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HYPERSINGULAR INTEGRAL OPERATORS ALONG SURFACES 

HUNG VIET LE 

In this note, we est imate the boundedness for singular integral operators  along 
curves and surfaces with highly singular kernels. 

I n t r o d u c t i o n :  
In the past  several decades, many mathemat ic ians  have studied the well-known 

Hilbert  t ransform along curves. One may find this interesting subject in several literatures. 
A few of them are listed in the reference of this note. I t  is commonly known tha t  the Hilbert  
t ransform along curves 

F H~f(x)  = p.v. f ( x  - 7(t)) (x e N n) 
O 0  

is bounded on f2(Rn),  1 < p < oo, for some appropriate  curves (see [3], [5], [6], [11], 
[12], [16], etc). Recently, Sharad Chandarana  studied the following hypersingular integral 
operators  along curves 

f l e- 2,rilt[-~ 
Ta,~f (x ,y )=p.v .  1 f ( x - t , y - 7 ( t ) ) ~ d t ;  x, y e N ;  ~ , ~ > 0 .  

Observe tha t  the singularity at the origin for the above operator  is worse than  tha t  
of the Hilbert  t ransform. To compensate  for this profound singularity, the author  cleverly 
introduced the oscillation factor e -2"iltl-~. As a consequence, the author proved tha t  for 
7(t)  = ]tl k or It] k sgnt, k > 2 and fl > 3a  > 0, the operator  Ta,~f is bounded on LP(N 2) for 

3a (~  + 1) fl(fl + 1) + (8 - 3a) 
1 + fl(fl + 1) + (fl - 3a) < p < 3a(fl + 1) t- I. 

Chandarana ' s  work has motivated us to investigate the natural  minimal conditions of the 
curve 7, which will allow the boundedness of the above operator. Furthermore, we would 
like to generalize the results to higher dimensions. We now state the main results of this 
paper  as follows: 

T h e o r e m  1: 
Let h : R --+ R be a continuous bounded, measurable,  and even function, which is differen- 
tiable a.e. on R. Assume tha t  either h is monotone or h' E LI(R). Let 7 : R --~ ~ be a 
measurable,  even function such tha t  17'(r)l is increasing on supp 7~N [0, oo). Suppose tha t  
either 7' E LI(R) or 7 E L~176 and 7(r)  is monotone on [0, oo). 
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Let tile singular integral operator Tf be defined by 

f f(x, - y, x2 ~ -  7(Y))eitYL-~h(Y) dy, Tf(xl, 3C2) p.v. 

where xl,x2,y E R and 0 < 2a < 8. Then Tf is bounded on L2(R2). Moreover, Tf is 
bounded on LP(N 2) for 

~3 < p <  ~- with 0 < 2 a < 3 ,  

provided that  the one-dimensional maximal function 

M~g(x~)=sup{ l fl t -  ,g(xn-7(t)),dt} 
r>0 r [<r 

is bounded on LP(N) for 1 < p < oc. 

T h e o r e m  2: 
Let the functions h and 7, defined on Rn-l(n >_ 3), be real-valued, measurable, radial 
and differentiable a.e. on [0, co). Assume that  h is continuous, bounded; and either h is 
monotone or h' E LI(R).  Suppose that  17'(r)l is increasing on suppT'M [0, co), and that  
either 7' C LI(N) or 7 E L~176 and 7(r)  is monotone on [0, co). Define the singular integral 
operator Tf by 

f f ( x  - y ,  - Tf(x, Xn) p.v. dy, 
J lyln-l+o 

where x, y E R ~-1, x ,  E JR, and 0 < 2a </3. Here f2, defined on R ~-1, satisfies the following 
conditions: 
a) f~ is homogeneous of degree zero 
b) f~ has mean value zero over the sphere S "-2, and 
c) f~ E Lq(S ~-2) for some q with 1 < q < co. 
Then Tf is bounded on L2(N~). Moreover, Tf is bounded on LP(R ~) for 

~ - - - ~  < p <  fl-- with 0 < 2 a < p ,  

provided that  the maximal  function M~g(xn) (defined in Theorem 1) is bounded o n / 7 ( R )  
for l < p  < oo. 

