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1

Introduction

This text assumes that the reader is familiar with the following concepts:

1)
2)
3)

Metric spaces and their completeness.
Lebesgue integral in a bounded domain €2 C R™ and in R".

Banach spaces (L?, 1 < p < oo, C*) and Hilbert spaces (L?): If 1 < p < oo then
we set

1/p
LP(Q) :={f : @ — Cmeasurable : || f|| ., = (/Q \f(x)\pd:c) < o0}

while

L>(Q) :={f : @ — Cmeasurable : || f|| o« q) = esssup|f(z)| < oo}
e

Moreover

CHQ) = {f:Q—=C:|fllong =max > [0°f(x)] < oo},

e |a\§k

where € is the closure of Q. We say that f € C>(Q) if f € C*(Q;) for all k € N
and for all bounded subsets 2; C Q. The space C*(£2) is not a normed space.
The inner product in L*(Q) is denoted by

(f, 9)r2 @) Z/Qf(x)g(a:)dx.

Also in L*(Q), the duality pairing is given by

(fs 92 Z/Qf(x)g(x)dx.

Holder’s inequality: Let 1 < p < co,u € L? and v € L with
1 1
— 4+ - =1
p p

Then wv € L' and

[ @@ < ([ )’ ([ )

where the Holder conjugate exponent p’ of p is obtained via

=

p:]fl

with the understanding that p’ = oo if p=1and p' =1 if p = o0.
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5) Lebesgue’s theorem about dominated convergence:

Let A C R"™ be measurable and let {f}32, be a sequence of measurable functions
converging to f(x) point-wise in A. If there exists function g € L'(A) such that
|fx(x)| < g(x) in A, then f € L'(A) and

lim Afk(x)dm:Af(x)dx.

k—oo

6) Fubini’s theorem about the interchange of the order of integration:

[t ldedy = [ da ([ 17 y)ldy) = [ dy (] 1f(@wldz),

if one of the three integrals exists.



2 Fourier transform in Schwartz space

Consider the Euclidean space R",n > 1 with = (z1,...,z,) € R" and with |z| =

Va1 + -+ 22 and scalar product (x,y) = 37, 2;5;. The open ball of radius § > 0
centered at x € R" is denoted by

Us(z) ={y e R": |z —y| < d}.
Recall the Cauchy-Bunjakovsky inequality

(@, y)| < Jllyl.

Following L. Schwartz we call an n-tuple o = (a1,...,0,),a; € NU{0} = Ny an
n-dimensional multi-index. Denote

al=a1+ - Fa, al=uo!--al
] ,

and

g =Mt 00=1, 0'=1.

Moreover, multi-indices o and (3 can be ordered according to

a<p
if and only if o; < 3; for all j = 1,2,...,n. Let us also introduce a shorthand notation
0
aazﬁal...aa" 827
1 n o J amj

Definition. The Schwartz space S(R") of rapidly decaying functions is defined as

S(R") ={f € C*°(R") : |flap := sup ‘xaﬁﬁf(x)‘ < oo for any a, 3 € N }.
T€R"

The following properties of S = S(R") are readily verified.
1) S is a linear space.
2) 0%:8 — S for any a > 0.
3) 2. : S — S for any 3 > 0.
)

4) If f € S(R") then |f(x)| < ¢pn(l + |z|)~™ for any m € N. The converse is not
true (see part 3) of Example 2.1).

5) It follows from part 4) that S(R") C LP(R™) for any 1 < p < 0.
Example 2.1. 1) f(z) = e € S for any a > 0.

2) f(x) = e 0+l € S for any a > 0.
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3) f(z)=ellgs.
4) CP(R™) ¢ S(R™), where Cg°(R") = {f € C*(R") : supp f is compact in R"}
and supp f = {z € R*: f(z) # 0}.

The space S(R™) is not a normed space because | f|, g is only a seminorm for o > 0
and # > 0 i.e. the condition

|fla.s =0 ifand only if f=0

fails to hold for e.g. constant function f. But the space (S, p) is a metric space if the
metric p is defined by

—|a— |f_g|aﬁ
g)= 3 o-lal-lal. 5
a%;o 1+|f_g|0é7/6

Exercise 1. Prove that p is a metric, that is,

1) p(f,g) >0 and p(f,g) =0 if and only if f = g.
2) p(f,9) =p(g,[)

3) plg,h) < p(g, [) + p(f; D).

4) (In addition) |p(f, h) — p(g, h)| < p(f. 9).

Theorem 1 (Completeness). The space (S, p) is a complete metric space i.e. every
Cauchy sequence converges.

Proof. Let {fi}32,, fx € S, be a Cauchy sequence, that is, for any € > 0 there exists
no(e) € N such that

p(fk’vfm) <ég, k,mZno(s).

It follows that

sup |07 (fi — f)| < £

zeK

for any § > 0 and for any compact set K in R". It means that {f}32, is a Cauchy
sequence in the Banach space C!%l(K). Hence there exists a function f € Cl°l(K) such

that
C"B‘(K)

o £ =1

That’s why we may conclude that our function f € C*°(R"). It only remains to prove
that f € S. It is clear that

sup [229° f| < sup [2°0°(fi, — f)| + sup [+°0” f|
zeK rzeK zeK

< Co(K)sup [0°(fr — f)] + sup [2%0” fi.
rzeK rzeK



Taking k — oo we obtain

sup [z%0°f| < limsup|fi |a,s< oc.

reK k—oo

The last inequality is valid since {f}32; is a Cauchy sequence, so that |fi|os is
bounded. The last inequality doesn’t depend on K either. That’s why we may conclude
that |f|as <ooor f e S. O

Definition. We say that fj 5, f as k — oo if and only if

|fr = [ lap— 0, k— o0
for all a, 8 > 0.

Exercise 2. Prove that Cg°(R") = S, that is, for any f € S there exists { fx}72,, fx €
C3°(R™), such that fj S fk — .

Now we are in the position to define the Fourier transform in S(R").

o~

Definition. The Fourier transform F f(£) or f(£) of the function f(x) € S is defined
by

~

FAO =) = @n ™2 [ O (a)dr, ¢eR"

Remark. This integral is well-defined since

‘J?(f)’ < Cm(27T)_n/2/ (1+ |z]) ™dx < o0,
Rn
for m > n.

Next we prove the following properties of the Fourier transform:

1) F is a linear continuous map from S into S.

2) €L F(€) = (=) Ige (2B f(x)),

Indeed, we have

~

OLF(§) = (2m) [ (—iw)?e 0 f(w)da

n

and hence

_ 1
|07 gy < m@m) ™ /R : 217 e < oo

L fa])m
if we choose m > n + |3|. At the same time we obtained the formula

——

0L f(€) = (—iz)’f(x). (2.1)

Further, integration by parts gives us

~

€f(€) = (i) MmO ()

n
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That’s why we have the estimate

HﬁafHLoo ®R) = / |09 f(z)| de < o0

since 0% f(x) € S for any a > 0, if f(z) € S. And also we have the formula

& f = (i)elogf. (2.2)

If we combine these two last estimates we may conclude that F' : S — S and F is
a continuous map since F' maps every bounded set from S to a bounded set from S
again.

The formulas (2.1) and (2.2) show us that it is more convenient to use the following
notation: 5

D] = —'Laj = —'Laixj Da = D?l e Dzn

For this new derivative the formulas (2.1) and (2.2) can be rewritten as
Def = (-1)llanf, ¢of = Doy,
Example 2.2. It is true that
Fle 2 ) (g) = e 721"
Proof. The definition gives us directly

Fe 3Py (¢) = (27?)*"/2/ emi@E) =zl gy

n

= (27r)*”/2e*%|€|2/ o~ 3P +2i(2O)-167) g,

_ (27T —n/2 —*|§|2H/ e %t—o—zﬁj dt.
J=1""

¥

z

In order to calculate the last integral we consider the function f(z) = e~ 7% of the
complex variable z and the domain Dg depicted in Figure 1. We consider the positive
direction of going around the boundary 0Dpg. It is clear that f(z) is a holomorphic
function in this domain and due to Cauchy theorem we have

22
]{ e 2dz=0.
DR

But

z R t &5 } - 0 .
j{ e T dz = / e~ dt + z/ T e (BT g +/ e 2 ()" gy 4 z/ 2(—RHim) g
ODg -R 0 R &

If R — oo then 9
/ e s RN g ),
0
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Figure 1: Domain Dg.

Hence ~ . )
/ e—%(t+i€j)2dt:/ g%dt? j=1,...,n.

Using Fubini’s theorem and polar coordinates we can evaluate the last integral as

0 2 2 1,9, o 27 o) 2
(/ e_7dt) = / e~ 2T dids = / dQ/ e zrdr
—co R2 0 0

= 27?/ e "dm = 2.
0

Thus -
/ e 2 (&) gy — V2

and
||

Flem 2)(&) = (2m) ze 2P ﬁ Vo = e3P,

Exercise 3. Let P(D) be a differential operator

P(D)= Y a,D"

laj<m

with constant coefficients. Prove that P(D)u = P(§)u.

Definition. Adopt the following notation for translation and dilation of a function
(T f)(x) := flz—h), (oaf)(x) = f(Ax), A#O.

Exercise 4. Let f € S(R"),h € R" and A € R, \ # 0. Prove that

1) oxf(€) = I\ o1 F(§) and 0, f(&) = N1 ()

1
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2) T f(€) = e O f(€) and 7, f(€) = eilh) f(€).

Exercise 5. Let A be a real-valued n x n-matrix such that A=! exists. Denote fa(z) :=
f(A™'z). Prove that

Fa(&) = (F)a(©)

if and only if A is an orthogonal matrix (a rotation), that is, AT = AL

Let us now consider f and g from S(R™). Then

(Ffv g)L2

/Rn f(g)mdf = (27r)_”/2 /Rn@ (/Rn e_i(x’g)f(m)dx> dé
=m0 ([ @ Tg€de) de = (1. F )

where F*g(x) := Fg(—x).

Remark. Here F* is the adjoint operator (in the sense of L?) which maps S into S
since F': S — S. The inverse Fourier transform F~! is defined as: F~' := F*.

In order to justify this definition we will prove the following theorem.

Theorem 2 (Fourier inversion formula). Let f be a function from S(R™). Then
F*Ff=f.
To this end we will prove first the following (somewhat technical) lemma.
Lemma 1. Let fo(z) be a function from L'(R") with [g. fo(x)dx =1 and let f(x) be

a function from L*°(R™) which is continuous at {0}. Then

im [ e, (j) Fl@)dz = f(0).

el0 JRn
Proof. Since
—-n x _ —-n f o
L (5) r@de =50 = [ =5 (%) (@) = £0))da,
then we may assume without loss of generality that f(0) = 0. Since f is continuous at

{0} then for any n > 0 there exists § > 0 such that

U

@ <17

whenever |z| < 0. Note that

[ foda] < 5ol
R



That’s why we may conclude that

_ x n _ x

e "fol—) flz dx‘ < £ "/ - ’dm
Lo p Qe < e [ wG)

ez [0 ()

dx

n
< NWfollgs + 1w [, ol dy =0+ £l Lo
[ foll 11 lyl>2
But I. — 0 as € | 0. This proves the lemma. [l

2|2
Proof of theorem 2. Let us consider v(x) = e, We know from Example 2.2 that

Jan v(x)dz = (27)"? and Fv = v. If we apply Lemma 1 with f; = (27)™"/2v(x) and
f € S(R™) then

2m)2f(0) = i o (2) fa)de = lim(f,e 010}z = lim(f,e "o Fo) e
@ry2f(0) = tim [ e (2) la)de = lm(f e o) e = limd S0 Fo),

el0 JrRn

Rt (f Ploa)ie = lim(Pf o) = (Ff.0) = [ FR€)e 09

after using the Lebesgue theorem of dominated convergence in the last step. This
proves that

£0) = @m) 2 [ F(§)e®Odg = (F'FF)(0).
The proof is now finished by

@) = (DO = (FFr))0) = @r) " [ F(r.f)©)e®ds

L amy [ dCORf(©ds = FURS@).

]

Corollary. The Fourier transform is an isometry (in the sense of L?).

Proof. The fact that Fourier transform retains norm of f € .S follows from the following
Parseval equality

IFfl7e = (Ff.Ff)pz = (f, F*Ff)i2 = (f, f)re = | fl72-

Note that
(Ff>g)L2 = (fa F’*g)L2

means that
| 79 = [ @ Fg@dr = [ f@)F(g))da.
It implies that

/]Rn J?(f')g(g)df - /Rn f(z)g(r)d

<Ffag>L2 = <f> Fg)Lz'



3 Fourier transform in L’(R"),1 <p <2

Let us start with a preliminary proposition.

Proposition. Let X be a linear normed space and E'C X a subspace of X such that
E = X, that is, the closure E of E in the sense of the norm in X is equal to X. Let
Y be a Banach space. If T : E —'Y 1s continuous linear map, i.e. there exists M > 0
such that

ITuly < Mully, we E,

then there exists a unique linear continuous map Te, : X — Y such that To,lp = T
and
ITeully < M Jull . e X.

Exercise 6. Prove the previous proposition.

Lemma 1. Let 1 < p < oo. Then
Cg (R7) = L'(R"),
that is, C°(R™) is dense in LP(R™) in the sense of LP-norm.

Proof. We will use the fact that the set of finite linear combinations of characteristic
functions of bounded measurable sets in R" is dense in LP(R"),1 < p < oco. This is a
well-known fact from functional analysis.

Let now A C R" be a bounded measurable set and let ¢ > 0. Then there exists
a closed set F' and open set @ such that ¥ C A C @ and pu(Q \ F) < & (or only
u(Q) < e? if there is no closed set F' C A). Here p is the Lebesgue measure in R™.
Let now ¢ be a function from C§°(R™) such that suppy C Q,¢|r =1 and 0 < ¢ < 1.
Then

o= xXallmn = [, o) = xa@)l de < [ 1dr = w(@Q\F) <&

or
lo — XA”LP(R”) <é,

where x4 denotes the characteristic function of A i.e.

