Hilbert scales and approximation theory
Lecture notes

The Eigenvalue problem for compact symmetric operators

In the following H denotes an (infinite dimensional) real Hilbert space with scalar product
() and the norm||...|| . We will consider mappings K:H — H . Unless otherwise noticed the
standard assumptions on K are:

) K is symmetric, i.e. for all x,y e H it holds (x,Ky)=(x,Ky)

i) K is compact, i.e. for any (infinite) sequence {x_} bounded in H contains a
subsequence {x,} such that {kx, } is convergent,

i) K is injective, i.e. Kx=0 implies x=0 .

A first consequence is
Lemma: K is bounded, i.e.

k)= sup i
wo [
Lemma: Let K be bounded, and fulfill condition i) from above, but not necessarily the two

other condition ii) and iii). Then K| equals

N(K) = sup O K)
x#0 HXH

Theorem: There exists a countable sequence {xli,goi}of eigenelements and eigenvalues
Ko, = 4,¢, with the properties

i) the eigenelements are pair-wise orthogonal, i.e. (¢i ,¢k)= S

i) the eigenvalues tend to zero, i.e. !Lrg s

iii) the generalized Fourier sums ¢ :=Z”:(X 0 )y, — x With n —>coforall xe H
i=1

iv) the Parseval equation
X" = 22 (. )

holds for all xe H .



Hilbert Scales

Let H be a (infinite dimensional) Hilbert space with scalar product () the norm||...|| and
A be a linear operator with the properties

i) Ais self-adjoint, positive definite
iy Ais compact.
Without loss of generality, possible by multiplying A with a constant, we may assume
(x, Ax)=|x|  forall xeD(n)

The operator K = A™ has the properties of the previous section. Any eigenelement of K is
also an eigenelement of A to the eigenvalues being the inverse of the first. Now by replacing

A, = A 'we have from the previous section

i) there is a countable sequence {%,,¢,} with

Ap, =Ao, » (p.p)=05,,.and limA
1—>o0

i) any X € H is represented by

0

() x=(eodn and = (un) -

Lemma: Let xe D(A), then

) a=Zatodn o Iag =T 20n)

(Ax, Ay)=ng(x,¢i Xy.o)

Because of (*) there is a one-to-one mapping 1 of H to the space H of infinite sequences of
real numbers
R

H o= {&% = (X, X,....)}

defined by

g=1x with x =(x¢)

If we equip H with the norm

X

R,

then | is an isometry.



By looking at (**) it is reasonable to introduce for non-negative « the weighted inner products
(®.9). =2 A4 (o Xy.o)= S Ay,
and the norms
%7, = (% %).

Let H . denote the set of all sequences with finite & — norm. then H . Is a Hilbert space. The
proof is the same as the standard one for the space 1, .

Similarly one can define the spaces H , : they consist of those elements X € H such that

Ix e H , with scalar product

¥, = Z.:Z/lf’ .o Xy. 0)= iiﬁxi Yi
and norm
2 =(xx),"

Because of the Parseval identity we have especially

(% y), =(xy)

Ix

and because of (**) it holds
X3 = (Ax, AX)o + H. = D(A)-

The set {H o= o} is called a Hilbert scale. The condition ¢>0 is in our context necessary
for the following reasons:
Since the eigen-values 2, tend to infinity we would have for o <0: lim 4 — 0. Then there exist

sequences X = (X, X,,...) With

)‘(Hz—oo
J=o .

115 <o

Because of Bessel’s inequality there exists no xeH with Ix=X. This difficulty could be
overcome by duality arguments which we omit here.



There are certain relations between the spaces {H o= o} for different indices:

Lemma: Let < . Then
.. <1,

and the embedding H , — H, is compact.

Lemma: Let o < f< y. Then

I, < x

yz
a

X

" for x e H
V4 Ve

Lemma: Let a<f<y.Toany xe H, and t> o thereisa y =y, (x) according to

D x=yl <t
0 x=yl <, I < I,
i) vl <7,

Corollary: Let ¢ < p<y.Toany xe H, and t>o thereis a y =y, (x) according to
D x=yl, <IN, Tor espsp

vl <t for psosy

Remark: Our construction of the Hilbert scale is based on the operator A with the two
properties i) and ii). The domain D(A) of A equipped with the norm

Y,

turned out to be the space H, which is densely and compactly embedded in H = H,,. It can

be shown that on the contrary to any such pair of Hilbert spaces there is an operator A with
the properties i) and ii) such that

D(A)=H, R(A)=H, and [x|,=]Ax|.



We give three examples of differential operator and singular integral operators, whereby the
integral operators are related to each other by partial integration:

Example 1: Let H =1?(0,1) and
Au=-u
with
DU =W/, 0D =W, 09 AW, 0 -
Building on the orthogonal set of eigenpairs {4,,¢,} of A, i.e.
—p'=A4o PO =p@)=0

it holds the inclusion

1

D(A) H, = H, =W, (01) < (02)-

Example 2: Let H =L, () with T':=S*(R?%), i.e. I is the boundary of the unit sphere. Then

H is the space of integrable periodic function in R . Let
(Au)() = ~flog 2sin == Fu(y)dy = fk(x— y(y)dy
and
D(A)=H = L..(I) -
The Fourier coefficients of this convolution are

1
Au) =ku =—u
( )v VoV 2“/

v

i.e.itholds D(A)cH,=H_,,I) .