C o r o l l a r y :  
Let 7 : [0, oo) ~ N be a measurable C 1 function, which has compact support  and is strictly 
increasing on its compact  support.  If  7' is increasing on its support,  then the singular integral 
operators in Theorems 1 and 2 are bounded on L p for 

< p <  fl--, with 0 < 2 a < f l .  

The proof of our theorems depends on Theorems C and D' in [3]. For convenience, 
we state Theorems C and D' below 
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Theorem C:[3] 
Let {p~}~ be probability measures in R n such that 

- (d,0)l <_ c la +, L ~ 

where c~ is a fixed postive constant. 

Suppose that  sup /~0) �9 g(x o) is a bounded operator in LP(li('~)(1 < m < n) for all p > 1. 
k 

Then sup [#k * f(x)[ is also bounded in LP(]~ ") for all p > 1. Here, {ak]'keZ stands for a 
k 

f % 

lacunary sequence of positive numbers: ak > 0 and inf ~ ak+__.__~l ~ = a > 1. 
k e z t  ak ) 

T h e o r e m  D':[3] 
Suppose that  I[akll < 1 and the measures {ak}k~Z satisfy the estimates 

ak({~ = 0, lak ( r  < Cmin  { lak+l{I ~ , l akr  for all k E Z and some fixed a > 0. 

If sup I]akl * fl  and sup la(2 )] * g are bounded in Lq(R '~) and Lq(R TM) respectively, then T f  
k k 

and g(f) are bounded in L ' ( R  n) for ~ - < 2q" 

t Here T f ( z )  = ~-'~ (~k * ] )  (z) ,  g(y)(z)  = Ic'k * Y(z)l 2 , and Hkt denotes the total 

variation of the measure ak, and similar definition for I~(2 )I. 

Throughout  the rest of this paper, we will denote C as a constant, which is not 
necessarily the same at each occurence. However, C does not depend on any essential 
variable. Note that  one may assume the radial function h > 0 in the proofs of both Theorems 
1 and 2. This is true because h is bounded. Before we prove the theorems, we need the 
following lemmas: 

L e m m a  1: 
Let ~/: [0, oo) --+ R satisfy the following conditions: 
a) 17'(Y)I is increasing on supplZ , and 
Either 
b) 7(Y) is monotone and ~/(y) e L~176 [0, co) ) 
Or 
e) I"(Y) e nl ( [0 ,  co)) .  
Then f o r 0 < a < b < c o ,  4 a E R  

i b K,~] tT'(Y)I dy <_ C, 

where the constant C is independent of 4~. 
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L e m m a  2: 
- 2a 

Let z = a + i~- be a complex number, with cr < ~ and 7 E R. 
2 

[0, b] by 

fO 
y ei~s eis-~ 

G(y) = sl+~+~ ds; ~ E N, O <_ y <_ b 

Then [G(y)[ _< C(1 + I z l ) y ~  - ~  for 0 _< y _< b. 

L e m m a  3: 
Let r = 2kCt + (2k)-Zt -r  with ( E I{, k E Z and 12~(t > 1. Then 

i n dt k -~- eir -<CI2 ~] 2 with l _< R_< 2. 

Let G be defined on 

P r o o f  o f  L e m m a  1: // // If [~[ _< 1, then tl~llT'(y)l dy < I'/(y)l dy <_ C, where C is either 211711L~ or Ib ' t lL' .  

If IGI > 1, then because 17'1 is increasing, we have 

b f b K . I  

blr I 
_< b'(~)l  dy < C 

where C is again either 21ITIIL~ or lIT'IlL'. Lemma 1 is proved. 

