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HYPERSINGULAR INTEGRAL OPERATORS ALONG SURFACES

HUNG VIET LE

In this note, we estimate the boundedness for singular integral operators along
curves and surfaces with highly singular kernels.

Introduction:

In the past several decades, many mathematicians have studied the well-known
Hilbert transform along curves. One may find this interesting subject in several literatures.
A few of them are listed in the reference of this note. It is commonly known that the Hilbert
transform along curves

H'f(@) = po. [ " fe-1)% @em)

is bounded on LP(R®), 1 < p < oo, for some appropriate curves (see [3], [5], [6], [11],
[12], [16], etc). Recently, Sharad Chandarana studied the following hypersingular integral
operators along curves

—oxi|t|~8
e 27|t

1
Ta,ﬁf(x)y) =p.’U./1 f(fL‘ - t)y —W(t))_W' dt) T, Y€ R$ Ol,ﬁ > 0.

Observe that the singularity at the origin for the above operator is worse than that
of the Hilbert transform. To compensate for this profound singularity, the author cleverly

introduced the oscillation factor e=2#™"  Ag a consequence, the author proved that for
y(t) = |t|F or |t|* sgnt, k > 2 and B > 3a > 0, the operator Ty 5 f is bounded on L?(R?) for

3a(B+1) <p< B(B+1) + (8 —3a)

BB +1)+ (B - 3a) 3a(f+1)

Chandarana’s work has motivated us to investigate the natural minimal conditions of the
curve v, which will allow the boundedness of the above operator. Furthermore, we would
like to generalize the results to higher dimensions. We now state the main results of this
paper as follows:

1+

+ 1.

Theorem 1:

Let A : R — R be a continuous bounded, measurable, and even function, which is differen-
tiable a.e. on R. Assume that either A is monotone or A’ € L*(R). Let y: R = R be a
measurable, even function such that |y'(r)| is increasing on supp ' N [0, co). Suppose that
either v/ € L}(R) or v € L>(R) and +(r) is monotone on [0, c0).
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Let the singular integral operator T'f be defined by

_ o iyl=?
T f(z1, 22) =pAv‘/f(x‘ Y, 22 79’))3 h(y) dy,
ylyl
where 71,77,y € R and 0 < 2 < 8. Then Tf is bounded on LZ(RZ)' Moreover, T is
bounded on LP(R?) for
B

B .
5 <p< 5 with 0 <2< 8,

provided that the one-dimensional maximal function

Mgt = { £ / ot =(0) )

r>0 (T
is bounded on LP(R) for 1 < p < 0.

Theorem 2:

Let the functions h and «, defined on R*"!(n > 3), be real-valued, measurable, radial
and differentiable a.e. on [0,00). Assume that h is continuous, bounded; and either h is
monotone or A’ € L'{R). Suppose that |y'(r)| is increasing on suppy’ N [0,00), and that
either ¢/ € L}(R) or v € L®(R) and ~(r) is monotone on [0, c0). Define the singular integral
operator T'f by

b

ity =8
Tf(z,22) = po. / flz~y,z —lglg)faﬁ o),

where z,y € R*!, 1, € R, and 0 < 2 < 8. Here Q, defined on R, satisfies the following
conditions:

a)  is homogeneous of degree zero

b) © has mean value zero over the sphere S™~2, and

c) Q € LI(S™2) for some ¢ with 1 < ¢ < co.

Then T'f is bounded on L?(R™). Moreover, T'f is bounded on LP(R") for

g
-«

provided that the maximal function M7g(z,) (defined in Theorem 1) is bounded on L?(R)
for 1 < p < oo.

<p<§ with 0 < 22 < §,

Corollary:

Let 7 : [0,00) — R be a measurable C* function, which has compact support and is strictly
increasing on its compact support. If 7' is increasing on its support, then the singular integral
operators in Theorems 1 and 2 are bounded on L? for

B B

— <p< =, with 0<2a< 8.
B—a o

The proof of our theorems depends on Theorems C and D’ in [3]. For convenience,
we state Theorems C and D’ below
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Theorem C:[3]
Let {ux}>,, be probability measures in R® such that
|7 (¢ Q) ~ 2 (¢°,0)| < ClagiC]
i (¢°0)] < Clasl]™"
where « is a fixed postive constant.
Suppose that sup ‘u( ) x g(z )l is a bounded operator in LP(R™)(1 < m < n) for all p > 1.
Then sup | e * f (z)| is also bounded in LP(R*) for all p > 1. Here, {ay}xez stands for a

a
lacunary sequence of positive numbers: a; > 0 and Ixcng {ﬁ} =a>1
€ 159

Theorem D’:[3
Suppose that |[ox|| < 1 and the measures {ox}rcz satisy the estimates

54(¢°%,0) =0, (¢% Q)] < cmin{|ak+@|“ , |a,£|"’} , for all k € Z and some fixed o > 0.

