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i. Introduction 

The simplest, most elementary proofs of the existence of solutions of the 

Navier-Stokes equations are given via Galerkin approximation. The core of such 

proofs lies in obtaining estimates for the approximations from which one can infer 

their convergence (or at least the convergence of a subsequence of the approximations) 

as well as some degree of regularity of the resulting solution. The first to use 

this approach was Hopf [ 5 ], who based an existence theorem for the initial boundary 

value problem on an energy estimate for Galerkin approximations. However, based on 

this single estimate, Hopf's theorem provides very little regularity of the solution, 

in fact, insufficient regularity to prove the solution's uniqueness if the domain 

is three-dimensional. To remedy this situation, Kiselev and Ladyzhenskaya [ 7 ] 

introduced a second estimate for the approximations which yields enough further 

regularity for a uniqueness theorem. As is well known, this second estimate holds 

only locally in time unless the data are small or the domain is two-dimensional, a 

circumstance which has stimulated much speculation over the question of "unique 

solvability in the large". On the other hand, even during the time interval for 

which it holds, the estimate of Kiselev and Ladyzhenskaya provides far less than 

the full classical regularity of the solution. 

An interesting varient of the Galerkin method, yielding a somewhat more regular 

solution, under weaker assumptions on the data, has been given by Prodi [ii]. Prodi's 

existence theorem is based on an estimate, entirely different from those of Hopf 

and of Kiselev and Ladyzhenskaya, which is available when eigenfunctions of the 

Stokes operator are used as a basis for the approximations. This estimate is some- 

what less elementary than those of Hopf and of Kiselev and Ladyzhenskaya, as it 

requires an L2-theory of regularity for the steady Stokes equations. Still, like 

the estimate of Kiselev and Ladyzhenskaya, Prodi's holds only locally in time and 

yields only a generalized solution. Until now, the classical regularity of such 

generalized solutions has been proved only by resort to entirely different and more 

complicated methods, methods which have invariably depended on potential theoretic 

~esults for the Stokes equations. In this regard, we cite particularly the important 
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contributions of Ito [ 6 ], Fujita and Kato [ 3 ], Ladyzhenskaya [8,9], and Solonnikov 

[15 ,161 .  

The main p o i n t  o f  t he  p r e s e n t  p a p e r  i s  to  show how the  G a l e r k i n  a p p r o a c h  to  

e x i s t e n c e  t heo rems  can be  pushed  f u r t h e r ,  t h r o u g h  a d d i t i o n a l  e s t i m a t e s ,  to  g i v e  the  

c l a s s i c a l  r e g u l a r i t y  o f  the  s o l u t i o n  d i r e c t l y  and e a s i l y ,  w i t h  mln imal  r e l i a n c e  on 

the  r e g u l a r i t y  t h e o r y  f o r  t he  S tokes  e q u a t i o n s .  I n  f a c t ,  t he  on ly  r e s u l t  which  w i l l  

be  needed  c o n c e r n i n g  t h e  r e g u l a r i t y  o f  s o l u t i o n s  o f  t he  S tokes  e q u a t i o n s  i s  t h e  L 2-  

e s t i m a t e  o f  t he  second  d e r i v a t i v e s  o f  s t a t i o n a r y  s o l u t i o n s ,  which  i s  a l r e a d y  needed 

f o r  P r o d i ' s  e s t i m a t e  o f  the  G a l e r k i n  a p p r o x l m a t l o n s ,  and which  has  been  r e c e n t l y  

p roved  i n  a r e l a t i v e l y  s i m p l e  way, i n d e p e n d e n t l y  o f  p o t e n t f a l  t h e o r y ,  by S o l o n n i k o v  

and ~ # a d i l o v  [17 ] .  