P r o o f  o f  L e m m a  2: 
Let r = ( t  + t -z,  and define g(s) by 

is fo u g'(s) ds. g(s) = e ir dt so that  G(y) = s~+~+----- 7 

fl fl(fl + 1) 
Observe that  r = C - t~+---~' which is monotone. Also, r - tZ+2 Thus lr > 

1 

tZ+2 >-s--~7 f~176 ~ = C . s ~ .  Now 

~o~ g'(s)ds g(s) ]9 fooY G(y) = sl+~+, s1+~+z + (1 + a + z) g(S)s 2+~+"ds 
0 

andthus  la(y)l___c/s~-ix-~+~ I + ( l + ~ + l z l )  s 2 ds . 

~--2a--2o" 
Hence, IG(y)I <_ C(1 + [zl)y ~ , provided that  a < - -  

-- 2~ 
�9 Lemma 2 is proved. 

2 
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P r o o f  of  L e m m a  3: 
Notice that  

--fl(2k) -p 
r = 2kr + 

t~+t 
- 2k~ + r 

Observe that  r  is negative for all t �9 [1, 2], and that  re(t)  is increasing on [1, 2]. YVe divide 
the proof in two cases. 

Case  1: ( < 0 
Then r < 2 ~  for all t e [1, 2], and so [r > [2k([. By van der Corput's lemma, 

('~ e ir d t  Jt < CI2kr 1 < R < 2. 

Case  2: ~ > 0 
Since r is strictly increasing, there is a unique to such that  C'(to) = 0. That  is, 

r = -2k~. Let ~ -- 12k~[-] if 12k([ > 1. Let tt = min(t0, 2). Write 

e ir d t  = + + - -  I~ + I2 + I3 
1 2 

with ,/t = [1,R] N [ t l -  6, t l  + 6], ,/2 = [ 1 , t t -  6] and -/3 = [t, + 5, R]. Trivially, [I1] _< 25 = 
k 1 2]2 ~]-~. For I2, we have for t E J2, 

r < 2kr + r  

___ 2k~(1 -- ~) _< 2~((--~) 

So Ir ~ 12~CI = [2~CI �89 Therefore, by van der Corput's lemma, 1121 ~ 212 ~l-~. Now 

for the estimate of I3, observe tha t  Ja = r unless tl = to. For t E J3, 

r  > 2kr + r  

= 112kr189 = 2 k r  ~ )  k 2k{ �9 

Another appeal to van der Corput 's lemma yields [/3[ _< 212k~[ -�89 

f l  R e/r d t  k ' Consequently, _< C[2 (I-~, 1 _< R < 2. Lemma 3 is proved. 

Remark: The idea in the proof of this Lemma 3 is similar the one in [3] (see the Lemma on 
page 558 of [3]). 
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P r o o f  of  T h e o r e m  1: 
We first show that  Tf  is bounded on L2(R2). 
where (, (~ E ~ and 

Observe that  T'~.f(r (,~) = m(( ,  (~)]'(r ~,), 

f e i;y e ir e ilyl-~ h(y) dy 
m((,C,J = ylylo 

fo~~ ei(y ei(~'dU) eiY-~ h(y) ' fo~~ e-ir eii,,'ffY) eiY-' h(Y) dy = yl+~ dy - yl+~, 

- m+(Cr - m-(CC.)  

By Plancherel 's Theorem, it suffices to show that  m is uniformly bounded on R 2. Write 

/0 rn+((,C~) . . . .  dy+ . . . d y - L + h .  

Trivially 1/21 _< C. 

fOy ei(s eis-~ jfO 1 Let G(y) = sl+------j--ds for 0 ___ y _< 1. Then I1 = G'(y) e ir h(y)dy. So I~ = 

G(Y)h(Y)dr "i - f l  G(Y) eir {i(,V'/(y)h(y) + h'(y)} dy. By Lemma 2 with z = 0, we 
I /  

have la(y)l _< y , �9 Thus 

I/ll ___ c { la ( l ) l  + la(1)l fo ~ K~IJT'(y)Jlh(y)ldy+ la(1)l fo ~ Ih'(y)ldy} 

_<C, 

where Lemma i has been applied to get the last inequality. Thus Ira+((, 6~)1 -< C. Similarly, 
Irn-(~, ~',~)1-< C. Therefore, IIT ftlL2(R~) <_ Cllflln~(N2 ). 
For the remaining par t  of Theorem 1, we need the following lemmas. 

