other hand any negative norm, i.e. 


x  with 0 , is bounded by the  

norm0 and the newly introduced normt )( . It holds: 

 

Lemma: Let 0 be fixed. The norm  of any 
0Hx  is bounded by 

2

)(

/2

0

22

t

t xexx 





 

with 0 being arbitrary. 

 

Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of 
the norm , which can be reformulated in the form ( 0,  , 1 ) 

2/22










xexx 
 

applying Young’s inequality to 









)()(
222

xxx   . 

The counterpart of lemma 4 above is 

Lemma: Let 0, t be fixed. To any 
0Hx  there is a )(xyy t according to 

i) xyx    

ii) xy 1

1

 
 

iii) xeyx t

t

/

)(


  
. 
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Eigenfunctions and Eigendifferentials 

 

Let H be a (infinite dimensional) Hilbert space with inner product  .,. , the norm ...  

and A be a linear self-adjoint, positive definite operator, but we omit the additional 

assumption, that 
1A compact. Then the operator 1 AK does not fulfill the properties leading 

to a discrete spectrum.  

We define a set of projections operators onto closed subspaces of H in the following way: 

),( HHLR   

 





 dE ,*)(:

0

    
,
     ,0  , 

i.e.                                                      ddE ,*)(  . 

The spectrum CA )(  of the operator A is the support of the spectral measure dE . 

The set E  fulfills the following properties: 

i) E  is a projection operator for all R  

ii) for    it follows 
 EE   i.e. 

 EEEEE   

iii) 0lim 





E  and IdE 




lim  

iv) 





EE 




lim  . 

 

Proposition: Let E  be a set of projection operators with the properties i)-iv) having a 

compact support  ba, . Let    Rbaf ,:  be a continuous function. Then there exists exactly 

one Hermitian operator HHA f :  with 






 ),()(),( xxEdfxxA f   . 

Symbolically one writes                            





 dEA  . 

Using the abbreviation 

),(:)(, yxEyx     
, 

 ),(:)(, yxEdd yx    

one gets 










 )(),(),( ,   xxdyxEdyAx         
,   









 )(,

22

1
  xxdxEdx  










 )(),(),( ,

222   xxdyxEdyxA  ,  








 )(,

2222
  xxdxEdAx  . 
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The function
 

2
:)( xE   is called the spectral function of A  for the vector x . It has the 

properties of a distribution function. 

It hold the following eigenpair relations 

iiiA          A     
2

  
,
 )(),(     . 

The   are not elements of the Hilbert space. The so-called eigendifferentials, which play a 

key role in quantum mechanics, are built as superposition of such eigenfunctions.  

 

Let I be the interval covering the continuous spectrum of A . We note the following 
representations: 

  dxxx
I

ii ),(),(
1

 


 
, 

   dxxAx
I

iii ),(),(
1

 


 

  dxxx
I

i  


2

1

22
),(),(  

, 
 

  dxxx
I

ii  


2

1

22

1
),(),(

 

  dxxAxx
I

ii  


2
22222

2
),(),(  . 

 

Example: The location operator 
xQ  

and the momentum operator 
xP  both have only a 

continuous spectrum. For positive energies 0  the Schrödinger equation 

)()( xxH     

delivers no element of the Hilbert space H , but linear, bounded functional with an underlying 

domain HM  which is dense in H . Only if one builds wave packages out of )(x it results 

into elements of H . The practical way to find Eigen-differentials is looking for solutions of a 
distribution equation. 
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Hermitian Operator and Physical Observabales  

 

The spectrum of a hermitian, positive definite operator  

HADA )(:
 

with domain )(AD in a complex-valued Hilbert space H is discrete. This property enables 

an axiomatic building of the quantum mechanics, whereby, roughly speaking, physical states 

are modeled by the elements of the Hilbert space, observables of states by the operator A 

and the mean value of the observable A at the state   with   is given by 

 ,A  . 