Our p r o c e d u r e  b e g i n s  w i t h  t h e  i n t r o d u c t i o n  o f  two i n f i n i t e  s e q u e n c e s  o f  d i f f e r -  

e n t i a l  i n e q u a l i t i e s  f o r  t h e  G a l e r k i n  a p p r o x i m a t i o n s .  I n t e g r a t i o n  o f  t h e  f i r s t  i n -  

e q u a l i t y  o f  one s e q u e n c e ,  o v e r  a t ime i n t e r v a l  [ 0 , T ) ,  g i v e s  P r o d i ' s  e s t i m a t e .  

I n t e g r a t i o n  o f  t he  f i r s t  two i n e q u a l i t i e s  o f  the  o t h e r  s e q u e n c e ,  o v e r  [ 0 , T ) ,  g i v e s ,  

r e s p e c t i v e l y ,  t he  e s t i m a t e s  o f  Hopf and of  K i s e l e v  and Ladyzhenskaya .  To p r o c e e d  

f u r t h e r ,  w i t h  t he  i n t e g r a t i o n  o f  t he  s u c c e e d i n g  i n e q u a l i t i e s ,  i t  i s  n e c e s s a r y  to 

work w i t h  b o t h  s e q u e n c e s  s i m u l t a n e o u s l y ,  u s i n g  r e c u r s i v e l y  the  e s t i m a t e s  o b t a i n e d  

by i n t e g r a t i n g  the  i n e q u a l i t i e s  o f  one s e q u e n c e  to l i n e a r i z e  and i n t e g r a t e  t h o s e  o f  

t he  o t h e r .  To avo id  the  n e c e s s i t y  o f  c o m p a t i b i l i t y  c o n d i t i o n s  f o r  t h e  d a t a ,  wh ich  

f o r  t he  N a v i e r - S t o k e s  e q u a t i o n s  a r e  o f  a v e r y  c o m p l i c a t e d  n o n - l o c a l  n a t u r e ,  t h e s e  

s u b s e q u e n t  d i f f e r e n t i a l  i n e q u a l i t i e s  a r e  i n t e g r a t e d  o v e r  t ime i n t e r v a l s  [ s , T ) ,  w i t h  

> 0 . For this, it is necessary to obtain "initial estimates" at t = s , which 

we do utilizing yet another sequence of identities and inequalities for the Galerkin 

approximations. 

Combining these estimates for the Galerkin approximations, one can infer the 

a solution u e C~(0,T;W~ (~)) n L~(0,T' ;W~(~)) , existence of where is the 

spatial domain and T' is any number less than T. With this degree of regularity 

in hand, the solution's classical regularity follows by a standard argument, which 

is again based on only an L2-estimate for the steady Stokes equations. 

Although the procedure just described is simple, we will not attempt to give 

all the details here. The details are given in [ 4 ], along with a number of exten- 

sions and related results. One extension is the existence theorem, for classical 

solutions, in the case of unbounded three-dimensional domains with possibly non- 

compact boundaries. For such domains the result is.new. Also in [4 ], the local 

existence theorem is proved for initial velocities merely required to possess a 

finite Dirichlet integral. This result is new in the case of unbounded domains, 

where, unless Poincar~'s inequality holds, the initial velocity need not belong to 

L 2 . One of the related topics studied in [4 ] is the decay of solutions, in un- 

bounded domains, as t ~ If the initial velocity is square-summable and the 
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forces and boundary values are homogeneous, the decay is shown to be of order t-½ . 

The proof of this is outlined in the final part of the present paper. 

2. Galerkin Approximations 

Let ~ c R 3 be a bounded domain with boundary 

the initial boundary value problem 

~ of class C 3 . We consider 

u + u. Vu = -Vp + Au (la) 
t 

V'u = 0 (ib) 

u(x,0) = Uo(X) (lc) 

= ul~ o (id) 

for the vector velocity u(x,t) and scalar pressure p(x,t) of a viscous incom- 

pressible fluid. The problem has been normalized so that the density and viscosity 

are equal to one. It is required that the equations (la), (ib) should be satisfied 

in a space-time cylinder ~ × (0,T) . The initial velocity is u For simplicity, 
o 

we have taken the external force and boundary values to be homogeneous; inhomogeneous 

boundary values and forces are considered in [ 4 ]. We call u,p a classical 

solution of problem (1) if u ~ C(~ × [0,T)) , if ut, Vu, Au, Vp E C(~ × (0,T)) and 

if the conditions of the problem are satisfied continuously. 