() 1, z€A
€Tr) =
xa 0, z¢ A

Thus, we may conclude that Cg°(R") = LP(R") for 1 < p < 0. O

Remark. Lemma 1 does not hold for p = co. Indeed, for a function f = ¢q # 0 and for
any function ¢ € C{°(R™) we have that

Hf - SOHLOO(Rn) 2 ’CO‘ > 0
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Hence we cannot approximate any function from L*°(R™) by functions from C§°(R").
It means that

1>
Cge(R™) # L=(R").
But the following result holds:
Exercise 7. Prove that S(R") = C/(R"), where

CR") :={f € C(R"): lim f(z)=0}.

|| —00
Now we are in the position to extend F from S C L! to L.

Theorem 1 (Riemann-Lebesgue lemma). Let F': .S — S be the Fourier transform in
Schwartz space S(R™). Then there exists a unique extension Fe, as a map from LY(R™)
to C(R™) with norm || Fuz|| ;1 0 = (2m)™/2.

Proof. We know that ||[Ff|,;~ < (2r)™/2|/f||,;: for f € S. Now we apply the pre-
liminary proposition to £ = S, X = L' and Y = L*®. Since S L (it follows

from C5° C S and Cg° L L) for any f € L'(R™) there exists {fr} C S such that
| fx = fll,r — 0 as k — oo. In that case we can define

Foof = lim Ffy.

Since § = C' (see Exercise 7) then F,,f € C and | Fozll 1 pee < (27)7/2. On the
other hand R
1Efllzee 2 1F0)] = 2m) 2| f ]|

for f € L' and f > 0. Hence ||F..||;1_ -~ = (27) 72 0

Alternative proof. If f € L'(R™) then we can define Fourier transform F f(€) directly
by

FFE) = 2m) 2 [ e f(a)da,

n

since

L e paydal < [ 1) lde = £l

Also we have

/n e~HE6o) (gmilha) _ 1)f(x)dm'

< 9 |f(x)|dx+5/|xlh<€]f(x)|dx =1+ L.

£
|‘T‘>\h|

@)™ F(€+ 1) = F©) e, = sup

¢eRn

Here we have used the fact that [e? — 1| < |y| for y € R with |y| < 1. Tt is easily seen
that I; — 0 for |h| — 0 and Iy — 0 for € — 0, since f € L'(R").
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~

It means that the Fourier transform f(§) is continuous (even uniformly continuous)

on R™. Moreover, we have

2(6) = (am ™ [ e (@)= (2 + ) ) e

This equality follows from

~

and Exercise 4. Thus,

— 0
L1(R)

2[f(&)] < (2m)

f(x)—f(erE‘Z)

for |£] — o0.

fle) = —m) 2 [ ememid f(a)de = —(2m) 2 | 6T) =0 £(2)do

O

Theorem 2 (Plancherel). Let F': S — S be the Fourier transform in S with | F f|| ;. =

| fll2- Then there exists a unique extension Fy, of F to L*-space, such that F., : L

L* and ||Fop|| ;22 = 1. Also the Parseval equality remains valid.

onto
2 K

Proof. We know that S 2 L? since C3° 2 L2, Thus for any f € L?*(R™) there exists
{fi}p2s € S(R™) such that [|fy — fl|j2gny — 0 as k — co. By Parseval equality in S

we get

||ka —Ffl||L2 = ||fk - leLz — 0, k,l— o0.

Thus {F f1.}32, is a Cauchy sequence in L?(R") and, therefore, F f}, L g, where g € L2.

That’s why we may put F,,f := g. Also we have the Parseval equality

e fllg = i |F fell o = Jim (1 fell 2 = 171
which proves the statement about the operator norm. [l
Remark. In L*-space we also have the Fourier inversion formula F' F..f = f or

FlFaf=f.
Exercise 8. Prove that if f € L*(R") then

1) Fuf(§) £ im_Ffa(§), where fr(t) = X(aiui<n (2)f(2)

2) Fuuf(€) £ lim Fe=<¥lf).

Exercise 9. Let us assume that f € L*(R") and Ff(¢) € L'(R"). Prove that

fe) = @) [ @O (€)= FFf(a)

Rn

It means that the Fourier inversion formula is valid.

12



Exercise 10. Let f; and f, belong to L?*(R™). Prove that

<f17f2)L2 = (Ffla Ff2)L2-

Theorem 3 (Riesz - Torin interpolation theorem). Let T' be a linear continuous map
from LPY(R™) to LT (R™) with norm estimate My and from LP2(R™) to L% (R"™) with
norm estimate My. Then T is a linear continuous map from LP(R™) to LY(R™) with p
and q such that

1 1— 1 1—
AL R RS

)l I

P pm P ¢ @ @

with norm estimate M9 M, ~°.
Proof. Let F' and G be two functions with the properties:
1) F,G >0,
2) \Fllp =Gl = 1.
Let us consider now the function ®(z) of complex variable z € C given by

1—
1=z £ 4 5F

nT(foFé+ r2 )(x)goG %2 (v)dz,

B(2) = M *M; /R

where qil + qi/ =1, q% + qi, =1,|fo] <1 and |go| < 1. The two functions f, and go will
1 2

be selected later. We assume also that 0 < Re(z) < 1.
Our aim is to prove the inequality

(T f,g)eel < MYMy™" | fll o llgl o

where
1 0 1-0 1 0 1-6
-

1
- ) - ) - + ) - ]-
P N D2 q q1 q2 qa q
2l H4ls . :
Since T is a linear continuous map and F nt G % are holomorphic functions
with respect to z (consider a* = €*™? a > 0) we may conclude that ®(z) is a holomor-

phic function also.

z

1) Let us assume now that Re(z) = 0, i.e. z = dy. Then we have ®(iy) =
1 iy iy | 1—iy

; ; i Hr . - .
Ml_lyMQ_H’y(T(fOF%Jr 2 ),g0G 2 )r2. Since [a**| =1 fora,z € R,a >0, it
follows from Holder inequality and the assumptions on T that

. s ﬂ lfiy
B(iy)] < My'My|fFRt R gGh %
LP2 Lq/2
a L L =
= |iiFm| | Jwic] , < 0FIE IG1E = 1.
LP2 L2

13



2) Let us assume now that Re (z) =1, i.e., z = 1 +iy. Then we have similarly that

144 i 1+iy —1y
(1 +iy)| < M7M, | foF 7 5| gG E %
Lr1 qul
1 L L 4
= |iselz| isole| < iFIEIGHE = 1.

If we apply now the Phragmen-Lindelev’s theorem for the domain 0 < Re(2) < 1 we
obtain that |®(z)| < 1 for any z such that 0 < Re(z) < 1. Then |®(#)| < 1 also for
0 < # < 1. But this is equivalent to the estimate

1 1 _
(T (foF?), goG7 ) 2| < M{ My~ (3.1)

where 1 = 0 4 12601 _ 0 4 10 5pq 1 4 1 — 1 In order to finish the proof of this
p p1 p2 ' q q1 q2 q q ,
theorem let us choose (for arbitrary functions f € LP and g € L? with p and ¢ as

above) the functions F, G, fo and go as follows:

F:|f1|p» G:|91|q/, fo=-sgn fi, go=-sgng,

_ _f _ _ g
where fi = g7, g1 = g — and
1, f>0
sgnf =40, f=0
-1, f<O0.

In that case f; = fOF% and g; = ggGi Applying the estimate (3.1) we obtain

’<T (uf{rm) ’ ngguq/>m

(T f,9)r2] < MYMy = || fll oo 19 o -

It implies the desired final estimate

T fllpe < MYMTO NI £ 1]

< M{M,;~°,

which is equivalent to

]

Theorem 4 (Hausdorff-Young). Let F': S — S be the Fourier transform in Schwartz
space. Then there exists a unique extension F,, as a linear continuous map

F.,: LP(R") — L (R"),
where 1 < p < 2 and %D + i = 1. What s more, we have the norm estimate
(i 1
| Fall oo < (2)(573).

It is called the Hausdorff-Young inequality.

14



Proof. We know from Theorems 1 and 2 that there exists a unique extension F,, of
the Fourier transform from S to .S for spaces:

1) F,: LYR") — L=(R") with norm estimate M; = (27)~3
2) F.,: L*R") — L*(R") with norm estimate M, = 1.
Applying now Theorem 3 we obtain that F,, : LP — L9 where

1 66 1—-606 1 46 1 0 1—-6 1
P 2

0
1 2 272 ¢ oo 2 2

It follows that 11
-4 - = 1
p g

ie. ¢g=p and 0 = % — 1. For 6 to satisfy the condition 0 < 8 <1 we get 1 < p < 2.
We may also conclude that

_n _ (i1
1 Foall o < ((2)78)0110 = (27) (573,
]

Remark. In order to obtain F,, in LP(R"),1 < p < 2, constructively we can apply the
following procedure. Let us assume that f € LP(R"),1 < p <2, and {fx}32; C S(R")
such that

15 = fllp@ny = 0,k — oo

It follows from Hausdorff-Young inequality that
||ka - FleLP'(R") < Cn ||fk - leLP(Rn) .

It means that {Ff,}2°, is a Cauchy sequence in L (R™). That’s why we can define
Foof 2 i FJ.
And we also have the Hausdorff-Young inequality
|Feafllr = i [ Ffellr < i Colfillgy = Co I

Example 3.1 (Fourier transform on the line). Let fo(z) = ﬁ, where ¢ > 0 is
fixed. It is clear that f, € L'(R) and

— 1 +oo e~ ]y

f2(§) = o /_ v w0
In order to calculate this integral we consider the function F(z) := é:Z; of complex

variable z € C. It is easily seen that z = ie,e > 0 is a pole of order 2. We consider the
cases £ > 0 and & < 0 separately, see Figure 2.

15



Im z Im 2

—R S Rez > Re z
Dy

Figure 2: Domains Dy and D} of integration.

1) € > 0. By Cauchy theorem we have
R
f F(2)dz = 0= / F(2)dz + / F(z)dz = I + I,
oDy, -R

It follows that

and
IZ—>O, R — o0

due to Jordan’s lemma, since £Im 2z < 0. That’s why we may conclude that

400 *W&d
/ u =0
—oo (x —i€)?
for £ > 0.
2) £ < 0. In this case again £Im z < 0. So we may apply Jordan’s lemma again and
obtain
R g—iw€ ]
?{ F(z)dz—/ ‘ - —t+ / z)dz = 2miRes F'(z).
6D§ {L‘ — 28 z=ie
|z|=R
Im 2z>0
Hence

00 7im§d
[ e = 2 = P F Q) e 2mEe

If we combine these two cases we obtain

e

L (6) = VaneH(—¢)t

(x —ie)
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where

1, t>
H(t)=<{" 20
0, t<0

is the Heaviside function. Similarly we obtain

1

—— (&) = —V 27 e 5t
&) = VRrEH()

Example 3.2. Let fi(z) = -, where ¢ > 0 is fixed. It is clear that f; ¢ L'(R), but

1€’

f1 € LP(R),1 < p < 2. Analogous to Example 3.1 we obtain:

1 () = —i2rH(£)e ¢, €40
T +ic —i\/3, £€=0

and

1 ) _ i\/%H(—f)@E£7 57& 0
rerelUh VES £=0.

Exercise 11. Find the Fourier transforms of the following functions on the line.

) () = { T

0, x <0
b) f(z) = el and £(z) = 1k
c) f3(z) = m,a > 0.
Exercise 12. Define the Laplace transform by
Lp) = [ fa)e e,
where |f(x)] < Me® x>0, f(z) =0,z <0 and p = p; + ips, p1 > a. Prove that
a) L(p) = V2 f(z)e 72 (py).

b) Apply the Fourier inversion formula to prove the Mellin formula

1 p1-+ioo .
f(x) [ twerdp, p>a.
P

271 1—100
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4 Tempered distributions

In this chapter we will consider two types of distributions: Schwartz distributions
and tempered distributions. To that end we consider the space D := C3°(R") of test
functions. It is clear that D is a linear space and D C S. A notion of convergence is
given in

Definition. A sequence {¢}72, is a null-sequence in D if and only if
1) there exists a compact set K C R", such that supp ¢, C K for any k and

2) for any o > 0 we have

sup |[D%pp(z)| — 0, k — oo.
rzeK

We denote this fact by ¢ Z0. As usual, ¢ L @ € D means that ¢, — ¢ 0.
Now we are in the position to define the Schwartz distribution space.

Definition. Functional 7" : D — C is a Schwartz distribution if it is linear and
continuous, that is,

1) T(onpr + asps) = a1 T (1) + a1 (@) for any 1, € D and oy, ay € C
2) for any null-sequence ¢y in D it holds that T(¢x) — 0 in C as k — 0.

The linear space of Schwartz distributions is denoted by D’. The action of T on ¢ is
denoted by T'(p) = (T, ¢).

Example 4.1. Every locally integrable function f, that is, f € LL_(R"), defines a
Schwartz distribution by the formula

(T1.0) = [ F@)p(a)da.

It is clear that 7% is a linear map. It remains to prove only that T} is continuous map
on D. Let {pr}2, be a null-sequence in D. Then

[Ty 0] < suplon(@)] [ 1f(@)ldz =0, &k — oo
zeK K

by the definition of null-sequence.

Example 4.2. If (T, @) := ¢(0), then T € D'. Indeed, T is linear and if @), = 0
then (T, pr) = ¢i(0) — 0 for k — oo. This distribution is called the §-function and is
denoted by ¢ i.e.

(6,0) =(0), ¢e€D.

18



Remark. A distribution T is regular if it can be written in the form

(T.¢) = [ fla)p(a)ds
for some locally integrable function f. All other distributions are singular.
Exercise 13. Prove that § is a singular distribution.

Definition. The functional T" defined by

(T, @) := lim gOE;;)CZ:E = p.v. /_OO QOE:)

e=+0 J|z|>e
on D(R) is called the principal value of X. We denote it by T'= p.v.L.
Remark. Note that = ¢ L (R) but we have the following

Exercise 14. Prove that
0
pv— / Pl )dx—pv/ wdx.

