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ERROR ESTIMATES FOR A
SINGLE-PHASE NONLINEAR STEFAN

PROBLEM IN ONE SPACE DIMENSION

H. Y. LEE, M. R. OHM AND J. Y. SHIN

ABSTRACT. In this paper we introduce the semidiscrete solution
of a single-phase nonlinear Stefan problem. We analyze the opti
mal convergence of the semidiscrete solution in HI and H2 normed
spaces and also we derive the error estimates in L2 normed space.

1. Introduction

The mathematical formulation of many problems arising in practice
leads to a free boundary problem-a Stefan problem. In one space
dimension a single-phase nonlinear Stefan problem with zero forcing
term can be described as follows:

Find a pair of {(U,8)jU = U(y,r) and 8 = 8(r)} such that U
satisfies

(1.1) UT - (a(U)Uy)y = 0 in il(r) x (O,To],

(1.2) U(y, 0) = g(y) for yE I,

(1.3) Uy(0,r)=U(8(r),r)=0 for O<r:::;To,

(1.4) 8T+ (a(U)Uy)IY=S(T) = 0 for 0 < r :::; To

8(0) = 1,

where il(r) = {y;O < y < 8(r)} for each rE (O,To] and I = (0,1).
For simplicity, we suppress r in il(r) and write il(r) as il only. For
a single-phase linear Stefan problem, the study of semidiscrete finite
element error analysis was initiated with the fixed domain method
by Nitsche [4, 5]. Das & Pani [1] extended the error analyis to the
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problem (1.1)-(1.4) and derived error estimates in HI and H 2 norms for
semidiscrete Galerkin approximations to the problem (1.1)-(1.4) using
the fixed domain method. And when the temperature was given at the
fixed boundary instead of the flux condition of (1.3), Pani & Das [6, 7]
obtained error estimates for semidiscrete Galerkin approximations to
the problem (1.1)-(1.4). Also error estimates for fully discrete Galerkin
approximations to the problem (1.1)-(1.4), depending on the backward
Euler method in time, were derived in [7]. Lee & Lee [3] adopted the
modifed Crank-Nicolson method to improve the rate of convergence in
the temporal direction.

In this paper, we not only improve the previous error estimates in HI
and H 2 norms for the semi-discrete case in [1], but we also derive the
error estimates in L2 • In section 2, the weak formulation and Galerkin
approximations are considered. In section 3, the auxiliary projection
and related estimates are given. In section 4, error estimates for the
semidiscrete case are established. In section 5, the global existence of
the Galerkin approximation is considered.

Throughout this paper, we assume the followings:

(i) The pair {U,8} is the unique smooth solution of (1.1)-(1.4)
with 8(7) ~ 1/ > 0 for all 7 E [0, To].

(ii) The function a(.), only depending on U, is C4(R) and has
bounded derivatives up to order 4, bounded by a common con
stant K 1, say. Further, the function a(·) is bounded below on
R by a positive constant Q:.

(iii) The initial function 9 is sufficiently smooth and non-negative
and satisfies the compatibility conditions g(O) = g(1) = O.

For an integer m ~ 0 and 1 :::; p:::; 00, Wm,P(O) denotes the usual
Sobolev space of measurable functions which, together with their distri
butional derivatives of order up to m, are in LP. For 0 = I and p = 2,
we shall use the symbol H m in place of W m ,2(I) with norm 1I·lIm. Let
X be a Banach space with norm 11· IIx and let v : [0, T] ---t X be a
function. The following notations are used:

rT
1

IIv IlLP(o,T;X) = (}o IIv(7)II~d7)i',

Ilvll£C"'(o,T;X) = sup IIv(7)lIx.
O:::;r:::;T

for 1:::; P < 00
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We assume that {U, S} satisfies the following regularity condition: For
r ~ 1,
Condition R :

Let K2 be a bound for {U, S} in the space appeared in the condition
it

2. Weak formulation and Galerkin approximations

With the help of the Landau transformations

the problem (1.1)-(1.4) can be transformed into the following problem
with the fixed domain:

Find a pair of {(u,s);u(x,t) = U(y,r) and s(t) = S(r)} such that
u satisfies

(2.2)

(2.3)

(2.4)

(2.5)

Ut - (a(u)ux)x = -xa(u(l, t))ux(1, t)ux
in I x (0, T],

u(x, 0) = g(x) for x E I,

ux(O, t) = u(l, t) = 0 for 0 < t ::; T,

ds
dt = -a(u(l, t))ux(1, t)s for 0 < t ::; T,

s(O) = 1.