Employing the Galerkin method, we consider approximate solutions 

n 

un(x,t) = ~ Ckn(t) ak(x) 
k=l 

developed in terms of a system of functions {a k} which is complete in the space 
* o I 

Jl (~) of divergence-free vector-valued functions from W 2 (~) . A special choice 

of the functions {a k} will be made shortly, but for now they are merely taken to 

be smooth and orthonormal in L2(~) . The coefficients Ckn(t) are determined by 

the system of ordinary differential equations 

(ut,a £) - (Aun,a ~) = - (u n. vun, a ~) , (2) 

= i, ..., n, with initial conditions Ckn(O) = (ak,u o) . Here, (~,~) denotes the 

L 2 inner product /~'~ dx . 

Hopf's energy identity for the Galerkin approximations is obtained by multiply- 

ing (2) by C~n(t) , summing E£=in , and integrating several terms by parts, noting 

in particular that (un'vu n , u n) = 0 . The result is 

1 d llunll 2 2 d--t + H v u n l ]  = 0 , ( 3 )  
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where I1"11 denotes the L2-norm. 

Clearly, if u e L2(~) , one has a bound for the initial values 
o 

Ilun(o) ll < Iluoll , 

which is uniform n. 

energy estimate 

Hence (3) can be integrated from 0 to 

t 

1 I llvun I12 I ~ l lu~( t ) l l  2 + dT <_ ~ l l u o l l  

0 

t , yielding the 

(4) 

on which Hopf's existence theorem is based. 

Kiselev and Ladyzhenskaya's estimate is based on an identity found by differ- 

entiating (2) with respect to t , multiplying by d/dt C~n, summing, and integra- 

ting several terms by parts. The result is 

i d II un t H 2 n n n n 
2 dt + IIVut If2 . . . .  (u t "Vu ,u t ). (5) 

The right side of (5) can be estimated by using successively HSlder's inequality, 

Sobolev's inequality, Young's inequality, and the inequality llvunll2 i llunll .l[u~il, 

which follows from (3): 

< ll unll ItutII  
1/2 3/2 

< ett unil tiuttl ItVuttt 

i14. 2 i II 2 < Cll Vun Ilunll + Ilvu t 
- t 

<_ clluoll2llut~ll 4 + 21 ilvuttl 2 

Here, IJ" lip 
becomes 

denotes the LP-norm. Using this estimate for its right side, (5) 

d flu n if2+ iivutnll 2 2 4 
d~-t t < cIIUoll IIutll (6) 

To obtain estimates for the Galerkin approximations by integrating (6), one 

needs a bound for the initial values Ilu~(O)II , which is uniform in n. Using (2) 

one obtains 

Ilu~<O) II ~ tl~un(o)[I + flun<o)'vun(o)tl • (7) 

Here, A = PA , where P is the orthogonal projection of L2(~) onto its subspace 

J(~) , formed by completing the set of solenoidal test functions. A bound for the 

right side of (7) is found almost trivially if u o ~ Jl*(~) n W~(~) , provided 
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the functions {a k} are chosen so that a I = Uo/Iluol I . However, we shall need to 

choose the {a k} differently, as eigenfunctions of the Stokes operator A. In 

this case, a bound of the form 211~Uol I + cllVUoll 2 + cIIVUoll 3 is obtained for the 

right side of (7) using the inequality (18), below, and the orthogonality of the 

eigenfunctions {a k} in the inner-products (V~,V~) and (~,&9). It follows, if 

u ° c Jl (~) n W (~) , that by integrating (6) one obtains estimates of the form 

f0 t llu~( t) II, IIVu t I[ dz , Nvun(t) lli G(t) , (8) 

for t in some interval [0,r). Here, the inequality [Ivunll 2 ! IIUoIl" llu~ll has 

been used again, in a final step, to get the estimate for IIvun(t) II. The estimates 

(8) are the ones on which the existence theorem of Kiselev and Ladyzhenskaya is 

based. 