L e m m a  4: 
~ -  2a  

F o r z = a + i T a c o m p l e x n u m b e r w i t h  - a < a < - -  and r E l Y ,  define a family of 
2 

operators {Tzf} by 2~f(~, ~n) = mz(~, ~,)f(~,  ~n), where (, ~ E ~ and 

I "  ei(y ei~,'l(y) r h(y) .~.(r (~) = / dy. ylyl-§ ~ J 

Then ]]TzfIIL2(R2) < C(I + Izl)]lfl[L2(R~). 

L e m m a  5: 
Consider the family of operators {Tzf} defined in Lemma 4. If z = ~ + iv with a = -o~ and 
T e IR, then IITzfllLp(l~) <_ 6(1 + Izl)llfllL~,(~2) for 1 < p < eo. 

Assume for the moment  tha t  {Tzf} is an admissible family of operators and that  
Lemmas 4 and 5 are valid. Notice tha t  Tof = T f  (at least for f a Schwartz function). 
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Note also that  the bounds for T~ in both lemmas grow at most as fast as the first degree 
polynomial in [z] variable. Therefore, we may apply the Analytic Interpolation Theorem to 
obtain the desired results. To finish the proof of Theorem 1, we need to prove Lemmas 4 and 
5 and show that  {TJ}  is an admissible family of operators. We omit the proof of Lemma 
4, since it is just a repetition of the proof which shows the L2-boundedness of Tf .  For the 
proof of Lemma 5, we will apply Theorems C and D' in [3]. 

P r o o f  of  L e m m a  5 :  

We write T j ( x ,  xn) = ~ crk * f(x, xn); x, xn e R where 
i 

k 

fly e icy e i6''t(y) e iM-a h(y) ~(r r = dy 
t~_=~ y l y p  § 

f e iCu e ir e ilvl-a h(y) 
dy. ]l, 1_~2 k yly[i~" 

Then {ak} are finite norel  measures with ][ak[] < C, [ d a k  = 0, and ~ (0 , r  = 0 for all 

k E 7/,. Let #k = Oak] be the total variation of Crk, i.e., 

~'k(r Cn) = flyl -~2k e icy e ir h(y) dy. 

Then {#k} are positive finite Borel measures with [[#k[[ < C for all k E Z. 
We need to show the following: 

I~(~, ~)1 < c (1  + Izl) min{12kr �89 12kr -~ } 

I~'/(~, ~,,)1 _< cI2~1  -~ 

�9 (1) 
(2) 
(3) 

and sup ]#(k~ g(xn)[ is bounded on LP(]R) for 1 < p < co, where ~(k~162 = ~'~(0, Cn). But 
k 

observe that  

#(o), g(z,~) = fI,Jl=2~ g(x,~ - 7(y))h(y) dYlv] 

It is clear that  sup 0#~0) �9 g(Xn)] < CM'rg(xn), which is bounded on LP(R), 1 < p < co, by 
k 

hypothesis. We now prove inequality (1). Because ~k(0, ~ )  = 0, we have on the one hand 

[~( r  r = fl~ (e/r - 1) e'r h(y) dy 
1~2 ~ Y - 

< C fly tiCY---J dy < C12kr 
- t = 2 ~  l Y l  - 

k 1 <C12 r if 12kr 
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On the other hand, we write 

e -~r e ~r e i'~-~ h(y) 
dy 

After a change of variable, we obtain 

i 2  ei(2~r eif.7(21r ei(2k)-zy-B h(2ky) 
~+(~, C n )  - -  . . ( 2 ~ ) ' ~  ylYl, ~- dy 

1 f ~  G'(y)e ir h(2ky) 
-- (2k) ~r J1 yl+i~- dy, 

where G(y) = e i (2kCt+(2k ) -~ t -~ )  dt. 