If sup ||ok| * f] and sup la,(co)l * g| are bounded in LI(R*) and L9(R™) respectively, then T'f
k k
1
and g(f) are bounded in LP(R") for % - —’ 21(]

N

Here T f{z) = Z {or* Nz}, g(NH)(z) = (Z lox * F{z)] ) and joi| denotes the total

k=-00

variation of the measure ok, and similar definition for |o,c |.

Throughout the rest of this paper, we will denote C' as a constant, which is not
necessarily the same at each occurence. However, C' does not depend on any essential
variable. Note that one may assume the radial function & > 0 in the proofs of both Theorems
1 and 2. This is true because h is bounded. Before we prove the theorems, we need the
following lemmas:

Lemma 1:
Let «y: {0 oo) — R satisfy the following conditions:
a) |7'(y)| is increasing on suppy', and
Either
i())) v(y) is monotone and y(y) € L=([0,0))
r
¢) 7'(y) € L*([0,00)).
Thenfor0<a,<b<oo GeR

b
[lalrwlase,

where the constant C is independent of ¢,.
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Lemma 2:
Let z = o -+ it be a complex number, with ¢ < -2 and 7 € R. Let G be defined on
[0, b] by
Y et(s ezs B
G(y)=/0 “ST_EdS;CGR,OSySb
Then |G(y )|<C(1+|z|) “ for0<y <b.
Lemma 3:

Let ¢() = 25t + (2¥)7%i#, with ( € R, k¥ € Z and |2°¢(] > 1. Then

R
/ ﬂ@ﬂscﬁQﬁwmlﬁRﬁz
1

Proof of Lemmabl
If |¢,] <1, then allY' (¥l dy < / |Y'(y)| dy < C, where C is either 2||v||z~ or [|¥]|:-

If |¢,] > 1, then because |¥| is increasing, we have

ﬁﬂgmwww=/%['Qi)

bl¢n | ,
s/ﬂ|ﬂmwsc
[N

dy

where C is again either 2||y]|z= or ||¥'|{z:. Lemma 1 is proved.

Proof of Lemma 2:
Let ¢(t) = ¢t +t~?, and define g(s) by

_ s i¢(‘)d hat @ 4 gI(S) d
gls)= [ €70 dt sothat Gly) = | oz ds

B(B+1)

which is monotone. Also, ¢"{t) = I

~ . Thus |¢"(#)] =

ol

Observe that ¢'(t) = ¢
g1z

o C , C
> s for 0 < t < 5. By van der Corput’s lemma, |g(s)] < (gm) =C-s3

P
G(y)=/0yg’(s)ds= 9(s) ]y+(1+a+z)/0y g(s)ds

gltatz glta+z g2t+atz

. Now

e Y Y p-2a-2s
and thus ( )|<C{m +(1+a+|zl)/ s 2z “ldsy.
0

Hence, |G(y)] < C(1 + |z|)yL2;_2d, provided that o <

f—2a
2

. Lemma 2 is proved.
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Proof of Lemma 3:
Notice that

! _5(2k)_ﬁ
¢'(t) = 2°¢C + T

=25+ 9(t)

Observe that 1(t) is negative for all ¢ € (1, 2], and that (¢} is increasing on [1, 2]. We divide
the proof in two cases.

Case 1: (<0
Then ¢'(t) < 28¢ for all t € [1,2], and so |¢/(2)] > [2¥¢|. By van der Corput’s lemma,

R
/ B gl < CI2%¢|"Y, 1< R<2.
1

Case 2: (>0
Since ¢'(t) is strictly increasing, there is a unique t such that ¢'(¢p) = 0. That is,

1

P(to) = —25C. Let § = [2F¢|~7 if |26¢] > 1. Let t; = min(¢g, 2). Write

R
/ e"‘*‘”dt:/+/+ =h+hL+1;
1 J1 J2 J3

with J; = [I,R] n [tl —4,t1 + 5], Jo = [l,tl - 6] and Jz = [tl + 6, R] Trivially, |11| <2=
2|2%¢|~%. For I, we have for t € Jj,