A relation of this Fourier representation to the fractional function is given by

_Z“’:sin 27X

1
M-g=-2



Remark: We give some further background and analysis of the even function

k(x) =—In Zsinl Zsinl

= —log

Consider the model problem
—AU =0 in Q
U=f onI':=0Q,

whereby the area  is simply connected with sufficiently smooth boundary. Let
y = y(s)—s « (0,1] be a parametrization of the boundary 6C2 . Then for fixed Z the functions

U(X) = —log|x — Z|

Are solutions of the Lapace equation and for any L (60) - integrable function u = u(t) the
function

(Au)(X) = §log|x — u(t)[dt
aQ

is a solution of the model problem. In an appropriate Hilbert space H this defines an integral
operator ,which is coercive for certain areas Q and which fulfills the Garding inequality for
general areas Q) . We give the Fourier coefficient analysis in case of H =L} () with

I':=S'(R?), i.e. I'is the boundary of the unit sphere. Let x(s) := (cos(s),sin(s)) be a
parametrization of I := $*(R?) then it holds

2 S

- (COS(S) _cos(t)] =2-2cos(s—t) = 2(1—cos(25T_t)) = |:25|n ST} 4sin ?t

[x(s) - x| = sin(s) —sin(t)

and therefore

— log|x(s) — x(t)| = —log 2jsin S;t =k(s—t) -

The Fourier coefficients k, of the kernel k(x) are calculated as follows

2sin

k -—i§ k(x)e-““dx—izflog
" 2n 27 %,

Zsin£
2

: 2 ¢ t
eMdt=—-/lo —| cos()dt =k
Zﬂ! gl2sin | cos(t)dt =k,

As ¢log gsing _)00 partial integration leads to

z 25|n(vt)cost 1 ”sm( t) sin ( )
k, —sm(vt) -—j;dt_-—j . dt
o V7% 25|nE Y 25|nE

k, =-— i_[ (F +cos(t)..+ cos(vt)] —F +cos(t)..+ cos((v —1)t)})dt =- 1.
o L2 2 v



Extension and generalizations

For t > owe introduce an additional inner product resp. norm by

mw@=zfmumxmm

HXH(ZU = (X.%)gy -

Jat

Now the factor have exponential decay € '™ instead of a polynomial decay in case of A" .

Obviously we have

Xl < cle D, for xeH,

®

with c(a,t) depending only from a¢ and t > 0. Thus the (t) —norm is weaker than
any & —norm. On the other hand any negative norm, i.e. |x| with « <o, is bounded by the

0—normand the newly introduced (t) —norm. It holds:

Lemma: Let « > o be fixed. The oz —norm of any xe H, is bounded by

M, = &% X +e

2
X

with 6 > Qbeing arbitrary.

Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of
the o —norm, which can be reformulated in the form (v >0, u+v>1)

I < vellx|} + ™"
applying Young'’s inequality to

X7 = Xz ¢

x|y -

The counterpart of lemma 4 above is

Lemma: Let t,0 > 0be fixed. Toany x € H, thereisa y =y, (x) according to

D =yl =l
iyl =7
i) Ix=yl, <e™lx -



Eigenfunctions and Eigendifferentials

Let H be a (infinite dimensional) Hilbert space with inner product(,,.), the norm||...||
and A be a linear self-adjoint, positive definite operator, but we omit the additional

assumption, that A™" compact. Then the operator K = A~ does not fulfill the properties leading
to a discrete spectrum.

We define a set of projections operators onto closed subspaces of H in the following way:

R— L(H,H)

y
A= (o000 o+ )

z

i.e. dE, =@, (p,,*)d1 .

The spectrum o (A) < C of the operator A\ is the support of the spectral measure dE, .

The set E; fulfills the following properties:
i) E, is a projection operator for all 1 € R
ii) for 1<y itfollows E, <E, i.e. EE, =EE, =E,
i) ﬂ"j‘_LEA =0 and limE, = 1d

iv) imE =E, -
A H 4

1>

Proposition: Let E; be a set of projection operators with the properties i)-iv) having a
compact support [a,b]. Let f:[a,b] > R be a continuous function. Then there exists exactly
one Hermitian operator A, :H — H with

(Afx,x)=Tf(/1)d(Elx,x) :

Symbolically one writes A= T/ldE .
A

—0

Using the abbreviation
lux‘y(ﬂ’) = (Eixl y) ! d;ux,y (/1) = d(EAX’ y)

one gets

(AcY) = [MExy) =[adu, (1) XS = [4d|E,N" =[2du,, (1)

(A% y) = [2d(E,x ) =[2du, (1) + A" = [2d[E, X" =] 2du,,(2) -

8



The function &(1) I=HEAXHZ is called the spectral function of A for the vector X . It has the
properties of a distribution function.

It hold the following eigenpair relations
Ap, =4p,  Ap, =9, o) = (0,.0,)=5p,-0,) -

The ¢, are not elements of the Hilbert space. The so-called eigendifferentials, which play a
key role in quantum mechanics, are built as superposition of such eigenfunctions.

Let | be the interval covering the continuous spectrum of A. We note the following
representations:

X=Y(x@)o, + [ 0,0, 00k » Ax=3 4 (x0)e, + [ 20, (0,, )du
M = 32 J00 0 + [[(, 0 ds
X =3 2100 + [ A, [ du

X, = [Ax* = 2 22]0p)]” + [ 2@, 0 du
I

Example: The location operator Q and the momentum operator p_both have only a
continuous spectrum. For positive energies 1> 0 the Schrédinger equation

Ho, (x) =19, (x)

delivers no element of the Hilbert space H , but linear, bounded functional with an underlying
domain M < H which is dense in H . Only if one builds wave packages out of ¢, (X) it results

into elements of H . The practical way to find Eigen-differentials is looking for solutions of a
distribution equation.