By Lemma 3, Ic(y)l ___ c'12~r -~ for 1 ___ y _< 2. Integrating by parts yields 

~+(ff' ~n)= (2k)i~ -l{G(y)eir 

i 
2 G(y) e ir 

(2k)i~'Y u+2ir {(2~)[iCnv,(2~y)h(2ky) + h,(2~y)] y~+i~ _ (1 + i'r)y'~'h(2~y)} dy 

~ A - B  

k 1 By Lemma 3, IAt < C!2 41-5, and 

k _! 2 k d_y.y IBI < c l2  ~l ~ [ l~l  b'(2ky)h(2~y)l + Ih'(2k~)l] y 

+ ( l + a + l z l )  dy . 

It's clear that the second integral on the RHS of the above inequality is bounded by C(1+ Iz]). 
If we make a change of variable y ~ 2ky, then the first integral on the RHS of the above 
inequality becomes 

2 ~ f2:k+~ { '  ~n q/(y) h(Y)'+'h'(Y)'}dyy 

{/;. z } _<c ~ 1r ~ lh'(y)ldY 

_<C. 

k 1 k 1 Thus IBI < C(1 + Izl)12 {I-~. Hence, I~+(r < IAI + IBI __< C(1 + Izl)12 41-7. A similar 
estimate holds for ~-(~, ~) .  Therefore, I~k(r ff~)l < C(1 + Izl)12kCl-~. 
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It remains to show inequalities (2) and (3). Inequality (2) is obvious. For inequality (3), one 
writes 

2k+1 2k+1 

^ +  
- ~ k  ((, ~-) + ~;(( ,  r 

Integrating by parts yields 

^ +  e i (y  e i("~t(y) h(y) 2~+~ 

2h+~k eir eir { ir + h'(y) h(y)}y2 dy. 

Thus I~+(r162 -< ~ 1 + ~ ir h(y)y dy 

< CI2kr - ' .  

Similarly, 1~-((, (n) _< C[2k([ -1, whence [~k((, (n) _< C]2kr -1- Lemma 5 is proved. 

Finally, we need to show that the family of operators {TJ} is admissible. That  

whenever f and g are simple functions in LI(R~-), the mapping z --+ / (T,f)gdx is, 
JR 2 

is analytic in the interior of S and continuous on S. Here S is the strip in the complex 

plane bounded by the lines cr = b < / 3 -  2a and a - a .  Observe that T,f(x, xn) 
2 

f f (x dy. If f is a simple function, it is a finite linear combination 
"Y(y)) eiN-~ h(y) Y, Xn  

of characteristic functions. In order for f to be in L 1 (R 2), the domains of these characteristic 
functions must have finite Lebesgue measures. Thus, it suffices to show that the integral 

fo d eiU-~ h(Y) 
F(z) = yl+c~+, dy, O < d < oo 

is continuous on S and analytic on S ~ the interior of S. 
fa d eiU-~h(Y) Define F,~(z) = yl+~,+, dy, n = 1, 2, 3 , . . .  It's clear that F~ is continuous on S and 

analytic on S o for all n. Moreover, IF,,(z) - F(z)[ _< G(1 + Izl)n ~+~-~, which tends to zero 
as n approaches infinity (independent of z in S). This shows that Fn --+ F uniformly on 
every compact subset K1 C S\S ~ and on every compact subset/(2 C S ~ Therefore F is 
analytic on S o and continuous on S. Theorem 1 is proved. 

