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Introduction

Formulated and intensively studied at the beginning of the nineteenth cen-
tury, the classical partial differential equations of mathematical physics rep-
resent the foundation of our knowledge of waves, heat conduction, hydro-
dynamics and other physical problems. Their study prompted further work
by mathematical researchers and, in turn, benefited from the application of
new methods in pure mathematics. It is a vast subject, intimately connected
to various sciences such as Physics, Mechanics, Chemistry, Engineering Sci-
ences, with a considerable number of applications to industrial problems.

Although the theory of partial differential equations has undergone a great
development in the twentieth century, some fundamental questions remain
unresolved. They are essentially concerned with the global existence and
uniqueness of solutions, as well as their asymptotic behavior.

The immediate object of this paper is to review some improvements
achieved in the study of a celebrated nonlinear partial differential system,
the incompressible Navier-Stokes equations. The nature of a turbulent mo-
tion of a fluid, an ocean for instance, or the creation of a vortex inside it, are
two typical problems related to the Navier-Stokes equations, and they are
still far from being understood.

From a mathematical viewpoint, one of the most intriguing unresolved
questions concerning the Navier-Stokes equations and closely related to tur-
bulence phenomena is the regularity and uniqueness of the solutions to the
initial value problem. More precisely, given a smooth datum at time zero,
will the solution of the Navier-Stokes equations continue to be smooth and
unique for all time? This question was posed in 1934 by J. Leray [143, 144]
and is still without answer, neither in the positive nor in the negative. S.
Smale includes the uniqueness and regularity question for the Navier-Stokes
equations as one of the 18 open problems of this century [204].

There is no uniqueness proof except for over small time intervals and
it has been questioned whether the Navier-Stokes equations really describe
general flows. But there is no proof for non-uniqueness either.

Maybe a mathematical ingenuity is the reason for the missing (expected)
uniqueness result. Or maybe the methods used so far are not pertinent and
the refractory Navier-Stokes equations should be approached with a different
strategy.

Uniqueness of the solutions of the equations of motion is the cornerstone
of classical determinism [72]. If more than one solution were associated to
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the same initial data, the committed determinist will say that the space
of the solutions is too large, beyond the real physical possibility, and that
uniqueness can be restored if the unphysical solutions are excluded. On the
other hand, anarchists will be happy to conclude that the laws of motion are
not verified and that chaos reigns. More precisely, a non-uniqueness result
would represent such an insulting paradox to classical determinism, that the
introduction of a more sophisticated model for the study of the motion of a
viscous fluid would certainly be justified [36, 37, 82, 117].

Thirty years ago, M. Shinbrot wrote [203]:

“Without the d’Alembert (and other paradoxes), who would have
thought it necessary to study more intricate models than the ideal
fluid ? However, it is usually through paradoxes that mathemat-
ical work has the greatest influence on physics. In terms of exis-
tence and uniqueness theory, this means that the most important
thing to discover is what is not true. When one proves the Navier-
Stokes equations have solutions, the physicist yawns. If one can
prove these solutions are not unique (say), he opens his eyes in-
stead of his mouth. Thus, when we prove existence theorems, we
are only telling the world where paradoxes are not and perhaps
sweeping away some of the mist that surrounds the area where
they are.”

If the problem of uniqueness relates to the predictive power aspect of the
theory, the existence issue touches the question of the self-consistency of the
physical model involved in the Navier-Stokes equations; if no solution exists,
then the theory is empty.

In the nineteenth century, the existence problems arising from mathe-
matical physics were studied with the aim of finding exact solutions to the
corresponding equations. This is only possible in particular cases. For in-
stance, very few exact solutions of the Navier-Stokes equations were found
and, except for some exact stationary solutions, almost all of them do not
involve the specifically nonlinear aspects of the problem, since the corre-
sponding nonlinear terms in the Navier-Stokes equations vanish.

In the twentieth century, the strategy changed. Instead of explicit for-
mulas in particular cases, the problems were studied in all their generality.
This led to the concept of weak solutions. The price to pay is that only
the existence of the solutions can be ensured. In fact, the construction of
weak solutions as the limit of a subsequence of approximations leaves open
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the possibility that there is more than one distinct limit, even for the same
sequence of approximations.

The uniqueness question is among the most important unsolved problems
in fluid mechanics. “Instant fame awaits the person who answers it. (Espe-
cially if the answer is negative !)” [203]. Moreover, as for the solutions of
the Navier-Stokes equations, such a uniqueness result is not avaliable for the
solutions of the Euler equations of ideal fluids, or the Boltzmann equation of
rarefied gases, or the Enskog equation of dense gases either.

A question intimately related to the uniqueness problem is the regularity
of the solution. Do the solutions to the Navier-Stokes equations blow-up in
finite time ? The solution is initially regular and unique, but at the instant
T when it ceases to be unique (if such an instant exists), the regularity could
also be lost.

One may imagine that blow-up of initially regular solutions never hap-
pens, or that it becomes more likely as the initial norm increases, or that
there is blow-up, but only on a very thin set of probability zero. Nobody
knows the answer and the Clay Mathematical Institute is offering a prize for
it [78]. As C.L. Fefferman [78] remarks, finite blow-up in the Euler equation
of an “ideal” fluid is an open and challenging mathematical problem as it is
for the Navier-Stokes equations. P. Constantin [65] suggests that it is finite
time blow-up in the Euler equations that is the physically more important
problem, since blow-up requires large gradients in the limit of zero viscosity.
The best result in this direction concerning the possible loss of smoothness
for the Navier-Stokes equations was obtained by L. Caffarelli, R. Kohn and L.
Nirenberg [28, 146], who proved that the one-dimensional Hausdorff measure
of the singular set is zero.

After providing such a pessimistic scenery, revealing our lack of compre-
hension in the study of the Navier-Stokes equations, let us briefly recall here
some more encouraging, even if partial, research directions. Roughly speak-
ing, we can summarize the discussion by saying that if “some quantity” turns
out to “be small”, then the Navier-Stokes equations are well-posed in the
sense of Hadamard (existence, uniqueness and stability of the corresponding
solutions).

For instance, a unique global solution exists provided the data –the initial
value and the exterior force– are small, and the solution is smooth depending
on smoothness of the data. Another quantity that can be small is the dimen-
sion. If we are in dimension n = 2, the situation is easier than in dimension
n = 3 and completely understood [147, 209]. Finally, if the domain Ω ⊂ R

3
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is small, in the sense that Ω is thin in one direction, say Ω = ω × (0, ε), then
the question is also settled [226].

Other good news is contained in the following pages. They reflect the
progress achieved in the last five years by approaching the Navier-Stokes
equations with mathematical tools directly taken from the harmonic analy-
sis world. We mean the use of the Fourier transform and its natural heirs,
better suited for the study of nonlinear problems: the Littlewood-Paley de-
composition, the paraproducts, the Besov spaces and the wavelets.

Motivated by a somewhat esoteric paper of P. Federbush entitled “Navier
and Stokes meet the wavelets” [76], in 1995 we launched an ambitious pro-
gram [31]: solve the nonlinear Navier-Stokes equations by means of wavelet
transform and Besov spaces. Of course, at the origin of our hopes was the re-
mark that it is possible to solve the linear heat equation by Fourier transform
in Sobolev spaces, a very tempting comparison indeed.

Following these ideas and this program, some important results were ob-
tained. They concern the existence of a global solution for highly oscillating
data (Section 4), the uniqueness of this solution (Section 5) and its asymp-
totic behavior, via the existence of self-similar solutions (Section 6).

In the following pages, after recalling these results, we will realize, a pos-
teriori, that the harmonic analysis tools were not necessary at all for their
discovery. In fact, each proof of the previous theorem (existence, uniqueness,
self-similar solutions) originally found by means of ‘Fourier analysis meth-
ods’, more precisely, by using ‘Besov spaces’, was followed, shortly after its
publication, by a ‘real variable methods’ proof.

R. Temam [210] was able to construct a global solution with highly os-
cillating data by using a classical Sobolev space. This solution was shown
to be unique by Y. Meyer [161], with a proof that makes use of a Lorentz
space, instead of a Besov one. Finally, Y. Le Jan and A.-S. Sznitman [135]
discovered an elementary space for the existence of self-similar solutions.

The historical details that led to each theorem and each proof are con-
tained in the paper entitled “Viscous flows in Besov spaces” [34], that should
be considered as a companion to this article.

6



1 Preliminaries

1.1 The Navier-Stokes equations

We study the Cauchy problem for the Navier-Stokes equations governing
the time evolution of the velocity v(t, x) = (v1(t, x), v2(t, x), v3(t, x)) and the
pressure p(t, x) of an incompressible viscous fluid (whose viscosity coefficient
is given by the positive constant ν) filling all of R

3 and in the presence of an
external force φ(t, x) :






∂v

∂t
− ν∆v = −(v · ∇)v −∇p + φ

∇ · v = 0
v(0) = v0, x ∈ R

3, t ≥ 0.

(1)

Here, the external force φ(t, x) will be considered as arising from a po-
tential V (t, x) in such a way that

φ = ∇ · V(2)

which means, that

φj =
3∑

k=1

∂kVkj j = 1, 2 and 3.(3)

As we will describe in Section 6.4, more general types of forces can be
considered, this is done for instance in the recent paper [37, 38] (for other
examples see also [128, 130]).

We will also assume that the viscosity ν is equal to one. This can be
done, without loss of generality, because of the invariant structure of the
Navier-Stokes equations and we will return to this issue in Section 3.2.

Finally, thanks to the divergence free property ∇ · v = 0, expressing the
incompressibility of the fluid, we can write (v · ∇)v = ∇ · (v ⊗ v). This
remark is important because the product of two tempered distributions is
not always defined, whereas it is always possible to take the derivative (in
the distribution sense) of an L1

loc function. Thus, it will be enough to require
v ∈ L2

loc in order to make the quadratic term ∇ · (v ⊗ v) well-defined.
Here and in the following, we say that a vector a = (a1, a2, a3) belongs

to a function space X if aj ∈ X holds for every j = 1, 2, 3 and we put
‖a‖ = max1≤j≤3 ‖aj‖. To be more precise, we should write X(R3) instead

7



of X (for instance v = (v1, v2, v3) ∈ L2
loc means vj ∈ L2

loc(R
3) for every

j = 1, 2, 3). In order to avoid any confusion, if the space is not R
3 (for

example if the dimension is 2 or if the space is a bounded domain Ωb as
considered at the end of Section 5.1) we will write it explicitly (say X(R2)
or X(Ωb)). The reason why we are mainly interested in the whole space R

3

(or more generally R
n n ≥ 2) is that we will make constant use of Fourier

transform tools, that are easier to handle in the case of the whole space
(or a bounded space with periodic conditions, as in [214]) than that of a
domain with boundaries. A detailed analysis of the problems that can occur
if the Navier-Stokes (or more general) equations are supplemented by the
homogeneous Dirichlet (no-slip) boudary conditions is contained in [81].

Our attention will be focused on the existence of solutions v(t, x) to (1) in
the space C([0, T ); X) that are strongly continuous functions of t ∈ [0, T ) with
values in the Banach space X of vector distributions. Depending on whether
T will be finite (T < ∞) or infinite (T = ∞) we will obtain respectively local
or global (in time) solutions.

Before introducing the appropriate functional setting, let us transform
the system (1) into the operator equation [27, 85, 115]

{
dv

dt
− Av = −P∇ · (v ⊗ v) + Pφ

v(0) = v0, x ∈ R
3, t ≥ 0,

(4)

where A is formally defined as the operator A = −P∆ and P is the orthogonal
projection operator onto the divergence free vector field defined as follows.

We let

Dj = −i
∂

∂xj

, j = 1, 2 and 3, i2 = −1,(5)

and we denote the Riesz transforms by

Rj = Dj(−∆)−
1
2 , j = 1, 2 and 3.(6)

For an arbitrary vector field v(x) = (v1(x), v2(x), v3(x)) on R
3, we set

z(x) =
3∑

k=1

(Rkvk)(x)(7)
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and define the operator P by

(Pv)j(x) = vj(x) − (Rjz)(x) =
3∑

k=1

(δjk − RjRk)vk, j = 1, 2 and 3.(8)

Another equivalent way to define P is to make use of the properties of the
Fourier transform and write

(̂Pv)j(ξ) =
3∑

k=1

(δjk −
ξjξk

|ξ|2 )v̂k(ξ), j = 1, 2 and 3.(9)

As such, P is a pseudo-differential operator of degree zero and is an orthog-
onal projection onto the kernel of the divergence operator. In other words
the pressure p in (1) ensures that the incompressibility condition ∇ · v = 0
is satisfied.

Finally, making use of this projection operator P and the semi-group

S(t) = exp(−tA),(10)

it is a straightforward procedure to reduce the operator equation (4) into the
following integral equation

v(t) = S(t)v0 −
∫ t

0

S(t − s)P∇ · (v ⊗ v)(s)ds +

∫ t

0

S(t − s)P∇ · V (s)ds.

(11)

On purpose, we are being a little cavalier here: we shall not justify the
formal transition (1) −→ (4) −→ (11). We shall rather start from (11) and
prove the existence and uniqueness of a solution v(t, x) for it. Then, we
shall prove that this solution is regular enough to form, with an appropriate
pressure p(t, x), a classical solution of the system (1).

Since our attention will essentially be devoted to the study of the integral
equation (11) and since we will only consider the case of the all space R

3, so
that the semi-group S(t) reduces to the well-known heat-semi-group exp(t∆),
we will separate the different contributions in (11) in the following way: the
linear term containing the initial data

S(t)v0 =: exp(t∆)v0,(12)
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the bilinear operator expressing the non-linearity of the equation

B(v, u)(t) =: −
∫ t

0

exp((t − s)∆)P∇ · (v ⊗ u)(s)ds(13)

and finally the linear operator L involving the external force

L(V )(t) =:

∫ t

0

exp((t − s)∆)P∇ · V (s)ds.(14)

The precise meaning of the integral defined by (13) in different function
spaces is one of the main problems arising from this approach and will be
discussed carefully in the following section.

Let us note here that there is a kind of competition in this integral term
between the regularizing effect represented by the heat semi-group S(t − s)
and the loss of regularity that comes from the differential operator ∇ and
from the pointwise multiplication v ⊗ u. This loss of regularity is illustrated
by the following simple example: if two (scalar) functions f and g are in H1,
their product only belongs to H1/2 and their derivative ∂(fg) is even less
regular as it belongs to H−1/2.

1.2 Classical, mild and weak solutions

As yet the existence of a global solution in time has not been proved nor dis-
proved for a three dimensional flow and sufficiently general initial conditions;
but as we will see in the following pages, a global, regular solution does exist
whenever the initial data are highly oscillating or sufficiently small in certain
function spaces.

To begin with, it is necessary to clarify the meaning of “solution of the
Navier-Stokes equations”, because, since the appearance of the pioneer pa-
pers of J. Leray, the word “solution” has been used in a more or less general-
ized sense. Roughly speaking, we will take it in the generic sense of classical
ordinary differential equations in t with values in the space of tempered dis-
tributions S ′, in order to be able to use the Fourier transforms tools. This
interpretation is suggested by the notion of solution in the sense of distri-
bution used in evolution equations. Moreover, we will ask that the function
space X, to which the initial data v0 belong, is such that X ↪→ L2

loc, in
order to be able to give a (distributional) meaning to the non-linear term
(v · ∇)v = ∇ · (v ⊗ v). More generally, we will ask v ∈ L2

loc([0, T ); R3).
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Let us be more precise. In the recent papers of H. Amann [1] and of
P.-G. Lemarié [137, 140], we can count many different definitions of solutions
(see also [69]) distinguished only by the class of functions to which they are
supposed to belong: classical, strong, mild, weak, very weak, uniform weak
and local Leray solutions of the Navier-Stokes equations !

We will not present all the possible definitions here but concentrate our at-
tention on three cases, respectively classical (J. Hadamard), weak (J. Leray)
and mild (K. Yosida) solutions.

Definition 1 (Classical)
A classical solution (v(t, x), p(t, x)) of the Navier-Stokes equations is a pair
of functions v : t → v(t) and p : t → p(t) satisfying the system (1), for which
all the terms appearing in the equations are continuous functions of their
arguments. More precisely, a classical solution is a solution to the system (1)
that verifies:

v(t, x) ∈ C([0, T ); E) ∩ C1([0, T ); F )(15)

E ↪→ F (continuous embedding)(16)

v ∈ E =⇒ ∆v ∈ F (continuous operator)(17)

v ∈ E =⇒ ∇ · (v ⊗ v) ∈ F (continuous operator)(18)

where E and F are two Banach spaces of distributions.

For example, if E is the Sobolev space Hs and s > 3/2 (thus giving Hs the
structure of an algebra when endowed with the usual product of functions),
we can chose F = Hs−2, because ∆v ∈ Hs−2 and ∇· (v⊗v) ∈ Hs−1 ↪→ Hs−2.

As we recalled in the introduction, it is very difficult to ensure the exis-
tence of classical solutions, unless we look for exact solutions (that do not
involve the specific aspects of the problem, since the corresponding nonlinear
terms in the equations vanish), or we impose very restrictive conditions on
the initial data (see Section 3). This is not the case when we take the word
solution in the weak sense given by J. Leray.
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Definition 2 (Weak)
A weak solution v(t, x) of the Navier-Stokes equations in the sense of Leray
and Hopf is supposed to have the following properties

v(t, x) ∈ L∞([0, T ); PL2) ∩ L2([0, T ); PH1)(19)

∫ T

0

(−〈v, ∂tϕ〉 + 〈∇v,∇ϕ〉 + 〈(v · ∇)v, ϕ〉)ds = 〈v0, ϕ(0)〉 +

∫ T

0

〈φ, ϕ〉ds

(20)

for any ϕ ∈ D([0, T ); PD). The symbol 〈·, ·〉 denotes the L2-inner product,
whereas PX denotes the subspace of X (here X = L2, H1 or D) of solenoidal
functions 1, characterized by the divergence free condition ∇· v = 0. Finally,
such a weak solution is supposed to verify the following energy inequality

1

2
‖v(t)‖2

2 +

∫ t

0

‖∇v(s)‖2
2ds ≤ 1

2
‖v(0)‖2

2 +

∫ t

0

〈φ, v〉ds, t > 0.(21)

Sometimes this inequality is satisfied not only on the interval (0, t) but on
all intervals (t0, t1) ⊂ (0, T ) except possibly for a set of measure zero. Such
a solution is called turbulent in Leray’s papers.

Finally, after the papers of T. Kato and his collaborators, we got used
to calling mild solutions a third category of solutions, whose existence is
obtained by a fixed point algorithm applied to the integral equation (11). In
other words, the Navier-Stokes equations are studied by means of semi-group
techniques as in the pioneering papers of K. Yosida [229]. More precisely,
mild solutions are defined in the following way.

Definition 3 (Mild)
A mild solution v(t, x) of the Navier-Stokes equations satisfies the integral
equation (11) and is such that

v(t, x) ∈ C([0, T ); PX)(22)

where X is a Banach space of distributions on which the heat semi-group
{exp(t∆); t ≥ 0} is strongly continuous and the integrals in (11) are well-
defined in the sense of Bochner.

1In the literature this space is usually denoted by Xσ.
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Historically, the introduction of the term ‘mild’ in connection with the in-
tegral formulation for the study of an arbitrary evolution equation goes back
to F.E. Browder [27]. We do not expect to use the energy inequality, but we
hope to ensure in this way the uniqueness of the solution. This is in contrast
with Leray’s construction of weak solutions, relying on compactness argu-
ments and a priori energy estimates. Moreover, the fixed point algorithm
is stable and constructive. Thus the problem of defining mild solutions is
closely akin to the question of knowing whether the Cauchy problem for
Navier-Stokes equations is well-posed in the sense of Hadamard. This ques-
tion will be discussed in Section 7 in connection with the theory of stability
and Lyapunov functions.

Let us recall that for a function u(t, ·) that takes values in a Banach space

E, the integral
∫ T

0
u(t, ·) dt exists either because

∫ T

0
‖u(t, ·)‖E dt < ∞ (in this

case we say that the integral is defined in the sense of Bochner) or because
∫ T

0
|〈u(t, ·), y〉| dt converges for any vector y of the dual (or predual) E ′ of

E (the integral is said to be weakly convergent). The weak convergence is
ensured by the oscillatory behavior of u(t, ·) in the Banach space E.

Now, the oscillatory property of the bilinear term arising from the Navier-
Stokes equations is systematically taken into account in all papers that are
based on the energy inequality, in particular 〈B(v, v), v〉 = 0 as long as
∇ · v = 0. In the following pages, we will never take advantage of this
remarkable property, for we will only consider functional spaces where it is
not possible to write 〈B(v, v), v〉. In fact, B(v, v) will never belong to a
space that is a dual of the one to which v belongs. This is the reason why
our works ([44, 45] excepted) are not based on the innermost structure of
the Navier-Stokes equations and can be easily extended to other nonlinear
partial differential equations [11, 12, 13, 14, 50, 51, 52, 87, 88, 111, 151, 177,
178, 184, 185, 186, 189, 190, 191, 192, 193, 194, 195, 214, 215].

More explicitly, in the literature concerning the existence and uniqueness
of mild solutions for the Navier-Stokes equations as inaugurated by H. Fujita
and T. Kato’s celebrated papers [85, 115], the oscillatory behavior of B(v, u)
is lost from the very beginning because, by definition, mild solutions require
strong estimates in the strong topology, so that B(v, u) can be replaced by
|B(v, u)| without affecting the corresponding existence and uniqueness re-
sults.

On the other hand, as far as the weak solutions are concerned, introduced
in the pioneering papers by J. Leray [143, 144, 145], the oscillatory behavior
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of B(v, u) is frequently analyzed by means of the well-known identity

〈∇ · (u ⊗ v), v〉 = 0,(23)

where ∇ · u = 0. In that case the problem is different, for the above identity
does not allow a great flexibility in the choice of the functional setting, that
is forced to be defined in terms of an energy norm (e. g. L2, H1.....).

1.3 Navier meets Fourier

The title of this section is borrowed from a paper by P. Federbush “Navier
and Stokes meet the wavelets” [76, 77] that will be dealt with in Section 2.4.