#18) < 2+ ()2

t 4
< 2%(1 - ) < 2%(=3)

6 1
So |¢'(t)] > !2"(|§ = —2—|2"C|%. Therefore, by van der Corput’s lemma, |I5| < 2|2¢¢|~%. Now
for the estimate of I3, observe that J; = ¢ unless ¢; = ty. For ¢t € J3,

#0) 2 2+ 9(00)2
=2k¢(1- %") > 2k g = %l2’°CI%

Another appeal to van der Corput’s lemma yields |I5] < 2|2¢¢|~%.
R

Consequently, y / i) dt‘ < CJ2%¢ |‘%, 1 < R < 2. Lemma 3 is proved.
1

Remark: The idea in the proof of this Lemma 3 is similar the one in [3] (see the Lemma on
page 558 of [3]).
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Proof of Theorem 1: R

We first show that T'f is bounded on L?(R?). Observe that Z/‘?((,(n) = m(¢, () ¢, Ga),
where (,(, € R and

1Y ein () ilul™® 1,
mic.6) = | W) 4y

ylyl®
N T ) d ' % =iy gitn1() g1y ™7 py)
- 0 yite (e o yite dy

= 7TL+(C, Cﬂ) -m- (Ca Cn)
By Plancherel’s Theorem, it suffices to show that m is uniformly bounded on R%. Write
1 00
m+(C:Cn)=/ '--dy+/ ~-~d:lj511+12.
0 1

Trivially || < C.
Y gils gis™? 1 )
Let G(y) = / —;—ﬁa——ds for 0 <y <1. Then I} = / G'(y) €W h(y) dy. So I =
0 0
1

G(y)h(y)eirr)

1

/ G(y)eic“"(y) {i¢y (y)h(y) + W' (y)} dy. By Lemma 2 with z = 0, we
0 0
B2

have |G(y)| <y 2% Thus

1 1
nic{lewi+ 6l [ ialywismia+ical [ Wwla)
<C
where Lemma 1 has been applied to get the last inequality. Thus |m*((,¢,)| < C. Similarly,

|m™(¢, ¢a)| < C. Therefore, ||T fl|z2me) < C||fllz2me)-
For the remaining part of Theorem 1, we need the following lemmas.

Lemma 4:

o
For z = o + i7 a complex number with —a < o < and 7 € R, define a family of

operators {T,f} by Tof (¢, ¢n) = m2(C, 6a) F(¢, Ga), Where ¢, Gn € R and

€iy i6n1W) ¢ilvl™ p(y) .
yly|*+s

m. (¢, ¢n) =/

Then HTzf”L2(R2) <Cl+ |z|)||f||L2(Rz).

Lemma 5:
Consider the family of operators {7} f ? defined in Lemma 4. If z = ¢ + 47 with ¢ = —« and
T € R, then Iszflle(]R2) <Cl+z|)l f”LP(RZ) for 1 < p < oo,

Assume for the moment that {7, f} is an admissible family of operators and that
Lemmas 4 and 5 are valid. Notice that Tof = T'f (at least for f a Schwartz function).
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Note also that the bounds for T, in both lemmas grow at most as fast as the first degree
polynomial in |z| variable. Therefore, we may apply the Analytic Interpolation Theorem to
obtain the desired results. To finish the proof of Theorem 1, we need to prove Lemmas 4 and
5 and show that {T,f} is an admissible family of operators. We omit the proof of Lemma
4, since it is just a repetition of the proof which shows the L?-boundedness of T f. For the
proof of Lemma. 5, we will apply Theorems C and D’ in [3].

Proof of Lemma 5:
We write 7% f (2, z,) = Z ox * f(z,2,); z,%, € R where
k

€4y i) il ™ p(y)

Y

ac.o) = [

Jy|2k y|y|a+z
/ €'y ein1W) ¢l p(y)
ly}=2*

= - dy.

ylyl”
Then {o:} are finite Borel measures with ||ox|| < C, /dak =0, and 6x(0,¢,) = 0 for all
k € Z. Let py = |ox| be the total variation of oy, i.e.,