Example 4.3. Let 0 be a hypersurface of dimension n — 1 in R™ and let do stand for
an element of surface area on o. Consider the functional

on D, where a(x) is a locally integrable function over . We can interpret 7" in terms
of surface source. Indeed,

([ a(€)0(@ = doe, ) = [ al€)(3(a — €, p(@))doe = [ al&)p(€)dor

g g oz

It is easy to see that T is a singular distribution. This distribution is known as the
simple layer.

Definition. If 7 € D" and g € C*°(R") then we may define the product g7 by

(gT, ) = (T,g¢), ¢e€D.

This product is well-defined because gy € D.

If f is a locally integrable function whose derivative —g jj is also locally integrable,
then
of of dp >
— = — dx = — — D

by integration by parts. This property is used to define the derivative of any distribu-
tion.
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Definition. Let T" be a distribution from D’. For any multi-index o we define the
derivative 0*T by
(0°T, ) = (T, (=1)9%), ¢ e D.

It is easily seen that 0T € D'.

Example 4.4. Consider the Heaviside function H(z). Since H € L{ (R) then
(H ¢y = —~(H¢) == [ ¢ @)dz = o(0) = (3,).

Hence H' = .

Example 4.5. Let us prove that in the sense of Schwartz distributions (log|z|)’ =
p.v.-. Indeed,

(105 |2/, 0) = —(loglal,¢') = - /_Zloguxw(x)dx
_ / log(2) ' (z)dz — /_0 log(—2)¢' () d
= [ 1os(@)(@ (@) + ¢ (-w))de = — [ " log(a)((x) ~ p(~))'dr
= —loa() [p(o) — ol + [ ED D gy o L

by integration by parts and Exercise 14.

1\’ 1
p.V.E = —pVﬁ

The following characterization of D’ is given without a proof: 7' € D’ if and only
if for any compact K C R"™ there exists ng(K) € Ny such that

(T, ¢)] < Co D sup|D%|

zeK

Exercise 15. Prove that

la]<ng
for any ¢ € D with suppy C K.
Definition. Functional T': S — C is a tempered distribution if
1) T is linear i.e. (T, + B) = (T, ) + B(T,v) for all o, 5 € C and p, v € S

2) T is a continuous on S, i.e. there exists ny € Ny and constant ¢y > 0 such that

(o)l <co D |#lag

for any ¢ € S.
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The space of tempered distributions is denoted by S’. In addition, for Ty, T € S’ the
convergence T}, 5 T means that (T, ) 5 (T, ) forall p € S.

Remark. Since D C S the space of tempered distributions is more narrow than the
space of Schwartz distributions, S’ C D’. Later we will consider even more narrow
distribution space £ which consists of continuous linear functionals on the (widest test
function) space £ := C*°(R"). In short, D C S C & implies that

g cs cD.

It turns out that members of £ have compact support and that’s why they are called
distributions with compact support. But more on that later.

Example 4.6. Let us consider R!.

1) It is clear that f(x) = e/’ is a Schwartz distribution, but not a tempered distri-
bution, because part 2) of the previous definition is not satisfied.

2) If f(z) = ézo arz® is a polynomial then f(z) € S’ since

(7. 6)| = ‘ [ 3 mat ot

< 3 ol [0+ fe) 00+ Jal) el (o)l

k=0

< CY) \ak\|90|o,k+1+5/(1 +|a]) " 0 da,

k=0 R

so the condition 2) is satisfied e.g. for 6 = 1,n9 = m + 2. This polynomial is a
regular distribution since (T, ¢) = [ f(2)p(x)dz is well-defined.

Definition. Let T be a distribution from D’. Then the support of T" is defined by
suppT :=R"\ A,

where A = {z € R": (T, p) = 0for any ¢ € C*° withsupp ¢ C Us(x)}.

Exercise 16. Prove that

1) if f is continuous then
supp Ty = supp f

2) supp(0*T) C supp T

3) suppd = {0}.
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Example 4.7. 1) The weighted Lebesgue spaces are defined as

LH(RY) = {f € LL(®) s |fllyp = ([ (1 + lal 1 (@)Pde)” < o)
for 1 < p < oo and

Lo (R") = {f € Lige(R") < [[fll e += ess sup(1 + [])7|f(z)] < o0}
If f e L';(R") for some ¢ > 0 then Ty € S'. In fact,

(Troll = | [ fedo| < 1flls, el -

It means that [; fpdr is well-defined in this case and
(T, o) / fedz.
2) If felP,1<p<oo,then f €S Indeed,
IP(R™) C L 5(RY) for 6> Z,,

where % + i = 1. This follows from Holder’s inequality

[ ) 1p@lde < ([0l ar) 17l

3) Let T € &, and ¢o(z) € Cg°(R™) with ¢o(0) = 1. The product ¢g (£) T is

well-defined in S’ by
(e (5) o) o= (e () )

If we consider the sequence T}, := ¢ (%) T then
1) (Th, ) = (T, po(£)g) “=5° (T, o) (since po(£) > @) so that T = T.
2) T} has compact support as a tempered distribution. This fact follows from
the compactness of v = @o(F).

Now we are ready to prove more serious and more useful fact.

Theorem 1. Let T' € S’. Then there exists T, C S such that
(o) = [ Tle)ee)de = (T.g), k— oo,
where ¢ € S. In short, S Sy
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Proof. Let j(x) be a function from D = C§°(R") with [z, j(z)dx = 1 and j(—x) = j(x).
Let ji(x) := k"j(kx). By Lemma 1 of Chapter 2 we have

i (i) = Jim [ i()p(a)de = ¢(0)

k—oo JRn

for any ¢ € S. That is, ji(x) 5, o(z).
The convolution of two integrable functions ¢ and ¢ is defined by

(9 ¢)(@) = [ glx—y)e(y)dy.

If h and ¢ are integrable functions and ¢ € S then it follows from Fubini’s theorem
that

(hxg,0) = / p(x)dx /]R h(z —y)g(y)dy = /R 9(y)dy /R Wz —y)e(z)de
= / 9(y)dy /R Rh(y — x)p(x)de = (g, Rh* ¢),

where Rh(z) := h(—z) is the reflection of h. N

~_ Let now pg(z) € D with ¢(0) = 1. For any T' € S’ let us put T} := jy * Ty, where

T = ©o (%) T. From above considerations we know that (ji. * Ty, ¢) = (Tk, Rji * ©).
Let us prove that this 7}, meets the requirements of this theorem. First of all,

e

Do) = G Do) = T B x ) = (oo () T x )

= (Tpo (1) Gere)) = (Tog), k= oo,

because

a) ©o (%) — 1 pointwise for & — oo, since ¢o(0) = 1 and ¢o(7)e 5

b) jr* @ 5, @ for k — oo by Lemma 1 of Chapter 2:
L =y)e@y = [ nE)e( - 2)ds = pla)

Finally jx(z) € C§°(R™) implies that T, € C§5°(R™) C S also. O

Definition. Let us assume that L : S — S is a linear continuous map. The adjoint
map L' : 5" — S is defined by

(L'T,p):=(T,Ly), TeS.
Clearly, L' is also a linear continuous map.

Corollary. Any linear continuous map (operator) L : S — S admits a linear continu-
ous extension L :S" — §'.
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Proof. If T' € S’ then by Theorem 1 there exists T}, C S such that T}, % T. Then

(LTy, 0) = (Th, ') — (T, L'p) := (LT, ¢), k — oc.

Now we are in the position to formulate

Theorem 2 (Properties of tempered distributions). The following linear continuous
operators from S into S admit unique linear continuous extensions as maps from S’
into S':

1) (uT, ) = (T,up), wueS;
2) (0°T,¢) = (T, (—1)"0%p);
3) (T, ) = (T, 7-np);
8 (L) = (LN "019), A#0;
5) (FT,¢) = (T, Fy).
Proof. See the previous definition, Theorem 1 and its corollary. n

Remark. Since (F~'FT,p) = (FT,F o) = (T,FF'y) = (T,p) we have that
F'FP=FF'=1ing.

Example 4.8. 1) Since

(FLo) = (LFg) = [ (Fe))ds = @mi2n)~F [ OOPpde
Rr R™
= (2m)2F ' Fp(0) = (2m)2(0) = (2m)2 (0, ¢)
for any ¢ € S we have that
1=(2m)26
in S".
2) 0= (2r)"% -1, since

n

(8,0) = (5, Fp) = Fp(0) = (2m) "% / e O p(z)de = (2m) "2 (1,9), @ €S

n

Moreover, F~16 = (27)"2 - 1in S

3) e7%7 = a_%e_%, Rea > 0,a # 0. Indeed, for a > 0 we know that

z2 11562 n 2
F(e7)=F(e ™% ) =a fe s

If a is such that Rea > 0,a # 0, then we can use analytic continuation of these
formulas.
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4) Consider (1 — A)u = f, where A = 2 +--- + 88722 is the Laplacian in R™ and

8:1:%
u and f € S’. This equation can be solved in S” using the Fourier transform.
Indeed, we get

(L+¢Pa=7F
or
a=(1+E*"F
or
w= F((1+ [E7) ).
If feSthen Ff € Sand (14 [£*)7'Ff € S also and then u € S exists. If

f € S’ then by Theorem 1 there exists f, € S such that fj 5 f. That’s why we
may conclude that

uZ lim u
- Pt ks
where u, = F71((1+ €)' F fy).
Exercise 17. Let P(D) be an elliptic partial differential operator

P(D)= Y a,D"

lal<m

with constant coefficients and P(§) # 0 for £ # 0. Prove that if u € S” and Pu = 0
then u is a polynomial.

Corollary. If Au=0 in S and |u| < const then u =const.

Exercise 18. Prove that
1) F(pv.l) = —i/Tsgné
2) Flpv.%) = — /2l

Definition. Introduce the tempered distributions

1 _ 1

— = lim -
x £ 10 elo x 41

1 =1 ! €S
cxi0' ") T \zxie¥) P

1 | 1
(z £i0)2 =10 (z +ic)?

1.e.

In a similar fashion,

in 9.
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Example 4.9. We know from Example 3.2 that
1 {—h&ﬁH@ksﬂ €40

(&) =

T +ic —i\/%, £E=0
and
1 _JiV2rH(=E)e*, £#0
w—ie T )iy/3, £=0
Hence
1 . 1 —iV2rH(E), £€#0
= ]1m g
r+10 €lo x+ie —iy/5, E=0
and

— = lim -
x — 10 el0 x — 1€

1 ’ir\:{h@?H@{% €40

It follows from Exercise 18 that

1 1 T 1
= —iV2 =2(-i = = 2pv.—
x+i0+x—i0 1V 2msgné < 1 2sgn§) pv._
and thus
S SRR |
r+i0 x—i0 bV
In a similar fashion,
1 1 ~ -
— — — =4V 2r -1 =iV27V 216 = 2mid
r—10 x+4+:0
and so 1 1
— = 2mi0.
z—i0 x40
Add and subtract to get finally
1 1 1 1
=p.v.— — 7o d = p.v.— +imd.
10 pv$ 1T an o pvx—l—m
Exercise 19. Prove that
1)
1 1
— = —\/27€H d — =V2néH(—
(& + i0)? meH(E) and gy = VartH(
2)
1 1 5 1 d 1 1
=2p.v.— an —
(@ +40)2 ' (z—d0)2 g2 (z—i0)2  (z+10)?

£)

= —2mid’



1 1 1
(x+i0)2:pv—2+m§’ and (x—z'O)Q_pV?_ma/
4)
T 1
log|z| =— —pv.—
27 [¢]
5)

Exercise 20. Prove that

1)

— 7 1
HEO == 5
2) X
sgn(e) = — 'Crpv.g.
2

Example 4.10. Since

(0°0,¢) = (0°6,)

= (=15, 0°¢) = (8, %€ )
= (3,(if)%yp) =

((2m)7%, (i€)p) = ((2m) % (€)",
we get -
020 = (2m) ™2 (i)~

In particular, in dimension one,

50 = ——_gkgh gk — \/oriks®)

1
2T

Consider the Cauchy-Riemann operators

2
-2\ 0z Z@y

170 0
0= (ax‘ay)
in R2.

Let us prove the following facts about these operators:

1)

Ql

and
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The last fact means that 1 1

Tx+ 1y
is the fundamental solution of 9. Taking the Fourier transform of 2) gives us

which is equivalent to

or

1
= - = —1 —, 0.
2 i1 — & SRS &
Let us check that this indeed holds true. We have, by Example 3.2,

1 1 —i(§1z+E2y) 1 ’519‘*’
(&) = 7/ A , dxdy—2 / _@yd/

z 2 r+y oom—l—zy

Z£1x 1 0 -1
— 7/ f@ydy/ e — / 2£2yd / dr
oo T+ Zy 2m o T+ 1Y

= o [ eV —ivaRH (e dy

2
1 /0 -

v o [ TRV arH (—g)e ) dy
T J—o0

= —4 (H(fl) /000 e—y(§1+i§2)dy ( 51)/ e~ Y(E1+ik2) dy)

For & > 0 we have

oo - +i &
0 & +1& |, SRS
For & < 0 we have
(€1 igs) |0
Z’/O e_y(£1+i52)dy _ e~ y(& 152) _ 1 .
—0 S +i& | &1+ 1o
Hence —~
1 1
2(5) L +i6

which proves 2). Part 1) is established with a simple calculation:
=~ 10 oN[(0 .0 Lo\, (0N 1, =
-9 4 (83: Z@y) (8w +Z<9y) 4 ((835) + <8y> > 4 -9
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5 Convolutions in S and 5’

Consider first the direct product of distributions. Let T, 75, ..., T, be one-dimensional
tempered distributions, 7; € S’(R),j = 1,2,...,n. The product T3 (z1) - - - T, (xy) can
be formally defined by

<T1(l’1) s Tn(l‘n), g0($1, e ,l’n» = <T1(.Z’1) s Tn—l(xn—l)a @1(1’1, e ;xn—l»
(1) Tho(Tn—2), 02(T1, ..., Tn_2))
= (T1(21), n1(1)),

where

o1(x1, .. p 1) = (To(xn), o(z1,...,2,)) € S(R™)
ej(@1, . tng) = (Thojrr,95-1(@1, - .o Tojir)) € S(R™).