The Navier-Stokes equations did not yet exist when J. Fourier gave the
explicit solution of the heat equation

{
∂u

∂t
− ∆u = f

u(0) = u0.
(24)

This equation, governing the evolution of temperature u(x, t), in the pres-
ence of an exterior source of heat f(x, t), at a point x and time t of a body
assumed here to fill the whole space R

3, becomes, when we consider its par-
tial Fourier transform with respect to x, an ordinary differential equation in
t, whose solution is given by

u(t, x) = S(t)u0 +

∫ t

0

S(t − s)f(s) ds,(25)

S(t) being the convolution operator defined as in eq. (12) by

S(t) = exp(t∆) =

(
1

4πt

) 3
2

exp

(

−|x|2
4t

)

.(26)

The Navier-Stokes equations, that describe the motion of a viscous fluid,
were introduced by C.L.M.H. Navier in 1822 [172], the same year that, by
a curious coincidence, J. Fourier published the celebrated treatise “Théorie
Analytique de la Chaleur” [84], in which he developed in a systematic way
the ideas contained in a paper of 1807.

But this is not only a mere coincidence. In fact Navier, engineer of the
Ecole Nationale des Ponts et Chaussées, was also a very close friend of many
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mathematicians, in particular Fourier. Fourier had a strong influence on
Navier’s life and career, both as a friend and as a teacher. In turn, Navier was
a noticeable proponent of the important mathematical techniques developed
by Fourier2.

In this section we want to show how to take advantage of the Fourier
transform in order to study the Navier-Stokes equations.

We have already remarked that, following Fourier’s method to solve the
Navier-Stokes equations for a viscous incompressible fluid, we obtain the
integral equation (11), very similar to (25), that led to the concept of a mild
equation and a mild solution.

If we want to make use of the Fourier transform again, the second idea
that comes to mind is to rewrite (11) componentwise (j = 1, 2 and 3) in
Fourier variable

v̂j(ξ) = exp(−t|ξ|2)v̂0j−
∫ t

0
exp(−(t − s)|ξ|2)

∑3
l,k=1(δjk − ξjξk

|ξ|2 )(iξl)v̂l(ξ) � v̂k(ξ)

+
∫ t

0
exp(−(t − s)|ξ|2)

∑3
l,k=1(δjk − ξjξk

|ξ|2 )(iξl)V̂lk(ξ)ds.

We use the notations introduced by T. Miyakawa in [167] and denote by
F (t, x) the tensor kernel associated with the operator exp(t∆)P∇·, say

F̂l,k,j(t, ξ) = exp(−t|ξ|2)(δjk −
ξjξk

|ξ|2 )iξl.(27)

It is easy to see that the kernel F (t, x) = {Fl,k,j(t, x)} defined in this way
verifies

|F (t, x)| � |x|−αt−β/2 α ≥ 0, β ≥ 0, α + β = 4(28)

and

‖F (t, x)‖p � t−(4−3/p)/2 1 ≤ p ≤ ∞.(29)

In the following pages we will not take advantage of these general esti-
mates. In fact, we will never use the full structure of the operator exp(t∆)P∇·
and our analysis will apply to a more general class of evolution equations.

2This was not the case for most other engineers of his period. Navier’s interests in
more mathematical aspects of physics, mechanics and engineers sciences were so deep
that, when the suspension bridge across the Seine he had designed collapsed, sarcastic
articles appeared in the press against Navier, who was referred to as “that eminent man
of science whose calculations fail in Paris” (see [35]).
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Let us be more explicit. Our existence and uniqueness theorems for the
mild Navier-Stokes equations will be obtained by using the Banach fixed
point theorem. The continuity of the bilinear term B as well as the continuity
of the linear term L defined in eqs. (13) and (14) will be the main ingredients
of the proofs. The functional spaces where the initial data will be considered
are such that the Riesz transforms operate continuously. The conclusion is
easy: we will get rid of the Riesz transforms from the very beginning and
limit ourselves to the study of a simplified version of the operator exp(t∆)P∇·
giving rise to simplified versions of the operators B and L.

We denote with the letters Bs and Ls these operators defined by

Bs(f, g)(t) =: −
∫ t

0

[S(t − s)Λ̇](fg)(s)ds(30)

and

Ls(h)(t) =:

∫ t

0

[S(t − s)Λ̇]h(s)ds,(31)

where f = f(t, x), g = g(t, x) and h(t, x) are generic scalar fields and

Λ̇ =:
√
−∆(32)

denotes the well-known Calderón’s homogeneous pseudo-differential operator
whose symbol in Fourier transform is |ξ|.

In order to obtain such simplified scalar versions of the operators B and
L, we have not taken into account all Riesz transforms contained in the full
vectorial operators. For example, as far as the continuity of the bilinear
operator is concerned in a certain function space, we can pass from the full
vectorial operator B

j ∈ {1, 2, 3} B(u, v)j = −i
3∑

m=1

RmBs(um, vj) + i
3∑

k=1

3∑

l=1

RjRkRlBs(ul, vk)

(33)

to its scalar simplified version Bs just by using the continuity of the Riesz
transforms in this space.

With this simplification in mind, and by recalling the elementary prop-
erties of the Fourier transform, we finally get an even simpler expression for
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the bilinear term (that by abuse of notation will be always denoted by the
letter B):

B(f, g) = −
∫ t

0

(t − s)−2Θ

( ·√
t − s

)

∗ (fg)(s)ds(34)

where f = f(t, x) and g = g(t, x) are two scalar fields and Θ = Θ(x) is a
function of x whose Fourier transform is given by

Θ̂(ξ) = |ξ|e−|ξ|2 .(35)

As such, Θ is analytic, behaves like O(|x|−4) at infinity (this can also be
deduced by (28) for α = 4 and β = 0) and its integral is zero.

In the same way, the linear operator L involving the external force will
be treated in the simplified scalar form

L(h) =

∫ t

0

(t − s)−2Θ

( ·√
t − s

)

∗ h(s)ds.(36)

In particular, we notice that

B(f, g) = −L(fg)(37)

which allows to treat both the bilinear and the linear terms in exactly the
same way. This is why, for the sake of simplicity, in the following pages we
will only consider the case when there is no external force and refer the reader
to [36, 37, 38, 45] for the general case.

2 Functional setting of the equations

2.1 The Littlewood-Paley decomposition

Let’s start with the Littlewood-Paley decomposition in R
3. To this end,

we take an arbitrary function ϕ in the Schwartz class S and whose Fourier
transform ϕ̂ is such that

0 ≤ ϕ̂(ξ) ≤ 1, ϕ̂(ξ) = 1 if |ξ| ≤ 3

4
, ϕ̂(ξ) = 0 if |ξ| ≥ 3

2
(38)
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and let

ψ(x) = 8ϕ(2x) − ϕ(x)(39)

ϕj = 23jϕ(2jx), j ∈ Z(40)

ψj(x) = 23jψ(2jx), j ∈ Z.(41)

We denote by Sj and ∆j, respectively, the convolution operators with ϕj

and ψj. Finally, the set {Sj, ∆j}j∈Z is the Littlewood-Paley decomposition,
so that

I = S0 +
∑

j≥0

∆j.(42)

To be more precise, we should say ‘a decomposition’, because there are
different possible (equivalent) choices for the function ϕ. On the other hand,
for an arbitrary tempered distribution f , the last identity gives

f = lim
j→∞

S0f +
∑

j≥0

∆jf.(43)

The interest in decomposing a tempered distribution into a sum of dyadic
blocks ∆jf , whose support in Fourier space is localized in a corona, comes
from the nice behavior of these blocks with respect to differential operations.
This fact is illustrated by the following celebrated Bernstein’s lemma in R

3,
whose proof can be found in [157].

Lemma 1
Let 1 ≤ p ≤ q ≤ ∞ and k ∈ N, then one has

sup
|α|=k

‖∂αf‖p � Rk‖f‖p(44)

and

‖f‖q � R3( 1
p
− 1

q
)‖f‖p(45)

whenever f is a tempered distribution in S ′ whose Fourier transform f̂(ξ) is
supported in the corona |ξ| � R.
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In the case of a function whose support is a ball (as, for instance, for Sjf)
the lemma reads as follows:

Lemma 2
Let 1 ≤ p ≤ q ≤ ∞ and k ∈ N, then one has

sup
|α|=k

‖∂αf‖p � Rk‖f‖p(46)

and

‖f‖q � R3( 1
p
− 1

q
)‖f‖p(47)

whenever f is a tempered distribution in S ′ whose Fourier transform f̂(ξ) is
supported in the ball |ξ| � R.

Let us go back to the decomposition of the unity eqs. (42)–(43). It was
introduced in the early 1930s by J.E. Littlewood and R. Paley to estimate
the Lp-norm of trigonometric Fourier series when 1 < p < ∞. If we omit
the trivial case p = 2, it is not possible to ensure the belonging of a generic
Fourier series to the space Lp by simply using its Fourier coefficients, but
this becomes true if we consider instead its dyadic blocks. In the case of a
function f (not necessarily periodic), this property is given by the following
equivalence

if 1 < p < ∞ then ‖f‖p � ‖S0f‖p +

∥
∥
∥
∥
∥
∥

( ∞∑

j=0

|∆jf(·)|2
) 1

2

∥
∥
∥
∥
∥
∥

p

.(48)

It is even easier to prove that the classical Sobolev spaces Hs = Hs
2 , s ∈ R

can be characterized by the following equivalent norms

‖f‖Hs � ‖S0f‖2 +

( ∞∑

j=0

22js‖∆jf‖2
2

) 1
2

.(49)

As far as the more general norms ‖f‖Hs
p

= ‖(I − ∆)
s
2 f‖p, s ∈ R, 1 <

p < ∞, corresponding to the Sobolev-Bessel spaces Hs
p (that, when s is an

integer, reduce to the well-known Sobolev spaces W s,p whose norm are given
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by ‖f‖W s
p

=
∑

|α|≤s ‖∂αf‖p) we will see in the next section how eq. (49) has
to be modified.

Another easier case we wish to present here is provided by the Hölder-
Zygmund spaces Cs, s ∈ R, that can be characterized by the following norms

‖f‖Cs � ‖S0f‖∞ + sup
j≥0

2js‖∆jf‖∞.(50)

We will not prove this property here and we refer the reader to [80]. Let
us just remind the reader of the usual definition of these spaces, in order to
better appreciate the simplicity of eq. (50). If 0 < s < 1 we denote the
Hölder space by

‖f‖Cs = ‖f‖∞ + sup
x�=y

|f(x) − f(y)|
|x − y|s .(51)

As it is well-known, this definition has to be modified in the case s = 1 in
the following way

‖f‖C1 = ‖f‖∞ + sup
x �=y

|f(x + y) + f(x − y) − 2f(x)|
|x − y|(52)

and defines the Zygmund class C1. It is now easy to define, for any s > 0,
the quantities

‖f‖Cs = ‖f‖∞ +
n∑

i=1

‖∂if‖Cs−1 .(53)

In the case s < 0 we define the Hölder-Zygmund spaces by the following rule

Cs−1 =

{

f =
n∑

i=1

∂igi, gi ∈ Cs

}

‖f‖Cs−1 = inf sup
i=1, 2,..., n

‖gi‖Cs(54)

the infimum being taken over the set of gi such that f =
∑n

i=1 ∂igi.
Before defining the Besov spaces that will play a key role in our study of

the Navier-Stokes equations, let us recall the homogeneous decomposition of
the unity, analogous to eq. (42), but containing also all the low frequencies
(j < 0), say
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I =
∑

j∈Z

∆j.(55)

If we apply this identity to an arbitrary tempered distribution f , we may
be tempted to write

f =
∑

j∈Z

∆jf,(56)

but, at variance with eq. (43), this identity has no meaning in S ′ for several
reasons. First of all, the sum in eq. (56) does not necessarily converge in S ′

as we can see if we consider a test function g ∈ S whose Fourier transform is
equal to 1 near the origin, because in this case the quantity 〈∆jf, g〉 is, for
all j � 0, a positive constant not depending on j. And, even when the sum
is convergent, the convergence has to be understood modulo polynomials,
because, for these particular functions P , we have ∆jP = 0 for all j ∈ Z.

A way to restore the convergence is to “sufficiently” derive the formal
series

∑
j∈Z

as it stated in the following lemma (see [18, 19, 177] for a simple
proof).

Lemma 3
For any tempered distribution f there exists an integer d such that for any
α , |α| ≥ d the series

∑
j<0 ∂α(∆jf) converges in S ′.

The following corollary, whose proof follows from the previous lemma,
gives the correct meaning to the convergence eq. (56), that is modulo poly-
nomials.

Corollary 1
For any integer N , there exists a polynomial PN of degree < d such that the
quantity

∑∞
j=−N ∆jf − PN converges in S ′ when N → ∞.

In such a way, the series ∆jf is always well-defined; furthermore, it is not
difficult to prove that the difference f −

∑
j∈Z

∆jf has its spectrum reduced
to zero; in other words, it is a polynomial. In this way, the convergence in
eq. (56), that fails to be valid in S ′, is ensured in the quotient space S ′/P .
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2.2 The Besov spaces

The Littlewood-Paley decomposition is very useful because we can define
(independently of the choice of the initial function ϕ) the following (inhomo-
geneous) Besov spaces [80, 179].

Definition 4
Let 0 < p, q ≤ ∞ and s ∈ R. Then a tempered distribution f belongs to the
(inhomogeneous) Besov space Bs,p

q if and only if

‖S0f‖q +

(
∑

j>0

(2sj‖∆jf‖q)
p

) 1
p

< ∞.(57)

For the sake of completeness, we also define the (inhomogeneous) Triebel-
Lizorkin spaces, even if we will not make a great use of them in the study of
the Navier-Stokes equations.

Definition 5
Let 0 < p ≤ ∞, 0 < q < ∞ and s ∈ R. Then a tempered distribution f
belongs to the (inhomogeneous) Triebel-Lizorkin space F s,p

q if and only if

‖S0f‖q +

∥
∥
∥
∥
∥
∥

(
∑

j>0

(2sj|∆jf |)p

) 1
p

∥
∥
∥
∥
∥
∥

q

< ∞.(58)

It is easy to see that the above quantities define a norm if p, q ≥ 1 and a
quasi-norm in general, with the usual convention that p = ∞ in both cases
corresponds to the usual L∞ norm. On the other hand, we have not included
the case q = ∞ in the second definition because the L∞ norm has to be
replaced here by a more complicated Carleson measure (see [80]).

As we have already remarked before for some particular values of s, p, q,
see eqs. (48)–(50), the Besov and Triebel-Lizorkin spaces generalize the usual
Lebesgue ones, for instance

Lq = F 0,2
q , 1 < q < ∞,(59)

and more generally the Sobolev-Bessel spaces,

Hs
q = F s,2

q , s ∈ R, 1 < q < ∞,(60)
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and the Hölder ones

Cs = Bs,∞
∞ .(61)

Another interesting case is given by the space F 0,2
q with 0 < q ≤ 1 that

corresponds to a local version of the Hardy space, whereas F 0,2
∞ gives the

local version bmo of the John and Nirenberg space BMO of Bounded Mean
Oscillation functions3 whose norm is defined by

‖f‖BMO = sup
B

(
1

µ(B)

∫

B

|f − fB|2dx

)1/2

,(62)

where B stands for the set of euclidean balls, µ(B) the volume of B and fB

denotes the average of the function f over B, say fB = 1
|B|

∫

B
f(x)dx. It is

clear that this quantity is in general a semi-norm, unless we argue modulo
constant functions (whose BMO-norm is zero). Moreover, it is evident that
L∞ ↪→ BMO, but these spaces are different, because the functions f(x) =
ln |p(x)|, for all polynomials p(x), belong to BMO, but not to L∞.

A space that will be useful in the following pages is provided by the
set of functions which are derivatives of functions in BMO. More precisely
we are talking about the space introduced by H. Koch and D. Tataru in
[120], that is denoted by BMO−1 (or by ∇BMO) and is defined as the
space of tempered distributions f such that there exists a vector function
g = (g1, g2, g3) belonging to BMO such that

f = ∇ · g.(63)

The norm in BMO−1 is defined by

‖f‖BMO−1 = inf
g∈BMO

3∑

j=1

‖gj‖BMO.(64)

At this point, in order to provide the reader with the dyadic decomposi-
tion of the classical Hardy Hq, BMO and BMO−1 spaces, we have to recall
that their norms, at variance with the local ones, are “homogeneous”.

Let us be more explicit and consider some familiar examples. The Lebesgue
space Lp is “homogeneous”, because its norm satisfies, with respect to the di-
latation group, the following invariance ‖f(λ·)‖p = λ−3/p‖f‖p, for all λ > 0.

3For a different interpretation of the acronym, see [179], page 175 !
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On the other hand, the Sobolev space H1 normed with ‖f‖H1 = ‖f‖2+‖∇f‖2

does not verify a property of this type, because the two terms composing the
norm have different homogeneity (resp. λ−3/2 and λ1−3/2). A possible way to
restore the scaling invariance would be to forget the L2 part and define the
“homogeneous” Sobolev space Ḣ1 simply by ‖f‖Ḣ1 = ‖∇f‖2. Of course the
attentive reader, armed with the discussion that follows eq. (56), will protest
that this quantity is not a norm, unless we work in S ′ modulo polynomials
(in the case of Ḣ1, modulo constants would be sufficient). A very simple
condition that prevents constant functions to belong to Ḣ1 is given by [161]:

∫

|x|≤R

|f(x)|dx = o(R3) R → +∞.(65)

A stronger, but more natural condition is provided by the celebrated
Sobolev embedding in R

3

‖f‖6 � ‖∇f‖2,(66)

thus suggesting the following definition: a function f belongs to Ḣ1 if and
only if ∇f belongs to L2 and f belongs to L6, the norm of f in Ḣ1 being
‖∇f‖2. Indeed, this definition is equivalent to defining Ḣ1 as the closure of
the test functions space C∞

0 for the norm ‖f‖Ḣ1 = ‖∇f‖2. In the same way,
we define the space Ḣs

p when s < 3/p as the closure of the space

S0 =
{

f ∈ S, 0 �∈ Suppf̂
}

(67)

for the norm

‖f‖Ḣs
p

= ‖Λ̇sf‖p,(68)

where, as usual, Λ̇ =
√
−∆ denotes the homogeneous Calderón pseudo-

differential operator (see Section 1.3). Finally, when 3/p+d ≤ s < 3/p+d+1
and d is an integer, Ḣs

p is a space of distributions modulo polynomials of
degree ≤ d.

We are now ready to define the homogeneous version of the Besov and
Triebel-Lizorkin spaces [18, 19, 80, 179].

If m ∈ Z, we denote by Pm the set of polynomials of degree ≤ m with
the convention that Pm = ∅ if m < 0. If q = 1 and s − 3/p ∈ Z, we put
m = s − 3/p − 1; if not, we put m = [s − 3/p], the brackets denoting the
integer part function.
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Definition 6
Let 0 < p, q ≤ ∞ and s ∈ R. Then a tempered distribution f belongs to the

(homogeneous) Besov space Ḃs,p
q if and only if

(
∑

j∈Z

(2sj‖∆jf‖q)
p

) 1
p

< ∞ and f =
∞∑

−∞
∆jf in S ′/Pm.(69)

Definition 7
Let 0 < p ≤ ∞, 0 < q < ∞ and s ∈ R. Then a tempered distribution f

belongs to the (homogeneous) Triebel-Lizorkin space Ḟ s,p
q if and only if

∥
∥
∥
∥
∥
∥

(
∑

j∈Z

(2sj|∆jf |)p

) 1
p

∥
∥
∥
∥
∥
∥

q

< ∞ and f =
∞∑

−∞
∆jf in S ′/Pm,(70)

with an analogous modification as in the inhomogeneous case when q = ∞.

As expected, we have the following identifications:

Lq = Ḟ 0,2
q , 1 < q < ∞,(71)

and, more generally,

Ḣs
q = Ḟ s,2

q , s ∈ R, 1 < q < ∞,(72)

Ċs = Ḃs,∞
∞ , s ∈ R,(73)

Ḟ 0,2
q = Hq, 0 < q ≤ 1,(74)

Ḟ 0,2
∞ = BMO,(75)

and

Ḟ−1,2
∞ = BMO−1.(76)

Moreover, we have the following embedding (see [31])

3 ≤ q1 ≤ q2 < ∞, L3 ↪→ Ḃ
−1+ 3

q1
,∞

q1 ↪→ Ḃ
−1+ 3

q2
,∞

q2 ↪→ Ḟ−1,2
∞ ↪→ Ḃ−1,∞

∞ .(77)
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We will come back on the “maximal” space Ḃ−1,∞
∞ in Proposition 7.

The next four propositions are of paramount importance because they
give definitions for the Besov and Triebel-Lizorkin norms in terms of the
heat semi-group S(t) [that appears in eq. (12)] and in terms of the function
Θ [that appears in eqs. (34) and (36)]. The first two equivalences given
hereafter, are very natural. The idea is that the convolution operators ∆j

can be interpreted as a discrete subset (j ∈ Z) of the continuous set (t > 0)
of convolution operators Θt where

Θt =
1

t3
Θ

( ·
t

)
(78)

and, as in (35), Θ is defined by its Fourier transform Θ̂(ξ) = |ξ|e−|ξ|2 . If the
function Θ were smooth and compactly supported on the Fourier side, this
would indeed be the usual characterization for Besov and Triebel-Lizorkin
spaces without any restriction on the third (regularity) index s that appears
in Definitions I.1-2. This would also be the case if the function Θ had all its
moments equal to zero [179]. In the case we are dealing with, we only know
that Θ has its first moment (the integral) equal to zero. This is why we have
to require s < 1 (see [179]). The reader can consult [179] for the detailed
proofs and [80, 216, 217] for a more general characterization.

Proposition 1
Let 1 ≤ p, q ≤ ∞ and s < 1, then the quantities

(
∑

j∈Z

(2sj‖∆jf‖q)
p

) 1
p

(79)

and
(∫ ∞

0

(t−s‖Θtf‖q)
p dt

t

) 1
p

(80)

are equivalent and will be referred to in the sequel by ‖f‖Ḃs,p
q

.