Prodi's estimate for the Galerkin approximations is based on the identity 

i d llvun[l 2 2 d--~ + I[&un[I = ( u n ' v u n  ' ~un)  ' (9)  

which holds, simultaneously with (3) and (5), if the basis functions {a k} are 

taken to be the eigenfunctions of the eigenvalue problem 

-Aa = %a + Vp , x ~ ~ (lOa) 

V'a = 0 , x ~ ~ (lOb) 

= 0 . (lOc) 
aI3~ 

It follows from the regularity theory for the Stokes equations, discussed below, 

that the eigenfunctions a k belong to W~(~) , so that one can write Aa k = -%k ak 

where %k is the k th eigenvalue. Thus, multiplying (2) by %% and summing 
n 

E%=I ' one obtains 

(u tn ,- ~u n) + (Au n , ~u n) = (un.vu n , ~u n) 

and hence (9). 

The regularity theory needed above, and again below, consists of L2-estimates 

of the general form 

ND2ulI~nG ', ! cllfllan G, + cllvull~n G, + clIull~ G, (Ii) 

for solutions of Stokes' problem: 

Au = Vp- f, x ( 

V-u = 0 , x( ~ 

= 

u13 ~ 0 . 

(12a) 

(12b) 

(12e) 
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Here, G" and G' are bounded open subsets of R 3 with G'~c G' and llD2ull 2 

~, a2u/ax.ax 112 . For of the "interior estimate", i.e., the j=l II i j E a simple proof case 

G' c ~, see Ladyzhenskaya [ 9 ,p.38]. For a relatively simple proof of the 

"estimate up to the boundary", i.e., the case that G" n a~ is nonempty, see 

Solonnikov and ~adilov [17]. For a potential theoretic proof, giving general 

LP-estimates, see Cattabriga [i ]. 

To estimate the right side of (9) we shall need several consequences of (ii). 

If ~ is a bounded domain, the global estimate 

IID2ull ! c(l l£ull  + I l v u l l ) ,  (13) 

for solutions of (12), follows almost immediately from (ii), setting -f = ~u . 

Using a slightly refined version of (ii), we have also proved (13) for unbounded 

domains, even those with noncompact boundaries; see [ 4 ]. Of course, if ~ is 

unbounded, we require u(x) + 0 as lxl + ~ , in a generalized sense. Using, in 

addition to (13), the Sobolev inequality ...11~]13 _< clIV~l] ½" [1~11½ for ~ ~ C~(R 3)o ' 

and estimates for the Sobolev norms of a function continued beyond its original 

domain of definition, one can show solutions of (12) satisfy 

Ilvull 3 ~ c(llSull½.11Vull½ + llvu[l). (14) 

This inequality, like (13), is valid for general unbounded domains; see [ 4 ]. 

The right side of (9) can now be estimated using successively Holder's 

inequality, Sobolev's inequality II~I[6 ! Uv~ll, the inequality (14), and Young's 

inequality: 

l(u.vu, ~u) l <_ I[ull6" llvull3- II~ull 

< cllvull <ll~uIF ~.  Itvull ~ + ll~u[I)II£ulI 

<_ ellvull 4 + c'llvull 6 +} l l iu l l  2 

Thus we have 

d [i vunli 2 2 4 6 d~ + ll&unll < clIvunll + c'llvunIl (15) 

Also, if Uo e Jl (~) ' we have a bound for the initial values, 

llvun(0) ll <_ ll~uoil , 

because of the orthogonality of the eigenfunctions {a k} in the inner product 

(V~,V~). Hence, (15) can be integrated, yielding estimates of the form 

i 
tll 2 

II Vun(t) II, Aun[l dT <_ F(t) , (16) 

0 
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for t in some interval [0,T). 
n 