In this sense it is clear that
0z, ... xn) =0(x1) -+ 0(xp).

But the product T (z)T5(z), where = are the same, in general case does not exist, that
is, it is impossible to define such product. We remedy this by recalling

Definition. The convolution ¢ *x 1 of the functions ¢ € S and ¢ € S is defined as

(pr)(@) = [ (e —y)viy)dy.
We can observe the following immediately.

1) The convolution is commutative for any n > 1. If n > 2, then
(pr)(@) = [ wlo—yheldy = [ @2 —2)dz = (¥ +)(a).
If n =1 then
(pr0)@) = [ pla—ypdy = - [ ppule—2)d:
= [ vle—2)e()dz = W o)).

2) It is also clear that the convolution is well-defined for ¢ and ¢ from S, and
moreover for any a > 0,

Blprv)a) = @prv)@) = [ Ol —yvy)dy

- [ )‘“'ajw(x — )y = (1% [ pla—y)opuiy)dy
= (p*0"P)(x),
where we integrated by parts and used the fact that 0,,¢(x —y) = —0,,¢(x —y).
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We would like to prove that for ¢ and ¥ from S it follows that ¢ x ¢ from S also. In
fact,

a) @ *1 € C°(R") since 0*(p x ) = * 0 and 9*: S — S.
b) ¢ * 1 decreases at the infinity faster than any inverse power:

1
Agw@r—ww@mq < ﬁ/%&ﬂm_ywmﬂwwy+caéb?thWy

/

C1 —-m|,,|m
< o Ly WO e [l )l

|z|™
//
< at © =clz|™, meN.
™ ||

Next we collect some important inequalities involving the convolution.

1) Hélder’s inequality implies that

19 * Pl oo @ny < NPl Logny - 190 L @y » (5.1)

where % + ;% = 1,1 < p < o0. It means that the convolution is well-defined even
for ¢ € LP(R™) and ¥ € L¥ (R™). In particular,

[ * ¢||L°°(R") < ||90||L1(Rn) : ||77Z)||L°°(R”)' (5.2)

2) It follows from Fubini’s theorem that

lesvly < [ do [ lele—y)lewldy
= [ ey [ Je( = g)lde =gl 9l (53)
3) Interpolating (5.2) and (5.3) leads us to
o * 6l < lellys - el (5.4)

4) Interpolating (5.1) and (5.3) leads us to

[ * 9

e < el 19l e s (5.5)

where

It follows that



But

1 1 1 1 1 1 1 1
-—=1—-—=(1-=-)=1—-(1-- -—1)—+1]=1--+1-1+-
r 4 S S q =3 q S

Now we are in the position to consider the Fourier transform of a convolution.

1) Let ¢,1p € S. Then ¢ x1 € S and F(p x1) € S. Moreover,

Flpsv) = (@078 [ e [ oo - y)vi)dy

— -5 —i(z,) _
@m) % [ vy [ e D — y)da
= @07 [ ey @9y [ p()e 0z = (2m)EFyp - Fy,
n R’VL
ie. -
o =(2m)5p- P

Similarly,

Flpxy) = @n)iF g Fly
Hence

which implies that
ngl x F¢1 = (27T)§F<301 . wl)

or

o =(2m) 2.
Let us assume that ¢ € L' and ¢ € LP;1 < p < 2. Then (5.4) implies that

@x1p € LP.1 < p < 2. Further, F(p 1) belongs to L? by Hausdorff-Young
inequality. Thus,

pxip=(2m)3p-pelr.
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Lemma 1. Let ¢(z) be a function from L*(R™) with [g. o(z)dx =1 and let ¢(x) be a
function from L?*(R™). Let us set p.(x) == "p (f) ,e>0. Then

L*(R"™)

.
Proof. By (5.4) we have that ¢, * ¢ € L*(R"). Then

pexh = (21)35: -0

hm Ve * P

in L?. But

g (D) memame© = (2) 60 =59 5 60, £ -0

n

5(0) = (27)"3 / =109 (1) dz = (27)" %
Hence - DU
pe k¥ = (2m)25(e€) - (&) = (), & — +0.
By Fourier inversion formula it follows that
per v By, e - +0.
O

Theorem 1. For any fized function ¢ from S(R™) the map ¢ x T has, as a linear
continuous map from S to S (with respect to T'), a unique linear continuous extension
as a map from S" to S’ (with respect to T') as follows:

(o T,¢) = (T, Rp x ),
where Ryp(x) := ¢(—x). Moreover, this extension has the properties
1) oT=(2m)33-T
2) 0%(@x*xT)=0% T =p=x0°T.

Proof. Let us assume that ¢, and T belong to the Schwartz space S(R™). Then we
have checked already the properties 1) and 2) above. But we can easily check that for
such functions the definition is also true. In fact,

(pxT, ) = /n(gp*T dx—/n/n z —y)T(y)dyy(z)dx
= [ 70 [ ele —y)u(e)drdy
= /nT(y)dy /R Ro(y — x)p(x)de = (T, Rp * ).

For the case T € S’ the statement of this theorem follows from the fact that S i S’
(see Theorem 1 from Chapter 4). O
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Corollary. Since p *T =T % ¢ for ¢ and T from S then we may define T * ¢ as
follows (for T € S")

(T x @, ) :== (T, Rp x ¢).
Example 5.1. 1) It is true that ¢ * o = ¢. Indeed,
(0xp,b) = (0, Ro*1b) = (Rp x1)(0)
= /R Py = 2)P(y)dy le=o0= /R P(y)P(y)dy = (¢, ¥).

Alternatively, we note that

is equivalent to

in 5.
2) Property 2) of Theorem 1 and part 1) of this example imply that
9*(0 %) = 6% 0% = 0%.

3) Let us consider again the equation (1 —A)u = f for u and f € L* (or even from
S"). Then (1 + [£]?)u = f is still valid in L? and 4 = (1 + [£]?)71f or

ule) = P (1l ) = @0 1 () <7 = [ Kle = sy

L+ [¢]? 1+ [¢?

% 1 et(@=y:8) p
@ =9 = e o TH R

This is the inverse Fourier transform of locally integrable function. This function
K is the free space Green’s function of the operator 1 — A in R”. We calculate
this integral precisely later.

Lemma 2. Let j(x) be a function from L'(R™) with [g.j(z)dr = 1. Set j.(z) =
ey (f) ,€>0. Then

where

e f = fllpy = 0, & —+0
for any function f € LP(R™),1 < p < oo. In the case p = 0o we can state only the fact
/ (ja*f)ydxﬁ/ fogde, €—+0
Rn Rn

for any g € LY(R™).

Exercise 21. Prove Lemma 2 and find a counterexample as to why the first part fails
for p = o0.

Remark. If j € CP(R™) or S(R™) then j. = f € C;°(R™) or S(R™) also for any f €
LP(R"),1 < p < o0.
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6 Sobolev spaces

Lemma 1. For any function f € L*(R") the following statements are equivalent:

1) 2 (2) € LARY),

2) &f(€) € LAR"),

3) lim 279 erists in L*(R™). Here Alf(x) := f(z +te;) — f(z) witht € R and

t—0 t

e;=(0,...,1,0,...,0).
4) There exists { fi}3,, fr € S, such that fy z f and % has a limit in L*(R™),

Proof. 1) < 2): Since

D;f =¢&f
we have

I&:7]

=Dl

by the Parseval equality.

2) = 3): Let & f be a function from L?(R"). Then the equality

1 1, - -1z
SALF(E) = £ — 1) f(6) = etgj &)
holds. But ,
eztfj -1 )
g,

pointwise as t — 0. Hence
Laip 25 7
;Ajf—wfjf, t—0

i.e. (again due to Parseval equality)

1 t p L? 8f

The same arguments lead us to the statement that 3) = 1).

4) = 1): Let fi be a sequence from S such that fj z f. Then fy 5 f and ng’; LA 8%
also. By the condition 4) we have that the limit klim % L g exists. That’s why
—00 J

we may conclude that % 5 g. It means that g = % in 5.
J J
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2) = 4): Write f(€) as the sum of two functions f(€) = g(&) + h(€), where

~

9(&) = FOxye <13 7€) = F)xye 513

Let {gx} be a sequence in S such that, g z g and supp g C {|¢;] < 2}. Let
{ht} be a sequence in S such that, hy LR &h and supp hy C {|&] > 3} If we
define the sequence fi(z) = F~! (gk + %k) (x), then

o~

Fol€) = g+ 2 g(e) 1+ h(e) = i),

SJ
But -
gf; = &g, + i, 5 i (g + h) = i&; .
It means that (by Fourier inversion formula or Parseval equality)
0 0
o L Fs ) =

We have also the following generalization of Lemma 1 to multi-index «.

Lemma 2. Let f be a function from L*(R™) and let s € N. Then the following
statements are equivalent:

1) D*f € L*(R"), o] < s;
2) eof € LAR"), |a| < s;

3) }llirr(l) ’;f exists in L*(R"), |a| < s. Here Aff := (A} -+ Ap») f and h € R™ with

hj #0 forallj=1,2,... ,n.
4) There exists fr, € S such that, fy = f and D*f;, has a limit in L*(R™) for
la] <s.
Proof. Follows from Lemma 1 by induction on |«|. O

Definition. Let s > 0 be an integer. Then

H'(R") == {f € L*[R") : Y [[D*fll 2 < o0}

|| <s

is the (L?-based) Sobolev space of order s with the norm

/1

1/2
« 2
Hs(Rm) *— (Z |D f“L?(Rn)) :
la|<s
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Remark. 1t is easy to check that H*(R"™), s € N, can be characterized by

HR")={f € P®"): [ (1+[EPYIF(©Fds < oo},

Proof. 1t follows from Parseval equality that

S0l = 3 107 = 3 el
S M SENGIRIY B SNSEHGIRS
ol <s lo<s

But it is easily seen that there are positive constants ¢; and ¢y such that

a(l+ g < > 18 < eI+ [€[7)°

laf<s

or

> el = L+ g

la|<s

Therefore we may conclude, that

S D e <00 & Y DI<oo & [ 1+ ERIF©FE < .

|o|<s |o|<s
O
This property for an integer s justifies the following definition.
Definition. Let s be a real number. Then
HR") = {f €5 : (1+[)3f € L*(R")}

with the norm

1.f1

1
wey = ([ 1+ R IT©) )
Definition. Let s > 0 be an integer and 1 < p < co. Then

WH(R") == {f € L’(R") Z ||Daf||LP]R" < oo}

|a|<s

is called the Sobolev space with norm

1/p
||f||W;(Rn) = <Z ||Daf||LP(R” ) :

la|<s
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Exercise 22. Let s > 0 be an even integer and 1 < p < co. Prove that

gy = ([, 1F U+ IgP)EPpaz)”
is an equivalent norm in W, (R").

Definition. Let s > 0 be a real number and 1 < p < oco. Then

~

Wi = (s e s ([P0 IR < oo)
with the norm A
sy = ([ 1P+ 162 DIda)”
Exercise 23. Let s € R. Prove that
fe H*(R")

if and only if R
fe LyRM).

Proposition. Let us assume that 0 < s < 1. Then

|2

[ eiforde = [ wparea [ [ FET 0w, o

where A, is a positive constant depending on s and n.

Remark. Since 1+ [£]** =< (14 ]£[*)%,0 < s < 1, then the right hand side of (6.1) is an
equivalent norm in H*(R").

Proof. Denote by I the double integral appearing in the right hand side of (6.1). Then
1= [ ] 1f+2) = f@)Rlel 2 dyd
= [ e e —apifepae = [ (FoRas [ 21
G 2 ) le 5— £/ z|”+25 2

by Parseval equality and Exercise 4. We claim that

‘ei(z,f) — 1|2 s A—
fo e = A

Indeed, if we consider the Householder reflection matrix

20T

A=1——— v=E&—|{ler, £€R”

ol?
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then AT = A7! = A and A€ = [€]e; = (]¢],0,...,0). It follows that
i(z,6) _ 112 (Az,A8) _ 112 i(y,AE) _ 1|2
—2s |6 ‘ 725/ |6 | 725/ |6 |
4 /Rn 2|2 z =[] an EE z =[] R |yt Yy

wilél _ 112 iz1 _ 1|2
= [¢]™* /Rn Wdy = /n |€|z|"+218|d2 = AL
Therefore
L@ RdeA, [ @)= ) Pyl dady = [ \F©Rdgt [ 16T de.
O

Remark. Note that A, exists only for 0 < s < 1.
Exercise 24. Prove that

ey = [ (L 2 F ) Pdg <

nik 25| e 712
L2+|Z|:k/wlfl D=

= W+ A [ [ 1D @) = DU )R - o~y dady,

laf=k

Example 6.1. 1 ¢ H*(R") for any s. Indeed, assume that 1 € H*(R") for some s
(it is clear that sy > 0). It means that (1+ |£[2)21 € L2(R™). It follows from this fact
that 1 € L2 (R") and, further, 1 € L. (R"). But 1 = (27)%4, and we know that § is
not a regular distribution.

Next we list some properties of H*(R").

1) Since f € H*(R") if and only if f(¢) € L2(R") and L%(R") is a separable Hilbert
space with the scalar product

(Frog)uzny = [ (1416 1 - g

then H*(R™) is also a separable Hilbert space and the scalar product can be
defined by

(£ 9y = [ (1+ 1€ F - G,

Let us define H*(R™) for negative s.

Definition. Let us set for any positive real number s that
H*(R?) := (H*(R"))",

where (H*(R™))* denotes the adjoint space of H*(R") in the sense of Hilbert space
L*(R™) with the norm defined by

[(f, 9) L2
11| s ey sup e
oger®) |9/l ey
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2) For —oco < s < t < oo it follows that S ¢ HY(R™) C H5(R") C 5.
Example 6.2. 6 € H°(R") if and only if s < —F. Indeed, if we denote

(€)= (1+ |¢]*)3

then § € H*(R") is equivalent to (27)2(¢)* € L2(R™) which in turn is equivalent to
s< —3.