Proposition 2
Let 1 ≤ p ≤ ∞, 1 ≤ q < ∞ and s < 1, then the quantities

∥
∥
∥
∥
∥
∥

(
∑

j∈Z

(2sj|∆jf |)p

) 1
p

∥
∥
∥
∥
∥
∥

q

(81)
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and
∥
∥
∥
∥
∥

(∫ ∞

0

(t−s|Θtf |)p dt

t

) 1
p

∥
∥
∥
∥
∥

q

(82)

are equivalent and will be referred to in the sequel by ‖f‖Ḟ s,p
q

.

The next two equivalences are even more useful because they allow us
to pass from ∆j to Sj (and from the discrete set Sj to the continuous S(t)
one). Here a restriction in the range of exponents also appears and we will be
forced to assume that s < 0. More precisely, the reason why the equivalences
under consideration are not true if s ≥ 0 is essentially the following: even if
we can easily estimate any quantity involving ∆j from above with one only
involving Sj, because of the identity

∆j = Sj+1 − Sj,(83)

passing from ∆j to Sj, via the relation

Sj+1 =
∑

k≤j

∆k,(84)

it is not possible when s ≥ 0 (see [179]). In the context of the Navier-Stokes
equations, an explicit counter-example for s = 0 was given in [31] for the
Besov spaces. A second one for the Triebel-Lizorkin spaces (always with
s = 0) will be given in the following pages.

But let us state the equivalences we are talking about (for a proof see
[216], page 192).

Proposition 3
Let 1 ≤ p, q ≤ ∞ and s < 0, then the quantities

(
∑

j∈Z

(2sj‖∆jf‖q)
p

) 1
p

,(85)

(
∑

j∈Z

(2sj‖Sjf‖q)
p

) 1
p

,(86)
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(∫ ∞

0

(t−
s
2‖S(t)f‖q)

p dt

t

) 1
p

,(87)

and
(∫ ∞

0

(t−s‖Θtf‖q)
p dt

t

) 1
p

(88)

are equivalent and will be referred to in the sequel by ‖f‖Ḃs,p
q

.

Proposition 4
Let 1 ≤ p ≤ ∞, 1 ≤ q < ∞ and s < 0, then the quantities

∥
∥
∥
∥
∥
∥

(
∑

j∈Z

(2sj|∆jf |)p

) 1
p

∥
∥
∥
∥
∥
∥

q

,(89)

∥
∥
∥
∥
∥
∥

(
∑

j∈Z

(2sj|Sjf |)p

) 1
p

∥
∥
∥
∥
∥
∥

q

,(90)

∥
∥
∥
∥
∥

(∫ ∞

0

(t−
s
2 |S(t)f |)p dt

t

) 1
p

∥
∥
∥
∥
∥

q

,(91)

and
∥
∥
∥
∥
∥

(∫ ∞

0

(t−s|Θtf |)p dt

t

) 1
p

∥
∥
∥
∥
∥

q

(92)

are equivalent and will be referred to in the sequel by ‖f‖Ḟ s,p
q

.

The next propositions will be also useful in the following pages. Of course
the embeddings are also valid for inhomogeneous spaces.

Proposition 5

If s1 > s2 and s1 −
3

q1

= s2 −
3

q2

, then Ḃs1,p1
q1

↪→ Ḃs2,p2
q2

and Ḟ s1,p1
q1

↪→ Ḟ s2,p2
q2

.

(93)
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If p1 < p2, then Ḃs1,p1
q ↪→ Ḃs2,p2

q and Ḟ s1,p1
q ↪→ Ḟ s2,p2

q .(94)

For any p, q and s, Ḃs,min(p,q)
p ↪→ Ḟ s,p

q ↪→ Ḟ s,max(p,q)
q .(95)

2.3 The paraproduct rule

In order to study how the product acts on Besov spaces, we need to recall
Bony’s paraproduct algorithm [17], one of the most celebrated tools of parad-
ifferential calculus. The greek prefix “para” is added here in front of product
and differential to underline that the new operations “go beyond” the usual
ones. In particular, the new calculus enables us to define a new product
between distributions which turns out to be continuous in many functional
spaces where the usual product does not even make sense.

More precisely, let us consider two tempered distributions f and g and
write, in terms of a Littlewood-Paley decomposition,

f =
∑

j

∆jf(96)

g =
∑

j

∆jg(97)

so that, formally,

fg =
∑

n

[Sn+1fSn+1g − SnfSng] + S0fS0g.(98)

Now, after some simplifications, we get

fg =
∑

n[∆nfSng + ∆ngSnf + ∆nf∆ng]
=

∑
n ∆nfSn−2g +

∑
n ∆ngSn−2f +

∑
|n−n′|≤2 ∆n′f∆ng.

(99)

In other words, the product of two tempered distributions is decomposed
into two paraproducts, respectively
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π(f, g) =
∑

n

∆nfSn−2g(100)

and

π(g, f) =
∑

n

∆ngSn−2f,(101)

plus a remainder. Finally, if we want to analyse the product fg by means
of the frequency filter ∆j we deduce from (101), modulo some nondiagonal
terms that we are neglecting for simplicity,

∆j(fg) = ∆jfSj−2g + ∆jgSj−2f + ∆j(
∑

k≥j

∆kf∆kg).(102)

Usually, the first two contributions are easier to treat than the third
remainder term.

2.4 The wavelet decomposition

The Littlewood-Paley decomposition allows us to describe an arbitrary tem-
pered distribution into the sum of regular functions that are well-localized
in the frequency variable. The wavelet decomposition allows us to obtain an
even better localization for these functions, say in both space and frequency.
Of course, the ideal case of functions that are compactly supported in space
as well as in frequency is excluded by Heisenberg’s principle. Wavelets were
discovered at the beginning of the 1980s and the best reference is Y. Meyer’s
work [157, 158].

The idea of using a wavelet decomposition to study turbulence ques-
tions was advocated from the very beginning, at about the same time when
wavelets tools were available. In fact, due to the strong impact that wavelets
had in several important scientific and technological discoveries, many people
started dreaming that wavelets could provide the “golden rule” to attack the
Navier-Stokes equations, from both mathematical and numerical points of
view (see for instance the paper of M. Farge [75] and the references therein).

We do not discuss here the relevance of wavelets in numerical simulations
of the Navier-Stokes equations and refer the reader to Y. Meyer’s conclusion
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in [161]. From the point of view of non-linear partial differential equations,
the situation is a little disappointing. The first attempt to approach the
Navier-Stokes equations, by expanding the unknown velocity field v(t, x) into
a wavelet basis in space variable, came from P. Federbush, who wrote an
intriguing paper in 1993 [76]. The techniques and insights employed arose
from the theory of phase cell analysis used in constructive quantum field
theory, and were the starting point and the first source of inspiration of our
work [31].

The disappointing note is that, as we will see in the following sections,
Federbush’s program can be realized as well by using the less sophisticated
Littlewood-Paley decomposition. On the other hand, the good news is that
the systematic use of harmonic analysis tools (Littlewood-Paley and wavelets
decomposition and their natural companions, Besov spaces and Bony’s para-
products techniques) paved the way for important discoveries for Navier-
Stokes: the existence of a global solution for highly oscillating data, the
uniqueness of this solution and its asymptotic behavior, via the existence of
self-similar solutions.

As we have already announced in the introduction, our story is full of sur-
prises and bad news follows here at once. In fact, each proof of the previous
results originally discovered by means of ‘Fourier analysis methods’, more
precisely, by using ‘Besov spaces’, was followed shortly after its publication
by a ‘real variable methods’ proof.

We will come back to these questions–existence, uniqueness, self-similar
solutions–and treat them in detail in three separate sections (resp. Sections
4, 5, 6). Before doing this and in order to clarify the previous discussion,
let us briefly recall here, for the convenience of the reader, some definitions
taken from the wavelet world. Roughly speaking, a wavelet decomposition is
a decomposition of the type

f =
∑

λ

〈f, ψλ〉ψλ,(103)

where ψλ is “essentially” localized in frequency in a dyadic annulus 2j and
“essentially” localized in space in a dyadic cube 2−j. More precisely, following
Y. Meyer [157], we have the following definition

Definition 8
A wavelet decomposition of regularity m > 0 is a set of 23 − 1 = 7 functions
ψε, ε ∈ {0, 1}3\{0, 0, 0} verifying the following properties:
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1. Regularity: ψε belongs to Cm.
2. Localization:

∀α, |α| ≤ m, ∀N ∈ N, ∃C : |∂αψε|(x) ≤ C(1 + |x|)−N .(104)

3. Oscillation:

∀α, |α| ≤ m, :

∫

xαψε(x)dx = 0.(105)

4.Orthogonality: The set
{
23j/2ψε(2

jx − k)/j ∈ Z
3, ε ∈ {0, 1}3\{0, 0, 0}

}
(106)

is an orthogonal basis of L2.

If we denote ψj,k(x) = 23j/2ψ(2jx − k) (where, for the sake of simplicity,
the parameter ε is neglected), then we obtain the following ‘homogeneous’
decomposition

f =
∑

j∈Z

∑

k∈Z3

〈f, ψj,k〉ψj,k =
∑

j,k

cj,kψj,k(107)

that, as in the case of the homogeneous Littlewood-Paley decomposition, has
to be understood in S ′ modulo polynomials.

Formally, a Littlewood-Paley decomposition ∆j gives a wavelet decom-
position ψj,k by letting

cj,k � ∆jf(2−jk)(108)

and, vice versa, from a wavelet decomposition we can recover a Littlewood-
Paley one just by taking

∆jf �
∑

k∈Z3

cj,kψj,k.(109)

Finally, the wavelets coefficients cj,k of a function f allow us to obtain an
equivalent definition of the Besov and Triebel Lizorkin spaces. For example,
we have the following [157]

Proposition 6
If ψ is a wavelet of regularity m > 0, then for any |s| < m and any 1 ≤ p, q ≤
∞ we have the equivalence of norms

‖f‖Ḃs,p
q

�




∑

j∈Z

2jp(s+3(1/2−1/q))

(
∑

k∈Z3

|cj,k|q
)p/q





1/p

.(110)
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2.5 Other useful function spaces

Before we enter the heart of the paper, devoted to existence and uniqueness
theorems for the Navier-Stokes equations, we wish to end this section by
presenting other functional spaces, that will be useful in the following pages.

2.5.1 Morrey-Campanato spaces

For 1 ≤ q ≤ p ≤ ∞, the inhomogeneous Morrey-Campanato space Mp
q is

defined as the space of functions f which are locally in Lq and such that

sup
x∈R3, 0<r≤1

R3/p

(

R−3

∫

|x−y|≤r

|f(x)|qdy

)1/q

< ∞,(111)

where the left-hand side of this inequality is the norm of f in Mp
q . The

homogeneous Morrey-Campanato space Ṁp
q is defined in the same way, by

taking the supremum over all r ∈ (0,∞) instead of r ∈ (0, 1].

2.5.2 Lorentz spaces

Let 1 ≤ p, q ≤ ∞, then a function f belongs to the Lorentz space L(p,q) if
and only if ‘the quantity’

‖f‖L(p,q) =

(
q

p

∫ ∞

0

[t1/pf ∗(t)]q
dt

t

)1/q

< ∞,(112)

of course, if q = ∞ this means

‖f‖L(p,∞) = sup
t>0

t1/pf ∗(t) < ∞,(113)

where f ∗ is the decreasing rearrangement of f :

f ∗(t) = inf{s ≥ 0; |{|f | > s}| ≤ t}, t ≥ 0.(114)

We know [207] that for p > 1, a norm on L(p,q) equivalent to the ‘quantity’
‖f‖L(p,q) exists such that L(p,q) becomes a Banach space. If p = q, the space
L(p,p) is nothing else than the Lebesgue space Lp. Moreover, generalization
versions of Hölder and Young inequalities hold for the Morrey-Campanato
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spaces [109]. Finally, for these spaces, the theory of real interpolation gives
the equivalence (see [7])

(Lp0 , Lp1)(θ,q) = L(p,q),(115)

where 1 < p0 < p < p1 < ∞ and 0 < θ < 1 satisfy 1/p = (1 − θ)/p0 + θ/p1

and 1 ≤ q ≤ ∞.

2.5.3 Le Jan-Sznitman spaces

Recently, Y. Le Jan and A.-S. Sznitman [134, 135] considered the space of
tempered distributions f whose Fourier transform verifies

sup
R3

|ξ|2|f̂(ξ)| < ∞.(116)

Now, if in the previous expression we consider
∫

ξ∈R3 instead of supξ∈R3 ,

we obtain the (semi)-norm of a homogeneous Sobolev space. This is not the
case: the functions whose Fourier transform is bounded define the pseudo-
measure space PM of J.-P. Kahane. In other words, a function f belongs
to the space introduced by Le Jan and Sznitman if and only if ∆f ∈ PM,
∆ being the Laplacian (in 3D). A simple calculation (see [43]) shows that
condition (116) is written, in the dyadic decomposition ∆j of Littlewood and

Paley in the form 4j‖∆jf‖PM = 4j‖∆̂jf‖∞ ∈ �∞(Z) and defines in this way
“the homogeneous Besov space” Ḃ2,∞

PM.
Let us note that this quantity is not a norm, unless we work in S ′ modulo

polynomials, as we did in Section 2.2 in the case of homogeneous Besov spaces
(for example, if f is a constant or, more generally a polynomial of degree 1, it

is easy to see that |ξ|2|f̂(ξ)| = 0). Another possibility to avoid this technical
point is to ask that f̂ ∈ L1

loc. In other words, the Banach functional space
relevant to our study is defined by

PM2 = {v ∈ S ′ : v̂ ∈ L1
loc, ‖v‖PM2 ≡ sup

ξ∈R3

|ξ|2|v̂(ξ)| < ∞}.(117)

3 Existence theorems

3.1 The fixed point theorem

We will recall here two classical results concerning the existence of fixed point
solution to abstract functional equations. These theorems are known under
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the name of Picard in France, Caccioppoli in Italy, and Banach ... in the rest
of the world !

Lemma 4
Let X be an abstract Banach space with norm ‖ ‖ and B : X × X −→ X a
bilinear operator, such that for any x1, x2 ∈ X,

‖B(x1, x2)‖ ≤ η‖x1‖‖x2‖,(118)

then for any y ∈ X such that

4η‖y‖ < 1(119)

the equation

x = y + B(x, x)(120)

has a solution x in X. In particular the solution is such that

‖x‖ ≤ 2‖y‖(121)

and it is the only one such that

‖x‖ <
1

2η
.(122)

The following lemma is a generalization of the previous one (λ = 0) and
will be useful when treating the mild Navier-Stokes equations in the presence
of a non-trivial external force eq. (11).

Lemma 5
Let X be an abstract Banach space with norm ‖ ‖, L : X −→ X a linear
operator such that for any x ∈ X

‖L(x)‖ ≤ λ‖x‖(123)

and B : X × X −→ X a bilinear operator such that for any x1, x2 ∈ X,

‖B(x1, x2)‖ ≤ η‖x1‖‖x2‖,(124)
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then for any λ, 0 < λ < 1 and for any y ∈ X such that

4η‖y‖ < (1 − λ)2(125)

the equation

x = y + B(x, x) + L(x)(126)

has a solution x in X. In particular the solution is such that

‖x‖ ≤ 2‖y‖
1 − λ

(127)

and it is the only one such that

‖x‖ <
1 − λ

2η
.(128)

For an elementary proof of the above mentioned lemmata the reader is
referred to [31] and to [3] where a different proof is given that also applies to
the (optimal) case where the equality sign holds in eqs. (119), (122), (125)
and (128).

3.2 Scaling invariance

The Navier-Stokes equations are invariant under a particular change of time
and space scaling. More exactly, assume that, in R

3 × (0,∞), v(t, x) and
p(t, x) solve the system

{
∂v

∂t
− ν∆v = −(v · ∇)v −∇p

∇ · v = 0,
(129)

then the same is true for the rescaled functions

vλ(t, x) = λv(λ2t, λx), pλ(t, x) = λ2p(λ2t, λx).(130)

On the other hand, the functions v(λt, λx) and p(λt, λx) solve a different
Navier-Stokes system, where ν is replaced by λν, thus allowing us to assume
that viscosity is equal to unity, as we did in Section 1.1 (because, if not, it
is possible to find a λ > 0 such that λν = 1). The above scaling invariance
leads to the following definition.
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Definition 9
Critical space. A translation invariant Banach space of tempered distribu-
tions X is called a critical space for the Navier-Stokes equations if its norm
is invariant under the action of the scaling f(x) −→ λf(λx) for any λ > 0.
In other words, we require that

X ↪→ S ′(131)

and that for any f ∈ X

‖f(·)‖ = ‖λf(λ · −x0)‖, ∀λ > 0, ∀x0 ∈ R
3.(132)

Critical spaces are all embedded in a same function space, as stated in
the following proposition.

Proposition 7
A remarkable embedding. If X is a critical space, then X is continuously

embedded in the Besov space Ḃ−1,∞
∞ .

The proof of this result is so simple that we would like to present it here.
We argue as in the proof of the “minimality of Ḃ0,1

1 ” given by M. Frazier, B.
Jawerth and G. Weiss in [80] (see also [3, 156, 161]).

To begin, we note that if X satisfies (131), then there exists a constant
C such that

|〈exp(−|x|2/4), f〉| ≤ C‖f‖X ∀f ∈ X.(133)

Now, using the translation invariance of X we obtain

‖ exp(∆)f‖L∞ ≤ C‖f‖X(134)

and, by the invariance under the scaling f(x) −→ λf(λx), we get

t1/2‖ exp(t∆)f‖L∞ ≤ C‖f‖X .(135)

It is now easy to conclude if we recall Proposition 3, say

sup
t>0

t1/2‖ exp(t∆)f‖L∞ � ‖f‖Ḃ−1,∞
∞

.(136)

As we will see in the following pages, it is a remarkable feature that the
Navier-Stokes equations are well-posed in the sense of Hadamard (existence,
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uniqueness and stability) when the initial data is divergence-free and belongs
to certain critical function spaces. Actually, it is unclear whether this prop-
erty is true for either a generic critical space or for the bigger critical space
Ḃ−1,∞

∞ (see the conjecture formulated in [161], Chapter 8 and [155]), but it
happens to be the case for most of the critical functional spaces we have
described so far.

For example, in the Lebesgue family Lp = Lp(R3) the critical invariant
space corresponds to the value p = 3 (more generally in R

n, p = n) and we
will see how to construct mild solutions to the Navier-Stokes equations with
data in L3. The same argument applies to the critical Sobolev space Ḣ1/2,
to the Morrey-Campanato Ṁ3

p , (1 ≤ p ≤ 3), the Lorentz L(3,q), (1 ≤ q ≤ ∞),

the space of Le Jan and Sznitman PM2, the Besov Ḃ
3
p
−1,q

p , (1 ≤ q ≤ ∞,

1 ≤ p < ∞) as well as the Triebel-Lizorkin spaces Ḟ
3
p
−1,q

p , (1 ≤ q < ∞,
1 ≤ p < ∞). The reader is referred to [3] for a precise and exhaustive
analysis of the Navier-Stokes equations in critical spaces. Here we will only
treat the case of the Lebesgue space L3 in detail.

Another (equivalent) way of defining critical spaces for the Navier-Stokes
equations is to note that in this case the nonlinear term ∇ · (v ⊗ v) has the
same strength as the Laplace operator; that is ∇ · (v ⊗ v) is not subordinate
to −∆v. For instance, if v ∈ Lp, (p ≥ 2) then ∇ · (v ⊗ v) ∈ W p/2,−1 whereas
−∆v ∈ W p,−2 and, by Sobolev embedding, W p/2,−1 ↪→ W p,−2 as long as
p ≥ 3.

Before recalling the main steps of the proof for the existence of mild
solution with initial data in L3, let us begin with an easier case, the so-
called ‘super-critical’ space Lp, p > 3. We will not give a precise definition
of ‘critical’, ‘super-critical’, or ‘sub-critical’ spaces. The meaning of their
names should be clear enough to any reader (for more details and examples
see [31, 40]).

3.3 Super-critical case

The main theorem of the existence of mild solutions in Lp, 3 < p < ∞ was
known since the papers of E.B. Fabes, B.F. Jones and N.M. Rivière [74]
(1972) and Y. Giga [98] (1986). Concerning the space L∞, let us note that
the existence was obtained only recently in [31, 40] by using the simplified
structure of the bilinear term we introduced in eq. (34). In fact, as pointed
out in a different proof by Y. Giga and his students in Sapporo [101], the dif-
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ficulty comes from the fact that the Leray-Hopf projection P is not bounded
in L∞, nor in L1. The proof we are going to present applies to 3 < p ≤ ∞
and is contained in [31, 40]. The idea is of course to use the fixed point
theorem by means of the following two lemmata, whose proofs are obtained
by a simple application of the Young inequality.

Lemma 6
Let X be a Banach space, whose norm is translation invariant. For any T > 0
and any v0 ∈ X we have:

sup
0<t<T

‖S(t)v0‖X = ‖v0‖X .(137)

Of course this lemma applies for example when X is a Lebesgue space, in
our case X = Lp with 3 < p ≤ ∞.

Lemma 7
Let 3 < p ≤ ∞ be fixed. For any T > 0 and any functions f(t), g(t) ∈
C([0, T ); Lp) then the bilinear term B(f, g)(t) also belongs to ∈ C([0, T ); Lp)
and we have:

sup
0<t<T

‖B(f, g)(t)‖p � T
1
2
(1− 3

p
)

1 − 3
p

sup
0<t<T

‖f(t)‖p sup
0<t<T

‖g(t)‖p.(138)

Combining these lemmata with the fixed point algorithm Lemma 4 we
obtain the following existence result (see Section 5.2 for its uniqueness coun-
terpart).

Theorem 1
Let 3 < p ≤ ∞ be fixed. For any v0 ∈ Lp, ∇ · v0 = 0, there exists a T =
T (‖v0‖p) such that the Navier-Stokes equations has a solution in C([0, T ); Lp).

To be more precise we should write v ∈ C([0, T ); PLp), because the solu-
tion constructed so far is of course a solenoidal (i.e. divergence free) vector
field. To simplify the discussion, we prefer not to use such notation in the
following.

We should also remark that the strong continuity at T = 0 is not ensured
in the case L∞, because this space is not separable. In other words, if it is
true that

lim
t→0

‖v(t) − v0‖p = 0 3 < p < ∞(139)
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this is not the case if p = ∞, for the heat semi-group S(t) is not strongly
continuous as t → 0.