Here, t = T corresponds to r = To. Note that all the regularity
properties for {u, s}, denoted by the condition R, are inherited from
(1.5) for {U,S} and that K2 is a bound for {u,s}. Note that the
integral in (2.1) can be rewritten as

(2.6)
dr __ s2(t)dt for 0 < t ::; T

r(O) = o.
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(2.11)

To obtain the weak formulation of the problem (2.2)-(2.5), we con
sider the space

(2.7) j[2(I) = {v E H2(I) : vx(O) = v(l) = O}.

Multiplying both sides of (2.2) by W xx and integrating the first term
of (2.2) with respect to x, we obtain

(2.8) (Utx, wx) + ((a(u)ux)x, wxx ) = a(u(l, t))ux(l, t)(xux,wxx ),

for t > 0, wE j[2(I) with u(x,O) = g(x).
To get Galerkin approximation of u, let Sh be a finite-dimensional

subspace of iI2 (1) with the following properties:

(i) The approximation property: for v E Hk(I) niIz(I), there
exists a constant Ko, independent of h and v, such that

(2.9) inf IIv - xIIi ~ Kohk-illvllk, for 0 ~ j ~ 2, 2 ~ k ~ r + 1,
XESh

where r is a positive integer.
(ii) The inverse property:

lIxllz ~ K oh-1 1lXlIllX E Sh.

Then a Galerkin approximation of u can be defined as follows:
Find uh = uh(., t) E Sh such that for t> 0, X E Sh

(2.10) (u~x, Xx) + ((a(uh)u~)x, Xxx) = a(uh(l, t))u~(l,t)(xu~,Xxx),

with
uh(x,O) = Qhg(X),

where Qh is an appropriate projection of u onto Sh at t = 0 to be
defined later in section 4. Moreover, Galerkin approximations Sh and
'Th of S and 'T, respectively are given by

dSh h
dt = -a(0)uxC1,t) Sh for 0 < t ~ T,

Sh(O) = 1

and

(2.12)
d'Th 2() £ Tdt = sh t or 0 < t ~ ,

'Th(O) = O.
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3. Auxiliary projection and related estimates

For u, v, wE iI2 (I), we define a trilinear form

A(u; v, w) = ((a(u)vx + au(u)uxv)x, wxx ) - a(O)ux(l)(xvx,wxx ),

as in [7]. Then it is easy to show that
the boundedness of A :

(3.1) IA(u;v, w)1 ::; Kgllvxxlll!wxxl!

a Garding-type inequality for A :

(3.2) A(u; v, v) ~ al!vxx l!2 - Allvx ll 2

for u, v, and wE iI2 (I) where Kg, a, and A are constants and Kg and
A may depend on Ilu112.

Let

(3.3) AA(U; v, w) = A(u; v, w) + (vx, wx).

Let it(x, t) E Sh be the auxiliary projection of u with respect to AA :

(3.4) AA(U; u - u, X) = 0, X E Sh.
Due to [2], we obtain the following result.

THEOREM 3.1. For a given u E iI2 (I), there exists a unique solution
u E Sh to (3.4).

Define '11 = u - u and ( = uh
- u. Then we obtain the following

estimates for '11 and 1Jt whose proofs are similar to those of Lemma 4.2
- Lemma 4.7 in [1].

THEOREM 3.2. For t E [0, T], there exists a constant

K4 = K4(a,A,Ko,KllK2,Kg)

such that
1I1JI!j ::; K 4 hm- j I!ullm,

l!1Jtl!j ::; K 4hm
-

j {l!ul!m + IIU tllm},
and

l1Jx(l, t) I ::; K 4h2(m-2) lIull m

for j = 0, 1, 2 and 2::; m ::; r + l.

Due to the conditions on u and Theorem 3.2, there exists K s such
that
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4. Error estimates for the semidiscrete case

Throughout this section, it is assumed that there exist constants K*
and ho such that a Galekin approximation uh E Eh of (2.10) exists and
satisfies

(4.1)

where uh(x, 0) is defined as Qhg(X), satisfying

Ai\(g;g - Qhg, X) = 0, X E Sh.

Clearly, uh(x, 0) = u(x, 0).
Following the standard notations for nonlinear problems, we define

e = u - uh, 'T/ = u - U, and (" = uh - u.

Then we obtain
e='T/-("

and

(4.2) a(uh)u~ - a(u)ux

=a(uh)(x + (a(uh) - a(u))ux,

(4.3) a(u)ux - a(u)ux

=a(u)'T/x + au(u)'T/ux - o'u'T/'T/x - o'uu'T/2ux ,

where

(4.4)

for 4 :::; m :::; r + 1.