An estimate for u is obtained by noting (2) implies t 
2 ~ n n Ilu:[t = (Au n , u t ) - (un.vu n u t ) (17) 

so that, using (14), 

 lu:H < ll~unil + llunll6 • Ilvunll3 

! H~unH + c[Ivunl[" (HAunl[~-llVunll ~+  

<_ 211~unll + cllvunll 3 + cllvunll 2 , 

IIvun[I) 

(18) 

and hence, using (16), 
t 

f ]]un[] 2 dT < F(t) 
t -- ' 

0 

(19) 

for t c [0,T). The estimates (16) and (19) are the ones on which Prodi's existence 

theorem in [ii] is based. Here, we have derived them in a manner independent of 

the "size" of either ~ or 3~ . These estimates, that is, the functions F and 

, depend only on IIVUol I and the regularity of 3~ . In contrast, the estimates 

depend on l[Uo[l, IIVUol I and IID2Uoll , but are independent of the regularity (8) 

of 3~ . 

To obtain a classical solution, we need estimates of the solution's higher 

order derivatives. We work first to establish the regularity of u with respect 

to t , more precisely, to show u e C (0,T ; W (~)) by obtaining estimates 

t 

HVD~un(t) II I H~D~unll 2 , dT ~ Fk(t,¢ ) , (20.k) 

£ 

for k = O, i, 2,..., and 0< E< t < T. To this end, we write down three infinite 

sequences of identities for the Galerkin approximations (for brevity, the super- 

scripts n are omitted): 

i d i[Vu[[2 + i]~u][2 = (u-Vu Au) (21.0) 
2 dt 

I d i[Vutll2 + 112 
2 dt []~ut = 

21 dtd []Vutt[12 + l[~uttll2 

(ut-Vu , ~ut) + (u'Vut, Aut) (21.1) 

= (utt'Vu, ~utt) + 2(ut'Vut'Autt) + (u'Vutt, Autt) 

(21.2) 
etc. 

Ilutll 2 = (~u, u t) - (u'Vu, ut) (22.1) 
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(Hu t , utt) - (ut'Vu , utt ) - (u'Vu t , utt) (22.2) 

~ 

(gutt , utt t) - (utt'Vu , utt t) - 2(ut-Vu t , utt t) - (u-Vutt , utt t) 

(22.3) 
etc. 

12 dtd llutll 2 + llvutll 2 - ~u t.~ Vu, ut) (23.1) 

i d 2 NVuttii2 , 2(ut'Vu t (23.2) 
2 dt IIuttll + = - (utt "Vu utt) - , utt) 

i d iiutttii2 2 at + IIVuttt I12 = - (uttt "Vu' uttt) - 3(utt'vut' uttt) 

- 3(ut-Vutt , uttt) (23.3) 

etc. 

Notice, we have already derived the leading identity of each sequence; (21.0) is just 

(9), (22.1) is (17), and (23.1) is (5). The succeeding identities are derived simi- 

larly, first differentiating (2) an appropriate number of times with respect to t . 

Our basic plan now is to estimate the right sides of the identities (21.k), 

k = O, i, 2,..., and integrate them with respect to t , obtaining the estimates (20.k). 

We have already done this for k = 0 . To proceed, one thing which must be done, in 

order to be able to integrate each identity up to the same right limit T as (21.0), 

is to estimate the right side of (21.k), k = i, 2, 3,..., in such a way that it becomes 

a linear differential inequality when the estimates (20.E), £ = 0, i, ..., k-l, are 

taken into account. This is easily done using the inequalities sup~lu I ~ c(llAull + 

{{Vu{{), {{Vu{{ 3 ~ c({{&uI{ + {{Vu H) and {lu{{ 6 ~ c{{VuI{, which are derived from (13) 

and various Sobolev inequalities. For instance, for the right side of (21.1) we 

have 

l ( u t 'Vu ,  Au t)  + (u.Vut , Xut) l ± lluttl 6" llv~tt 3" tlEutll + supalut" tlVutll -lt~utll 

! c(ll~ull 2 + llvull 2) llvutll 2 + ½11Zutll 2, 

so that (21.1) becomes 

d IIAutll 2 ! + IIvuIl2) IIvutll 2 d-~ IIVut If2 + c(II&ull 2 (24) 

The right sides of (21,k), k > 2, are estimated similarly; we omit the details. 