3) Let ¢ be a function from H*(R™) and ¢ a function from H°(R™). Then ¢ €
L*(R"™) and ¢ € L* (R™), so that ¢ - ¢ € L'(R") by Holder inequality. That’s
why we may define (momentarily, and with slight abuse of notation)

o~

(o, Wiy = [ -

]Rn

and get

|<<P,1/)>L2(Rn)| <l Hs(R") H¢HH*5(R")'

For example, if ¢ is a function from HzT'*(R"), e > 0 and ¢ = %, then
J

05 [
<3%’¢>L2(Rn>: TR 2/Rn€j¢(§)d§

R™ aZL‘j
is well-defined, since ¢ € LQ%HH(R”) and ¢ € L%gqfs(Rn)-

4) Let
be a differential operator with constant coefficients. Then P(D) : H*(R") —
H*=™(R™) for any real s.
Proof.

I1P(D)f]

ey = [ (L IRy P(D) g
= [ ARy P©F - 1O
[ L+ IRy L+ ) I F)PdE = ¢ ey

]

IN

There is a generalization of this result. Let P(xz, D) be a differential operator

P(z,D) = > as(z)D"

laj<m
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with variable coefficients such that |a,(z)] < ¢y for all z € R™ and |a| < m.
Then
P(z,D): H™(R") — L*(R").

Indeed,

IP@ D)l < a0 3 IDflp=co 3 |67

la|<m laf<m

L2

< ||+ 1e*)% ]

=l

Lemma 3. Let ¢ be a function from S and f a function from H*(R"),s € R.
Then ¢ - f € H*(R™) and

sl
lofllgs < c||(1+1€*) =&

Nl -
Il

Proof. We know that

Hence

Let us prove that

for any s € R. Indeed,

€ =1+ <A +[nP)E +1€—nl= ) +1E—nl < A+ ¢ —n)).
Since 1+ |€ — 1| < V/2(¢ — 1) we have
(&) <25(n)*- (¢ —n)*

for s > 0. Moreover, for s < 0 we have

<27 (n—¢)l.

It now follows from (5.4) that

o £l = [ F|| . < e||l6) 2l = [m) £l . < |||, - [[m)°F

for any s € R. m

Lt L?
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6) Let us consider now distributions with compact support in more detail than in
Chapter 4.

Definition. Denote £ = C*(R"™). We say that 7' € £ if T is a linear functional
on £ which is also continuous i.e. ¢r — 0 in £ implies that (T, ¢;) — 0 in C.
Here ¢ — 0 in £ means that

sup |0%%| — 0, k — oo
K
for any compact subset K C R" and for any multi-index «.

It can be proved that T' € £’ if and only if there exist ¢y > 0, Ry > 0 and ng € Ny
such that

(T, @) <co Y sup [D¥(z)]

la|<ng |%/<Ro
for any ¢ € C°°(R™). Moreover, members of £ have compact support.
Assume that 7' € &'. Since p(z) = e7i@8 ¢ C®°(R") then (T, e @4 is well-
defined and there exists cg > 0, Rg > 0 and ng € Ny such that
(T @) se X swp (DR @9 < 3 1] = (1+1) T,

la|<ng |z|<Ro la|<no

If we now set N |
T(&) = (2m)™™2(T, e @)
then 7 is a usual function of &. The same is true for
(9af(§) = (27T)—n/2(_1>|a|<T7 aae—z‘(x,g)>

and hence T e C=(R"). On the other hand [(T, e 9)| < ¢o(¢)™ implies that
IT(&)] < (&)™ and hence T' € LZ(R™) for s < —ng — 4. So, by Exercise 23, we
may conclude that any T € £ belongs to H*(R") for s < —ny — 3.

Lemma 4. The closure of C3°(R™) in the norm of H*(R"™) is H*(R"™) for any
s € R. In short, C&(R™) £ Hs(R™).

Proof. Let f be an arbitrary function from H*(R™) and let fr be a new function
such that

oo O € <R
fr(§) = xr(§)[(E) = {07 €] > R.

Then fr(z) = F~Y(xrf)(x) = (27) 2 (F " xg* f)(z). It follows from above con-
siderations that F'~1xgr € C*°(R") as an inverse Fourier transform of a compactly
supported function (but ¢ C§°(R™)) and

If = falli = [ 17€) = Tn@P©*ds = [ IF©P©*d 0, R— oo

>R
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since f € H*(R™). This was the first step.

The second step is as follows. Let j(§) € C§°(|¢] < 1) with [p. j(§)d§ = 1.
Let us set ji(§) := k"j(k€). We remember from Lemma 2 of Chapter 5 that
Je*g = g,1 < p < o0. Define the sequence v, := Ffl(jk*?;). Since U = Ji *E
then suppvry C Ug41(0) and so v, € C3°(R"). Hence v, € S. That’s why
v € H*(R™) and

) o
- s(Rn - * - d
o = Frl2e /|§<R+1<5> e % — Fal?de
< Cg i * fr — frl?d€ — 0, k — oo.
|€|<R+1

Since vy, ¢ C§°(R™) we take a function k € C§°(R™) with £(0) = 1. Then

/@(%)vkivk, A — 0.

This fact implies that  (£) vy I v as A — oo. Setting fi,(z) = (%) vp(z) €
C°(R™) we get finally

— 0

Uk—/€<%) Uk

if A,k and R are large enough. O

1f = fellgs < If = frllgs + [ fr — villgs +

Hs

Now we are in the position to formulate the main result concerning H*(R").

Theorem 1 (Sobolev embedding theorem). Let f be a function from H*(R") for
s> k+ 2, where k € Ng. Then D*f € C(R") for all o« such that |a| < k. In short,

27
: n
H® C CKR"™), s>k+ 5

Proof. Let f € H*(R™") C S". Then

D*f = F'F(D*f) = F (£ f(9)).
What is more,

~ ~ || ~
/R e fle)lde < e /R e f)lde = ¢ /R 'f§'>s (€)°1f(€)lde

2| 1/2 R 12
=¢ (/ . |<§5|>2s df) ( /R ©>1F©PdE) " < N1l

if and only if 2s — 2|a| > n or s > |a| 4+ n/2.
It means that for such s and « the function D®f is a Fourier transform of some
function from L!(R™). Due to Riemann-Lebesgue lemma we have that D*f from

C(R™). O
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Lemma 5. L*(R") C LY(R") if and only if ¢ = 2 and s > 0 or 1 < q < 2 and
s>n (l — %)
Exercise 25. Prove Lemma 5.
Lemma 6 (Hormander). 1) F : H*(R") — LYR") for 1 < q < 2 and s >
o
2) F:LP(R") — H*R") for2 <p<oo ands>n(% %)
3) F: L*(R") — L*(R").

Proof. 1) See Lemma 5
2) Let f be a function from LP(R™) for 2 < p < oco. Then f € S’ (tempered
distribution) and |<f ©)r2@n)| = |{f, @) r2@n)| < ||f||p . ||g5||p,, where 1 < p/ < 2.

But if ¢ € H*(R") for s > n (i — l) then ||@], <

4

(F @)zl < cllfll, - ol -

That’s why (by duality) H
g

“na-2)

3) This is simply the Parseval equality

C”f“Lp

H-s —

fors>n<i—%)

=1l

Exercise 26. Prove that
1) xp,1 € H°(R) if and only if s < 1/2.

2) Xo,1x[01] € H*(R?) if and only if s < 1/2.

)
3) K(z):= F' () € H*(R) if and only if s < 2 — n/2.
4) Let f(z) = x(z)loglog|z|™! in R?, where x(z) € C5°(|z| < 1/3). Prove that
f € H'(R?) but f ¢ L>°(R?).
Remark. This counterexample shows us that Sobolev embedding theorem is sharp.
Lemma 7. Let us assume that o and f from H*(R™) fors > %. Then F(¢f) € L'(R").
Proof. Since f, € H*(R") then f,$ € L2(R") for s > 5. But this implies (see Lemma
5) that f and @ € LY(R") and
Flpf)=(2m) 5@ f

also belongs to L'(R™). O

Remark. It is possible to prove that if ¢, f € H*(R") for s > § then of € H*(R")
with the same s.

Exercise 27. Prove that W (R") - W}(R") € W, (R") if p > n.
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7 Homogeneous distributions

We start this chapter with the Fourier transform of a radially symmetric function.

Lemma 1. Let f(z) be a radially symmetric function in R™ i.e. f(z) = fi(|z[). Let
us assume also that f(x) € L*(R™). Then the Fourier transform f(€) is also radial
and

F&) =18 [ At Tan (riel)a,
where J, () is the Bessel function of order v.

Proof. Let us take the Fourier transform

o~

F&) = @myt [ e f(al)dn = 2n) % [T prtar [ elrtea,

where z =710, = |€]p and 0, p € S"7! := {x € R" : || = 1}. Tt is known that

27]-”771 T —i|&|r cos : n—
Fmry ) e sy,

2

/ e UElr(v.0) g —
Snfl

-~

where I' is the gamma function. This fact implies that f(§) is a radial function, since
the last integral depends only on |£|. A property of Bessel functions is that

™ . " — JL—Z 7’6
/ e~ HIEIreos Y (gin h) "2 = 2271\ /7T (" 1) 72 H) (7.1)
0 2 ) (rlgh=
Collecting these things we obtain
F&) = 1'% [ firyrt Lua (rlel)ar
0
O

Remark. 1f we put variable u = cos ) in the integral appearing in (7.1), then we obtain
T 1 .
1= [ et singy2ay = [ e TPy
0 —1

In particular, if n = 3 then (7.1) implies that

[ gy — oS08 a3 ED

e g Y
- Tsin([é]r)
B = enT
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If n =2 then

1 efl|£‘ru

I = —_—
“14/1 —u?

du = mJo(r[€])

1.e.
—i|¢|ru

1 e
Jo(r[¢]) = i ﬁd“'

Remark. For further considerations we state the small and large argument asymptotics
of J, for v > —1 as
cyle]”, [ — +0

cgﬁ cos(A,|z| + By), |x| — +oo.

o~ o~

Exercise 28. Prove that f(A{) = f(§) if A is a linear transformation in R™ with
A" = A7 and f is radially symmetric.

Ju(l2) %’{

Let us return again to the distribution (cf. Example 5.1)

o) = e () ©

Let us assume now that n = 1,2,3,4. Then the last integral can be understood in the
classical sense. It follows from Lemma 1 that

T _n 1—-n OOT%J"—_Q(H'Z")CZT
Ki(x) = Kilal) = (2m) 3o % [~ ———

It is not too difficult to prove that for |z| < 1 we have

. 0o p%Juz(p)dp
= (27T)_5|x|2_”/ ﬁ
o p+ |zl

1, n=1,
|K1(z)| <c logﬁ, n =2,
lz|>™™, n=34.
Exercise 29. Prove this fact.

Remark. A little later we will prove estimates for K (z) for any dimension and for all
r e R".
There is one more important example. If we have the equation (—1 — A)u = f in

L%(R™) (or even in S), then formally u = (27) "2 F~! (ISI%J x f = K_| x f, where

g P2 Taz2(p)dp
Koa(lal) = (om) 8o~ 7 e

But there is a problem with the convergence of this integral near p = |z|. That’s why
this integral must be regularized as

o oo p2Juz2(p)dp
cl0 Jo 102 _

x]2 —ie

Recall that
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1) oaf(z):= f(Ax), A #0and
2) (oaT, ) := AT, 0190), A>0.

Definition. A tempered distribution 7" is said to be a homogeneous distribution of
degree m € C if
o )\T = \"T

for any A > 0. In other words,
<0AT7 §0> = A" <T7 90>

or
(T,0) = A", 010)

for ¢ € S. The space of all such distributions is denoted by H,,(R™).
Lemma 2. F: H,,(R") — H_,,_,(R").
Proof. Let T € H,,(R™) and ¢ € S. Then
(aT,0) = AT, 010) = A(T,510) = AT, \"0x)
= (T,o\g) =A""(0 )

Definition. H} (R") :={T € H,,(R") : T € C>*(R"\ {0})}.
Exercise 30. Prove that

1) if T € Hy, then DT € H;_\, and 2°T € H;, .

2) F:H* — H*

—_m—-n"

Exercise 31. Let p(r) be a function from C*(R") with |D%p(z)| < c(x)™lel for
all @ > 0 and m € R. Prove that p(§) € C*(R™\ {0}) and (1 — ) € S, where
v € C°(R™) and ¢ = 1 in Us(0).

Example 7.1. 1) 6 € H* (R™). Indeed,
(020,0) = A7"(6,010) = A"010(0) = A7"p(0) = A7"(5, ).

But supp d = {0}. It means that § € C°(R"™\ {0}). Alternatively one could note
that R
0= (2m)73 1€ H(RY)

and use Exercise 30 to conclude that

6 =F'((2n)"% -1) € H*,(R™).
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2) Let us assume that w € C*°(S"!) and m > —n. Set T),(z) := |z|"w (;—O & €
R™\ {0}. Then T,,(x) € L .(R") and T, € H},(R"). Indeed,

(03T, ) = /R 0aT()pl(x)da = /]R A" (&z') o(2)dz = A" (T, o).

Since |z|™ and w Iz\) are from C*°(R" \ {0}) then T,, € H} (R™). Moreover,

DT, € Hy,_,|(R") and 2T, € H;; |\, (R") by Exercise 30.

3) Let now m = —n in part 2) and in addition assume that [g.-: w(0)df = 0. Note
that T_,(z) ¢ L .(R™). But we can define T",, as a distribution from S’ by

(pv Lo = [ T, P (0)4 (|| dz

where ¢ € S(R") and ¢ € S(R) with ¢(0) = 1. We assume that 1 is fixed. But
it is clear that this definition does not depend on 9, because [5.-1 w(6)df = 0.

Exercise 32. Prove that,

(pvTn o) = lim [ T, (2)p(a)da,

e—=40 Jiz|>e
where T, = || "w (Ir|> Jsn—1 w(8)dO = 0.