(4.5)
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Proof. Substracting

(Utx, Xx) + ((a(u)ux)x, Xxx) = a(O)ux(l)(xux,Xxx)

from (2.8) and (2.10) and using (4.2) and (4.3), we have

((tx, Xx) + (:x [a(uh)(x + (a(uh) - a(u))uxJ, Xxx)

=a(O)u~(1)(xu~, Xxx) + ('T/tx, Xx)

+(:x[a(u)'T/x + au(u)'T/ux - au'T/'T/x - auu'T/2uxJ,Xxx)

-a(O)ux(l)(xux, Xxx),

which implies that

((tx, Xx) + ((a(uh)(x)x, Xxx)

=('T/tx, Xx) - A('T/x, Xx) + a(O)ux(l)(x(x, Xxx)

+a(O)(x(l)(xu~,Xxx) - (((a(uh) - a(u))ux)x,Xxx)
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(4.6)

-((au'T/'T/x + auu'T/2ux)x, Xxx).

Taking X = (in (4.3), integrating by parts the first term on the right
hand side, using Schwartz inequality and Sobolev imbedding theorem,
we obtain

1 d 2 2
2" dtll(xll + all (xx 11

::;K1K*II(xllll(xxll + II'T/t 11 11 (xx 11 +AII'T/IIII(xxll + K 1K211(xllll(xxll

+K1K*I'T/x(1)III(xxll + K(E)II(xxI12+ K(K1 , K*, E)II(lIi
+2K1K5 11(1I111(1I2 + K 1K5 11(lll 11 (xx 11 + [K1 (K2 + lI'T/112)11'T/lli
+2KIiI'T/lldl'T/112 + K 1(K2 + 1I'T/1I2)1I1Jllr + 2K111'T/11111'T/1I2
+K1 (K2+ 11'T/112)11'T/llr + 3K1 1I'T/lliJII(xx 11·

From (4.6), we obtain

~ 11(lli + 2all(lI~
(4.7) ::;K(c)II(II~ + K 7 (KI, K 2,A, K*, K 5 , c)II(lIi

+K7 (K1 , K2,A,K*,K5 ,c) [1I'T/tI1 2 + 1I'T/11 2 + l'T/x(1) 1
2

+II'T/lli + II'T/II~II'T/lli + 11'T/1I~1I'T/lliJ·
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Choosing E: sufficiently small so that 2a - K(E:) > 0 and applying
Gronwall's inequality to (4.7), we obtain

(4.8)
1I(lIi + (J it 1I(II~dt' S:K7exp(K7t) it [lIl7tll 2 + 111711 2 + 117x(1)12

+lIl7llt + 11171I~1I1711t + 1I171I~1117Ili]dt'.

The desired result can be obtained for m 2:: 4 if we take the supremum
over all t in [0, T] in (4.8) and if we use the results of Theorem 3.2. 0

COROLLARY 4.2. For m 2:: 4, the following estimate holds:

(4.9)

From Theorem 3.2, Theorem 4.1, and Corollary 4.2, the following
theorem is obtained. The estimates in H2 and HI norms for e are the
same as those in [1]. However, the order of h in the previous estimate
in L 2 norm in [1] is improved by 1.

THEOREM 4.3. Let the solution U E iI2 (I) of(2.8) with (2.3) be suf
ficiently smooth so that the regularity condition R is satisfied. Further,
let there exist constants ho and K*(K* 2:: 2K2 ) such that a Galekin
approximation uh E Sh of (2.10) satisfying (4.1) exists in I x (0, t] for
oS: h S: ho. Then we obtain the following estimate:

(4.10) lIeIlLoo(Hi) S: KghT+l-j for r 2:: 3 and j = 0, 1,2,

where Kg = Kg(K4 , K 6 ). Besides, for sufficiently small hand r 2:: 3,

and consequently Kg can be chosen independent ofK* .

Finally, the Galerkin approximation of the solution {U(y, T), S(T)}
of the problem (1.1)-(1.4) can be defined as

Uh(y, T) = uh(x, t),

Sh(T) = Sh(t),



where
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y = Sh(t)X,

T = Th(t).

Here Sh and Th are given by (2.5) and (2.6), respectively. Then we
obtain the following error estimates for the Galerkin approximation
in which the order of h in the previous estimate for Sand T in [1] is
improved by 1.

THEOREM 4.4. Under the assumptions of Theorem 4.3 and the reg
ularity condition il, we obtain the following estimates:

liS - Shllux'(O,To) = O(hr+l)

liT - Th IILOO(O,To) = O(hr+l)

IIV - UhIlLoo(o,To;Hj(n(T») = O(hr+l-j
), forr ~ 3 and j = 0,1,2,

where O(T) = (O,min(S(T),Sh(T)) forT E (0, To).