There are two ways to restore continuity in the case of a non-separable
Banach space X. The first is to restrict the attention to X∗, the closure
of C∞

0 in X. Then, S(t) is strongly continuous and the existence theorem
applies as stated. On the other hand, if X is not separable, but instead X
is the dual of separable space Y (here X = L∞ and Y = L1), it is natural
to replace C([0, T ); X) with the space we will denote C∗([0, T ); X) consisting
of bounded functions v(t) with values in X which have the property that v
is continuous in t with values in X, when X is endowed with the σ(X, Y )
topology (see [31, 40, 101, 161, 208]).

Finally, we will see in the next section that the solution constructed so far
is always regular, unique and stable. This means that the Cauchy problem
is locally in time well-posed if the data belong to the super-critical space Lp,
3 < p ≤ ∞. It is an open question to know whether the solution is actually
global in time. The non-invariance of the Lp norm, p �= 3 ensures that such a
global result would not depend on the size of the initial data, say the quantity
‖v0‖p (or, more generally, if ν �= 1, the quantity ‖v0‖p/ν).

3.4 Critical case

By means of the critical Lebesgue space L3 we will see how to construct
the existence not only of local solutions for arbitrary initial data, but also
of global ones, for small or highly oscillating data (this property will be
described in detail in Section 4).

Let us begin with an unpleasant remark. If we try to apply the fixed
point theorem to the integral Navier-Stokes equation

v(t) = S(t)v0 −
∫ t

0

S(t − s)P∇ · (v ⊗ v)(s)ds(140)

in the (natural) function space

N = C([0, T ); L3),(141)

we are faced with a difficulty that did not appear in the super-critical case:
the bilinear term B(v, u) = −

∫ t

0
S(t − s)P∇ · (v ⊗ u)(s)ds is not continuous

from N ×N −→ N .
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Of course, the fact that the estimate (138) diverges when p = 3 is not
enough to show the non-continuity: first, we would expect a reverse inequal-
ity, second this reverse inequality should apply to the full vectorial bilinear
term (in fact, in a way reminiscent of the so-called “div-curl” lemma [64], one
can imagine that the full bilinear operator is continuous even if its simplified
scalar version is not).

In his unpublished doctoral thesis [177] F. Oru proved the non-continuity
of the full vectorial term not only in the Lebesgue space L3 , but also in any
Lorentz space L(3,q), for any q ∈ [1,∞):

Proposition 8
The (vectorial) bilinear operator B is not continuous from C([0, T ); L(3,q)) ×
C([0, T ); L(3,q)) −→ C([0, T ); L(3,q)), whatever 0 < T ≤ ∞ and q ∈ [1,∞) are.

At about the same time Y. Meyer [161] showed that limit case L(3,∞) is very
different since:

Proposition 9
The bilinear operator B is continuous from C([0, T ); L(3,∞))×C([0, T ); L(3,∞)) −→
C([0, T ); L(3,∞)) for any 0 < T ≤ ∞.

F. Oru’s theorem is based on the following remark (see also [140])

Lemma 8
If X is a critical function space in the sense of definition 9 and if the bilinear
operator B is continuous in the space C([0, T ); X) for a certain T , then X
contains a function of the form

ω(x)

|x| + φ(x),(142)

where ω does not vanish identically, is homogeneous of degree 0, is C∞ outside
the origin and φ is a C∞ function.

In fact, it is possible to prove that functions of the type (142) do not belong
to L(3,q), if q �= ∞ but can be in L(3,∞), thus not contradicting Proposition
9.

Let us note, in passing, that it is very surprising that for a generic critical
space we cannot be sure whether the bilinear term is continuous or not.
Another example where it is quite easy to prove the continuity of the bilinear
term (and thus the existence of a solution) is provided by the critical space
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PM2 introduced by Y. Le Jan and A.-S. Sznitman [135]. We will describe
some important consequences of the continuity of the bilinear term in the
spaces L(3,∞) and PM2 in Sections 6.2 and 6.4.

Let us go back to L3. If we want to find a mild solution with initial data in
this space, there are (at least) three ways to circumvent the obstacle arising
from Proposition 8 and are all based on the following remark: the fixed
point algorithm in N is only a sufficient condition to ensure the existence of
a solution in N and a different strategy can be considered.

To be more explicit, another sufficient condition leading to the existence
of a solution in N is to find a function space F (whose elements are functions
v(t, x) with 0 < t < T and x ∈ R

3) such that:
1) the bilinear term B(u, v)(t) is continuous from F × F −→ F ,
2) if v0 ∈ L3, then S(t)v0 ∈ F and
3) the bilinear term B(u, v)(t) is continuous from F × F −→ N .

In fact, the first two conditions ensure the existence of a (mild) solution
v(t, x) ∈ F , via the fixed point algorithm and, thanks to the third condition,
this solution belongs to N as well (if F ↪→ N , the third condition being of
course redundant).

The three ways known in the literature to obtain a solution v(t, x) ∈ N
with data in L3 correspond to three different choices of spaces F [45]. For the
convenience of the reader we will briefly recall in the following sections these
spaces leading to the same existence theorem in N that reads as follows.

Theorem 2
For any v0 ∈ L3, ∇ · v0 = 0, there exists a T = T (v0) such that the Navier-
Stokes equations have a solution in C([0, T ); L3). Moreover, there exists δ > 0
such that if ‖v0‖3 < δ, then the solution is global, i.e. we can take T = ∞.

Here at variance with Theorem 1 we cannot say that T = T (‖v0‖3).
Again, as far as the uniqueness of the solution, the situation is more delicate
and will be revealed in Section 5.3.

3.4.1 Weissler’s space

In 1981, F.B. Weissler [225] gave the first existence result of mild solutions in
the half space L3(R3

+), then Y. Giga and T. Miyakawa [104] generalized the
proof to L3(Ωb), Ωb an open bounded domain in R

3. Finally, in 1984, T. Kato
[112] obtained, by means of a purely analytical proof (involving only Hölder
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and Young inequalities and without using any estimate of fractional powers
of the Stokes operator), an existence theorem in the whole space L3(R3).

In [31, 32, 45] we showed how to simplify Kato’s proof. The idea is to
take advantage of the structure of the bilinear operator in its scalar form, as
in (34) and (36). In particular, the divergence ∇· and heat S(t) operators
can be treated as a single convolution operator [31]. This is why no explicit
conditions on the gradient of the unknown function v and no restriction
on q (namely 3 < q < 6) will be required here, as they were indeed in
Kato’s original paper [112]. In a different context [31, 40] and by using the
same simplified scalar structure, it was possible to show the existence of
a solution with data in the Lebesgue space L∞ (Section 3.3), even if the
pseudo-differential operator P is not bounded in L∞.

In order to proceed, we have to recall the definition of the auxiliary space
Kq (3 ≤ q ≤ ∞) introduced by Weissler and systematically used by Kato.
More exactly, this space Kq is made up by the functions v(t, x) such that

t
α
2 v(t, x) ∈ C([0, T ); Lq)(143)

and

lim
t→0

t
α
2 ‖v(t)‖q = 0,(144)

with q being fixed in 3 < q ≤ ∞ and α = α(q) = 1 − 3
q
. In the case q = 3,

it is also convenient to define the space K3 as the natural space N with the
additional condition that its elements v(t, x) satisfy

lim
t→0

‖v(t)‖3 = 0.(145)

The theorem in question, that implies Theorem 2, is the following [31].

Theorem 3
Let 3 < q < ∞, and α = 1 − 3

q
be fixed. There exists a constant δq > 0 such

that for any initial data v0 ∈ L3, ∇·v0 = 0 in the sense of distributions, such
that

sup
0<t<T

t
α
2 ‖S(t)v0‖q < δq,(146)

then there exists a mild solution v(t, x) to the Navier-Stokes equations be-
longing to N , which tends strongly to v0 as time goes to zero. Moreover, this
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solution belongs to all spaces Kq for all 3 < q < ∞. In particular, (146)
holds for arbitrary v0 ∈ L3 provided we consider T (v0) small enough, and as
well if T = ∞, provided the norm of v0 in the Besov space Ḃ−α,∞

q is smaller
than δq.

The existence part of the proof of this theorem is a consequence of the
following lemmata that we recall here.

Lemma 9
If v0 ∈ L3, then S(t)v0 ∈ Kq for any 3 < q ≤ ∞. In particular this implies
(when T = ∞) the continuous embedding

L3 ↪→ Ḃ−α,∞
q 3 < q ≤ ∞.(147)

In particular, this lemma implies that the conclusion of Theorem 3 holds
not only in the general case of arbitrary v0 ∈ L3 when T = ∞, provided
the norm of v0 in the Besov space Ḃ−α,∞

q is smaller than δq, but also in the
more restrictive case of v0 ∈ L3 and small enough in L3, as we recalled in the
statement of Theorem 2 and originally proved in the papers of Weissler, Giga
and Miyakawa, and Kato. In other words, a function in L3 can be arbitrarily
large in the L3 norm but small in Ḃ−α,∞

q . This remark will play a key role
in Section 4. Another important consequence of this lemma is that L3 and
B−α,∞

q are different spaces, for |x|−1 ∈ Ḃ−α,∞
q and |x|−1 �∈ L3 and this will

allow the construction of self-similar solutions in Section 6.
The second lemma we need in order to prove Theorem 3 is the following.

Lemma 10
The bilinear operator B(f, g)(t) is bicontinuous from Kq ×Kq −→ Kq for any
3 < q < ∞.

Once these two lemmata are applied for a certain q, 3 < q < ∞, one
can easily deduce, provided eq. (146) is satisfied and via the fixed point
algorithm, the existence of a solution v(t, x) ∈ N that tends strongly to v0

at zero and belongs to Kq for all 3 < q < ∞.
The latter properties are a consequence of the following generalization of

Lemma 10, applied to the bilinear B term.

Lemma 11
The bilinear operator B(f, g)(t) is bicontinuous from Kq × Kq −→ Kp for

any 3 ≤ p < 3q
6−q

if 3 < q < 6; any 3 ≤ p < ∞ if q = 6; and q
2
≤ p ≤ ∞ if

6 < q < ∞.
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The proof of the uniqueness of the solution in N requires a more careful
study of the bilinear term as it will be explained in Section 5.3.

Before moving on to a different strategy to prove Theorem 2, let us men-
tion here that the limit value q = ∞ cannot be considered in the statement of
Lemma 10 because, if we use the standard approach to prove the continuity
in L∞, we are led to a divergent integral (see [161], Chapter 19). Thus, a
priori, it is not possible to deduce the existence of a mild solution in N when
the condition expressed by eq. (146) is satisfied for q = ∞, say

sup
0<t<T

t
1
2‖S(t)v0‖∞ < δ,(148)

(which means, when T = ∞, that the norm of v0 in the Besov space Ḃ−1,∞
∞

is small enough). If, instead, we just require the strongest condition

sup
0<t<T

t
1
2‖S(t)v0‖∞ + sup

0<t<T
‖S(t)v0‖3 < δ,(149)

(which means, when T = ∞, that the norm of v0 in L3 is small enough)
then the existence of a mild solution v(t, x) belonging to N can be ensured.
Moreover, this solution belongs to K∞.

Once again, it is obvious that this result implies Theorem 2, at least when
T = ∞. At difference with the proof of Theorem 3, here we can not apply
the fixed point theorem directly in K∞, but in the space K whose elements
are functions v(t, x) belonging to the intersection K∞∩N and whose norm is

given by sup0<t<T t
1
2‖v(t)‖∞+sup0<t<T ‖v(t)‖3. In fact, the following lemma

Lemma 12
The bilinear operator B(f, g)(t) is bicontinuous from K ×K −→ K,

whose proof is contained for example in [161], holds true and allows us to
conclude.

3.4.2 Calderón’s space

Another way to prove the existence of a solution with data in L3 was dis-
covered by C.P. Calderón [29] in 1990 and was independently proposed five
years later in [31] (see [34] for more details).

Here the auxiliary function space will be denoted by the letter M. Its
elements v(t, x) are such that

‖|v|‖M = ‖ sup
0<t<T

|v(t, x)|‖3(150)
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is finite.
It is easy to see that M is continuously embedded in N , because of the

following elementary inequality

sup
0<t<T

‖v(t, x)‖3 ≤ ‖ sup
0<t<T

|v(t, x)|‖3(151)

The method we will pursue here is to solve the mild Navier-Stokes equa-
tions in M. This will be possible because, at variance with N , the bilinear
operator is bicontinuous in M. More precisely, the following two lemmata
hold true [29, 30, 31].

Lemma 13
S(t)v0 ∈ M if and only if v0 ∈ L3.

This lemma, whose proof follows from Hardy-Littlewood maximal func-
tion, shows that the equivalence stated in Proposition 4 is not true if for
example s = 0, p = ∞ and q = 3. In fact, the equivalence under consider-
ation can be seen as a consequence of the well-known result that the Hardy
space H3 is equivalent to L3, which in turn is equivalent to the Triebel-
Lizorkin space Ḟ 0,2

3 . For a more detailed explanation on this subject we refer
the reader to [216, 217].

The following lemma concerns the bilinear term [29, 30, 31].

Lemma 14
The bilinear operator B(f, g)(t) is bicontinuous from M×M −→ M.

Before proceeding, we want to make an additional comment here. The
fact that the bilinear operator B(f, g) is bicontinuous both in M (that is
included in N ) and, as it was announced by Y. Meyer [161], bicontinuous in
the Lorentz space C([0, T ); L(3,∞)) (that includes N ), is very peculiar, since
F. Oru showed in [177] that B(f, g) is not bicontinuous in the natural space
N .

This remark being made, let us see how, by a simple variant of the proof
above, one can generalize Lemma 14. In order to do that, let us introduce
the space Hs

p whose elements v(t, x) are such that

‖v‖Hs
p

= ‖ sup
0<t<T

|Λ̇sv(t, x)|‖p < ∞(152)
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Here Λ̇s is as usual the pseudo-differential operator whose symbol in
Fourier transform is given by |ξ|s and Λ̇ =

√
−∆ is the Calderón operator.

In other words, Hs
p is the subspace of the natural space C([0, T ); Ḣs

p)

obtained by interchanging the time and space norms. Here, Ḣs
p = Ḟ s,2

p cor-
responds to the so called Sobolev-Bessel or homogeneous Lebesgue space. In
particular, for p < 3, we have the following continuous embedding,

Ḣ
3
p
−1

p ↪→ L3 = Ḣ0
3(153)

which, in turn, gives (p < 3)

H
3
p
−1

p ↪→ M ↪→ N(154)

We are now ready to generalize Lemma 14 (p = 3) in the following

Lemma 15
Let 3

2
< p < 3 be fixed. The bilinear operator B(f, g)(t) is bicontinuous from

M×M −→ H
3
p
−1

p .

This lemma should be interpreted as a supplementary regularity property
of the bilinear term as it was extensively analyzed in [31, 40, 43, 180]. By
means of a more accurate study of the cancellation properties of the bilinear
term, the limit case p = 3

2
(with the natural norm in time and space variables)

can be included as well (see [43]).
This remark being made, let us observe that, just by using Lemma 13 and

14, we are in a position, via the fixed point algorithm, to prove the existence
of a global solution in M with initial data v0 sufficiently small in L3, say

‖v0‖3 < δ.(155)

However, because the bicontinuity constant arising in Lemma 14 does not
depend on T and the condition (corresponding to eq. (144) in the definition
of Kq)

lim
T→0

‖ sup
0<t<T

|S(t)v0|‖3 = 0(156)

is not verified if v0 ∈ L3, v0 �≡ 0, there is no evidence to guarantee that such
a global solution is strongly continuous at the origin (and thus unique as we
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will see in the following pages), and, which is intimately related, that such a
solution exists locally in time for an arbitrary initial data v0 in L3.

We use here the same trick introduced in [31]. More precisely, instead of
looking for a mild solution v(t, x) ∈ M, via the point fixed Lemma 4, we will
look for a solution

w(t, x) = v(t, x) − S(t)v0 ∈ M(157)

via the point fixed Lemma 5. More precisely, we will solve the equation

w(t, x) = B̃(S(t)v0, S(t)v0) + 2B̃(w, S(t)v0) + B̃(w, w)(158)

where the symmetric bilinear operator B̃ is defined, in terms of B, by

B̃(v, u)(t) =
B(v, u)(t) + B(u, v)(t)

2
.(159)

We can now take advantage of the particular structure of the heat semi-
group appearing in eq. (158). More exactly, we can generalize the previous
lemmata and obtain the following ones

Lemma 16
Let α = 1 − 3

q
and 3 < q < ∞ be fixed. Then

‖ sup
0<t<T

t
α
2 |S(t)v0|‖q ≤ Cq‖v0‖3,(160)

and in particular, if v0 ∈ L3, the l.h.s. of (160) tends to zero as T tends to
zero.

Now α > 0, so eq. (160) is a direct consequence of Proposition 4 and the
following Sobolev-type embedding (see [216, 217])

L3 = Ḟ 0,2
3 ↪→ Ḟ−α,2

q ↪→ Ḟ−α,∞
q .(161)

Lemma 17
Let α = 1 − 3

q
, 3 < q < 6, and f(t, x) = S(t)f0, with f0 = f0(x), then the

following estimate holds for the bilinear operator

‖B(S(t)f0, S(t)f0)‖M ≤ Cq‖ sup
0<t<T

t
α
2 |S(t)f0|‖2

q.(162)
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Lemma 18
Let α = 1 − 3

q
, 3 < q < ∞, and f(t, x) = S(t)f0, with f0 = f0(x), and

g = g(t, x) then the following estimate holds for the bilinear operator

‖B(S(t)f0, g)‖M ≤ C ′
q‖g‖M‖ sup

0<t<T
t

α
2 |S(t)f0|‖q.(163)

We can now state the following existence and uniqueness theorem of [31,
45] as:

Theorem 4
Let 3 < q < 6 and α = 1 − 3

q
. There exists a constant δq > 0 such that for

any initial data v0 ∈ L3, ∇ · v0 = 0 in the sense of distributions, such that

‖ sup
0<t<T

t
α
2 |S(t)v0|‖q < δq,(164)

then there exists a mild solution v(t, x) belonging to N , which tends strongly
to v0 as time goes to zero. Moreover, this solution belongs to the space M and

the function w(t) defined in (157) belongs to H
3
p
−1

p (3
2

< p < 3). In particular,
(164) holds for arbitrary v0 ∈ L3 provided we consider T (v0) small enough,
and as well if T = ∞, provided the norm of v0 in the Triebel-Lizorkin space
Ḟ−α,∞

q is smaller than δq.

The existence part of the proof is now a consequence of Lemma 5, while
its uniqueness will be treated in Section 5.3.

In order to appreciate the result we have just stated, let us now concen-
trate on comparing the hypotheses that arise in the statements of Theorem
3 and Theorem 4.

It is not difficult to see that, for any T > 0 and 3 ≤ q ≤ ∞, α = 1 − 3
q
,

sup
0<t<T

t
α
2 ‖S(t)v0‖q ≤ ‖ sup

0<t<T
t

α
2 |S(t)v0|‖q(165)

which corresponds, for T = ∞, to the well-known embedding

Ḟ−α,∞
q ↪→ Ḃ−α,∞

q .(166)

This circumstance indicates that, as far as the initial data v0 is concerned,
condition (146) is stronger than (164). However, with regard to the Navier-
Stokes equations in the presence of a non-trivial external force (e.g. the
gravity) as described in eq. (11) with φ �≡ 0, C.P. Calderón’s method allows
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us to obtain some better estimates, in particular, as explained in [45], to
improve the results contained in [54].

Before ending this section, we would like to remark that the idea of in-
terchanging time and space in the mixed norms can also be adapted in the
case of different spaces for the Navier-Stokes equations. Explicit calculations
were performed in [31] in the case of the above defined Sobolev-type space
Hs

2 (s ≥ 1
2
). In fact, Lemma 15 would be enough to derive such a result when

s = 1
2
. However, other less trivial examples can be obtained.

3.4.3 Giga’s space

As we recalled in the previous section, the method for finding a strongly
continuous solution with values in L3 makes use of an ad hoc auxiliary sub-
space of functions that are continuous in the t-variable and take values in
a Lebesgue space in the x-variable. Moreover, Y. Giga proved in [97] that
not only does the solution under consideration belong to L∞

t (L3
x) and Kq but

also, for all q in the interval 3 < q ≤ 9, it belongs to the space Gq = L
2
α
t (Lq

x),
whose elements f(t, x) are such that

‖f‖Gq =:

(∫ T

0

‖f(t, x)‖
2
α
q dt

)α
2

< ∞(167)

T being, as usual, either finite or infinite, and α = α(q) = 1 − 3
q
.

At this point, one can naturally ask whether these spaces Gq can be used,
independently, as auxiliary ad hoc subspaces to prove the existence of a so-
lution with data in L3. This question arises also in view of the fact that
Lp

t (L
q
x) estimates (and, more generally, the so-called Strichartz estimates)

are frequently used for the study of other well-known non-linear partial dif-
ferential equations, like the Schrödinger one or the wave equation. Even if
this doesn’t lead here to a breakthrough as in the case of the Schrödinger
equation, making direct use of Lp

t (L
q
x) estimates for Navier-Stokes is indeed

possible. This was proved by T. Kato and G. Ponce in [116], where, in fact,
the authors consider the case of a much larger functional class, including the
Gq one.

In what follows, we will focus our attention only on the latter case
and prove an existence theorem of local (resp. global) strong solutions in
C([0, T ); L3) with initial data (resp. small enough) in a certain Besov space.

The “Besov language” will provide a very convenient and powerful tool,
needed to overcome difficulties which were absent in the previous section.
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As in the previous cases, we will start with an estimate of the linear term
S(t)v0 in the auxiliary space Gq. We have:

Lemma 19
Let 3 < q ≤ 9 and α = 1 − 3

q
be fixed. Then

(∫ T

0

‖S(t)v0‖
2
α
q dt

)α
2

≤ Cq‖v0‖3,(168)

where the integral in the l.h.s. of (168) tends to zero as T tends to zero
provided v0 ∈ L3.