 In other words, the expectation value of an operator Â  is given by  

 rdrArA


)(ˆ)(*   

and all physical observables are represented by such expectation values. Obviously, the 

value of a physical observable such as energy or density must be real, so it’s required A  to 

be real. This means that it must be 
*

AA  , or  

  
**

* )()(ˆ)(ˆ)( ArdrrArdrArA


  

An operator , which satisfy this condition are called Hermitian. One can also show that for a 

Hermitian operator,  

   rdrrArdrAr


)()(ˆ)(ˆ)( 2

*

12

*

1   

for any two states  
1  and  

2 . 

For the eigenvalue problem of a self-adjoint, positive operator A  

 A  

the eigenvalues    are the discrete spectrum n  with either finite or countable infinite set of 

values  

nnA      ,  1
2
n  

In this case the mean value of A is given by 

 AA ,:  . 
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Let nw  the probability, that the eigenvalue occurs of a measurement of the observables A 

then the mean value of  A is defined by 

 
n

nnn

n

nn AwwA  ,:         
n

nn  

and it holds 

 
n

nnnn

n

nn

n

nn AAAA  ,)(,,:
*

 

 
n

nn

n

nnnnnAA 
2*

,,:  , 

i.e.                                                      
22

, nnnw   . 

 

The general solution of the Schrödinger equation is given by 

)(),( xectx
n

n

ti

n
n

 



    . 

In case the operator A is only hermitian (without being positive definite) Hilbert, von 

Neumann and Dirac developed a corresponding spectral theory. This leads to a continuous 

spectrum )( , indexed by a continuous  . In this case );(  x  denotes an eigen function to 

the eigen value )( . The norm of this function is infinite, i.e. the function is not an element 

of the Hilbert space. An approximation to this function with finite norm is given (with 

sufficiently small  ) by the eigen differential  












2/

2/

);(
1

);





 


 dxx   .  

All for the Hilbert space related properties are valid for the eigen differentials, but not for the 

eigenfunction itself. The scalar product of the eigenfunction is normed to a Dirac -function:  

)();(),;(   xx  . 

The norm of the eigen differentials is given by: 

















  











2/

2/

2/

2/

);();(
1

);),; ddxdxxx  

















  











2/

2/

2/

2/

)(
1

);),; ddxx  

The integral is 1 for     (with appropriate norm factor) and 0 if    .  
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In case if   is a momentum the eigendifferential gives a wave package with finite distance  

  in the momentum space and therefore with finite distance 



1

x
  in the particle space. 

Such a package can normed to the value 1 (1 particle). x  (and correspondingly  ) has to 

be larger than all other typical distances of the problem. In this sense eigendifferentials 

correspond to the formalism of wave package modeling. 

The eigenfunctions of the discrete and continuous spectrum build an extended Hilbert space 

to ensure that for every   it holds 

  
n

nn dxcxcx  );()()()(  

with  

)(),( xxc nn   

and  

)(),;()( xxc    

It holds the Parceval identity:  

  
n

n dcc 
22

)(,   

and the eigendifferential are orthogonal wave packages. 

If for every function 
2L such a representation is possible, one calls the system.     a 

complete orthogonal system. Such a complete orthogonal system is not uniquely defined. 

There is always the degree of freedom 

- to choose arbitrarily the phase of each eigenfunction  

- the set of the non-standard eigenvalues can be orthogonized on different ways 

- to replace the index   of the continuous spectrum by an index )( with 

)( differentiable, monotone function of  . Then  






dd

x
x

/

);(
);(  . 

Not all existing hermitian operators are built on a complete orthogonal system of 

eigenfunctions. For all operators, which represent physical observables, there exists such a 

complete orthogonal system. 
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An alternative polynomial system to the Hermite polynomials 

 

We propose to apply the Lommel polynomials )(1. xgn   as corresponding polynomial 

orthogonal system framework to build a (negatively scaled) Hilbert space. D. Dickinson’s 

proof ([DDi]) of the orthogonality of the modified Lommel polynomials is built on a properly 

defined Riemann-Stieltjes integral, enabled by the density function   

dx
xJx

xJ
d

)2(

)2(1






    with      
)(

)(
lim

)2(

)2(

.1

1.1

xg

xg

xJx

xJ

n

n

n














   , 

which is analytic outside any circle that contains the finite zeros of )/1( xJ . The prize to be 

paid to build the orthogonality relation is an only stepwise density (bounded variation) 

function 
d .  