(Y ,1CnY(Y)
(¢, 6) =/ et e hly)

dy.
ly|==2* |yl

Then {ux} are positive finite Borel measures with ||| < C for all k € Z.
We need to show the following:

|5%(C, G| < C(1+ |2]) min{|2¥¢|%, |25¢| 77} (1)
(€, Ga) — TR0, G) < CJ25¢] @)
[126(¢, Ga) | < Cl28¢)! (3)

and sup |p§c0) * g(zn)] is bounded on LP(R) for 1 < p < 0o, where ﬁfco)(cn) = 1£(0, (). But
k

observe that
dy

ol
It is clear that sup |,u§c0) * g(zn)| < CM7g(z,), which is bounded on LP(R), 1 < p < oo, by
k

W oo = [ olen=1(6)h)

hypothesis. We now prove inequality (1). Because 3;(0, {,) = 0, we have on the one hand

) i) il p(y)
ar(¢, )| = ey _ 1) & . d
R N G e e L
<c o 4, < opare

w2t 1Yl
< Cl25¢)s i [2°¢] <1
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On the other hand, we write

R €Y ginV) piv™” €Y gi6e7(¥) v ™%
Ge(¢,6n) = f W) y - / . ) dy
y~zh

ot fykyl” yiyk‘r
= b’\:(Ca Cn) - al: ((a C‘n)

After a change of variable, we obtain

1 /2 gi2* 0V ¢ita7(24y) i) Py p(ohy) dy

=+ —
7 (¢, Gn) = (2k)er ylylir
L [? Gy)eeT®0) p(2ky)
= Tokyir / dy
(25 Jy

;. 3
y1+17'

where G(y) — /y ei(2"gt+(2k)—ﬁt‘l’) dt.

1

a:((: Cn) =

By Lemma 3, |G(y)| < C|2€¢|~% for 1 < y < 2. Integrating by parts yields
1 C(y)eir2"y) p(2ky)
(2k)i‘r y1+i‘r

2
1 }
/? G(y) en12"y)
1

k)T {@) G (2Fy)h(24y) + K (25 y)] '+ — (1 + i)y h(2ky)} dy
=A-B

By Lemma 3, |4] < C|25¢|~%, and
|B| < Clotc { [ # el wEvnel+ wet) 2
: Ih24)
+ /1 (1t [el) 252 dy}.

It’s clear that the second integral on the RHS of the above inequality is bounded by C(1+|z|).

If we make a change of variable y — 2Fy, then the first integral on the RHS of the above
inequality becomes

k

o / { [SROLOE lh’(y)l} dy

Y

ok+1

50{/%

<C.

ok+1

1Gal 1Y (@) dy + /

2k

1A (y) dy}

Thus |B| < C(1 + |z])|2¥¢|~%. Hence, |57 (¢, ¢a)] < |A| + |Bl < C(1 + |2])|26¢|~%. A similar
estimate holds for 55 (¢, (). Therefore, [Gk(¢, ¢a)l < C(1 + |2])[25¢| 2.
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It remains to show inequalities (2) and (3). Inequality (2) is obvious. For inequality (3), one
writes

gk+1 ok+1

ﬁk((s(n):‘/ e‘i(!leicrﬂ(!}) h(y) d’y + /
2k v 2

= 14 (€, Gn) + i (€, Ga)-

e~ %Y gin7(y) h(y) dy
Y

Integrating by parts yields

. . k41
34,6y = S e hiy) |
k \6r6n i{y "
2k+1

[ ) {icnv’(y)h(y) +H() h(y>} dy
e i y 2 '
2k+l

R C
Thus [M:(C,Cn)l < EEZ‘T {1 +/2k
< Cj2k¢ .

<
=

2k+1

Gt W)y + | —‘;’ldy}

2k

Similarly, | (¢, () < C|2¢¢|7Y, whence |Ex(¢, ) < C|2%¢|~!. Lemma 5 is proved.

Finally, we need to show that the family of operators {7, f} is admissible. That
is, whenever f and g are simple functions in L!(R?), the mapping z — (T:.f)gdz
2

is analytic in the interior of S and continuous on S. Here S is the strip in the complex
—2a
and ¢ = —a. Observe that T, f(z,z,) =

plane bounded by the lines ¢ = b <

/ £z — gm0 — 7(¥)) €7’ h(y)
ylylots

of characteristic functions. In order for f to be in L!(R?), the domains of these characteristic

functions must have finite Lebesgue measures. Thus, it suffices to show that the integral

d _iy—#
F(z)=/0 :Tr:—_g—jldy, 0<d<oo

dy. If f is a simple function, it is a finite linear combination

is continuous on S and analytic on S°, the interior of S.
d Giyfp
Define F,(z) = / %_—F# dy, n=1,2,3,... It’s clear that F,, is continuous on S and
d/n

analytic on S° for all n. Moreover, |F,(z) — F(2)| < C(1 + |z|)n®+°~2, which tends to zero
as n approaches infinity (independent of z in S). This shows that F,, — F uniformly on
every compact subset K; C S\S? and on every compact subset Ky C S°. Therefore F is
analytic on S® and continuous on S. Theorem 1 is proved.