Keeping Proposition 4 in mind, this lemma can be proved if we recall the
well-known Sobolev embedding [216, 217]

L3 ↪→ Ḃ
−α, 2

α
q ,(169)

which holds true as long as 3 < q ≤ 9. Here the restriction q ≤ 9 appears as
a limit exponent in the Sobolev embedding for Besov spaces. A direct proof
of (168) is contained in the papers by Giga [97], Kato [112], and Kato and
Ponce [116] and makes use of the Marcinkiewicz interpolation theorem. In
short, our lemma says that if v0 ∈ L3, then S(t)v0 is in Gq, and therefore we
are allowed to work within that functional framework.

The fact that the l.h.s of eq. (168) tends to zero as T tends to zero can
be easily checked by using the Banach-Steinhaus theorem. What we would
like to stress here, is that this property is of paramount importance, because
it will ensure (as in Theorems 3 and 4) the strong continuity at the origin
of the solution given by the fixed point scheme. Once we get a solution in
C([0, T ); L3) that tends in the strong L3 topology to v0 as time tends to zero,
this solution will automatically be unique, as we will see in Section 5.3.

Let us now concentrate on the bilinear operator [180].

Lemma 20
The bilinear operator B(f, g)(t) is bicontinuous from Gq ×Gq −→ Gp for any

3 < p < 3q
6−q

if 3 < q < 6; any 3 < p < ∞ if q = 6; and q
2
≤ p ≤ ∞ if

6 < q < ∞.

In the case q = p this result was originally proved by E.B. Fabes, B.F.
Jones and N.M. Rivière [74] and represents the equivalent of Lemma 10 in
the space Kq.
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This lemma can be proved by duality (in the t-variable) in a way reminis-
cent of Giga’s method introduced in [97] and based on the Hardy-Littlewood-
Sobolev inequality (see [45]). Here the restrictions on the exponents p and
q come from the Young and Hardy-Littlewood-Sobolev inequalities. In par-
ticular, the value β = 0 corresponding to p = 3 is excluded. This is why
Lemma 20 cannot be used directly to get (as in Lemma 11) an L∞

t (L3
x) es-

timate. That appears to be the main difference with the methods involving

the Besov Ḃ
−(1− 3

q
),∞

q and Triebel-Lizorkin spaces Ḟ
−(1− 3

q
),∞

q that were con-
sidered in the previous cases. As a matter of fact, the estimates obtained in
those spaces, having their third index equal to ∞, are essentially based on
the scaling invariance of the Navier-Stokes equations, which is a very crude
property of the non-linear term. Here, on the contrary, we need to investi-
gate further and to explicitly take into account the oscillatory property of
the bilinear term, say

∫

R3

Θ(x)dx = 0(170)

or, equivalently, the fact that the Fourier transform of Θ is zero at the origin.
Of course, we are still far away from exploiting the full structure of the
bilinear term.

This remark being made, let us now see how to use eq. (170) in the proof
of the following lemma.

Lemma 21
The bilinear operator B(f, g)(t) is bicontinuous from G6×G6 −→ N . In fact,

B(f, g) takes its values in C(0, T ; Ḃ0,2
3 ), which is a proper subset of N .

We would like to mention here that a variant of this result was applied in
[89, 90] in the proof of the uniqueness theorem for strong L3 solutions (see
also [43] for more comments) as we will see in Section 5.3.

Let us now outline the proof of Lemma 21, by using once again a duality
argument: first we show that B(f, g) is bicontinuous from L4

t (L
6
x) × L4

t (L
6
x)

into L∞
t (Ḃ0,2

3 ) and then we conclude by a usual argument in order to restore
the strong continuity in time [45].

To prove the proposition by duality (in the x-variable), let us consider an
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arbitrary test function h(x) ∈ C∞
0 and let us evaluate

It =

∫

R3

∫ t

0

(t − s)−2Θ

( ·√
t − s

)

∗ (fg)(s)h(x)dsdx.(171)

It is useful here to see the t variable as a fixed parameter. After interchanging
the integral over R

3 with the convolution with h(x), and after applying the
Hölder inequality (in x) and the Cauchy-Schwarz inequality (in t), we get

|It| �
(∫ t

0

‖fg‖2
3ds

) 1
2
(∫ t

0

‖Θu ∗ h‖2
3
2

du

u

) 1
2

(172)

where

Θu =
1

u3
Θ

( ·
u

)
(173)

In order to conclude, we only remark that the oscillatory property of Θ,
say eq. (170), allows us to consider the quantity

(∫ ∞

0

‖Θu ∗ h‖2
3
2

du

u

) 1
2

(174)

as an (equivalent) norm on the homogeneous Besov space Ḃ0,2
3
2

. As we ob-

served in Section 2.2, if the function Θ were smooth and compactly supported
on the Fourier side, this would indeed be the usual characterization. Remov-
ing the band-limited condition is trivial, and it turns out that smoothness
is not a critical assumption, thus allowing a greater flexibility in the defi-
nition of the Besov space. What is certainly not possible is to get such an
equivalence if, as is the case for S(t), the function Θ does not have a zero
integral. More explicitly, a property analogous to the one stated in Proposi-
tion 3 would not apply here and, in general, does not apply for a Besov space
of the type Ḃs,p

q , with s ≥ 0. A counterexample for s = 0, p = ∞ and q = 3
can be found, for instance, in [31] (Lemma 4.2.10). The reader should refer
to [179] for a very enlightening discussion of the definition of Besov spaces,
and to [80, 216, 217] for precise results.

Let’s go back to the Besov space Ḃ0,2
3
2

. A standard argument shows that

the dual space of Ḃ0,2
3
2

(R3) is exactly Ḃ0,2
3 . All this finally implies that the
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bilinear operator B(f, g) is bicontinuous from L4
t (L

6
x)×L4

t (L
6
x) into L∞

t (Ḃ0,2
3 ),

which completes the proof of Lemma 21. Moreover, as

Ḃ0,2
3 ↪→ L3(175)

we have obtained our L∞
t (L3

x) estimation, and even improved it. As in [31,
40, 43, 180], this provides another example in which the regularity of the
bilinear term is better than the linear one.

We are now in position to prove the following theorem [180]

Theorem 5
Let 3 < q < 9 and α = 1 − 3

q
be fixed. There exists a constant δq such that

for any initial data v0 ∈ L3, ∇· v0 = 0 in the sense of distributions such that

(∫ T

0

‖S(t)v0‖
2
α
q dt

)α
2

< δq(176)

and then there exists a mild solution v(t, x) belonging to N , which tends
strongly to v0 as time goes to zero. Moreover, this solution belongs to all the
spaces Gq (3 < q < 9) and is such that the fluctuation w(t, x) defined in (157)
satisfies

w ∈ C([0, T ); Ḃ0,2
3 )(177)

and

w ∈ L2((0, T ); L∞).(178)

Finally, (176) holds for arbitrary v0 ∈ L3 provided we consider T (v0) small
enough, and as well if T = ∞, provided the norm of v0 in the Besov space

Ḃ
−α, 2

α
q is smaller than δq.

Keeping in mind the previous propositions and remarks, the proof of that
theorem is easily carried out as follows (see [180] for more details).

First, we apply the fixed point algorithm in the space Gq = L
2
α ([0, T ); Lq)

(q and α being assigned in the statement) to get, by means of Lemma 20,
a mild solution v(t, x) ∈ Gq. Then, again using Lemma 20, we find that
v(t, x) ∈ Gq for all 3 < q < 9. In particular v(t, x) ∈ G6 = L4([0, T ); L6),
which gives v(t, x) ∈ N and (177) (once Lemma 21 is taken into account).
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As we presented in [43], this regularity result can even be improved to
get w(t) ∈ C([0, T ); Ḟ 1,2

3
2

), which means that the gradient of w(t) belongs uni-

formly in time to L
3
2 and we observe that Ḟ 1,2

3
2

↪→ Ḃ0,2
3 . The latter regularity

result can be seen in connection with an estimate derived by T. Kato [112]
that assures that the gradient of v(t), solution of Theorem 3 in N , is such

that t1−
3
2q∇v(t) ∈ C([0, T ); Lq) for any q ≥ 3. We proved in [43] that the

function w(t) satisfies the last estimate for the optimal exponent q = 3
2
.

Finally, as the bilinear term is bicontinuous from Gq×Gq into L2
t (L

∞
x ), and

arguing by duality, (µ(s) being a test function), we can obtain the estimate
(178), say

∣
∣
∣
∣

∫ T

0

‖B(f, g)(s)‖∞µ(s)ds

∣
∣
∣
∣ �

∫ T

0

∫ t

0

‖fg‖ q′
2

(s)µ(t)

(t − s)
1
2
+ 3

q′
dsdt � ‖µ‖2.(179)

4 Highly oscillating data

At difference with Leray’s well-known weak approach, the method described
in the previous pages –the so called “Tosio Kato’s method” (see the book [86]
for many examples of applications of this method to non-linear PDE’s)–also
implies the uniqueness of the corresponding solution, as it will be explained
in Section 5. However, the existence of the solution holds under a restrictive
condition on the initial data, that is required to be small, which is not the case
for Leray’s weak solutions. In Section 7 we will make the link between this
property, the smallness of the Reynolds number associated with the flow, the
stability of the corresponding global solution and the existence of Lyapunov
functions for the Navier-Stokes equations.

The aim of this Section is to give an interpretation of the smallness of the
initial data in terms of an oscillation property. The harmonic analysis tools
we developed so far will play a crucial role here.

Let us recall that, as stated in Theorem 3, a global solution in C([0,∞); L3)
exists, provided that the initial data v0 is divergence free and belongs to L3,
and that its norm is small enough in L3, or more generally, small in the
Besov space Ḃ−α,∞

q (for a certain 3 < q < ∞ and α = 1 − 3/q fixed). In
other words, a function v0 in L3 whose norm is arbitrarily large in L3 but
small enough in Ḃ−α,∞

q (or in a Triebel Lizorkin space Ḟ−α,∞
q as in Theorem

4, or in the Besov space Ḃ
−α, 2

α
q as in Theorem 5) also ensures the existence
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of a global mild solution in C([0,∞); L3).
The advantage of using a Besov norm instead of a Lebesgue one is that

the condition of being small enough in a Besov space is satisfied by highly
oscillating data (Section 4.1). A second remarkable property is that these
spaces contain homogeneous functions of degree −1, leading to global self-
similar solutions (Section 6). Moreover, Besov spaces led to the (first) proof
of the uniqueness for solutions in C([0,∞); L3) (Section 5.3).

The a posteriori disappointing observation is that .... Besov spaces were
not necessary at all in any of these discoveries !

4.1 A remarkable property of Besov spaces

In order to appreciate the formulation of Kato’s theorem in terms of the
Besov space Ḃ−α,∞

q given in Theorem 3, we shall devote ourselves here to
illustrating that the condition ‖v0‖Ḃ−α,∞

q
< δ is satisfied in the particular

case of a sufficiently oscillating function v0.
A typical situation will be given by the following example. Let v0 be an

arbitrary (not identically vanishing) function belonging to L3. If we multiply
v0 by an exponential, say the function wk = exp[ix · k], we obtain, for any
k ∈ R

3, a function wkv0 such that (Lemma 22)

lim
|k|→∞

‖wkv0‖Ḃ−α,∞
q

= 0,(180)

in spite of the fact that

lim
|k|→∞

‖wkv0‖3 = ‖v0‖3.(181)

In other words, the smallness condition ‖wkv0‖Ḃ−α,∞
q

< δ, is verified as long
as we choose a sufficiently high frequency k. At this point, it is tempting to
consider wkv0 as the new initial data of the problem and to affirm that Kato’s
solution exists globally in time, provided we consider sufficiently oscillating
data. One can argue that wkv0 is no longer a divergence-free function. Nev-
ertheless, the function wkv0 is divergence-free asymptotically for |k| → ∞,
which is exactly the situation we are dealing with. More precisely, it turns
out that (Lemma 23)

lim
|k|→∞

‖∇ · (wkv0) − wk∇ · v0‖3 = 0.(182)
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Lemma 22
Let v be an arbitrary function in L3 and let wk(x), k ∈ N be a sequence of
functions such that ‖wk‖∞ ≤ C and wk ⇀ 0 (as k → ∞) in the distributional
sense. Then, the products wkv tend to 0 in the strong topology of Ḃ−α,∞

q

(α = 1 − 3
q

> 0).

The proof of this lemma is quite easy and we wish to present the main
components here (for more details see [31, 32]).

We will make use of a density argument. To this end, let us introduce
the following decomposition of the function v:

v = h + g,(183)

where h ∈ L3 and

‖h‖3 ≤ ε(184)

and g ∈ C∞
0 . The next step is to recall the continuous imbedding (Lemma 9)

L3 ↪→ Ḃ−α,∞
q to infer the following inequality (k ≥ 0)

‖wkh‖Ḃ−α,∞
q

� ‖wkh‖3 � ε.(185)

On the other hand, Young’s inequality gives (j ∈ Z)

‖Sj(wkg)‖q ≤ ‖23jϕ(2j·)‖r‖wkg‖p(186)

where

1

q
=

1

r
+

1

p
− 1.(187)

This implies

2−αj‖Sj(wkg)‖q � 2−j(1− 3
q
)2−j(1− 3

r
)‖g‖p = 2−j(1− 3

p
)‖g‖p(188)

so that, for any k ≥ 0, any j ≥ j1 > 0 and any j ≤ j0 < 0, we have

2−αj‖Sj(wkg)‖q � ε(189)

(in fact, if j ≥ j1 we let p = q > 3 and if j ≤ j0 we let 1 ≤ p < 3).
We are now left with the terms Sj(wkg) for j0 < j < j1. Making use of

the hypothesis mk ⇀ 0 together with the Lebesgue dominated convergence
theorem, we finally find, for any k ≥ k0 and j0 < j < j1,

2−αj‖Sj(wkg)‖q � ε(190)

which concludes the proof of the lemma.
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Lemma 23
Let m(ξ) ∈ C∞(R3\{0}) be a homogeneous function of degree 0 and let M be
the convolution operator associated with the multiplier m(ξ). If we consider
|ξ0| = 1, v ∈ Lp and 1 < p < ∞, then

lim
λ→∞

sup
|ξ0|=1

‖M(exp(iλξ0 · x)v(x)) − exp(iλξ0 · x)m(ξ0)v(x)‖p = 0.(191)

In the case we are interested in, this lemma will be used for p = 3 and
with M replaced by the projection operator P onto the divergence-free vector
fields and m(ξ) replaced by a 3 × 3 matrix whose entries are homogeneous
symbols of degree 0.

In order to prove the lemma in its general form, we remark that the
symbol of the operator exp(−iλξ0 ·x)M(exp(iλξ0 ·x)v)−m(λξ0)v(x) is given
by m(ξ + λξ0) − m(λξ0), this by virtue of the homogeneity of m.

Eq. (191) will now be proved by means of a density argument. In fact,
it is sufficient to limit ourselves to functions v ∈ V ⊂ Lp, where V is the
dense subspace of Lp defined by v ∈ S and the Fourier transform v̂ of v has
compact support. Now, we put

vλ = exp(−iλξ0 · x)M(exp(iλξ0 · x)v) − m(λξ0)v,(192)

then the Fourier transform of vλ is given by

v̂λ(ξ) = [m(ξ + λξ0) − m(λξ0)]v̂(ξ).(193)

Finally, v̂ has compact support, say in |ξ| ≤ R, and then

m(ξ + λξ0) − m(λξ0) = rλ(ξ),(194)

where, on |ξ| ≤ R, rλ(ξ) → 0 together with all its derivatives in the L∞

norm. We thus have vλ → 0 in S when λ → ∞. A fortiori, ‖vλ‖p → 0 when
λ → ∞, and the lemma is proved.

4.2 Oscillations without Besov norms

Some years after the publication of [31, 32] R. Temam [210] informed us
that the property we described in the previous pages, that highly oscillating
data lead to global solutions to Navier-Stokes, was implicitly contained in
the pioneering papers of T. Kato and H. Fujita [85, 115] of 1962.
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These papers deal with mild solutions to Navier-Stokes that are continu-
ous in time and take values in the Sobolev space Ḣs, say v ∈ C([0, T ); Ḣs). It
is easy to see, in the three dimensional case, that the critical Sobolev space
corresponds to the value s = 1/2. More precisely, the Sobolev spaces Ḣs,
s > 1

2
are super-critical. In other words, as far as the scaling is concerned,

they have the same invariance as the Lebesgue spaces Lp if p > 3. This
means that, using the simplified version of the bilinear operator, one can
easily prove the existence of a local mild solution for arbitrary initial data
[31], that is:

Theorem 6
Let 1/2 < s < ∞ be fixed. For any v0 ∈ Ḣs, ∇ · v0 = 0, there exists a
T = T (‖v0‖s) such that the Navier-Stokes equations have a mild solution in
C([0, T ); Ḣs).

On the other hand, in the critical case s = 1/2, one can ensure the
existence of a local solution, that turns out to be global when the initial data
are small enough:

Theorem 7
There exists a constant δ > 0 such that for any initial data v0 ∈ Ḣ

1
2 , ∇·v0 = 0

in the sense of distributions, such that

‖v0‖Ḣ
1
2

< δ,(195)

then there exists a mild solution v(t, x) to the Navier-Stokes equations be-

longing to C([0,∞); Ḣ
1
2 ).

In the particular case s = 1, we also have at our disposal a persistence
result, namely:

Theorem 8
There exists a constant δ > 0 such that if the initial data v0 ∈ Ḣ

1
2 ∩ Ḣ1,

∇ · v0 = 0 in the sense of distributions and satisfies

‖v0‖Ḣ
1
2

< δ,(196)

then the mild solution v(t, x) to the Navier-Stokes equations, whose existence
is ensured by Theorem 7, also belongs to C([0,∞); Ḣ1).
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To prove such a result, it is enough to show that the Ḣ1 norm of the
solution is a Lyapunov function, which means that it is decreasing in time.
The study of the Lyapunov functions for the Navier-Stokes equations will be
examined in detail in Section 7.1.

Actually, to obtain a global mild solution in the space C([0,∞); Ḣ1) it
would be enough to get a uniform estimate of the kind

‖v(t)‖Ḣ1 ≤ ‖v0‖Ḣ1 ∀t > 0,(197)

because a classical “bootstrap” argument will allow to pass from a local
solution to a global one.

This property turns out to be satisfied when the initial data v0 ∈ Ḣ1 has
a sufficiently small norm in the space Ḣ

1
2 . More precisely, as we will describe

in detail in Section 7.1, the following inequality is proven in the celebrated
papers by Kato and Fujita [85, 115]:

d

dt
‖∇v(t)‖2

2 ≤ −2‖∇v(t)‖2
2(ν − C‖v(t)‖

Ḣ
1
2
).(198)

This immediately implies the aforementioned property of decrease in time
of the homogeneous norm ‖v‖H1 , as long as ‖v‖

Ḣ
1
2

is small enough. On

the other hand, it is easy to show that the L2 norm of the solution v also
decreases in time, say

d

dt
‖v(t)‖2

2 = −2ν‖∇v(t)‖2
2 < 0,(199)

which allows us to deduce the decreasing of the non-homogeneous norm ‖v‖Ḣ1

as well.
Now, Temam’s remark is very simply and reads as follows. Suppose

v0 ∈ S ′ is such that v̂0(ξ) = 0 if |ξ| ≤ R, then

‖v0‖Ḣ
1
2
≤ R− 1

2‖v0‖Ḣ1(200)

and thus one can get the existence of a global mild solution in C([0,∞); Ḣ1)
provided the initial data is concentrated at high frequencies (R � 1), say
highly oscillating !
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4.3 The result of Koch and Tataru

In his doctoral thesis [180, 181] F. Planchon gave the precise interpretation
of the persistence result stated in Theorem 8, replacing the smallness of the
Ḣ

1
2 norm of the initial data, with the smallness (or oscillation) in a Besov

space. Everything takes place as in [31] for the critical space L3: there exists
an absolute constant β > 0 such that if ‖v0‖

Ḃ
− 1

4 ,∞
4

< β and v0 ∈ Ḣ1, then

there exists a global solution in C([0,∞); Ḣ1). What make things work here

is that, even if Ḣ1 is not a critical space, it is embedded in Ḣ
1
2 (which is

not the case for any Lebesgue space Lp, p ≥ 3, when working in unbounded
domains as R

3). The importance of such a result is that it allows us to obtain
global and regular solutions in the energy space Ḣ1, under the hypothesis of
oscillation of the initial data. In other words, at variance with the L3 setting,
we can establish a link between Leray’s weak solutions and Kato’s mild ones.

This approach was generalized first by H. Koch and D. Tataru [120] and
then by G. Furioli, P.-G. Lemarié, E. Zahrouni and A. Zhioua [87, 91, 140,
231]. Both of these results seem optimal.

Roughly speaking the theorem by Koch and Tataru says that if the norm
of the initial data is small enough in the critical space BMO−1, then there
is a global mild solution for the Navier-Stokes equations. Again, the norm
of the product of a fixed function in L3 times an oscillating function, say
wk = exp[ix · k], tends to zero as |k| tends to infinity. It is not clear whether
this theorem is optimal, because, if it is true that it generalizes the results of
the previous section (in fact BMO−1 contains L3 as well as Ḃ−α,∞

q , for any
3 < q < ∞ and α = 1 − 3/q), we should recall that BMO−1 is contained in
the biggest critical space Ḃ−1,∞

∞ (as stated in eq. (77) and Proposition 7) and
nobody knows whether the Navier-Stokes system is well posed in this space
(see [161]). Incidentally, we wish to remind the reader that S. Montgomery-
Smith proved a blow-up result in the space Ḃ−1,∞

∞ for a modified (with respect
to the non-linear term) Navier-Stokes equations [170]. Moreover, his result
also shows there is initial data that exists in every Triebel-Lizorkin or Besov
space (and hence in every Lebesgue and Sobolev space), such that after a
finite time, the solution of the Navier-Stokes-like equation is in no Triebel-
Lizorkin or Besov space (and hence in no Lebesgue or Sobolev space).

On the other hand, the persistence result by G. Furioli, P.-G. Lemarié,
E. Zahrouni and A. Zhioua says that if the initial data is not only small in
BMO−1, but also belongs to the Banach space X, where X can be either
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the Lebesgue space Lp, 1 ≤ p ≤ ∞, or the inhomogeneous Besov space Bs,p
q ,

with 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and s > −1, or the homogeneous Besov space
Ḃs,p

q , with 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and s > −1, then the corresponding
solution also belongs to L∞((0,∞); X).