Finally, we must find estimates, independent of n , for the "initial values" of 
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,.k..jiVD~unll. This presents a rather severe difficulty; it is to deal with it that we 

have introduced the identities (22.k) and (23.k), k = i, 2 ..... The difficulty is 

that for initial values Uo c Jl (~)' or even for Uo e D(~) , one must generally 

for the solution u that IIvut(t)II ÷ as t ÷ 0 + expect, , ~ , and hence, for the 

Galerkin approximations u n , that IIVu (0) If ÷ ~ as n÷ ~ To see this, suppose 

u e D(~) , i.e., u e C~(~) and V-u = 0 . Then conditions (i) imply Ap 
o o o o 

-V'(Uo-VUo) and Vpl~ = 0 , at t = 0 . This is an overdetermined Neumann problem 

for the initial pressure. In general, the tangential components of Vp will not 

vanish on ~ at t = 0 , and yet, initially, u t = Vp oin a neighborhood of ~Q , 

if u ~ D(~) . Thus, one can not expect lim ut(t) e W~(~) . The compatibility 
o t+0 + 

condition which would be needed is a non-local one, expressible as an integral 

identity involving the Neumann function, and virtually uncheckable in practice. 

Instead of imposing such conditions on the initial velocity, we use (22.k) and 

(23.k) to obtain estimates for IIVD~un(s) ll, at arbitrarily small values of E . For 

this, we only need to assume u e J~*(~) . The procedure is as follows. First, 
o ± 

(21.0) is integrated giving (20.0), that is, (15) is integrated giving (16), which 

we have already done. Then, (22.1), i.e., (18), is integrated giving (19), which 

we have already done. Now, from (19), we see that for every E > 0 and every posi- 

0 < • < ~ , such that tive integer n , there exists a number Tn ' n 

Ilu~(~n) II 2 ! F(~)/E. (25) 

Also, the right side of (23.1) can be estimated, using part of the derivation of (6), 

giving 

ddt ilut I)2+ llVut I12 - < c]Ivunli411~ I12 , (26) 

which is a linear differential inequality when (20.0) is taken into account. Thus, 

u s i n g  ( 2 5 ) ,  we can  i n t e g r a t e  (26)  o v e r  t h e  i n t e r v a l  [ ~ n , t ] ,  o b t a i n i n g  

t t 

~ T 
n 

for s < t < T . Now, from (27), we see that for every E > 0 and every positive 

integer n , there exists a number c , c < o < 2E , such that 
n n 

llVu~(On) II 2 ! C(2c;~)/e . (28) 

This provides the estimate of the "initial values" needed for integrating (21.1), or 

rather the corresponding differential inequality (24). Integrating (24) over 
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[On,t], one obtains estimates of the form 

t 

llvu~(t) ll 2, f IIZu~II 2d~ 
2e 

FI(t;2E) , (29) 

for 2c < t < T . This is just (20.1). 

We have come full cycle. One can continue by integrating (22.2), using (20.1), 

to obtain estimates of IIu#~(Pn) II'L~ with 2g < Pn < 3E . Then, one can integrate 

(23.2) to obtain estimates of IIVu#e(~n) I I ~  , with 3¢ < ~n < 4E . And then, one can 

integrate (2]..2) obtaining (20.2), etc., etc.. The full argument is given by induc- 

tion in [ 4 ]. 

To prove the continuous assumption of the initial values, one last estimate for 

the Galerkin approximations will be needed. We derive it here assuming u ° ~ W~(~), 

though the condition u c L2(~) is not necessary; see [4 ]. Multiplying (2) by 
o 

%~ and summing, we obtain 

n ~u n) + (un qu n ~u n) (Au n , ~u n) = (ut , , , 

and hence, using (14) as in the derivation of (18), 

llZunll < 211utl I + cIlvunll 3 + ellvunll 2 . (30) 

Thus, (8) and (16) imply 

II~un(t)II ! G(t) , (31) 

for t ~ [0,T'] , for some T' > 0 . 