Proof. The proof is similar to that of Theorem 5.5 in [7]. 0

5. Global existence of the Galerkin approximation

To obtain the unique existence of the Galerkin approximation uh E

ih of (2.10) in the domain of existence of the solution u and a priori
estimates of u-uh , we consider the following linear ordinary differential
equation of ( in time t with ((x, 0) = 0

((tx, Xx) + ((a(u - E)(x)x,Xxx)

= (T/tx , Xx) - A(T/x, Xx) + a(0)ux(1)(x(x, Xxx)

(5.1) -a(0)T/x(1) (x(ux - Ex), Xxx) + a(0)(x(1)(x(ux - Ex), Xxx)

-(((a(u - E) - a(u - T/))(ux -TJx))x,Xxx)

-((auTJT/x + auuT/2 ux )x, Xxx), for X E ih,
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Then, for any E = E(x, t), the existence of a unique solution of (5.1)
with «(x, 0) = 0 in (0, T] can be established, see [4]. Therefore we can
define an operator ~ such that ( = ~E for each E E LOO (H2 (I)). Since
e = 1J - (, we obatin

(5.2) e = 1J - ~E for each E E LOO (if2(I)).

To show the existence of a solution uh of (2.10), it is sufficient to
show that the operator equation (5.2) has a fixed point, i.e., e(E) = E.

THEOREM 5.1. If the solution u satisfies the regularity condition
Rand K is any positive constant, then, for sufficiently small hand
r 2:: 3, there exists a unique solution uh E Eh of (2.10) in the ball
{lIu - uhIILOO(H2(I» ::; K}.

Proof. Letting X = ( in (5.1), we obtain

(tx,(x) + ((a(u - E)(x)x,(xx)

= (1Jtx, (x) - A(1Jx, (x) + a(O)ux(l)(x(x, (xx)

(5.3) -a(O)1Jx(l)(x(ux - Ex), (xx) + a(O)(x(l)(x(ux - Ex), (xx)

-(((a(u - E) - a(u -1J))(ux -1Jx))x, (xx)

-((au 1JTJx + auu TJ2ux)x, (xx),

which implies that

~ 11(x 11
2 + 2all(xx 11

2

::;K(c:) 11(xx 112+ K(c:, K 1 , A, K2) [IITJtI12+ 1/1J1I2

+(1 + IIEII~)I1Jx(1)12 + (1 + IIEII~)(l + 1I1Jlli)
(5.4) +(1 + 1I1J1I~)(1 + 1I1Jlli) + (1I1Jlli + IIEII~)(l + 1I1J1I~)

+(1 + IITJII~) 1I1Jlli + IITJII~ 1I1Jlli + 1I1Jlli IITJII~
+(1 + IITJII~)II1Jlli + IITJII~II1Jlli + IITJlli]
+K(K1 ,K2,E)(1 + IIEII~)II(xIl2.
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(5.6)

Choosing c > 0 so that 2a - K(c) > 0, we get

:t ll (xIl
2

(5.5) ::;K(c,K1 ,A,K2) [1I11tI12+ 1111112+ (1 + IIEII~)(I11x(1)12 + 1111l1i)
+1I1111~1I11l1i + 1I1111~ + 1111l1i + IIEII~II11I1~ + 1111lli]
+K(K1,K2,c)(1 + IIEII~)II(xIl2,

which implies that

1I(lli(t)
::;K(c, Kl, A, K 2) exp[K(K1 , K 2,c)(l + IIEII~)t]

·it

[1I11tI12+ 1111112+ (1 + IIEII~)(I11x(1)12 + 1I11l1i)

+ 1I1111~1I11l1i + 111111~ + 1I11l1i + IIEII~II11I1~ + 1I11lli]dt'

::;K exp[K(l + IIEII~)T] . [h2m + (1 + IIEII~)(h4(m-2)

+ h2(m-l)) + h4m- 6 + h2(m-2) + IIEII~h2(m-2) + h4(m-l)].

If IIEIIL''''(H2) ::; 8, then from (5.6) we obtain

1I(IILoo(Hl) ::; K(K1 , K2, c, A, 8)hm- 2 ::; K(K1 , K 2,c, A, 8)hr- 1

for m 2:: 4 and so

Ile IILOO(H2) ::; 1111IILOO(H2) + 11(IILOO(H2)
::; 1I11I1Loo(H2) + Koh-111(IILOO(Hl)
::; Khm- 3 ::; Khr- 2.

Therefore, for sufficiently small h,

lIeIILOO(H2) ::; 8.

Thus the operator ~ defined by (5.2) maps a ball

BD = {v E V XJ (H2) : IIvIlLoo(H2) ::; 8}

into itself for sufficiently small h and so by Schauder's fixed point
theorem the operator equation (5.2) has a fixed point, Le., e(E) = E.
This completes the proof. 0
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