In order to simplify the discussion, we will limit ourselves to present only
global solutions. However, solutions which are local in time as we previously
constructed in the critical space L3 are also available. More exactly, we are
talking about the following results.

Theorem 9
There exists a constant δ > 0 such that for any initial data v0 ∈ BMO−1

that verifies

‖v0‖BMO−1 < δ,(201)

then there exists a global mild solution v(t, x) to the Navier-Stokes equations
such that

√
tv(t, x) ∈ L∞((0,∞), R3)(202)

and

sup
t>0, x0∈R3

1

t3/2

∫

0<τ<t

∫

|x−x0|<
√

t

|v(τ, x)|2dτdx < ∞.(203)

The proof of this theorem is contained in the paper of Koch and Tataru
[120]. The condition expressed by eq. (203), comes from the fact that a
Carleson measure characterization of BMO−1 (see [206]) says that a function
v0 belongs to BMO−1 if and only if

sup
t>0, x0∈R3

1

t3/2

∫

0<τ<t

∫

|x−x0|<
√

t

|S(τ)v0|2dτdx < ∞,(204)

S(τ) = exp(τ∆) denoting, as usual, the heat semi-group. On the other hand,
this condition seems the weaker possible one, say BMO−1 seems the largest
space where local or global solutions exist. In fact, as we recalled in Section
1.2, in order to give a sense to the Navier-Stokes equations we want to have
at least

v(t, x) ∈ L2
loc([0,∞); R3).(205)
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Now the Navier-Stokes equations are invariant with respect to scaling, hence
we want a scale and translation invariant version of L2-boundedness, say

sup
t>0, x0∈R3

1

|Bt(x)|

∫ ∫

Bt(x)×[0,t2]

|v(τ, x)|2dτdx < ∞,(206)

(where |Bt(x)| denotes the Lebesgue measure of the ball Bt(x) centered at x
and radius t) which is precisely the condition expressed by eq. (203).

Finally, let us quote the persistence result announced in [91].

Theorem 10
Let v0 verify the condition of Theorem 9 and v(t, x) the corresponding global
solution, then if X is one of the following Banach spaces

Lebesgue Lp, 1 ≤ p ≤ ∞,(207)

or

inhomogeneous Besov Bs,p
q , 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, s > −1,(208)

or

homogeneous Besov Ḃs,p
q , 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, s > −1,(209)

then the corresponding solution also belongs to L∞((0,∞); X).

From the sketch of the proof contained in [91] it is clear that this re-
sult applies more generally to any Banach space X such that the following
condition is satisfied

‖fg‖X � (‖f‖X‖g‖∞ + ‖g‖X‖f‖∞),(210)

as is the case for the spaces quoted above as well as for the Sobolev space
Hs, s ≥ 1

2
.

5 Uniqueness theorems

In 1994 Jean Leray summarized the state of the art for the Navier-Stokes
equations in the following way [145]:
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“A fluid flow initially regular remains so over a certain interval of
time; then it goes on indefinitely; but does it remain regular and
well-determined? We ignore the answer to this double question.
It was addressed sixty years ago in an extremely particular case
[144]. At that time H. Lebesgue, questioned, declared: “Don’t
spend too much time for such a refractory question. Do something
different!” ”

This is not the case for T. Kato’s mild strong solutions for which a general
uniqueness theorem, that is the subject of this section, is available. In order
to appreciate the simplicity of its proof, let us start by recalling why the
uniqueness of weak solutions remains a challenging question.

5.1 Weak solutions

Before dealing with the uniqueness of weak solutions for Navier-Stokes, let us
examine a more general case. We consider the difference v1 − v2 of two weak
solutions v1 and v2 that, for the moment, may take different initial values,
(i.e. v1(0) − v2(0) is not necessarily zero), but with the same boundary
conditions, say v1(t, x) − v2(t, x) = 0 if x ∈ ∂Ω for all t > 0 (this is always
the case if we suppose the no-slip boundary conditions, v1 = v2 = 0 on
(0, T ) × ∂Ω)). Of course, if Ω is unbounded, this condition concerns the
behavior of the solutions at infinity.

We obtain

∂

∂t
(v1 − v2) + v1 · ∇(v1 − v2) + (v1 − v2) · ∇v2 = ∆(v1 − v2) −∇(p1 − p2)

(211)

and if we take the inner product 〈 , 〉 of L2(Ω) with (v1 − v2) we finally get

1

2

d

dt
‖v1 − v2‖2

2 + ‖∇(v1 − v2)‖2
2 = −〈(v1 − v2) · ∇v2, v1 − v2〉.(212)

In fact, since (v1 − v2)(t, x) = 0 if x ∈ ∂Ω for all t > 0, Green’s formula gives

〈v1 · ∇(v1 − v2), v1 − v2〉 = −〈∇ · v1, |v1 − v2|2〉 − 〈v1 · ∇(v1 − v2), v1 − v2〉 = 0
(213)

and

〈∇(p1 − p2), v1 − v2〉 = −〈p1 − p2,∇ · (v1 − v2)〉 = 0.(214)
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Thus, we obtain

1

2

d

dt
‖v1 − v2‖2

2 + ‖∇(v1 − v2)‖2
2 ≤ ‖∇v2‖∞‖v1 − v2‖2

2(215)

which finally gives, via Gronwall’s lemma, the estimate

‖(v1 − v2)(s)‖2
2 + 2

∫ s

0

‖∇(v1 − v2)‖2
2dt ≤ ‖(v1 − v2)(0)‖2

2 exp

(∫ s

0

2‖∇v2‖∞dt

)
(216)

and implies uniqueness of weak solutions as long as the (formal) manipula-
tions we have performed are justified and the quantity

∫ s

0
‖∇v2‖∞dt remains

bounded. In particular, this argument shows the uniqueness of classical
smooth solutions. More precisely, if one smooth weak solution, say v2, exists
and is such that

∫ s

0
‖∇v2‖∞dt remains bounded, then all weak solutions have

to coincide with it.
But there is another way to estimate the term −〈(v1 − v2) · ∇v2, v1 − v2〉,

say

|〈(v1 − v2) · ∇v2, v1 − v2〉| ≤ ‖∇v2‖2‖v1 − v2‖2
4(217)

which suggests the use of the Sobolev inequality

‖v1 − v2‖4 ≤ c‖v1 − v2‖
1−n

4
2 ‖∇(v1 − v2)‖

n
4
2(218)

where n = 2 or n = 3 denotes, as usual, the space dimension. Now, if
we consider the two cases separately, we obtain after some straightforward
calculations (see [108, 226]):

‖(v1 − v2)(s)‖2
2 ≤ ‖(v1 − v2)(0)‖2

2 exp

(

c

∫ s

0

‖∇v2‖2
2dt

)

(219)

if n = 2 and

‖(v1 − v2)(s)‖2
2 ≤ ‖(v1 − v2)(0)‖2

2 exp

(

c

∫ s

0

‖∇v2‖4
2dt

)

(220)

if n = 3.
If we make use of the energy inequality eq. (21), which is the only infor-

mation on weak solutions we can (and should) use here, it is easy to conclude
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and get a uniqueness result only in the case n = 2. In fact, nothing can be
said if n = 3 because, at variance with the case n = 2, the energy inequal-
ity does not allow us here to treat the term

∫ s

0
‖∇v2‖4

2dt. If we could, we
would of course not only obtain uniqueness, but also continuous dependence
on initial data and the full regularity of the solution.

A third way to obtain uniqueness was suggested by J. Serrin [200, 201]
and improved later on by many authors. The idea is that if some additional
integrability property is satisfied by at least one weak solution, more exactly
if v2 ∈ Ls((0, T ); Lr) and if 2/s + n/r = 1 with n < r ≤ ∞, then all
weak solutions have to coincide with it (recently, H. Kozono and Y. Taniuchi
in [123] considered the marginal case s = 2, r = ∞ in a larger class, say
v2 ∈ L2((0, T ); BMO)). In general, if v2 is a weak solution, it is possible
to prove that there exist s0 and r0 such that 2/s0 + n/r0 = n/2 so that
v2 ∈ Ls0((0, T ); Lr0). In particular, from this remark and Serrin’s criterion
we can recover, in the two dimensional case, the uniqueness result shown
above. But, again, in three dimension this is not enough to conclude.

Finally, concerning the critical exponents n = r and s = ∞, Serrin’s
result was adapted by W. von Wahl [223] (resp. by H. Kozono and H. Sohr
[122]) to obtain the following result. Suppose that one weak solution, say v2,
satisfies v2 ∈ C([0, T ); Ln) (resp. v2 ∈ L∞((0, T ); Ln)), then all weak solutions
have to coincide with it (for a different proof see the papers of P.-L. Lions
and N. Masmoudi [147, 148, 149]). More recently, the smoothness of such a
weak solution was proved by L. Escauriaza, G. Seregin and V. Sverák [73].
On the other hand, S. Montgomery-Smith announced in [171] a logarithmic
improvement over the usual Serrin condition.

These types of results are known under the equivalence “weak=strong”.
In other words it is possible to show that if there exists a more regular weak
solution, then the usual one (whose existence was proved by J. Leray) and
such a regular solution necessarily coincide. The moral of the story is that
if we postulate more regularity on weak solutions, then the uniqueness fol-
lows. In particular this argument shows that the uniqueness, the continuous
dependence on the initial data and the regularity problems for the Navier-
Stokes equations are closely related. In other words, any global weak solution
coincides with a more regular one as long as such a solution exists.

It is also clear from this remark and from the analysis performed in Section
3, that if a weak solution v exists and if the initial data v0 ∈ L3, then the
solution is a strong one on some interval [0, T ) with T > 0 (hence v(t) is
smooth for 0 < t < T ). Moreover, we may take T = ∞ if ‖v0‖3 is small
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enough. In fact, as we recalled in Section 3, there exists a strong solution
u ∈ C([0, T ); L3) with T > 0, with u0 = v0 and satisfying Serrin’s criterion.
This is a simple consequence of eq. (167) and follows directly from the result
by von Wahl [223] and by Kozono and Sohr [122] (see [112]).

On the other hand, we cannot apply the uniqueness result of von Wahl
to prove the uniqueness of mild solutions in C([0, T ); Lp) (neither for the
critical case p = 3 nor for the super-critical one p > 3) because the initial
data only belong to Lp and, in general, not to L2. There are of course
two exceptions: the case of a bounded domain and the case of the space
dimension 2. As a matter of fact, if Ωb is a bounded domain in R

3, by
means of the embedding Lp(Ωb) ↪→ L2(Ωb), if p > 2 (rather p ≥ 3 so that
the existence of a solution is guaranteed, as we have seen in Section 3) and
von Wahl’s uniqueness theorem, it is possible to prove that Leray’s weak
solutions coincide with Kato’s mild ones, so that their uniqueness follows in
a straightforward manner [90]. In the same way, if we consider R

2 instead of
R

3, it is obvious that the uniqueness criterion of von Wahl gives uniqueness
of mild solutions with data in the critical space L2(R2) (the super-critical
case Lq(R2), q ≥ 2 always being easier to treat as we are going to see in the
following section). In other words, once again, in two dimensions there is no
mystery concerning uniqueness: Leray’s theory, based on the energy space
L2(Rn), is in a perfect agreement with Kato’s one, based on the invariant
space Ln(Rn), because the two spaces involved coincide if n = 2.

5.2 Super-critical mild solutions

From the previous discussion it is clear that we will limit ourselves to the
case of the whole three-dimensional space R

3. Of course, mutatis mutandis,
the results of this and the following sections apply as usual to R

n, n ≥ 2,
as well. A very simple case is provided by the uniqueness of mild solutions
in super-critical spaces. For example, in the case of the Lebesgue spaces Lp,
p > 3, the following result holds true:

Theorem 11
Let 3 < p ≤ ∞ be fixed. For any v0 ∈ Lp, ∇ · v0 = 0, and any T > 0, there
exists at most a mild solution in C([0, T ); Lp) to the Navier-Stokes equations.
In other words, the solution v(t, x) given by Theorem 1 is unique in the space
C([0, T ); Lp).
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The proof of this property is so simple that we wish to sketch it here. Let
us suppose that v1(t, x) ∈ C([0, T ); Lp) and v2(t, x) ∈ C([0, T ); Lp) solve the
mild integral equation

vi(t) = S(t)v0 + B(vi, vi)(t), i = 1, 2,(221)

with the same initial data v0. Then, by taking the difference between these
equations

v1 − v2 = B(v1, v1 − v2) + B(v1 − v2, v2)(222)

and using eq. (138) we get

sup
0<t<T

‖(v1 − v2)(t)‖p � η(T, p)( sup
0<t<T

‖v1(t)‖p + sup
0<t<T

‖v2(t)‖p) sup
0<t<T

‖(v1 − v2)(t)‖p

(223)

where

η(T, p) =
T

1
2
(1− 3

p
)

1 − 3
p

.(224)

We can always take T = T ′ small enough in order to obtain

η(T ′, p)( sup
0<t<T ′

‖v1(t)‖p + sup
0<t<T ′

‖v2(t)‖p) < 1(225)

which obviously implies v1 = v2 in C([0, T ′); Lp). Now, it is also easy to see
that this argument can be iterated to get uniqueness up to time 2T ′ (and
so on to 3T ′ etc.). In other words, as explained in the papers by Kato and
Fujita [115] (page 254) and [85] (page 290), the iteration scheme is well-posed
and leads to uniqueness up to time T .

5.3 Critical mild solutions

In this Section we are interested in the proof of the uniqueness of the solution
given by Theorem 2. The historical details describing the achievement of this
result are contained in [34] and for a systematic approach of the existence
and uniqueness problem for mild solutions, the reader is also referred to the
papers of H. Amann [1].

Let us note from the very beginning that, by a simple application of
Lemma 4 and Theorem 3, it is always possible to ensure the uniqueness of
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a mild local solution v(t, x) in a critical space (e.g. C([0, T ); L3)) associated
with an initial datum (resp. v0 ∈ L3, ∇ · v0 = 0), if we just require that
it belongs to one of the auxiliary spaces described before (introduced by
Weissler, Calderón and Giga) and if the norm of the solution v(t, x) in such
a space is smaller than a given constant, (for example smaller than 2‖v0‖3,
as follows directly from (119), (121) and (122)). Even if this remark is trivial
and despite the fact that the condition under which the uniqueness is satisfied
is very restrictive, we will use this elementary uniqueness result in Section 6
devoted to the proof of existence of self-similar solutions for the Navier-Stokes
equations.

Since the introduction at the beginning of the 1960s of the mild formula-
tion of the Navier-Stokes equations by Kato and Fujita [85, 115], other results
were discovered, ensuring the uniqueness of the corresponding solution under
several regularity hypotheses near t = 0. In the simplest case, when the so-
lutions belong to C([0, T ); L3), these additional conditions are written [112]
limt→0 t

α
2 ‖v(t)‖q = 0, α = 1 − 3

q
, 3 < q < ∞, or [98], for the same values of

α and q, v ∈ L
2
α ((0, T ), Lq). In fact, as we described in detail in Section 3.4,

the use of one of these two auxiliary norms (corresponding to two auxiliary
subspaces of C([0, T ); L3)) makes it possible to apply the fixed point algo-
rithm to obtain the existence of mild solutions in C([0, T ); L3). This is the
reason why, in one of these subspaces, the uniqueness of the solution can be
guaranteed as well. For example, the following result was known since the
fundamental papers by Kato and Fujita.

Theorem 12
Let 3 < q ≤ ∞ be fixed. For any v0 ∈ L3, ∇ · v0 = 0, and any T >
0, there exists at most a mild solution to the Navier-Stokes equations such

that v(t, x) ∈ C([0, T ); L3), t
1
2
(1− 3

q
)v(t, x) ∈ C([0, T ); Lq) and the following

condition is satisfied

lim
t→0

t
1
2
(1− 3

q
)‖v(t)‖q = 0.(226)

In other words, using the notation of Section 3.4, Theorem 12 guarantees
uniqueness only in the subspace N∩Kq, 3 < q ≤ ∞. If q = ∞, the uniqueness
is treated in detail in [161]. If 3 < q < ∞, the proof follows directly from

Lemma 10. In fact, if vi, i = 1, 2 are two solutions that verify t
1
2
(1− 3

q
)vi(t, x) ∈

C([0, T ); Lq) and limt→0 t
1
2
(1− 3

q
)‖vi(t)‖q = 0 we have by Lemma 10 (here 3 <

q < ∞)
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sup0<t<T t
1
2
(1− 3

q
)‖(v1 − v2)(t)‖q � sup0<t<T t

1
2
(1− 3

q
)‖(v1 − v2)(t)‖q

( sup0<t<T t
1
2
(1− 3

q
)‖v1(t)‖q + sup0<t<T t

1
2
(1− 3

q
)‖v2(t)‖q)

(227)

and it is possible to chose T = T ′ small enough so that

( sup
0<t<T ′

t
1
2
(1− 3

q
)‖v1(t)‖q + sup

0<t<T ′
t

1
2
(1− 3

q
)‖v2(t)‖q) < 1,(228)

thus implying uniqueness (again, let us state that this argument can be
iterated in time).

Of course, the previous result is not satisfactory and one would expect
that the following result holds true.

Theorem 13
For any v0 ∈ L3, ∇ · v0 = 0, and any T > 0, there exists at most a mild
solution to the Navier-Stokes equations such that v(t, x) ∈ C([0, T ); L3).

The first proof of Theorem 13, say of the uniqueness in C([0, T ); L3)
without any additional hypothesis (that was followed by at least five dif-
ferent other proofs [138, 142]) was obtained in 1997 and was based on two
well-known ideas. The first one is that it is more simple to study the bi-
linear operator B(v, u)(t) in a Besov frame [31]; the second is that it is
helpful to distinguish in the solution v the contribution from the tendency
exp(t∆)v0 and from the fluctuation B(v, v)(t), the latter function always
being more regular than the former [31]. More precisely, G. Furioli, P.-
G. Lemarié and E. Terraneo in [89, 90] were able to prove the uniqueness
theorem in its optimal version, say Theorem 13, by using the bicontinu-
ity of the scalar operator B(f, g)(t) (and thus the vectorial as well) respec-

tively from L∞((0, T ); L3) × L∞((0, T ); L3) −→ L∞((0, T ); Ḃ
1
2
,∞

2 ) and from

L∞((0, T ); Ḃ
1
2
,∞

2 ) × L∞((0, T ); L3) −→ L∞((0, T ); Ḃ
1
2
,∞

2 ).
What is remarkable is that, contrary to what one would expect, the spaces

L3 and Ḃ
1
2
,∞

2 are not comparable. The fact that the Besov space of the pos-
itive regularity index played only a minor role in the paper [90] led natu-
rally to the question whether one could do without it. Some months after
the announcement of the uniqueness theorem of Lemarié and his students,
Y. Meyer showed how to improve this result. The distinction between the
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fluctuation and the tendency was not used, the time-frequency approach was
unnecessary and the Besov spaces did not play any role. Meyer’s proof short-
ened the problem to the bicontinuity of the bilinear term B(f, g)(t) in the
weak Lebesgue space L(3,∞) and more precisely, as stated in Proposition 9, in
C([0, T ); L(3,∞)) [161]. This result by itself is even more surprising because,
as we recalled in Section 3, F. Oru proved otherwise that, in spite of all the
cancellations that it contains, the full vectorial bilinear term B(v, u)(t) is not
continuous in C([0, T ); L3) [177].

Let us now see how Proposition 9 simply implies Theorem 13. Let v1

and v2 two mild solutions in C([0, T ); L3) with same initial data v0 ∈ L3 and
consider their difference

v1 − v2 = B(v1, v1 − v2) + B(v1 − v2, v2) =
= B(v1 − S(t)v0, v1 − v2) + B(S(t)v0, v1 − v2)+

+B(v1 − v2, v2 − S(t)v0) + B(v1 − v2, S(t)v0)
(229)

Now, by means of Proposition 9 (via the embedding L3 ↪→ L(3,∞)) and of a
slight modification of Lemma 18, we get the following estimate

sup0<t<T ‖(v1 − v2)(t)‖L3,∞ � sup0<t<T ‖(v1 − v2)(t)‖L3,∞(sup0<t<T t
1
2
(1− 3

q
)‖S(t)v0‖q+

+ sup0<t<T ‖v1 − S(t)v0‖L3 + sup0<t<T ‖v2 − S(t)v0‖L3)

(230)

where q can be chosen in the interval 3 < q ≤ ∞ (for instance q = ∞ in the
proof contained in [161]). Finally, it is possible to chose T = T ′ small enough
so that

( sup
0<t<T ′

t
1
2
(1− 3

q
)‖S(t)v0‖q + sup

0<t<T ′
‖v1 − S(t)v0‖L3 + sup

0<t<T ′
‖v2 − S(t)v0‖L3) < 1,

(231)

this property being a direct consequence of Lemma 9 and of the strong con-
tinuity in time of the L3 norm of the solutions v1 and v2. From this estimate
we deduce that locally in time v1 − v2 is equal to zero in the sense of distri-
bution, thus v1 − v2 is equal to zero in L3 in the interval 0 ≤ t ≤ T ′ and the
argument can of course be iterated in the time variable.

The proof of the uniqueness of the solution in the more general cases
given by Theorems 3, 4 and 5 (say, when the initial data belongs to a Besov
space) is contained in [90].
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To conclude, we wish to present a different proof of the uniqueness result
from the one contained in [161], Proposition 9. In fact, following [33, 43], we
will give here a more precise result.

Proposition 10
Let 3

2
< q < ∞ and 0 < T ≤ ∞ be fixed. The bilinear operator B(f, g)(t) is

bicontinuous from L∞((0, T ); L(3,∞))×L∞((0, T ); L(3,∞)) −→ L∞((0, T ); Ḃ
3
q
−1,∞

q ).