P r o o f  of  T h e o r e m  2: 
We begin to show that Tf  is bounded on L2(•n). Write T/(~,  ~n) --- m(~, ~,~)f(~,~n), where 

E N n-1 , ~n E R, and 

e ir e ir e ilul-~ f~(y)h(y) 
m(r C,) = • - - 1  [yln-l+a dy 
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jfsn_2 

fSn- 2 

(L'~176162162 
r~+~ d~ a(y') dv(y') 

Ir(y')~(y')dv(y'); y' �9 S '~-2, ~'= ~ KI 

Note that I/~(y')l < C for all y' �9 S ~-e. The proof for this inequality is again a repetition 
of the proof of the L2-boundedness for T f  in Theorem 1. Hence Im(r C.)] < CllalIL*(S.-~), 
and so ]ITfIIL~(~-I <- c I I / ]  Ic~(~-/. For the remaining part  of this theorem, it suffices to prove 
the following lemmas: 

L e m m a  6: 
- 2a 

For z = a + iT a complex number, with - a  < a < - -  
2 

operators {T~I} by T~f(( ,  (~) = m~(r (~)f(( ,  r where 

and ~- E N, define a family of 

= f  eilvl-  (y)h(y) dy. 

Then IIT~flIL~(~.) <_ C(1 + ]zI)]lfl[L~(a~ ). 

L e r n m a  7: 
Consider the family of operators {Tzf} defined in Lemma 6. If  z --- a + iT with a = -c~ and 
~- �9 N, then ItTzflILp(a~) < C(1 + Izl)ltfllL~(a~) for 1 < p < co. 

We omit the proof of Lemma 6 since it is similar to the proof of Lemma 4 in Theorem 
1. For the proof of lemma 7, we will apply Theorems C and D' in [3]. 

P r o o f  o f  L e m m a  7: 
Write Tff(x,  xn) = E ak * f (x ,x . ) ;  x �9 R n-l, x~ �9 N, where 

k 

I ~-2~ tyl~_l+i ~ dy 

= .-2 a(y') k r~+i" dr dv(y') 

- fs--: a(y')I~(y')dv(y'); y' �9 S'~-2,r ' = ~/[@ 

Let #~ = lak] be the total variation of ak, i.e., 

\ ~ r 

Again, we must show 

lak((, (,~)1 -< C m i n  {12kr t2k(I -b} for some b > 0 (~) 
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I7~k(4, <.) - s ~.) S cI2k<l 

I~k(4,<.)l <_ Cl2kCI -@ where q' > 1 

(5) 

(6) 

and sup I/z~ ~ * g(xn)] is bounded on LP(R) for 1 < p < co. 
k 

notice that  

Here ~(k~ = ~k(0,(n). But 

~v Ig2(Y)h(Y)[ 
i ~  Ivl =-~ 

Thus sup I ~  ~ �9 g(x=)] < CII~]]L*(,-~,I M"g(x,,), which is bounded on L2(R) for 1 < p < co, 
k 

by hypothesis. We now proceed to prove inequality (4). By the cancellation property of ~, 
we have 

la~((. r = f (de., _ 1)dr d]w~a(v)h(v) dy 

< ~ Ir yl la (v )h(y ) l  dy 
- I - ~  lY; ~-~ 

< cl;l s  la(v')l ( f f + '  de d,(y ' ) 

< Cl2~r 

On the other hand, 

f s  ( ~  2~+~ eilr162162176 

- fs--~ n(v%(V) d~(V). 

By H61der's inequality, [~(~, (n)[ _< ]]{2(y')]]Lq(S--~)][I~(y')]]Lr where q and q' are con- 
jugate. Observe that  

P 

z ' q' = ./r Ir~(v')l e II ~ (v) l lL , , ( s . - , )  dv(y') 

= C ~ rl+i" (sin 0) "-3 dO 
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= C IL(cosO)lq'(sinO)~-3dO 

<_ C IL(cosO)lq' dO 

{io  i,) = C  . . . +  . . . +  . . .  

- - - - C { / 1 + / 2 + / 3 } ,  w h e r e 0 < 5 < 1 .  