The Lommel polynomials )(:)( 0. xgxg nn  , defined by ( [GWa] 9-6) 

 
m

n
m

n xxg
m!

 m)-1(n

2m)!-(nm!

 m)!-(n
)1()(

2/

0


 


 , 

)(:)
2

1
( 2xgx

x
h n

n

n


  

)(:)
2

1
( 2/ xgx

x
h n

n

n

  

fulfill the recurrence relations 

)()()1()( 1.1..1 xxgxgnxg nnn       , 1:)(:)( 10  xgxg
 
.
 

)()()(2)( .1..1 xhxhnxxh nnn       , 0)(.1  xh   
1:)(.0 xh 

 

A relation between the modified Lommel polynomials and the Bessel function is given by 

Hurwitz’s asymptotic formula ([GWa] 9-65): 

)(
!

)2(
lim)

1
(0 xh

n

x

x
J n

n

n




   , )

2
(

!
lim)

2
(

2/

0

x
h

n

x

x
J n

n

n




  

From the above and [GWa] 9-65, it follows: 

)(
1

1

!
lim)

2

1
(

!
lim

!

)(
lim)2(

2/2/

0 xL
nn

x

x
h

n

x

n

xg
xJ n

n

n
n

n

n

n

n 




  

)!1(

)(
lim

)2( 1.1




 n

xg

x

xJ n

n

. 

Favards’s theorem (([TCh] 7, II, theor. 6.4) implies that the Lommel polynomials are 

orthogonal polynomials with respect to a positive weighted, bounded variation measure 

function. We recall from [DDi] 

(*)     
)1(2

)
1

()
1

(
1 ,

1
2 







 nj
h

j
h

j

mn

k

n

k

m

k k

   . 

With the relations above it follows 
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Proposition: For the Lommel polynomials the following orthogonality relation holds true 

(**)

   
)1(22

)(

2

)( ,

2/)1(
1

2/)1( 









n

gg mn

m

k

km

k
n

k

kn








  . 

 

Orthogonal polynomials have only real zeros and are eigenfunctions of corresponding self-

adjoint differential operators. Following the arguments from §2, [DBu] and [GPo3] this 

property implies that the zeros of its Mellin transforms lie all on the critical line. 

The proof of the orthogonality of the modified Lommel polynomials is built on a properly 

defined Riemann-Stieltjes integral [DDi], enabled by the term   

















 )

1
(/)

1
(: 01

x
J

x
J

dx

d  ,   

which is analytic outside any circle that contains the finite zeros of )/1(0 xJ . Hence it 

possesses a Laurent expansion about the origin that converges uniformly on and in any 

annulus, whose inside boundary has the finite zeros of )/1(0 xJ  in its interior: Let C  be the 

contour that encircles the origin in a positive direction and that lies within the annulus.  

Then it holds [DDi]   

















 nk

nk

n

dxhx
i n

C

n

k

)1(2

1
0

)(
2

1

1




  

Let )(x  the non-decreasing step function having increase of  

kkj 4

11
2
       at the point   

kkj
x

2

11



         for ,...3,2,1k  

then it holds [DDi] 

)1(2
)(~)()(

1

,




 n
xdxhxh

n

mn

mn


     . 
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Black-body radiation 

 

A famous usage of Dirichlet’s series is in the context of Planck’s black-body radiation 

function  










1

/

5

1

/5

1 2

2 1

1),( Tnc

Tc
e

c

e

c

d

TdR 

 

  

with   
2

1 2 hcc    and khcc /2   . The relation to the Zeta function  







0
1

)()(
x

dx

e

x
ss

x

s

  

is given by  

  
  



 
 

0 1

4

0 1

4
4

)()()4()4(
90 x

dx
ex

x

dx
ex x

n

nx
  . 