We will prove this proposition by duality, as we did in the proof of Lemma
20 and Lemma 21. Let us consider a test function χ(x) ∈ C∞

0 and evaluate
the duality product in R

3 with the bilinear term. We get

|〈B(f, g)(t), χ〉| ≤
∫ t

0

|〈s−2Θ

( ·√
s

)

∗ χ, (fg)(t − s)〉|ds.(232)

If we had at our disposal a generalization of the classical Young’s inequal-
ity

‖a ∗ b‖∞ ≤ ‖a‖ 3
2
‖b‖3,(233)

we could hope to modify the following argument that gives the continuity of
B(f, g) from L∞((0, T ); L3) × L∞((0, T ); L3) −→ L∞((0, T ); Ḃ1,∞

3/2 ), that is

|〈B(f, g)(t), χ〉| ≤ (sup0<t<T ‖fg(t)‖3/2)
∫ t

0

∥
∥
∥s−2Θ

(
·√
s

)
∗ χ

∥
∥
∥

3
ds

≤ 2(sup0<t<T ‖f(t)‖3)(sup0<t<T ‖g(t)‖3)
∫ ∞

0
u

∥
∥ 1

u3 Θ
( ·

u

)
∗ χ

∥
∥

3
du
u

� (sup0<t<T ‖f(t)‖3)(sup0<t<T ‖g(t)‖3)‖χ‖Ḃ−1,1
3

,

(234)

the last estimate being a consequence of the equivalence of Besov norms given
in Proposition 3.

Now, the generalized Young’s inequality applied to the weak Lebesgue
spaces [109],

‖a ∗ b‖r ≤ Cp,q‖f‖p‖g‖(q,∞)(235)

holds only if 1 < p, q, r < ∞ and p−1 + q−1 = 1+ r−1. Thus, there is no hope
of modifying eq. (233).
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To circumvent such a difficulty, we will decompose the kernel Θ in two
parties Θ1 and Θ2 defined by their Fourier transforms as

Θ̂1(ξ) =: |ξ|e−
|ξ|2
2(236)

and

Θ̂2(ξ) =: e−
|ξ|2
2 ,(237)

in such a way that

|ξ| exp[−s|ξ|2] =
1√
s
Θ̂(

√
sξ) =

1√
s
Θ̂1(

√
sξ)Θ̂2(

√
sξ).(238)

With this decomposition, we can write, by taking the inverse Fourier
transform (p and q being conjugate exponents)

|〈B(f, g)(t), χ〉| ≤
∫ t

0

∣
∣
∣
∣

〈

s−2Θ1

(
·√
s

)
∗ χ,

(
1√
s

)3

Θ2

(
·√
s

)
∗ fg(t − s)

〉∣
∣
∣
∣ ds

≤
∫ t

0

∥
∥
∥
∥

(
1√
s

)3

Θ2

(
·√
s

)
∗ fg(t − s)

∥
∥
∥
∥

q

∥
∥
∥s−2Θ1

(
·√
s

)
∗ χ

∥
∥
∥

p
ds

(239)

and Young’s generalized inequality (3/2 < q < ∞, q−1 + 1 = α−1 + 2/3)

∥
∥
∥
∥

(
1√
s

)3

Θ2

(
·√
s

)
∗ fg(t − s)

∥
∥
∥
∥

q

�
∥
∥
∥
∥

(
1√
s

)3

Θ2

(
·√
s

)∥
∥
∥
∥

α

‖fg(t − s)‖(3/2,∞)

� s−
3
2
( 2
3
− 1

q
)‖fg(t − s)‖(3/2,∞)

(240)

allows to conclude

|〈B(f, g)(t), χ〉| ≤ (sup0<t<T ‖fg(t)‖(3/2,∞))
∫ t

0

‖s−2Θ1

(
·√
s

)
∗χ‖p

s
3
2 ( 2

3− 1
q )

ds

≤ 2(sup0<t<T ‖f(t)‖(3,∞))(sup0<t<T ‖g(t)‖(3,∞))
∫ ∞

0

‖ 1
u3 Θ1( ·

u)∗χ‖p

u
1− 3

q

du
u

� (sup0<t<T ‖f(t)‖(3,∞))(sup0<t<T ‖g(t)‖(3,∞))‖χ‖
Ḃ

1− 3
q ,1

p

.

(241)

In order to make use of Proposition 10 in the proof of Theorem 13 we
need a classical result (see [7]).
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Lemma 24
The following embedding are continuous: Ḃ

3
q
−1,∞

q ↪→ L(3,∞) for any 0 < q < 3

and L(3,∞) ↪→ Ḃ
3
q
−1,∞

q for any 3 < q < ∞.

Without losing generality, let us prove this lemma only when q = 2. In
order to do this, we make use of the characterization of Besov and weak
Lebesgue spaces given by the interpolation theory as stated in eq. (115) (see
[7])

(L2, L4)(2/3,∞) = L(3,∞)(242)

and

(Ḃ0,1
2 , Ḃ

3
4
,1

2 )(2/3,∞) = Ḃ
1
2
,∞

2 .(243)

Now, as

Ḃ0,1
2 ↪→ L2(244)

and

Ḃ
3
4
,1

2 ↪→ Ḃ0,1
4 ↪→ L4,(245)

we get the required result

Ḃ
1
2
,∞

2 ↪→ L(3,∞).(246)

Proposition 9 is proved and Theorem 13 follows (see [161]).

6 Self-Similar solutions

The viscous flows for which the profiles of the velocity field at different times
are invariant under a scaling of variables are called self-similar. More pre-
cisely, we are talking about solutions to the Navier-Stokes equations






∂v
∂t

− ν∆v = −(v · ∇)v −∇p
∇ · v = 0
v(0) = v0

(247)
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such that

v(t, x) = λ(t)V (λ(t)x), p(t, x) = λ2(t)P (λ(t)x)(248)

λ(t) being a function of time, P (x) a function of x and V (x) a divergence
free vector field.

Two possibilities arise in what follows.

Definition 10 (Backward)
A backward self-similar solution is a solution of the form (248), where λ(t) =

1√
2a(T−t)

, a > 0, T > 0 and t < T . As such, V (x) and P (x) solve the system

{
−ν∆V + aV + a(x · ∇)V + (V · ∇)V + ∇P = 0
∇ · V = 0.

(249)

Definition 11 (Forward)
A forward self-similar solution is a solution of the form (248), where λ(t) =

1√
2a(T+t)

, a > 0, T > 0 and t > −T . As such, V (x) and P (x) solve the

system

{
−ν∆V − aV − a(x · ∇)V + (V · ∇)V + ∇P = 0
∇ · V = 0.

(250)

6.1 Backward: singular

The motivation for studying backward self-similar solutions is that, if they
exist, they would possess a singularity when t = T ; indeed limt↗T ‖∇v(t)‖2 =
∞. In 1933, J. Leray remarked that if a weak solution v becomes “turbulent”
at a time T , then the quantity u(t) = supx∈R3

√
v · v has to blow-up like

1√
2a(T−t)

when t tends to T . Furthermore, he suggested, without proving

their existence, to look for backward self-similar solutions. His conclusion
was the following [143]:

“[ . . . ] unfortunately I was not able to give an example of such
a singularity [ . . . ]. If I had succeeded in constructing a solu-
tion to the Navier equations that becomes irregular, I would have
the right to claim that turbulent solutions not simply reducing to
regular ones do exist. But if this position were wrong, the notion
of turbulent solution, that for the study of viscous fluids will not
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play a key role any more, would not lose interest: there have to
exist some problems of Mathematical Physics such that the physi-
cal causes of regularity are not sufficient to justify the hypothesis
introduced when the equations are derived; to these problems we
can apply similar considerations of the ones advocated so far”.

The first proof of the nonexistence of backward self-similar solutions suf-
ficiently decreasing at infinity seems to have been given by a physicist at the
beginning of the 1970s in a somewhat esoteric paper, written by G. Rosen
[196]. Another argument for the nonexistence of nontrivial solutions to the
system (249) was given by C. Foias and R. Temam in [79].

But the mathematical proof for the nonexistence of backward self-similar
solutions as imagined by J. Leray was available in functional spaces only
later, in 1996, thanks to the works of the Czech school of J. Nečas.

In a paper published in the French Academy “Comptes Rendus” [173] –
the last one to be presented by J. Leray (1906-1998) – J. Nečas, M. Růžička
and V. Šverák announced that any weak solution V to the Navier-Stokes
equations (249) belonging to the space L3 ∩ W 1,2

loc reduces to the zero solu-
tion. The proof of this remarkable statement [174] is based on asymptotic
estimates at infinity (in the Caffarelli-Kohn-Nirenberg sense) for the func-
tions V and P as well as for their derivatives, and on the maximum principle
for the function Π(x) = 1

2
|V (x)|2 + P (x) + ax · V (x) on a bounded domain

of R
3. A different approach to obtain the same result, without using the

Caffarelli-Kohn-Nirenberg theory, but under the more restrictive condition
V ∈ W 1,2 was proposed afterwards by J. Málek, J. Nečas, M. Pokorný and
M.E. Schonbek [150] (see also [164] for a generalization of the method to the
proof of non-existence of pseudo self-similar solutions).

Now, if we impose that the norms of v that appear naturally in the energy
equality derived from (247) are finite, we get the estimates

∫

R3 |V |2 < ∞ and∫

R3 |∇V |2 < ∞, i.e. V ∈ W 1,2 which implies V ∈ L3, by Sobolev embedding.
But if, on the contrary, we only impose that the local version of the energy
equality is finite, in other words V ∈ W 1,2

loc , we get some conditions that do
not imply V ∈ L3. This case, left open in [150, 174], was solved by T.P. Tsai
and gave origin to the following theorem [218, 141]:

Theorem 14
Any weak backward self-similar solution V to the Navier-Stokes equations

(249) belonging either to the space Lq, 3 < q < ∞ or to W 1,2
loc reduces to the

zero solution.
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6.2 Forward: regular or singular

As we will see in this Section, the situation is more favorable in the case of
mild forward self-similar solutions. In fact, since the pioneering paper of Y.
Giga and T. Miyakawa [105], we know of the existence of many mild forward
self-similar solutions of the type (248) with λ(t) = 1√

t
. These solutions cannot

be of finite energy. In fact, if we consider the inner product between V and
the equation (250) and integrate by parts in the whole space, we get, if V is
sufficiently decreasing at infinity

∫

R3

|∇V |2 + a

∫

R3

|V |2 = 0 .(251)

Finally, this equality results in the conclusion that V = 0, in particular when
V ∈ W 1,2. (It is important to stress here that such a conclusion is not true
for backward self-similar solutions because of the difference of signs in (249)
and (250)).

This is why Giga and Miyakawa suggested, as an alternative to Sobolev
spaces, to consider the Morrey-Campanato ones. They succeeded in proving
the existence and the uniqueness of mild forward self-similar solutions to
the Navier-Stokes equations written in terms of the vorticity as unknown,
without applying their method to the Navier-Stokes equations in terms of the
velocity. Four years later, P. Federbush [76, 77] considered the super-critical
Morrey-Campanato spaces Ṁ q

2 , 3 < q < ∞ for these equations. The critical
space Ṁ3

2 was treated shortly after by M. Taylor [208] who, surprisingly, did
not take advantage of this space which contains homogeneous functions of
degree −1, to get the existence of self-similar solutions as shown in [31].

As pointed out in the previous section, a remarkable property of the Besov
spaces is that they contain homogeneous functions of degree −1 among their
elements, such as e.g. |x|−1. This is a crucial point if we look for solutions
to the Navier-Stokes equations which satisfy the scaling property

v(t, x) = vλ(t, x) = λv(λ2t, λx) ∀λ > 0(252)

or, equivalently, taking λ2t = 1, such that

v(t, x) =
1√
t
V (

x√
t
).(253)
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In fact, whenever they exist, these particular (a = 1/2 and T = 0) for-
ward self-similar solutions v(t, x) are such that their initial value v(0, x) is a
homogeneous function of degree −1.

We will show here how to obtain, by using a generalization of Kato’s
celebrated Theorem 3, the existence of mild forward self-similar solutions
v(t, x) with initial data v0 homogeneous of degree −1, divergence-free and
sufficiently small in a Besov space. In [31, 32, 41, 42], we showed how to
construct mild forward self-similar solutions for the Navier-Stokes equations
(247), by using Besov spaces. In particular, the existence of regular forward
self-similar solutions of the form 1√

t
V ( x√

t
) with V ∈ Lq and 3 < q < ∞ is

contained as a corollary in [31]. The main idea of the aforementioned papers
is to study the Navier-Stokes equations by the fixed point algorithm in a
critical space containing homogeneous functions of degree −1. Furthermore,
as noted later by F. Planchon [180], the equivalence between the integral
mild equation and the elliptic problem (250) is completely justified.

The result we are talking about is the following.

Theorem 15
Let 3 < q < ∞, and α = 1 − 3

q
be fixed. There exists a constant δq > 0 such

that for any initial data v0 ∈ Ḃ−α,∞
q , homogeneous of degree −1, ∇ · v0 = 0

in the sense of distributions and such that

‖v0‖Ḃ−α,∞
q

< δq,(254)

then there exists a global mild forward self-similar solution v(t, x) to the
Navier-Stokes equations such that

v(t, x) =
1√
t
V (

x√
t
)(255)

where V (x) is a divergence free function belonging to Ḃ−α,∞
q ∩ Lq.

The proof of these results follows by a simple modification of Theorem 3,
once we recall that it is always possible to ensure the uniqueness of a mild
solution v(t, x) in a critical space, if the norm of the solution v(t, x) in such a
space is smaller than a given constant (see Section 5.3). In fact, suppose that
v(t, x) solves Navier-Stokes with a datum v0 ∈ Ḃ−α,∞

q such that v0 = λv0(λx),
∀λ > 0, then the corresponding solution v(t, x), whose uniqueness is ensured
if sup0<t<∞ tα/2‖v(t, x)‖q ≤ C, has to coincide with λv(λ2t, λx), ∀λ > 0, for
the latter inequality is invariant under the same self-similar scaling.
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Since 1995, O. Barraza has suggested replacing the Besov spaces with the
Lorentz ones L(3,∞) (see also H. Kozono and M. Yamazaki’s results [129, 130,
227]), always with the aim of proving the existence of forward self-similar
solutions [4], but he did not achieve the bicontinuity of the bilinear operator
in this space. This result was proven later by Y. Meyer (see Proposition 9),
and was applied, not only to obtain the uniqueness of Kato’s mild solutions
(Theorem 13), but also to prove the existence of forward self-similar solutions.
More precisely:

Theorem 16
There exists a constant δ > 0 such that for any initial data v0 ∈ L(3,∞),
homogeneous of degree −1, ∇ · v0 = 0 in the sense of distributions and such
that

‖v0‖L(3,∞) < δ,(256)

then there exists a global mild forward self-similar solution v(t, x) to the
Navier-Stokes equations such that

v(t, x) =
1√
t
V (

x√
t
)(257)

where V (x) is a divergence free function belonging to L(3,∞).

Once again, the proof of this theorem is trivial if we recall the bicontinuity
of the bilinear term B(f, g)(t) in C([0, T ); L(3,∞)) [161] (see Proposition 9).
This result shows that there is no need for Fourier transform or Besov spaces
to prove the existence of self-similar solutions for Navier-Stokes.

As we have already pointed out, Y. Le Jan and A.-S. Sznitman [134, 135]
gave an even simpler ad hoc setting to prove such a result. The space they
introduced is defined, however, by means of a Fourier transform condition.
More exactly, following the notations of Section 2.5.3,

ψ ∈ PM2 if and only if ψ̂ ∈ L1
loc and ‖ψ‖PM2 = sup

ξ
|ξ|2|ψ̂(ξ)| < ∞.

(258)

Now, according to the simplified version of Y. Le Jan and A.-S. Sznitman’s
result contained in [43], we have:
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Theorem 17
The bilinear operator B(f, g) is bicontinuous from L∞

t (PM2) × L∞
t (PM2)

into L∞
t (PM2). Therefore there exists a unique global mild solution to the

Navier-Stokes equations in L∞
t (PM2) provided the initial data is divergence-

free and sufficiently small in PM2.

Note that the authors made use of some probabilistic tools in [134, 135]
requiring rather subtle techniques to obtain the continuity of the bilinear op-
erator. More precisely, the main idea contained in these papers is to study the
non linear integral equation verified by the Fourier transform of the Lapla-
cian of the velocity vector field associated with the “deterministic equations”
of Navier-Stokes. This integral representation involves a Markovian kernel
Kξ, associated to the branching process, called stochastic cascades, in which
each particle located at ξ �= 0, after an exponential holding time of parameter
|ξ|2, with equal probability either dies out or gives birth to two descendants,
distributed according to Kξ. By taking the inverse Fourier transform one
can thus obtain a solution to the Navier-Stokes equations ..... arising from a
sequence of cascades !

However, as pointed out in [43], in the particular case of the pseudo-
measures, Theorem 17 is a straightforward consequence of the fixed point
algorithm and it is enough to show why the bilinear operator is bicontinuous.
We work in Fourier space, with f̂ and ĝ instead of f and g. A standard
argument (rotational invariance and homogeneity) shows that [206, 207]

1

|ξ|2 ∗ 1

|ξ|2 � C

|ξ| .(259)

Thus

B̂(f, g)(t, ξ) =

∫ t

0

|ξ|e−(t−s)|ξ|2 f̂(s) ∗ ĝ(s) ds,(260)

and, upon using (259),

sup
t,ξ

(|ξ|2|B̂(t)|) � sup
t,ξ

(|ξ|2|f̂(t)|) sup
t,ξ

(|ξ|2|ĝ(t)|) sup
t,ξ

∫ t

0

|ξ|2e−(t−s)|ξ|2ds.(261)

This last integral is in turn less than unity, which concludes the proof
once the fixed point algorithm is recalled.

Finally, the norm of the space PM2 being critical in the sense of Defini-
tion 9, the following result can be easily deduced from the previous estimate.
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Theorem 18
There exists a constant δ > 0 such that for any initial data v0 ∈ PM2,
homogeneous of degree −1, ∇ · v0 = 0 in the sense of distributions and such
that

‖v0‖PM2 < δ,(262)

then there exists a global mild forward self-similar solution v(t, x) to the
Navier-Stokes equations such that

v(t, x) =
1√
t
V (

x√
t
)(263)

where V (x) is a divergence-free function belonging to PM2.

Remark. As far as backward self-similar solutions are concerned, we can
exclude the existence of singularities for the Navier-Stokes equations simply
by using Nečas, Růžička and Šverák and Tsai’s results. However, singular
forward self-similar solutions may exist. More precisely, there is a substantial
difference between the self-similar solutions constructed in Theorem 15 and
those constructed in Theorems 16 and 18. Both have a singularity at time
t = 0 (of the type ∼ 1/|x|), but the solution constructed in Theorem 15
becomes instantaneously smooth for t > 0, whereas this property cannot be
ensured a priori for the other two families of self-similar solutions. The reason
is the following. Even if they are both issued from the fixed point algorithm,
the solutions in Theorem 15 and in Theorems 16 and 18 are constructed in a
very different way. In the first case, in order to overcome the difficulty (and
sometimes the impossibility) of proving the continuity of the bilinear estimate
in the so-called critical spaces, we had to make use of Kato’s celebrated idea
of considering two norms at the same time. The so called natural norm and
the auxiliary regularizing norm. As such, Kato’s approach imposes a priori
a regularization effect on the solutions we look for. In other words, they
are considered as fluctuations around the solution of the heat equation with
the same initial data. In the case of the self-similar solution arising from
Theorem 15, this regularity condition is imposed by the Lebesgue norm.
More explicitly, not only does the divergence-free function V (x) belong to
the Besov space Ḃ−α,∞

q , but also to Lq, which is not a priori the case for the
solutions in Theorems 16 and 18.
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For people who believe in blow-up and singularities, this a priori condition
coming from the two norms approach is indeed very strong. In other words,
at variance with Leray’s approach, Kato’s algorithm does not seem to provide
a framework for studying a priori singular solutions. However, as we have
seen in the previous pages, two exceptions exist, i.e. two critical spaces
where Kato’s method applies with just one norm: the Lorentz space L(3,∞)

(considered independently by H. Kozono and M. Yamazaki [129, 130, 227],
O. Barraza [4, 5], Y. Meyer [161]) and the pseudo-measure space of Y. Le
Jan and A.-S. Sznitman [134, 135]. The approach with only one norm gives
the existence of a solution in a larger space which, in our case, contains
genuinely singular solutions that are not smoothened by the action of the
nonlinear semi-group associated.

The importance of this remark will be clear in Section 6.4, where we will
construct explicit forward self-similar solutions, singular for any time t ≥ 0,
and we will suggest how to obtain loss of smoothness for solutions with large
data.

If the debate concerning singularities is still open, as far as Besov spaces
and harmonic analysis tools are concerned, it is clear that they have nothing
to do with the existence (Theorem 16) or non-existence (Theorem 14) of
self-similar solutions.

6.3 Asymptotic behavior

Finding self-similar solutions is important because of their possible connec-
tion with attractor sets. In other words, they are related to the asymp-
totic behavior of global solutions of the Navier-Stokes equations. A heuristic
argument is the following: let v(t, x) be a global solution to the Navier-
Stokes system, then, for any λ > 0, the function vλ(t, x) =: λv(λ2t, λx) is
also a solution to the same system. Now, if in a “certain sense” the limit
limλ→∞ vλ(t, x) =: u(t, x) exists, then it is easy to see that u(t, x) is a self-
similar solution and that limt→∞

√
tv(t,

√
tx) = u(1, x). In [180, 182, 183]

F. Planchon gave the precise mathematical frame to explain the previous
heuristic argument (see also Y. Meyer [159], O. Barraza [5] and, for more
general nonlinear equations, G. Karch [111]).

As we suggested among the open problems in [31], the existence of self-
similar solutions also evokes the study of exact solutions for Navier-Stokes.
In the following section, we will describe the result of G. Tian and Z. Xin,
who gave an explicit one-parameter family of self-similar solutions, singular
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in a single point [213], and we will show how to interpret their result as a
loss of smoothness for large data.

We would like to mention here the papers of H. Okamoto [175, 176] that
contain a systematic study of exact solutions of the systems (249) and (250).
These results merit attention, especially since the resolution of these elliptic
equations seems very difficult. Among the possible applications, one could
apply mild solutions in the sub-critical case, for which neither the existence
nor the uniqueness is known (see also [34]) unless some restriction are required
(see [29, 30, 140]).