This 5 will be chosen later. Trivially, /~ _< C~. Observe that  L(cos0) looks like 8+(r (~) 
in the proof of Theorem 1, with ( being replaced by I~1 cos0. Thus we also get a similar 
estimate for ]I~(cos0)l as the estimate for 18+(~, (n)l in Theorem 1. That  is, 

II . (cos0) l_  c (1  + Izl)12k~cos 01-~ ' 
k 1 -= C=12 ~cos01-~ 

Hence, I1 _< C, r f ~ - e  
# 

12k~ cos 01 - ~  dO 
J 0  

C q' L ~-~ 12~(I-~ I cos(-} - <~)1-~ dO < 

< c=. 17~r sin<~l- ~ 

< c:~'le~r a-~ 

The last inequality follows because sin t _> _2t for 0 < t < ~ ' k -~' ' ~r ~. Similarly, h < C~ 12 r ~ <~-~. 
r { ' }  So, IIS,(y')ll~.,(s._~) _< c:~' 5 +  12kr . if  12kr > 1, we choose 5 = 12~r so that 

IIS.(d)lh.,,(,.-~) _< m=,' { 12kr189 + 12k~l-~ } 

< C~' 12kr -be, where b = 12q' 

7 
Thus I~(r162 (Y)liLqs--)IIL(Y')IIL.'(s--=) 

_< C:12kr -b = C(1 + Izl)12~r -b 

if q' >_ 2 

if 1 < q' < 2 

L e ilr e i("7(r) dr dv(y ' )  ~(r162 = ~ la (d) l  \ j~k ,- 

- Jfso-: ta(d)ls.(r 

k k b Consequently, [ak(~,~) -< C(1 2!-N)min{[2 ~[, 12 ~[- }, b > 0. Inequality (4) is proved. 
It is easy to see that  inequality (5) holds. Thus it remains to show that  inequality (6) holds. 
To prove inequality (6), we write 
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<_ II~IIL.(...-'-)IlS.llL.,(s,,-,), where q and q' are conjugate. 

I[Ir][~r L f22k+~ei((~''y')rei~"~(r)h(r)drq' = .-2 ~ r dv(y') 

lr 2 ~+1 dr ql 
= C f L~ e,r ei, .r@ ) h(r)r (sin O) '~-3 dO 

/; - c [S,(cos o)1r (sin o/"-~ dO 

L" __ c IZ~(eos 0)1 r dO {z0-, r~ g } 
= C . . . dO+ a ~-~ . . .dO+ +~ " " dO 

= c{_q + s~ + s3} 

where 0 < 5 < 1. This 5 will be chosen later. It 's clear that I2 <_ C5. Observe that  

L 2~+~ h(r) e ir176176 e i;"'yC*) 
I~ (cos O) = dr 

r 

e~r e~r ]2k+~ 

- -  J ir cos 0 r 2k 

L h+' e iCrc~176 e ir {[iCn')Z(r)h(r) + if(r)] r - h(r)} dr. 
ifi cos 0 r 2 

C ~ f 2k+1 "2k+l 

IX,(eose)l < 12~r176 tl+J~ Ifi.Y(r)h(r)ldr+J2~ Ih'(, ')ldr 

C 

- 12~r i cos d 

Thus I1 - ]Ir (cos 0)[ 4 dO 

C f ~ - 6  dO 
-< 12-~-a-r .,o IcosOlr 

C 1 C _< 
12,~r ~ (sina)r -< 12kr165 

C k 1 
We choose 5 = 12 ~1-~. Similarly, .ira _< [2k~ir 
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Then IlI,.ll[~, < O{I, + I~ + I~} 

( '}  
- C {  ~ - '  - 12 ~1 ~+12kr - v }  

k 1 _< CI2 r if 12~q > 1. 

Therefore, [~k(~, 6,)1-< Ilall.(so-~l II~ll.'(so-~/-< Cl2~r - ~ .  Theorem 2 is proved. 

P r o o f  of the  Corollary:  
It suffices to show that the one-dimensional maximal function M~g(x,,) is bounded on L~(R) 
for all p > 1. But this proof can be found in the corollary of [7] or [2]. 
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