Proof of Theorem 2: N .
We begin to show that T'f is bounded on L%(R™). Write T'f({, ¢a) = m(¢, ¢a) f({, ¢n), where
(eR"1 ¢, €R, and

ei(~y e'i(n’Y(y) eilyl_B Q(y)h(’.‘/)
y6n) = d
me6= [ i ’
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00 Ay giCa(r) pir™?)
€ € e (1
-/, ( / e dr) ) do(y)
Sn—Z Jo T

/ LAY du(y); v € ST (= o

Note that |I.(y')] < C for all ¥’ € S™2. The proof for this inequality is again a repetition
of the proof of the L?-boundedness for T'f in Theorem 1. Hence |m((, (a)| < C||Q|L1(sn-2),
and so ||T fl|z2@r) < C|If1|z2@ny- For the remaining part of this theorem, it suffices to prove
the following lemmas:

Lemma 6:

-2
For z = ¢ + it a complex number, with —a < ¢ < b > 2 and 7 € R, define a family of

operators {71, f} by T.£ (6, G) = ma(C, 6a) F(C, Ga), where

i gitarty) gilul=?
mz(c,cn)—/ ety et M Qy)hy)

|y|n-—1+a+z d’_lj

Then ||T.f|lz2®e) < C(1+ [2DIIf 2@

Lemma 7:
Consider the family of operators {T, f 1 defined in Lemma 6. If 2 = ¢+ 47 with 0 = — and
7 € R, then [T f||r@n < C(1+ |2])[{fllzs@n) for 1 <p < co.

We omit the proof of Lemma, 6 since it is similar to the proof of Lemma 4 in Theorem
1. For the proof of lemma 7, we will apply Theorems C and D' in {3].

Proof of Lemma 7:
Write T, f(z,2,) = Zak * f(z,2,); z € R" 2, € R, where
&

ey i1 ¢l ™ QO (y)h(y)
5.(C.C) = . dy
k(c C ) /|y|:'2’° Iyln—-l-i-rr

2 (Y piar(n) pir P
=/ ) ( f Z : k) g, dv(y’)
sn- 2

" 7-1+i1‘
- [Sn—z Q)L )do(y); o € 572, ¢ = ¢/l

Let uy, = |ok| be the total variation of oy, i.e.,

PG = [ 10w ( /2

Again, we must show

k41

Iy gidar(r) Ih—gﬂ dr) dv(y’)

15%(¢, ()] < Cmin {!2"({, j2’°§]"b} for some b > 0 (4)
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|72 (¢1 Ga) — (0, Ga) < CJ25¢] (5)
|5 (C, Gl < CIQkCl—ﬁ’ where ¢ > 1 (6)

and sup Iugj) * g(z,)| is bounded on LP(R) for 1 < p < oo. Here u(o)(cn) = [x(0, (). But
k

notice that

u,fco)*g(mn) _AA:'Z’* g(zn — 7(?/))l 1( = (1 )

=LMMM(L ﬂ%ﬂ@mm%)mw

Thus sup |H(O) * 9(22)| < C|IQ|Lt(sn-2) M7 g(z,), which is bounded on LP(R) for 1 < p < oo,

by hypothesxs We now proceed to prove inequality (4). By the cancellation property of Q,
we have

~ . en 1) P Qa1
Jou{6, 6l = / (e =1) | |"—1+ir(y) W dy
lyl=~2* Y

< / I¢ -yl 19()h(y)] dy
[rjo=2®

[y[*1

< Cll 1) ( / dr) du(y/)
gn-2 ok
< Cl25¢.