Let us prove that:

1) pv.1., € H*, and
2) pv.T , € Hi(R™) and moreover it is bounded.

Proof. Part 1) is clear. Part 2) follows from

Tl = [T @) = | [ T @) — 200 (a]lda
< @0 [ le@l|[ T@le 0 - p(apld

= @0 [ 1el@)lde| [ w@do [T e 0 — yirar
< cllellpgn -

Hence p.v.T_,, € L>(R") by duality. O

Part 2) implies that

3) pv.T % : L(R") — L*(R").
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Indeed, if f € L*(R") then

Fpv.T_,* f)=@m)epv.T - f
which implies that

pv.T_,

||p.V.T_n * f||L2(R") < (27()% ’ ||f||L2 :

Remark. Actually, it follows from the Calderén-Zigmund theory that

.-

pv.T % : LP(R") — LP(R"), 1<p<oc.

Now we want to consider more difficult case than previous one. Denote

ov-rmog) = [ el o) = O (a]lds,

(7.2)

where ¢ € S and ¥ € S with ¥(0) = 1. But now we don’t have the condition
Jsn-1w(6)dO = 0 as above. This is the reason why (7.2) must depend on the function
(|z]). We will try to choose an appropriate function ¢). Applying the operator o, we

get

T

o (prp ) ) = Gz Toge) = [l [0 () - e0)u(ie)] do

||

el
= 27 [yl e () — p(O)(lyD]dy
= 27 [ 1yl e () — p(O0e(yDldy
= A7 [ e (lyl) — v (lyldy
1

= (AT"p.v.——, ) + Rest,

B
where
Rest = —X0(0) [yl ™" [w(Alyl) —v(lyDldy
= A6 ) /0°° wdr [ b
= —w A6, ) /0 h Mdn

n
2m2

where w,, = e is the area of the unit sphere S"~!. Let us denote the last integral by
2

G(A),A > 0. Then

G0 = [T ondr =5 [T i = -00) = -
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Also we have that G(1) = 0. That’s why we may conclude that G(A\) = —InA. It
implies that
Rest = w, A" In A(4, )
and so ) .
o5 (p.v.) =A"pv.— +w, A" In A\ - ().

[ [

Taking the Fourier transform we get

1 1 n
F (cn (p.v.| | >> = )\*"F(p.V.W) + (27) 2w AT In A
z" "

or

1 1 n
Ao F (p.v.) =A"F(pv.—)+ (27) 2w, A" In A

] [

F (p.v. ‘xl’n) (i) =F <p.v. ’;‘n) (€) 4+ (2m) 2w, In A

Let us put now A = |£]. Then

F (p.v. ’;‘n) (€)= —(27) 2w, In|¢| + F (p.v. ‘;’n> (é’) .

Since p.v.— for such ¢ is a homogeneous distribution and radial then F (p.v.—)

|z|™ ||

is also a homogeneous distribution and radial. That’s why F (p.v.ﬁ) (é—') depends

only on ‘é—" = 1. So this term is a constant that depends on the choice of ). We will
choose our function ¥ (|x|) so that this constant is zero. Then, finally

F(pvrm ) (€ = —(20) Fuy el

Now let us consider T, = |z|™™,0 < m < n. It is clear that |z|™™ € L] _(R"™).
That’s why the situation is more simple. We have

(o=, ) = (2™, @) = [ |2 @(x)da.

Lemma 1 implies that

— - oo 72 Ju2 (7[€]) i [ n
ol = fe [T = e [ L (p)dp,

2
Tm

Last integral converges if %‘1 < m < n. That’s why we may write that

n —

1
x|~ = Cp €], <m < n.
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In fact, this is true even for m such that 0 < Re(m) < n. It follows by analytic

continuation on m. In order to calculate the constant C, ,, let us apply this distribution

12
to p = e~ Since P = ¢ we get

|| e

<|x|_m76_7> = <On,m|§|m_n76_7>'
The left hand side is
-m =2 > n—m—1 2
/|x|e2da::wn/r e zdr
0

= 2, [T e leta = 2w (),
0

Using this the right hand side becomes
2 n—(n—m)—
Com€" 65 ) = Con2= 7,0 (2.

That’s why

Chom25 w0, T (%) _ 9", T (” - m)

which gives us

Finally, we have

. r (nfm)
jz]=m =227 g (7.3)
r(%)
Definition. The Hilbert transform H f of f € S is defined by
1 1
Hf (p.v. * f)
x

™

Hf(z) = 1 lim UOL

—— z€eR
T elo Jiz—tj>e x — ¢

Exercise 33. Prove that

1) ||HfHL2(R) = ||f||L2(R)-

2) Hilbert transform has an extension to functions from L?(RR).
3) H* = —Tie H™'=—H.
)

4) (Hf1, Hfo)r2 = (fi, fo)p2 for fi € LP and f, € LY, where L4 5 = 1,1 < p < cc.

20



5) H: LP(R) — LP(R),1 < p < o0 ie.
1/ f(t)dt
|

a—t|>e T —1

< cllfllze

for any € > 0 where ¢ does not depend on «¢.
An n-dimensional analogue of the Hilbert transform is developed via

Definition. The functions

T, :
Rj(z) := |x|”]+1’ r#0, j=12,...,n
are called the Riesz kernels.
Remark. We can rewrite R;(x) in the form R;(x) = |z|"w;(z), where w;(z) = %I

That’s why we may conclude that
1) fpros 0y (6)d0 = 0
2) Rj(Ax) =A"T"Rj(xz), A>0.
These properties imply that we may define Riesz transform by
R;x f=pv.Rj* f,

because in our previous notation R;(z) =T_, € H* (R") is a homogeneous distribu-
tion. Let us calculate the Fourier transform of the Riesz kernels. Due to homogeneity
it suffices to consider || = 1. We have,

. —i(@E)
Ri©) = pvBi(©=(n [ S

. @) .
—  lim  (2n)°3 / -
<|z|<p

e—+40,u—+00 ‘g}|”+1
Split
( 75) ( ,f) eii(mvé)ln
.7 J
€ gy = d:c+/ e =L+ I,
/€<Ix<u val"+1 /<x<1 ||t L<fel<p  |z|nH? P
For I, we will use integration by parts:
1 0
I, = / e~ @8 (12" dx
! 1—n e<|z|<1 81‘1 <‘ ’ )
7i($,§) 772(5”75) . 72‘('% ) .
ik E i+ S I P S
J n—1 n n
e<lal<1 |z| ol=1 || jol== 7]
€10 . € i) ;
= cpif; / —dr + e @Oy ido — 0.
lz]<1 |z|" |z|=1

ol



But

‘ s, < 0
—i(x,£) - i —i(@8) Jy — 5
xje do = 1 / e do =1 / cos(|&| - x1)do
/x|:1 g 0¢; Jiwi=1 0&; Jjzi=1 (Ie] - 2)

T [ sin(el o = =it -, el = 1.
where we have used the fact that a rotation maps £ to ([¢],0,...,0). Similarly we may
conclude that

[ de= [ cos((lelal dr = G, gl =1,
jaf <1 |[” jaf <1

If we collect all of these things we obtain:

L2 Cigy, e =1

For I, we will use the following technique

o0 _i(x7§) . a —’i(]?,{)
L "2 / S / ¢ dx
|z|>1 i

||t 0&; Jiz|>1 |x|ntt
o, 1
5 J, ol cos(le] )
_ & T Sin(|£|x1)dx
€] Jzf>1 x|t

= —i§;-const, [ =1.
Exercise 34. Prove the convergence of the last integral.

Collecting these integrals we obtain that

for || = 1. But we know from Exercise 30 that m € Hi(R"). That’s why we may
conclude that p.v.R;(§) = iC, & . Further, we have

n el
Rrf— i o, &5
J *f_ (27T)2R] f_lonmf
or
Rj* f=iC F~ (53'1?) .
N
Corollary.



Proof.

anlF(Rj*Rj*f Zc’ R fg|f<f>=—<0;>2f<s>.

Remark. By Parseval equality we have

182 % fll o = | B+ f| . =

fH = I,

1.e.

Rjx: L*(R") — L*(R"),
and it follows from Calderén-Zigmund theory that
Ry« : LP(R") — LP(R"), 1< p < oo.
Let us now introduce the Riesz potential by
—1 a1z o1
I f:=F Ef(f) =(2m) 2F a6 x [ =1 x f,

where, by (7.3),
1

n|x|n71'

Li(z)=c

That’s why
d
I—lf(x) — cn/R f(y)|ny_1

n T —y

It is straightforward to check that %I 1 = ¢, R; and hence
J

9 '
87%[ 1f = CnRj * f

We would like to prove that
IV LR — WARY)

for some s and 0. Since R;x is a bounded map from L?(R™) to L*(R") we may conclude
that 9

871 L LA(R™) — L*(R™). (7.4)

Now let us assume for simplicity that n > 3. Let us try to prove that
IV L2(R™) — L*(R™). (7.5)

Indeed, for f € L*(R")
I'f e L*(R")

23



if and only if

1 -
— L*(R™).
gl € LR

Let us assume now that o > 1.

Lemma 5 in Chapter 6 implies that L2(R") C L"(R") for any 1 < r < 2 and

o>n (% — %) But for 0 > 1 we may find appropriate r such that r < nQ—fQ That’s why

we may conclude that for function f € L2(R") with o > 1 it follows from Hausdorff-
Young inequality that f € L (R") for some 1/ > 20 or | fI?> € L= (R™). This fact
implies that for || < 1 we have

€17 (&) € L.
Indeed,

/£|<1 |€|_2|]?(5)|2d€ < </£|<1 |f(§)|r,d§>2/rl (/|€<1 |§|_2(g>ld§)(

N‘i\ -

) <o

since T > " and (%)l < 4. For [{] > 1 the function €] F(€) belongs to L2(R™).

2 n—2
This fact follows from the inequality [£]71f(€)] < |f(€)] and from the positivity of o
(see Lemma 5 in Chapter 6). This proves (7.5) for o > 1.
If we collect (7.4) and (7.5) then we will obtain that

I LA(R") — Wy (R™), o>1.
Let us consider now L°(R") for o > 1. If f € L°(R"™) then |f(z)| < C(1+ |z|)~°

and thus B
A +ly)7dy

It <C
@l S

It means that
I LP(R™) — L™®(R™).

Interpolating this with (7.5) we can get the following result:
IV LE(R") — L*(R"), 2<s<oc0, o>1.
If we recall the fact that R;* : L*(R") — L*(R") for any 1 < s < oo then we obtain

IV LE(R") — WHR™), 2<s<o0, o>1.
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8 Fundamental solutions of elliptic partial differen-
tial operators

Let us consider a linear partial differential operator of order m in the form
L(z,D)= > a.(z)D*, zeR",
laj<m

1

where a = (o, ..., a,) is a multi-index, D* = D' --- D% and D; = i%.
J

In this chapter 2 is a bounded domain in R" or 2 = R"™.
Definition. A fundamental solution for L in € is a distribution F in z, which satisfies
Lo E(zly) = 6(x —y)
in D'(Q2) with parameter y € Q, i.e., (L. E, @) = ¢(y) for p € C§(Q).
We understand that (LE, ¢) is defined in distributional form
(LE, ) =(E,L'p),
where L' is the formal adjoint operator for L given by

L'f= 3 (=1)*D(aa(2)f(x)).

|a|<m

In that case L' must be in D(Q2) for ¢ from D(2). This will be the case, for example,
for a,(x) € C*(Q).

Any two fundamental solutions for L with the same parameter y differ by a solution
of the homogeneous equation Lu = 0. Unless boundary conditions are imposed, the
homogeneous equation will have many solutions and the fundamental solution will not
be uniquely determined. In most problems there are grounds of symmetry or causality
for selecting the particular fundamental solution for the appropriate physical behavior.

We also observe that if L has constant coefficients, we can find the fundamental
solution in the form E(z|y) = E(z — y|0) := E(x —y). This fact follows from the
properties of the Fourier transform:

LBz —y) = 3 aElx—y) = 3 auf"e W E() = () = oz —y)

laf<m laj<m

1.e.

LoE(x —y) =6(z —y).

Exercise 35. Let L be a differential operator with constant coefficients. Prove that
u = qx ¥ = F % q solves the inhomogeneous equation

Lu=gq
in D',
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Remark. In many cases the fundamental solution is a function. That’s why we can
write u as an integral

u(z) = /QE(DC —y)a(y)dy.

Remark. In order for convolution product E ¢ (or ¢ * E) to be well-defined we have
to assume that, for example, ¢ vanishes outside a finite sphere.

Remark. If L does not have constant coefficients, we can no longer appeal to convolution
products; instead one can often show that

ux) = [ B(elyay)dy.

Definition. Denote by ag(z,§) the main (or principal) symbol

CL()([L’,f) = Z aa(l’)fa, 5 eR"

laj=m

of L(x,&). Assume that a,(z) are "smooth”. Operator L(z, D) is said to be elliptic in
Q if for any x € Q and £ € R*\{0} it follows that

CL()(CU, 5) 7é 0

Exercise 36. Let a,(z) be real for o] = m. Prove that the previous definition is
equivalent to

1) m is even,

2) ag(x,&) > Cklé™, Ck > 0, for any compact set K C Q and for all £ € R™ and
r e K.

Let us consider the heat equation

9u = Au, t>0z€R”
u(z,0) = f(z), z€R"

in S'(R™). Take the Fourier transform with respect to = to obtain

~

u(¢,0) = f(&).

This initial value problem for an ordinary differential equation has the solution

(e, t) = e f(e).

{éiﬂ(é,t) — (), t>0

Hence L . ,
u(z,t) = F7 (e (€)= @m) 2 F 1 (e ™) x f = P(-,1) * f,
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where

P(z,t) = (2 ‘”/ TPl ge = e
(x,t) = (2m) e e £ (47?15)56

This formula implies that

1 _Ifc—y\2
u(et) = ey [T 0y

Definition. The function P(z,t) is the fundamental solution of the heat equation and
satisfies

(2 —A)P(z,t)=0, t>0

{%q Pz, t) £ §(2).