3. Passage frgm.the Approximations to a Classical Solution 

Using only the estimates (16) and (19), one can show the Galerkin approximations 

converge to a generalized solution u ~ L~(0,T ' ; Jl*(~)) with ut, D~u, Vp ¢ 

L2(O,T';L2(~)), for 0 < T' < T . Here, we only need the convergence of a subsequence 

of the approximations, which is proved by a compactness argument in [ 4 ]; in fact, the 

whole sequence of approximations is known to converge; see Rautmann [12,13] and Foias 

[ 2 ]. Using (13) and Sobolev's inequality, the estimates (20.k) imply u c 
2 

C (O,T;W2(O)) . It follows, of course, that u ~ C(~ x (0,T)) . In passing to the 

limit on the basis of estimates (16) and (19), the solution is only shown to satisfy 

°~ 0 + the initial condition in a generalized sense: u(t) ÷ u in W (~), as t ~ . 
o 

2(~)), and hence that u(t) + u However, the estimate (31) implies u ~ L=(0,T';W2 
o 
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2 2 weakly in W (~) . So, from the compactness of the imbedding W2(~ ) c C(~) , it fol- 

lows that u(x,t) -~ u (x) continuously as (x,t) -~ (x,0) . Thus u e C(~ x [O,T)), 
O 

if Uo ¢ W~(~) . 

We noted above, the estimates (20.k) imply u ~ C~(0,T;W22(~)) . To establish 

further interior regularity with respect to the spatial variables, one observes, for 

any fixed t , and for k=0, i, 2, ... , that Dku is a solution of (12), with force 
t 

fk _Dk+lu k = _ ~ c(Dk-~u)-V(D~u) 

B=0 

co i. ° , 

From the known regularity of u , it is clear fk ¢ C (0,T;W2(~)) . Thus, vlewlng 
1 k 

DxDtU as a solution of (12a), (12b) with force D~f k~ ¢ C~(0,T;L2(~)) , the interior 
] 

implies u c C~(0,T;W~(G)) , for every G cc ~ , i.e., for every estimate (ii) 
2 

bounded set G with closure G c ~ o This, in turn, implies fk c C (O,T;W2(G)), for 

every G cc fl . And thus, viewing D2Dku as a solution of (12a) (12b) with force 
x t 

2xfk oo 2 =(0, T;W42 , By in- D e C (O,T;L (~)), (ii) implies u ~ C (G)) for every G cc ~ . 

duction, one sees u ~ C~(O,T;W~(G)), for every G cc ~ , and for ~ = 3, 4, .... 

It follows that u ¢ C (~ x (0,T)). 

4. Decay~ as t + ~ ~ in Unbounded Domains 

Using Poincar~'s inequality, i.e., the inequality II~il ~ C~IIV#II for ~ ~ W (~), 

once can show the Galerkin approximations of section 2 decay exponentially as t + ~. 

More precisely, there exists a number T* dependent on C~ and llUoll, such that 

c] 2 
for every y < , one obtains an estimate of the form 

suplun(x,t) l ~ c(llAun(t) ll + IIvun(t) II) ! Ce -Yt , (32) 

xe~ 

for t ~ T . From this follows the global existence and exponential decay of the 

classical solution constructed in section 3, provided T < T , with T as in either 

(8) or (16). One can show T < T under various hypotheses, for instance, if 

IlUoIIwl(fl) and C~ are sufficiently small. In general, if T* > T, one still has the 

1 2 g obal existence of Hopf s generalized solution, and its classical regularity can be 

proved for t c (O,T) u (T*,=). During the interval [T,T*], it is classical, except 

perhaps, for values of t belonging to a set of t-measure zero, whose complement 

consists of intervals. These results for bounded domains are rather standard, see 

[4 ,14]. Instead of giving the details, we will describe some analogous results for 

unbounded domains. 