On the other hand,

24 I YT giGa(r) girP gy
~ € € [ T
0k(¢,¢n) = /s»—z Qy") (/2" e () dT) du(y)

= Q)y) dv(y).

sn-2

By Hélder’s inequality, [Gk(¢, a)l < [[Q(Y")|za(sn-2) [ (4 )| e (sn-2) where g and ¢’ are con-
jugate. Observe that

! q' — 7 ’ I;
Mgy = [, G dote)

=Ln-2
:c/
0

I

q

dr| dv(¥)

P G giar(r) i ()
ok T1+i‘r

25 G¢|rcos 8 LiCav(r) & hir 7
/ £ c O (sinsy™2 a0
2

" T1+i'r
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—C’/ +(cos 0)|7 (sin 6)"~° df

< C’/ I, (cos 0)|7 df
0

-4 F+6 n
0 -0 46

=C{h+ L+ 1}, where0<d < 1.

This ¢ will be chosen later. Trivially, I, < C4. Observe that I{cos8) looks like 7 (¢, ¢.)
in the proof of Theorem 1, with ¢ being replaced by || cosf#. Thus we also get a similar
estimate for |I,(cos 8)| as the estimate for |6 (¢, ;)| in Theorem 1. That is,

I (cos 8)} < C(1 + |2])|2¥¢ cos 6] =
= C,|2%¢ cos |2

x

Hence, I; < Cg’/2 [2"§c030|""zi dg
0

<cf [7 e feos(y - o)1 % as
0
< CI|2¢¢|~%|sine| %
< CF |2t 6%
2t o
The last inequality follows because sint > — for 0 < ¢ < g Similarly, I; < CY |25¢| 7 67 %.

T
So, ||I(y )||Lq sy S c? {6+ |2"C|‘%6‘g2"}. If |2€¢| > 1, we choose & = |25¢|~7 so that

() qansy < CF {I2¢I7E +12%¢ ¥ }
: : o 22
< CY [2°¢|™, where b= { 24
Thus [k (¢, Ca)l < (1) zs(sn-2) 11 (@)1] Lot (sn-2)
< G257 = C(1 + |2))125¢)

Consequently, [G,(¢, () < C(1 + |2|) min{|2¢|, |2%¢|~*}, b > 0. Inequality (4) is proved.
It is easy to see that inequality (5) holds. ‘Thus it remains to show that inequality (6) holds.
To prove inequality (6), we write

L SPRINY  (o'
(¢, ) = /s,._2 |Q(y’)| /2’c Iy ) pilnr(r) — dr dv(y')

= [, 196010 )dvty)
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< 1€ Lagsn-2y 13| ot (5n-2), Where g and ¢" are conjugate.

7 _
g = |
=c/
0

=C / [I.(cos 8)|7 (sin 6)"~2 d@
0

’

q
dv(y')

(sin6)"3 df

ok+1
/ iy piar(r) M dr
2k T

9k+1

q
/ ei(rcos0 ei(n'y(r) h(’l‘) dr
2 T

k

<C / |I(cos 6)|7 df
0

56 Eaal B
=C / ...d0+/ ...d0+/ ...do
0 5 246

EC{Il+12+13}

where 0 < § < 1. This § will be chosen later. It’s clear that I, < C4. Observe that

2k+1 h(r) eilrcosd iCar(r)

I.(cos 9) =/ dr
2

k T

ok+1

ei(rcosﬂ ci(,.’y(r)h(,,.)
" iCcosf T ]zk -

/2"‘“ eilrcost 4itny(r) {[’L(n’yl('f‘)h(”') + h’(r)} T — h(’l‘)}

x i€ cosf r?

dr.

ok+1

C
< <
I (cos 6)] <€ 2%C] [ cos 0] {1+/2k

gk+1

+/2k h—g—)—dr}

C
< — ~
= [25¢| | cosd]

2h+1

G/ Ohnlar+ [ WG

2k

x5
Thus I, = / " L (cos O)|Y do
0
< C /%-5 do
T|2%¢|T Jo |cosBlf
c 1 c
< <
= [2K¢|7 (sind)e T |2k(|7'67

- o kaied
Similarly, I3 < RCTa7 We choose § = |2°¢|"z.
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Then ||L,]|7, < C{I; + I, + I3}

<01 )

= C{I25¢E + 2°¢1"%)
< Clk¢ImTif|25¢) > 1.
Therefore, |1k (¢, )l < Q| zagsn-2) 17| po (gn-2) < C’|2’“§|_'2%’. Theorem 2 is proved.

Proof of the Corollary:
It suffices to show that the one-dimensional maximal function M7 g{z,) is bounded on L?(R)
for all p > 1. But this proof can be found in the corollary of 7] or [2].
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