We can generalize this situation as follows. Let us consider an elliptic differential
operator
L(D)= > a,D*

la|<m
with constant coefficients. Assume that L(§) = 3 |aj<m @a&® > 0 for all £ € R™\{0}. If
we consider Pp(x,t) as a solution of

(5 + L(D)) Pr(z,t) =0, t>0
lim Py (1) = §(x)

then Py (z,t) is the fundamental solution of 2 + L(D) and can be calculated by
Pu(a,t) = (21)" / MO e,
Lemma 1. Let Py(z,t) be as above. Then the function
Flz,\) 2 1;?01 T NPy (2, t)dt (8.1)
is a fundamental solution of the operator L(D) + A, A > 0.
Proof. By definitions of F' and P we have

(F(x,\), ) = lim(/ AP (2, t)dt, @) = hm h e M(Py, p)dt.

el0 €l0
Therefore
(LD)+NF, @) = lim [ e ((L(D) + \) Pr, p)dt
~ lim T e NL(D)PL, o dt+)\/ (P, o)di
Y 0
= 181%1 e M~ atPL )dt + A(F, p)
_ 13%1[ NPy )| — /\/ (P p)dt| + A(F, )
e P9 = 6.6)
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Exercise 37. Let us define a fundamental solution I'(z,t) of 2 + L(D) as a solution
of

(5 + D)T(w,t) = 6(2)8(t)

['(z,0) =0.
Prove that o

F(z,\) ::/ e M (x, t)dt

0

is a fundamental solution of the operator L(D) + A, A > 0.

Example 8.1. Assume that L(D) = " (1i)2 = —A. Then L(¢) = |£]? and the

Jj=1 ;895]

fundamental solution F'(x, ) of the operator L(D) + A = —A + X has the form

F(l‘, )\) — /Oo 1 ne_/\t-e_%dt: 1 ] /ooe_)\t_% ‘t_%dt
0 (47#)5 (477)5 0

1 n o0 (z])? n 1 n o0 2 n
= (4 )n/\z_l/ e 7T 4r .7-_2d7-:7,\2_1/ e TTir .7-_2d7-’
)2 0 0

where 7 = v/\|z|. From our previous considerations we know that

1
where F'~1 is the inverse Fourier transform. The function
K,(r)= ; (;)V/OOO et vy
is called the Macdonald function of order v. So, we have
A A
F(z,2) = (27)3 (ﬁ> Ka(VAla)).

It is known that

K,(r) = S HD (ir), 7> 0,

where H(Y is the Hankel function of first kind and order v.
Next we want to obtain estimates for F'(z, A) for . € R", A > 0 and n > 1. Let us

2 n .
consider the integral [° e~ %7~ 3dr in two parts I + I = [y + [°.

1) If 0 < r <1 then

1 ﬁ n 1 ﬁ n o0 n
I :/o e Ty 2 dy S/o ey 2dy = c,r* " /T2 e 22 2dz = c,7* .
T
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n = 1: Since I} ~ cr~' r — 40 then |[1] < ¢,
n =2: Since I{ ~clnt r — +0 then |[;| < ¢,In?

n > 3: Since I ~ ¢,r — +0 then |I;| < ¢,r*™™.

For I, we can simply argue that

oo r2 n 2 o0 2
Iy = / eV my 2dy < e*T/ eVdy<e T <1, 71— 0.
1 1

2) If r > 1 then

[e.°]

2
2 n -2,— —
I §/ e Wy 2dy = chQ_"/2 e 22 2dz < ¢, et i’ n=1234
0 r ,'027716751" ., n> 5’

4

where 0 < § < i The last inequality follows from the fact that 22 =2 < c.e®* for
% —2>0and forany ¢ >0 (2 > 1).

Since - ,
I < / eV W dy
1

we perform the change of variable z := y + %. Then z > r and z — +o00. Thus

9] 2 9]
/ e Vwdy = c/ e”? (1 + Z) dz
1 r 22 — 72
/°° s 4+ /OO _, zdz
= ¢ e Fdz+c e ———
r r V2?2 —r?
= ce " +ec (e_Z\/Z2 — r‘?‘oo + / e V22— 7“2dz)
(e e}
= ¢ (67’” +/ e V22 — r2dz> < ce 0"
for any 0 < 6 < 1.

If we collect all these estimates we obtain that

1) If V/A|z| < 1 then

1, n=1 1, n=1

|F(z,\)] < 2271 log ﬁ, n=2< c:l)\%_le_‘sﬁ'z‘ log \/§|z‘, n=2

(VAz))*™, n>3 (VA|z))2", n>3.

2) If vAz| > 1 then
IF(z,\)| < cpe ™ > 1,
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We will rewrite these estimates in more appropriate form for all A > 0 and x € R" as

%7 n=1
|F(z,\)] < cae VL] 4 | log ﬁ\,
|z >, n > 3.

Remark. 1t is not too difficult to observe that F(z, \) is positive.

Example 8.2. Recall from Chapter 7 that the solution of the equation (—1—A)u = f
can be written in the form

uz) =K xf=F" (|§|21—1> * f,

where . )
oo p2Ju=2(p)dp
K (Jz]) = ¢plof " lim [ ——2———.
1o Jo  p?—|x|? —ice
Actually K_; is a fundamental solution of the operator —1 — A. Let us consider more

general operator —A — X for A > 0 or even for A € C. The operator —A — \ is called
the Helmholtz operator. Its fundamental solution FE,(x, \) satisfies

—AE, — \E, = ().

We define v/ with nonnegative imaginary part i.e. VA = a + i3, where 3 > 0 and
B =0 if and only if A € [0, +00). We require that E,, is radially symmetric. Then, for
x # 0, E,, must solve the equation

(r" ) + Ml = 0.

This equation can be reduced to one of Bessel type by making the substitution u =
wr'=2. A straightforward calculation shows that

(rw')" — (1 — Z)Z % + Arw =0

/ 2
y W n\* 1 B

v" (rVA) + UISL/\/XX) + (1 — (1 — Z)Q )\12) o(rvVA) =0, w(r) = ov(rVN).

This is the Bessel equation of order § —1. Its two linearly independent solutions are the
Bessel functions Jz_; and Yz_y of the first and second kind, respectively. Therefore
the general solution is of the form

w(r) = cng,l(\/Xr) + c’lYg,l(\/Xr).

or

or
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For us it is convenient to write it in terms of Hankel functions of first and second kind

as
w(r) = COH(%lzl(\/XT) + cngzl(\/Xr),

where

HWY(2) = J,(2) +iY,(2), HP(2) = J,(2) —iY,(2).

14

The corresponding general solution u is

u(r) =73 [eoHY (V) + e HE | (V)]

If A ¢ [0,+00) then v/ has positive imaginary part and the solution H (%211(\/X7“) is

exponentially large at z = +00, whereas H (%111(\/%") is exponentially small. Hence we
take

n

E.(x,\) = corlfngzl(\/Xr).

Exercise 38. Prove that

: 28
1{:}?8 ej== Or dofz) =1
or aE
lim 7", —" =1
ol YTy T

where w, = [S"7!| is the area (measure) of the unit sphere S*~1.

For small values of r, we have the asymptotic expansions
n—2
277 D(%2) .-
H'Y, (r) ~ ——(2)7“_72, n#2
= T

and 9

i

Hél)(r) ~ —logr.

v

It can be proved using Exercise 38 that

-1(2)

4 \ 27

Thus for n > 2 and A ¢ [0, +00) we obtain

E(z,\) = - ( VA ) 2 7Y, (VAlz). (8.2)

4\ 27|
A direct calculation shows that for n = 1 we have

i
El(ﬂf, )\) = Melﬁlml
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for all A # 0. The formula (8.2) is valid also for A\ € (0,400). This fact follows from
the definition:

n—2

| %
En(z, ) = lim En(w A +ie) = ~1im [ Y22 5O, (VA Fiee|)
210 40 \ 27|z 2
n—2
(VAN L
— - Hn_g )\ .

Remark. We may conclude that

—n/2 -1 1 _1. \/X T (1)
e (i) = 1 (o) LR,

for A > 0. A direct calculation shows that

) n=1
E,(z,0) = ilogﬁ, n=2
Ix‘27n
(n—2)wn’ =
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9 Schrodinger operator

There are many inverse scattering problems which are connected with the reconstruc-
tion of the quantum mechanical potential in the Schrodinger operator (Hamiltonian)
H = —A+¢(x). This operator is defined in R". Here and throughout we assume that
q is real-valued.

First of all we have to define H as a self-adjoint operator in L*(R™). Our basic
assumption is that the potential ¢(z) belongs to LP(R™) for § < p < oo and has the
following special behavior at infinity:

()] < cla™,  Ja| > R (9.1)

with some g > 0 and R > 0 large enough. This parameter p will be specified later,
depending on the situation. We would like to construct the self-adjoint extension of this
operator by Friedrichs method, because formally our operator is defined now only for
smooth functions, say for functions from C§°(R™). In order to construct such extension
let us consider the Hilbert space H; which is defined as follows

Hy ={f € L*(R") : Vf(z) € L*(R") and /Rn lq(2)[|f(x)|*dx < o0}
The inner product in H; is defined by

(£.9)m = (V£.Vg)2 + [ (@) f()g(@)de + polf. 9)1z.

with o > 0 large enough and fixed.

Lemma 1. Assume that f € W3 (R") and ¢ € LP(R") for & < p < oo,n > 2. Then
for any 0 < e < 1 there exists c. > 0 such that

2
[(qf; fre| < 5||vf||%2(R") +Ce HfHL?(]R") :

Proof. If p = oo then

2
(af, el < /R la(@)IIf @)Pdz < gl oo oy 1112y
< eIV lza@ny + 1l ooy 1F 1172 -

If § < p < oo then we estimate

‘(qfa f)L2’

IN

/q(x)<A IQ(JU)Hf(ﬂc)\Qd:U + /|q(x)|>A |Q($)|!f(x)]2dx

= ’ 22 .
B /Q(m)>A la(@)I|f (@) "dz + A £l (R™)
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Let us consider the integral appearing in the last estimate. For n > 3 it follows from
Holder inequality that

/Q(w)>A 4@)f @l e < </|q(x)|>A \q(a:)\gda;)i </Iq(w)|

- A@—mz(/ xme e o
< oala@) V11 ey

_2 % 2
o Al ||qHLnP(R") Hf||W21(R")‘

n—2

n

A

(@) 2z

3o V

IN

For getting the last inequality we used the fact that § < p < oo and a well-known
embedding: W(R") C L#-2(R"),n > 3, with the norm estimate

171 2 gy < V1 -

Collecting these estimates we obtain

(@f. izl < A gl o | F gy + ANy
= A gl gy IV ey + (A4 A gl g ) 1712y

The claim follows now from the last inequality since A= can be chosen sufficiently
small for § < p < oo. O
Exercise 39. Prove Lemma 1 for n = 2.
Exercise 40. Let us assume that ¢(x) satisfies the conditions

Dl <elal el <1,

and

2) gl ol zf > 1.

Find the conditions on v; and 7, which ensure the statement of Lemma 1.

Remark. Lemma 1 holds for any potential ¢ € LP(R") + L*(R") for p > §,n > 2.

Using Lemma 1 we obtain

115, = ”foi?(R") + o Hf”?ﬁ(]}{n) +(af, )z
2 2 2 2
2 |V fllza@ny + sollflz2@ey — € IV Fllz2@ny = e | f 122 @n)
2 2
= (L=) IVFllany + (o = c2) 1 Fll 2@y -

We choose here 0 < € < 1 and pg > ¢.. On the other hand
2 2 2
17, < L+ e) IV FlT2@ny + (o + o) [[f [ 72ny -
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These two inequalities mean that the new Hilbert space H; is equivalent to the space
W3 (R"™) up to equivalent norms. Thus we may conclude that for any f € H; our
operator is well defined by

(f, (H + o) ) z2eny = | fll 7, -

Moreover, since H + ji is positive then

2

2 1
11, = [+ )2 £ )

and the following statements hold:
1) Domain of (H + p)? is W} (R™)
2) D(H + po) = D(H) € Wi (R")
3) D(H) ={f € W}(R"): Hf € L*(R")}.
Remark.
(H+p10)f = (H+pto)2 (H+po)? f < D(H) = {f € W3 (R") : g := (H+p1o)2 f € W3(R")}.

Remark. Let us consider this extension procedure from another point of view. The
inequality

(f, (H + po) )z = (1 =) [V £l 2gmy + (10 =€) 11 72am)
allows us to conclude that

a) (f7 (H + ILLO)f)LZ > d ||f||i2(]R") and

b) (f, (H + po) f)r2 = ¢ ||f”12/1/21(R")

for any f € C$°(R™). It means that there exists (H + po)~" which is also defined for
g € C°(R™) and satisfies the inequality

a) |[(H —i—uo)_lgHLz(Rn) < % ||gHL2(Rn) or even

b) [|[(H + ug)_lgHWQl(Rn) < 5 ||g||W;1(Rn), where W, '(R") is the conjugate (adjoint)
space of W, (R™).
—1
Since (H + po)~" is bounded operator and C§°(R™) L L*(R™) and C§°(R") 2
W5 1(R") then we can extend (H + po)~! as the bounded operator onto L?(R") in
the first case and onto W, *(R") in the second case. The extension for the differential
operator is H + o = ((H + po) ™')™ and D(H + po) = R((H + o)) in both cases.
It is also clear that H + p and (H + jo)~" are self-adjoint operators.
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Lemma 2. Let us assume that ¢ € LP(R") for 2 < p < oo if n = 2,3 and q € LP(R")
Jor 5 <p<ooifn>4. Then

W2(R™) c D(H).

Proof. Since H = —A+qand D(H) = {f € W}(R") : Hf € L*(R™)} then for required
embedding it is enough to show that for f € WZ(R") it follows that ¢f € L*(R").
If p = oo then

2 2
[ aF P < all ey 11y < o0
for any f € W3(R"),n > 2.