All the estimates given in section 2 are independent of the size of ~ and ~ , 

though some of them depend on the C3-regularity of ~. This makes possible the 

construction of a solution of problem (I) in any three-dimensional domain with 
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uniformly C 3 boundary, by considering an expanding sequence of subdomains. All the 

estimates of section 2 remain valid for the eventual solution. Also, assuming u £ 
o 

Jl(~), the solution which is constructed belongs to Jl(~), for almost every t . 

Of course, the estimate (32) generally fails in unbounded domains. Still, an 

explicit estimate for the solution's rate of decay can be obtained from the energy 

estimate (4) and the differential inequality (15), i.e., from 

I 1 2 
I lvun]l  2d t  ! 711uoll 

o 

-- E (33) 
o 

and 
d i i v u n i i 2  < iivunll4 + c, livunii6 

d-7 _ c (34) 

If l[vun(t) II were known to be monotonically decreasing, (33) would clearly imply 

llvun(t) II 2 < E t -I In fact, (34) implies such a slow rate of growth of llvunll 

when IIvunll is small, that one gets a similar result for large t , namely 

I]vun(t) II2 < H(t)<_ _ le--xp(cE+l) - i] t - I c  + E_ 1 i~5) 

c,E2exp * for t > (cE+l) > T . Here c and c' are the same as in (34). This esti- 

mate is proved by comparison with solutions of the differential equation ~, = ~2, 

which are of the form ~ = a-l(t o- t) -I. It is easily checked that if such a function 

is defined for t e [O,T] and satisfies fT#dt < E , then ~(T) < (exp~E-l)/~r . 
o 

The more complicated form of the estimate (35) is due to the presence of the term 

c'llvunll 6 in (34); the details are given in [4 ]. Once (35) is proven, (15) can be 

integrated to give 

f ll~un]l 2d~ ! ct-l, 

t 

for t > T Then, integration of (18) gives 

t 

-i 
Ct 

for t > T 

implies 

Since (6) is a differential inequality of the for~ 
, < ~2 

, this 

llu~(t)II 2 ~ c~t -I , c36) 

for t > T + 6 , for any ~ > 0 . The estimates (35) and (36), together with (30), 
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imply 

II~un(t)[l 2 ! C6t -I , (37) 

for t > T + 6. Finally, (35) and (37) imply 

sup[u(x,t)[ ! c(II&un[I + [[vunU) ! c ~ t  - ½  , (38) 

x ~  

for t ~ T + 8 . This estimate is a variant of one proved by Masuda [i0] for exterior 

domains. Masuda's estimate is based essentially on (6) rather than (15); while it 

gives a slower rate of decay, it remains valid in the case of nonhomogeneous boundary 

values. 

The relation between the estimates (16) and (35) is shown in Figure i. For every 

n, IIvun(t) ll 2 would be represented by a smooth curve defined for all t > 0 and 
7 

bounded by the graphs of F(t) and H(t) . r depends on II Vu I[, and r on liUol I. 
o 

Hvull 2 

llVUo11 

F(t) I 
/ 

T(lIVuolE) Y*(lluoll) 

~H(t) 
-I 

~t 

Figure i. Estimates (16) and (35) for the Galerkin approximations. 

* vun(t) * I f  T i T  , we l a c k a b o u n d  f o r  IJ II ,  u n i f o r ~ i n  n ,  o n  t h e  i n t e r v a l  [ T , T  ] ;  

s o ,  d u r i n g  t h i s  t i m e  i n t e r v a l ,  t h e  r e g u l a r i t y  o f  s o l u t i o n s  c o n s t r u c t e d  f r o m  t h e  

Galerkin approximations may break down. If T < T, there is only one solution and 

it is regular in the classical sense for all t > 0. It is shown in [ 4 ] that 

T < T, if, for some number ~, 

log(~/llVUo [I 2 ) 1 
~lluol] 2 ! c + c ' ~  
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