This describes the total radiation and its spectral density at the same time, i.e. 

dx
x

g
x

dx

e

x

x

dx

e

x
dxxg

xx
)

1
(

11
)(

4

/1

4










 . 

The weak formulation (and the positive Berry conjecture answer) should enable an 

alternative model for the total radiation and its spectral density. 
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Further information from internet 

 

A. Einstein developed his quantum/photon concept motivated by the question: „if one moves 

exactly in parallel to a light signal (a photon or a wave?), how the light signal looks like? In 

principle it should be that the signal of light is a sequence of stationary waves, which are 

fixed in the time, i.e. the light signal should look like without any movement. If one follows it, it 

looks like a non-moving, oscillating, electromagnetic field. But something like this seems to 

be not existed neither caused by observation, nor by the Maxwell-equations model. The later 

ones exclude the existence of stationary, inelastic waves. Based on the Maxwell equations 

the electrons would have to lose its energy within nearly no time. 

In any relativistic theory the vacuum, the state of lowest energy, if it exists in „reality“, has to 

have the energy zero. 

In the same way for any free particle with momentum p


 
and mass m  the energy has to be 

2242 cpcmE


 .  

In the literature the ground state energy of the harmonic operator is mostly defined by 
2

1  . 

Already M. Planck knew that this cannot be, when deriving his radiation formula: he assigned 

states with n photons the energy n
 
, but not the value  

)
2

1
( n   , 

which is not compatible with the relativistic co-variant description of photons.  

 

The ground state energy is not measurable. Its chosen value is therefore arbitrarily, triggered 

only by the fact, to keep calculations as easily as possible, and, mainly, to ensure convergent 

integrals/series. Energies of freely composed systems should be additive. For photons in a 

box section (cavity) there are infinite numbers of frequencies 
i . If one assigns any 

frequency a ground state energy value 2/i , then the ground state energy without photons 

has the infinite energy  

 
i

i
2

1
. 
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The miss understanding, that the ground state energy is fixed and uniquely defined, 

starts already in the classical physics: The definition of the Hamiltonian 

VTx
m

p
H  :

2

1

2

22
2

  

defines the non-measurable ground state energy in that way, that the state of lowest energy, 

the point )0,0(  px  in the phase space, that the energy is zero: 

the kinetic energy of strings with mass   are given by 

dxtxuT

l

x
0

2 ).,(
2

1
  . 

The internal forces of strings (being looked at as mechanical systems) are built on strains, 

depending proportionally from its lengths: 

dxtxuL

l

x 
0

2 ),(1  . 

For small displacements this is replaced by 

dxtxullL

l

x 









0

2 ....),(
2

1
1      with   dxtxul

l

x
0

2 ).,(
2

1
 . 

Correspondingly the potential energy )(xV is approximately defined by 

lL
dL

dV
llVllVLV   )()()(  . 

Putting 

lLs
dL

dV
:  

as “tension” or “strain constant”, the choice  

0:)( lV  

simplifies the algebraic term for the potential energy V  in the form:   

dxtxuV

l

xs 
0

2 ).,(
2

1
 . 

For example for the “string velocity”  



 s

sc :  

the wave equation of strings is given by 

02  xxstt ucu . 
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Alternatively to )(xV  in case of the harmonic oscillator one could have chosen instead e.g.  

2/
2

1
)( 22   xxV     

or (with reference to the theory of minimal surfaces, using  xx 22 coshsinh1  )   

    xxV cosh)(1  . 

For a single particle in a potential energy ),( txV  the Schrödinger equation is ([RFe] 4-1) 

),(),( txH
i

txt 



 

with
 

),(
2

:),(
2

22

txV
xm

txH 






  . 

With respect to our proposal above we note 

xm
HxxH






2      resp.    
01

)(  cHxxH 


    
. 
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