More precisely, let us suppose that we can prove the existence of a non-
trivial self-similar solution v(t, x) = 1√

t
V ( x√

t
) – in other words a solution V of

(250) – with V ∈ Lp and 1 ≤ p < 3. Then the Cauchy problem associated to
the zero initial data would allow two different solutions, viz. v and 0, both be-
longing to C([0, T ); Lp). In fact, limt→0 ‖ 1√

t
V ( x√

t
)‖p = 0, provided 1 ≤ p < 3.

And the Cauchy problem would be ill-posed in C([0, T ); Lp), 1 ≤ p < 3 in
the same way that it is ill-posed for a semi-linear partial differential equation
studied in 1985 by A. Haraux and F.B. Weissler [106].

This point of view should confirm the conjecture formulated by T. Kato
[114], according to which the Cauchy problem is ill-posed in the sense of Ha-
damard when 1 ≤ p < 3. In the case p = 2, for example, we will not obtain
a unique, global and regular solution and the scenario imagined by J. Leray
would be possible. We will come back to this question in Section 7.2.

Finally, let us quote the book of Y. Giga and M.-H. Giga [100] “Nonlinear
Partial Differential Equations–Asymptotic Behaviour of Solutions and Self-
Similar Solutions”, whose English translation should be available soon, that
contains one of the most comprehensive and self-contained state of the art of
the results available in this direction for the Navier-Stokes and other partial
differential equations (e.g. the porous medium, the non-linear Schrödinger
and the KdV equations).

6.4 Loss of smoothness for large data ?

As we recalled in the Introduction, a question intimately related to the
uniqueness problem is the regularity of the solutions to the Navier-Stokes
equations. Several possibilities can be conjectured. One may imagine that
blow-up of initially regular solutions never happens, or that it becomes more
likely as the initial norm increases, or that there is blow-up, but only on a
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very thin set of probability zero.
As we have seen in Section 3, when using a fixed point approach, existence

and uniqueness of global solutions are guaranteed only under restrictive as-
sumptions on the initial data, that is required to be small in some sense, i.e.
in some functional space. In Section 4 we pointed out that fast oscillations
are sufficient to make the fixed point scheme work, even if the norm in the
corresponding function space of the initial data is arbitrarily large (in fact, a
different auxiliary norm turns out to be small). Here we would like to suggest
how some particular data, arbitrarily large (not oscillating) could give rise
to singular solutions. It is extremely unpleasant that we have no criteria to
decide whether for arbitrarily large data the corresponding solution is regular
or singular.

As observed by J.G. Heywood in [108], in principle “it is easy to construct
a singular solution of the NS equations that is driven by a singular force. One
simply constructs a solenoidal vector field u that begins smoothly and evolves
to develop a singularity, and then defines the force to be the residual.”

Recently, G. Tian and Z. Xin [213] found explicit formulas for a one-
parameter family of stationary “solutions” of the 3-dimensional Navier-Stokes
system (1) “with φ ≡ 0” which are regular except at a given point. These
explicit “solutions” agree with those previously obtained by L. Landau for
special values of the parameter (see [132, 133]). Due to the translation
invariance of the Navier-Stokes system, one can assume that the singular
point corresponds to the origin. More exactly, the main theorem from [213]
reads as follows. All solutions to the Navier-Stokes system (with φ ≡ 0)
u(x) = (u1(x), u2(x), u3(x)) and p = p(x) which are steady, symmetric about
x1-axis, homogeneous of degree −1, regular except (0, 0, 0) are given by the
following explicit formula:

u1(x) = 2
c|x|2 − 2x1|x| + cx2

1

|x|(c|x| − x1)2
, u2(x) = 2

x2(cx1 − |x|)
|x|(c|x| − x1)2

,(264)

u3(x) = 2
x3(cx1 − |x|)
|x|(c|x| − x1)2

, p(x) = 4
cx1 − |x|

|x|(c|x| − x1)2

where |x| =
√

x2
1 + x2

2 + x2
3 and c is an arbitrary constant such that |c| > 1.

It is clear that these stationary “solutions” are self-similar, because they
do not depend on time and they are homogeneous of degree −1 in the space
variable. Moreover, there is no hope of describing the “solutions” given by
eq. (264) in Leray’s theory, because they are not globally of finite energy; in
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other words, they do not belong to L2. However, they do belong to L2
loc and

this is at least enough to allow us to give a (distributional) meaning to the
non-linear term (v · ∇)v = ∇ · (v ⊗ v). Finally, as pointed out at the end of
Section 6.2, the “solutions” discovered by Tian and Xin cannot be analyzed
by Kato’s two norms method either, because they are global but not smooth.
More precisely, they are singular at the origin with a singularity of the kind
∼ 1/|x| for all time.

There are at least two ad hoc frameworks for studying such singularity
within the fixed point scheme and without using the two norms approach. We
are thinking of the Lorentz space L(3,∞) ([37]) and the pseudo-measure space
PM2 ([38]), because they both contain singularities of the type ∼ 1/|x|.
However, the latter space has the advantage that not is only the definition of
its norm very elementary and simplifies the calculations, it will also allow us
to treat singular (Delta type) external force, that precisely arise from Tian
and Xin’s “solutions”.

More exactly, by straightforward calculations performed in [38], one can
check that, indeed, (u1(x), u2(x), u3(x)) and p(x) given by (264) satisfy the
Navier-Stokes equations with φ ≡ 0 in the pointwise sense for every x ∈
R

3\{(0, 0, 0)}. On the other hand, if one treats (u(x), p(x)) as a distributional
or generalized solution to the Navier-Stokes equations in the whole R

3, they
correspond to the very singular external force φ = (bδ0, 0, 0), where δ0 stands
for the Dirac delta and the parameter b depends on c and lim|c|→∞ b(c) = 0.
As such, if c is small enough, the existence of these solutions can be ensured
as well via the fixed point algorithm as in [37, 38].

The stationary solutions defined in (264) are singular with singularity of
the kind O(1/|x|) as |x| → 0. This is a critical singularity, because as it
was shown by H.J.Choe and H.Kim [63], every pointwise stationary solution
to the Navier-Stokes system with F ≡ 0 in BR \ {0} = {x ∈ R

3 : 0 <
|x| < R} satisfying u(x) = o(1/|x|) as |x| → 0 is also a solution in the
sense of distributions in the whole BR. Moreover, it is shown in [63] that
under the additional assumption u ∈ Lq(BR) for some q > 3, then the
stationary solution u(x) is smooth in the whole ball BR. In other words,
if u(x) = o(1/|x|) as |x| → 0 and u ∈ Lq(BR) for some q > 3, then the
singularity at the origin is removable.

We are now ready to state our remark about a possible loss of regularity
of solutions with large data (see [38]).

Remark. Let us consider the Navier-Stokes equations with external force
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φ ≡ 0. Then, if one defines the functions uε(x, 0) = εu(x), where u(x) is the
(divergence-free, homogeneous of degree −1) function given by (264) as the
initial data, then for small ε the system has a global regular (self-similar)
solution which is even more regular than a priori expected and for ε = 1 the
system has a singular “solution” for any time. The fact that, for small ε and
external force φ ≡ 0 for every x ∈ R

3, the solution is smooth follows from a
parabolic regularization effect analyzed in [38]. On the other hand, if ε > 1
nothing can be said in general and the corresponding solution can be regular
or singular.

After a more careful analysis, it is easy to see that this remark does not
apply in the “distributional” sense, but as explained before only “pointwise”
for every x ∈ R

3 \ {(0, 0, 0)}. However, for a model equation of gravitating
particles (for which, moreover, blow-up is known), this loss of smoothness
for large data holds in the distributional sense and will be dealt with in a
forthcoming paper [15].

7 Stability

As we have seen in the previous Sections, when using a fixed point approach,
existence and uniqueness of global solutions are guaranteed only under re-
strictive assumptions on the initial data, that is required to be small in some
sense, i.e. in some functional space. In Section 4 we pointed out that fast
oscillations are sufficient to make the fixed point scheme work, even if the
norm in the corresponding function space of the initial data is arbitrarily
large (in fact, a different auxiliary norm turns out to be small). On the other
hand, in Section 6 we suggested how arbitrarily large data (not oscillating)
could give rise to irregular solutions: in general, we do not know whether for
arbitrarily large data the corresponding solution is regular or singular.

For the Navier-Stokes equations one might consider the entire question
irrelevant, for the solution is unique and regular for small initial data and
no viscous flow can be considered incompressible if the initial data are too
large. The problem here is different: the set (δ > 0) of initial data for
which one can ensure the existence and the uniqueness (‖v0‖ < δ) is not
known precisely and could be too small, and the result meaningless from
a physical point of view. In other words, the initial data as well as the
unique corresponding solution would be “physically” zero! The “physical”
role played by the smallness assumption on the initial data will be dealt
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with in this Section. More precisely, we will make the link between this
property, the stability of the corresponding global solution and the existence
of Lyapunov functions.

First of all, let us note that the smallness condition is not absolute, but
relative to the viscosity ν and, if we do not rescale the variables as we did in
Section 3.2, this condition is written ‖v0‖/ν < δ. Now, if we interpret ‖v0‖ as
the characteristic velocity of the problem and we suppose (in the whole space
R

3 or T
3) the characteristic length is normalized to unity, then the quotient

R =: ‖v0‖/ν can be interpreted as a Reynolds number associated with the
problem. More precisely, the complexity of the Navier-Stokes equations is
essentially due to the competition between the nonlinear convection term ρ(v·
∇)v, and the linear term of viscous diffusion, µ∆v. The order of magnitude
of the quotient between these terms (dimension equation)

|ρ(v · ∇)v|
|µ∆v| ≡ ρ

µ

V 2/L

V/L2
=

LV

ν
=: R(265)

defines a dimensionless quantity R, called Reynolds number, that allows a
comparison of the inertial forces and the viscosity ones.

Thus, the condition giving the existence and uniqueness of Kato’s (global
and regular) solution is nothing but by the smallness of a dimensionless
Reynolds number associated with the problem. At this point it would be
tempting to prove that for Reynolds numbers that are too large, the solution
does not exist, or is not regular or simply not unique. This point of view
would be confirmed by the image of developed turbulence formulated in 1944
by L.D. Landau [133]:

“Yet not every solution of the equations of motion, even if exact,
can actually occur in Nature. The flows that occur in Nature must
not only obey the equations of fluid dynamics, but also be stable.
For the flow to be stable it is necessary that small perturbations,
if they arise, should decrease with time. If, on the contrary, the
small perturbations which inevitably occur in the flow tend to in-
crease with time, then the flow is absolutely unstable. Such a
flow unstable with respect to infinitely small perturbations cannot
exist.”

The criteria to find the critical Reynolds numbers above which solutions of
the Navier-Stokes could not necessarily be stable under small perturbations
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are a matter for the theory of hydrodynamics stability and we refer the reader
to [33, 202] for a more comprehensive discussion and accurate bibliography
on the subject. In the following pages we would like to concentrate only
on the results that are closely related to the approach for the Navier-Stokes
equations introduced in [31].

Let us start with the L3 valued mild solutions. First of all, we should
note that the application that associates with the initial value v0 ∈ L3 the
corresponding solution v(t, x) ∈ C([0, T ); L3) constructed, as in Kato’s the-
ory, by the fixed point theory, is analytical in a neighborhood of zero, as a
functional acting on L3 with values in C([0, T ); L3), as recalled for instance in
[3]. Accordingly, the stability of mild solutions follows immediately because,
by virtue of the uniqueness theorem (Section 5), any mild solution arises
from the fixed point algorithm. As we will see in Section 7.2, this does not
hold the case for the sub-critical case 2 ≤ p < 3 [160].

Generalizing previous stability results in Lp (see [219, 188]), T. Kawanago
proceeds in the opposite direction [118, 119]. First, he obtains a stability
estimate, then makes use of it to establish a uniqueness theorem for mild
solution. His result concerns global solutions v ∈ C([0,∞); L3) and reads as
follows. For any v0 ∈ L3 there exist two constants δ(v0) > 0 and C > 0 such
that, if ‖v0 − ṽ0‖3 < δ, then ṽ ∈ C([0,∞); L3) and

‖v(t) − ṽ(t)‖3 ≤ ‖v(0) − ṽ(0)‖3 exp
{

C

∫ t

0

‖v(s)‖5
5 ds

}
(266)

for any t > 0. Finally, O. Barraza obtains some stability and uniqueness
results for solutions in L(3,∞) [5]. But, as we have already remarked, the
theorem by Y. Meyer in the same weak Lebesgue space [161] allows a con-
siderable simplification of these results.

As pointed out by V.I. Yudovich in [230], the choice of the norm for
proving the stability of an infinite-dimensional system (e.g. a viscous fluid)
is crucial because the Banach norms are not necessarily equivalent therein.
To be more explicit, let us recall the simple example of the linear Cauchy
problem [230, 83]

{
∂v

∂t
= x

∂v

∂x
v(0, x) = ϕ(x),

(267)

whose unique (for an arbitrary smooth initial function ϕ) explicit solution
v(t, x) = ϕ(x exp(t)) is exponentially asymptotically stable in Lp(R) for
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1 ≤ p < ∞, stable but not asymptotically stable in L∞(R) or W 1,1(R)
and exponentially unstable in any W k,p(R) for k > 1, p ≥ 1 or k = 1, p > 1.

7.1 Lyapunov functions

A sufficient condition for a solution to be stable for a given norm is that
‖v(t, x) − ṽ(t, x)‖, the norm of the difference between the solution v and a
perturbation ṽ, is a decreasing-in-time function. This leads to the following
definition.

Definition 12
Let v be a solution of the Navier-Stokes equations, then any decreasing-in-
time function L(v)(t) is called a Lyapunov function associated to v.

The most well-known example is certainly provided by energy

E(v)(t) =
1

2
‖v(t)‖2

2,(268)

for, a calculation similar to the one performed in (251), gives

d

dt
E(t) = −ν‖∇v(t)‖2

2 < 0 .(269)

This result can easily be generalized in the homogeneous Sobolev spaces Ḣs,
for 0 ≤ s ≤ 1. For example, in the case s = 1

2
, by means of Hölder and

Sobolev inequalities in R
3 we get [115, page 258]

‖P(v · ∇)v‖2 ≤ C‖v‖6‖∇v‖3 ≤ C‖v‖Ḣ1‖v‖
Ḣ

3
2
.(270)

From this estimate we easily deduce the decreasing property for the function
v = v(t) that reads as follows

d

dt
‖v(t)‖2

Ḣ
1
2
≤ −2‖v(t)‖2

Ḣ
3
2
(ν − C‖v(t)‖

Ḣ
1
2
)(271)

and thus, if the Reynolds number ‖v0‖Ḣ
1
2
/ν is sufficiently small, we get

a Lyapunov function associated with the norm Ḣ
1
2 . As already stated in

Section 4.2, a similar argument allows us to obtain for the Ḣ1 norm:

d

dt
‖v(t)‖2

Ḣ1 ≤ −2‖v(t)‖2
Ḣ1(ν − C‖v(t)‖

Ḣ
1
2
) .(272)
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This estimate shows that the smallness of the number ‖v0‖Ḣ
1
2
/ν also implies

the decrease in ‖v‖Ḣ1 . Now, the Sobolev spaces Ḣs, s > 1
2

are super-critical.
In other words, as far as the scaling is concerned, they have the same invari-
ance as the Lebesgue spaces Lp if p > 3. This means that one can prove the
existence of a local mild solution for arbitrary initial data (Theorem 1). In
the case of Ḣ1, this solution turns out to be global, provided the quantity
‖v0‖Ḣ

1
2
/ν is sufficiently small, thanks to the uniform estimate

‖v(t)‖Ḣ1 ≤ ‖v0‖Ḣ1 ∀ t > 0,(273)

that is derived directly from (272).
In other words, this property establishes a direct link between the Lya-

punov functions, the existence of global regular solutions in an energy space
and the oscillatory behavior of the corresponding initial data.

In a paper that seems to have been completely ignored [113], T. Kato,
after treating the classical cases Ḣs, 0 ≤ s ≤ 1, derives new Lyapunov func-
tions for the Navier-Stokes equations not necessarily arising from an energy
norm. More precisely: there exists δ > 0 such that if the Reynolds num-
ber R3(v0) = ‖v0‖3

ν
< δ, then the quantity R3(v)(t) = ‖v(t)‖3

ν
is a Lyapunov

function associated with v. The importance of this result comes from its
connection with the stability theory. In fact, as explained by D.D. Joseph
[110]:

“It is sometimes possible to find positive definite functionals of
the disturbance of a basic flow, other than energy, which decrease
on the solutions when the viscosity is larger than a critical value.
Such functionals, which may be called generalized energy func-
tionals of the Lyapunov type, are of interest because they can lead
to a larger interval of viscosities on which global stability of the
basic flow can be guaranteed.”

As we proved in [46, 47], Kato’s result also applies to other functional
norms, in particular the Besov ones (see also [140, 93, 2] for related results
in this direction). Not only do these properties show the stability for Navier-
Stokes in very general functional frames, but as we have noted above, they
could shed some light on the research of global Navier-Stokes solutions in
super-critical spaces.
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7.2 Dependence on the initial data

Before leaving this section, we would like to recall a result obtained by
Y. Meyer and announced at the Conference in honor of Jacques-Louis Lions
held in Paris in 1998 [160]. The theorem in question expresses the depen-
dence on the initial data of the solutions to Navier-Stokes in the sub-critical
case and could shed some light on the conjecture formulated by Kato in [114]
and recalled in Section 6.3. The result is the following:

Theorem 19
There is no application of class C2 that associates a (mild or weak) solution
v(t, x) ∈ C([0, T ); Lp), 2 ≤ p < 3 to the corresponding initial condition v0 ∈
Lp.

In particular:
1. There is no application of class C2 that associates Leray’s weak solution

v(t, x) ∈ L∞((0, T ); L2), to the initial condition v0 ∈ L2.
2. If a mild solution exists in the sub-critical case (2 ≤ p < 3), it does

not arise from a fixed point algorithm. On the other hand, as we have seen
in Section 7, the application that associates Kato’s mild solution v(t, x) ∈
C([0, T ); L3) to the initial data v0 ∈ L3 is analytical in a neighborhood of
zero as a functional acting on L3 and taking values in C([0, T ); L3).

The proof of Theorem 19 is based on a contradiction argument. Briefly
stated, it is assumed that for the initial data λv0, the solution vλ(t, x), whose
existence is supposed in Theorem 19, could be written in the form λv(1)(t, x)+
λ2v(2)(t, x)+o(λ2), where little o corresponds to the norm L∞([0, T ); Lp) and
λ → 0. Then, the idea is to evaluate (by calculations analogous to that
performed in Section 3.4.2) the norm of the bilinear operator that defines
v(2)(t, x) in terms of v0 in order to prove that v(2)(t, x) cannot belong to
C([0, T ); Lp). As usual, the main point will be to evaluate not the “exact”
value of the symbol of the operator, but its “homogeneity scaling”.

Conclusion

Should we conclude from the three examples given in this paper (oscilla-
tions, uniqueness and self-similarity) that real variable methods are always
better suited for the study of Navier-Stokes, and that wavelets, paraprod-
ucts, Littlewood-Paley decomposition, Besov spaces and harmonic analysis
tools in general have nothing to do with these equations?
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In order to analyze this question, we list here a series of bad and good
news, that will be summarized by a prophetic wish.

For the Navier-Stokes equations, there are other examples in which Fourier
methods do not gain against real variable methods. For example, by using
Fourier transform in [107] J.G. Heywood was hoping to get a better global
estimate for ‖∇v(t)‖2, in order to improve the key inequality analyzed in
Section 5.1, eq. (220). However, as he remarks in [108]:

“We give Fourier transform estimates for solutions of the Navier-
Stokes equations, without using Sobolev’s inequalities, getting again
global existence in two dimensions but only local existence in three
dimensions. [...] Unfortunately, because of a dimensional depen-
dence in the evaluation of a singular integral, the final result is
only a local existence theorem in the three-dimensional. [...] This
adds another failure to an already long list of failures to prove
global existence in the three-dimensional case, which may renforce
the feeling that singularities really exist.

In practical applications, one never looks for a solution in R
3, yet solid

bodies, (e.g. the surface of a container) limit the region of space where
the flow takes place. However, in the physically more interesting case when
boundaries are present, it is very difficult to generalize the methods based
on Fourier’s transform techniques (see [48, 49, 66, 67, 148, 149, 169, 231]),
unless some periodicity conditions are considered, like e.g. the torus T

3 (see
[214]).

The situation seems more favorable to Fourier’s methods in the case of
decay as t → ∞ of solutions of the Navier-Stokes equations (see [20, 21, 22,
23, 24, 93, 94, 228]). So far, no better techniques than the Fourier split-
ting introduced by M.E. Schonbek and the Hardy spaces considered by T.
Miyakawa [165, 166, 167] are known to study the decay at infinity of solutions
to the Navier-Stokes equations.

Finally, in the case of the Euler equations, there is a rich literature that
makes use of paradifferential tools (see [53, 59, 220, 221, 222]). However,
in the case of vortex patches, whose regularity was proved in 1993 by J.-Y.
Chemin using Bony’s paraproduct rule (see [55, 59]), a much simpler proof
that does not make use of the paradifferential machinery was discovered at
about the same time by A.L. Bertozzi and P. Constantin (see [8, 9]) .

The discussion seems endless, the examples innumerable and it is difficult
to conclude. As announced, we will to do it with a messianic hope of P.
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Federbush [77]:

“One should be able to do more than we have accomplished so
far using wavelets: make a dent in the question of the existence
of global strong solutions, find a theoretical formalism for turbu-
lence [...]. Someone (perhaps smarter than me, perhaps working
harder than me, perhaps luckier than me, perhaps younger than
me) should get much further on turbulence and the Navier-Stokes
equations with the ideas in wavelet analysis.”
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de Mathématiques, Ecole Polytechnique 10 (2002).

101



[95] I. Gallagher and F. Planchon: On global infinite energy solutions to
the Navier-Stokes equations in two dimensions, Arch. Rat. Mech. Anal.
161 (2002), 307–337.

[96] P. Gérard, Y. Meyer et F. Oru: Inégalités de Sobolev précisées, Exposé
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milds des équations de Navier-Stokes dans R

3, C. R. Acad. Sci. Paris
Sér. I 330 (2000), 183–186.
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d’Equations Paraboliques Semi-linéaires, Doctoral Thesis, Université
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