For finite p let us consider first the case n = 2,3. Since WZ(R") C C'(R") N L>*(R")
(Sobolev embedding) then

/qu!2d$ = / g f|*dz + lqf*dx
R™ lgl<A lq|>A

A [ ey [ laPla P
lgl<A |

ql>A

IN

< A2 ‘|in2(Rn) +C HfHIQ/VQQ(R") A2 |g|[7p gy < 00
In the case n > 4 we have the embeddings:
en=4: feWZRY)CLPR), p<occ.
en>5: feW2R")C LR,
That’s why applying the Holder inequality we obtain

en>5H:
[ afPde = [ JafPde+ [ jafPda
R lgl<A lg|>A
—4

4 n—4
< A*f|3 +(/ de>”</ ﬂdaz) !
= ||fHL2(R ) gl>A lq] 4> A |f]

4
2 n_;)4 " 2
< A g+ CAER ([ o) e < oo

q|>A
2
/

/R4 lgf)Pdz < (/R4 |q|”d:c)’2) (/R4 \f|p/dm)p <

for 2 < p < oo and p' < co.
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Exercise 41. Prove this lemma for ¢ € LP(R") + L*(R"), 5 < p < o0 if n > 4 and
for ¢ € L*(R") + L®(R") if n = 2, 3.

Remark. For n > 5 we may consider ¢ € Lz (R").
Lemma 3. Let us assume that ¢ € L™(R™),n > 3. Then
D(H) = W3 (R").

Proof. The embedding WZ(R") C D(H) was proved in Lemma 2. Let us now assume
that f € D(H) ie. f € W}(R") and Hf € L*(R"). Note that for g := Hf € L? we
have the following representation

—f = (-A+1) N g-1f-(-A+1)7'g
(—A+1)"Hgf) = (A+ 1) g—(-A+1)7'f.

2 2
W3 WS

That’s why it is enough to show that ¢f € L*(R™). We use the same arguments as in
Lemma 1 and Lemma 2. So it suffices to show that for any f € W} (R") it follows that

qf € L*(R"). From the embedding W (R") C L2 (R") for n > 3 we have by Hélder
inequality

L Ja@Plr@Pde = [ l@Plr@Pd+ [ Ja@)PLf )P

lg|>A

2 n—2
< A : —i—(/ "dx>n</ nzn2dx>n < 00.
> ||fHL2(R ) 4> A [ al>A | f]

Thus lemma is proved. O

Exercise 42. Describe the domain of H for the case § < p < n,n > 3. Hint: Prove
that D(H) C WZ(R") + W2(R") with some s = s(p).

Let us present some mathematical background material concerning self-adjoint op-
erators in Hilbert spaces. If A :H — H is a linear operator in a Hilbert space ‘H with

D(A) = H then the set
p(A) :={\ € C: (A~ M) 'exists as a bounded operator from H to D(A)}
is called the resolvent set of A and its complement
a(A) = C\ p(4)
is called the spectrum of A. The operator-valued function
Ry :=(A—= XD, M€ p(A),

is called the resolvent of A.
If A= A* (or even if A is closed) then the resolvent set is open and the spectrum
is closed. Moreover, o(A) # () and o(A) C R in this case.
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Definition. If A = A* then

a) the point spectrum o,(A) of A is the set of all eigenvalues of A, i.e.,
op(A) ={A € a(A) : Ker (A — \I) # 0}.

It means that there exists a non-trivial f € D(A) such that Af = Af. The linear
subspace

{f € D(A): Af = Af}

is called the eigenspace of A corresponding to A.
b) the complement o(A) \ 0,(A) is the continuous spectrum o.(A) of A.
c) the discrete spectrum oq(A) of A is defined as
g4(A) == {X € 0,(A4) : dimKer (A — X\]) < o0}
and A must also be isolated in o(A).
d) the set gess (A) := 0 (A) \ 04(A) is called the essential spectrum of A.

Remark. A € o.(A) means that (A — AI)~! does exist but it is not bounded. It is
equivalent to R(A — \I) # H, i.e., there exists f € H such that f ¢ R(A — AI).

Theorem 1 (Spectral theorem of J. Neumann). Let us assume that A : H — H and
D(A) = H. Then A = A* if and only if there exists a spectral family {E\}S2_ . i.e.
an orthogonal projection Ey (Ey is a bounded and self-adjoint on H with E% = E))
satisfying the conditions

1) Ex < E, for A < p (that is EXH C E,/H)
2) Exio = By in norm
3) E_ ow=0and Ex, =1
4) ENA=AE, on D(A).
The domain D(A) can be defined (or described) as:
D(A) = {f eH: [~ Nay|Baf| < oo},

Moreover, if f € D(A) then

APE [T MBS = [ B

Remark. The spectral family {E,} is uniquely defined.
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Remark. If F(-) is an arbitrary complex-valued function then the operator F'(A) can

be defined by
FKA):i/ F(\)dE)

with domain

{rer: [ IFOPES? < .

Exercise 43. Prove that for any f,g € H the real-valued function V' (\) := (E\f,9)
is a function of bounded variation.

Let us return to our Schrédinger operator H = —A + ¢ with ¢ € LP(R"), 5 <p <
oo,n > 2. We proved that H = H* and for f € D(H) it follows that

(Hf, Pz > —co |72 - (9.2)
where
D(H) = {f € WA(R") : Hf € LA(R")}.
That’s why we may conclude that
H= [ ME. & (Hf.flz=[ MES ).
—co —co
Our next problem is to investigate the spectrum of this Schrodinger operator.

Exercise 44. Let A : L*(R) — L*(R) be such that Af(t) :=tf(t),t € Rfor f € D(A).
Define D(A) and formulate the spectral theorem in this case.

Exercise 45. Let A be a self-adjoint operator in Hilbert space H. Assume that
z € C\ R, that is, Imz # 0. Prove that the resolvent R, = (A — 2I)~! is a bounded

operator in H with the norm estimate ||R.||,,_, < m

Exercise 46. Let A be a self-adjoint operator in Hilbert space H with the spectral
family ‘{E,\}iozfoo and let f(t) = {74t € R. Define the Cayley transform by Uy =
1o :\\—jr;dE/\. Prove that

1) [[Uau|| = ||u|| for any u € H.

2) A=i(I+Uxs)(I—-Us)™"

We will need also the following facts about the spectrum of a self-adjoint operator

in H.

1) A real number A\ belongs to o(A) if and only if there is a sequence {f,,} C D(A)
such that || f,]| =1 and |[(A — A) fi|| — 0 as m — oo.

2) The essential spectrum e (A) is the union of

a) UC(A)3
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b) the limiting points of ¢,(A);
c) eigenvalues of infinite multiplicity.

3) A real number A belongs to oes (A) if and only if there is a sequence {f,,} C D(A)
such that

a) [|fmll =1
b) fm — 0 weakly
¢) (A= ))fyn — 0in norm.

4) If A\g € 0(A) is not an isolated point of g(A) then \g € gess (A). In other words,
if \g € 0(A) and Ay & 0ess (A) then Ag is isolated.

5) If A € 0(A) \ 0ess (A) then X is an eigenvalue of A of finite multiplicity.
6) If A is a self-adjoint and K a compact operator then geg (A + K) = 0eg (A).

Let us consider now Laplacian Hy = —A in R",n > 1. Since (=Af, f)z =
HVinz(Rn) > 0 for any f € W} (R"), then Hy is a non-negative operator. Moreover,
Hy = H} with domain D(H,) = WZ(R") and this operator has the spectral represen-
tation

Hof:/ooo)\dEAf.

It follows that o(Hy) C [0,400), but actually o(Hy) = [0,+00) and even o(Hy) =

0.(Ho) = 0ess (Hp) = [0, +00). In order to understand this fact it is enough to observe

that for any A € [0,400) the homogenous equation (Hy — A)u = 0 has a solution
—_—

— = — —
of the form w(x, k) = ¥ where (k, k) = XA and & € R™ These solutions
— —
u(x, k) are called generalized eigenfunctions, but u(x, k) ¢ L*(R™). These solutions

are bounded and correspond to the continuous spectrum of Hy. That’s why u(z, ?)
are not eigenfunctions, but generalized eigenfunctions. If we consider the solutions
of the equation (Hy — A)u = 0 for A < 0, then these solutions will be exponentially
increasing at the infinity. It implies that A < 0 does not belong to o(Hy).

For the spectral representation of Hy we have two forms:

1) The Neumann spectral representation
-Af = [TMES femE®),
2) and Scattering theory representation
Af= PP = o7 [ (e g [ e f(y)ay.
Exercise 47. Determine the connection between these two representations.
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There are some important remarks about the resolvent (—A—2)~! for z ¢ [0, +00).
A consequence of the spectral theorem is that

(A —2)' = /OM(A — ) UE,, zeC\ [0, +00),

and for such z the operator (—A — 2)~! is bounded operator in L?(R™). Moreover,
with respect to z ¢ [0, +00) the operator (—A — z)~! as a operator-valued function is
a holomorphic function. This fact follows immediately from

(—A=2).= [ (A =2)%aBy = (~A—2)2
0
The last integral converges as well as the previous one (even better). Now we are in
the position to formulate a theorem about the spectrum of H = —A + gq.

Theorem 2. Assume that ¢ € LP(R"), 5 <p < oo,n > 2 and q(x) — 0 as |z| — +oo.
Then

1) o.(H) D (0,400);

2) 0,(H) C [—co, 0] is of finite multiplicity with only accumulation point at {0} with
co from (9.2).

In order to prove this theorem we will prove two lemmas.

Lemma 4. Assume that the potential q(x) satisfies the assumptions of Theorem 2.
Assume in addition that q(z) € L*(R") for n = 2,3. Then

(~A -2 oq: IR — LR
is a compact operator for z ¢ [0, 400).

Proof. Due to our assumptions on the potential ¢(z) it can be represented as the sum
q(z) = q1(x) + q2(x), where ¢; € LP(|z| < R) with the same p and g5 — 0 as || — oc.
We may assume (without loss of generality) that ¢, is supported in {z € R" : |z| > R}
and that it is a continuous function. Let us consider first the case when n = 2, 3.
If f € L*(R") then ¢;f € L'(|z] < R) and (—A — 2)"Y(q1f) € WE(R") (by Fourier
transform). By the embedding theorem for Sobolev spaces we have that

(—A — 2)"Yquf) € W2(R™) € W 2 (R"), n=2,3

with the norm estimate

(A2 =2 (@)

|2 =2 @h],2s
CH(—A — Z)fl(CIlf)HWIQ <c HQ1fHL1(R")

¢ HQ1HL2(\1|<R) HfHLQ(\z|<R)

L2(R™) <

IN

IN
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or

|[(ca-2"eq

L2(|z|]<R)—L2(R") S c HQI||L2 5

where ¢ may depend only on z.
In the case n >4 and ¢ € LP(|z| < R),p > §, we may obtain by Holder inequality

that
2n

n+4’
for f € L*(R"™) and, therefore, (—A — 2)7'(q1f) € W2(R"). Again by embedding
theorem for Sobolev spaces we have

af€Li(z|]<R), s>

(A — 2 M) e w2 "G e

for some s > n%u with the norm estimate

<c

-1
|2 =27 oq, roatery— ) = N0 lrga<r -

In order to prove that (—A — z)7! 0 ¢; is a compact operator we approximate it as

follows:
A= (-A—2)"loq, A;j:=y;x)A,

where ¢;(z) € C3°(R"), [¢;(z)| < C and
|A—=Aj|l;2 ;2 —0, j— o0

The reason is that (—A — 2)™! o ¢; is actually an integral operator with a kernel
K.(x — y) which tends to 0 when |z| — oo uniformly with respect to |y| < R (note
that ¢ is supported in |y| < R). That’s why we can approximate this kernel K, by the
functions ¢; € C§°(R™). But A, is a compact operator for each j = 1,2,... because
the embedding

W3 (lz] < R) € L*(J2| < R)

is compact for positive . It implies that also A is compact operator.
Next we consider ¢y. Since for f(z) € L*(R™) we know that (—A—2z)~"'f € WZ(R")
then we may conclude that go(—A — 2)7' f € L?(|z| > R). Actually

g2 : W3 (R") — L*(Jz| > R)

is compact embedding. In order to establish this fact let us consider again ¢;(x) €
C(R™), |@;(z)| < ¢ and @; — gy as j — oo. We can state this because Cg° = ()
That’s why we required such behavior of ¢(z) at the infinity (¢ — 0 as |x| — +o0). If
we denote A := ga(—A — 2)7' and A; := ¢;(—A — 2)~! then we obtain

< esup ;= qo| = 0, j — +o0.

1A= Ajll e <sup oy — ol [ (=2 = 2) 7Y ,_ . S esu
(9.3)
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zomp 18 compact embedding. This implies (together with
(9.3)) that A is compact operator. Thus lemma is proved, because

(—A —2)tog = (go(—A —2)7 )",

But we know that W3 .., C L?

]

Lemma 5. Let () be an open and connected set in C. Let A(z) be compact, operator
valued and holomorphic function in Q and in L*(R™). If (I + A(z2))~" emists for some
20 € Q then (I + A(2))™! exists in all of Q except for finitely many points from Q with
only possible accumulation points on 0Q).

Proof. We will prove this lemma for the concrete operator A(z) := (—A — z)7'q(z).
Lemma 4 shows us that A(z) is compact operator for z ¢ [0, +00). The remarks about
R, = (—A — 2)7! show us that A(z) is a holomorphic function in C \ [0, +00). Also
we can prove that (I + (—A — 2)71q)™! exists for any 2 € C \ R or for real z < —c,
where —A + ¢ > —¢. Indeed, if 2 € C with Im 2z # 0 then (I + (=A — 2)"'Qu =10
or (A —2)u = —qu or (Au,u) + z(u,u) = (qu,u). It implies for z,Imz # 0, that
(u,u) = 0 if and only if u = 0. In the real case z < —¢y we have that equality
(I +(—A —2)"'q)u = 0 implies

(A + q)u,u) — z(u,u) = 0.

It follows that
(—co—2) |lull7. <0

or u = 0. These remarks show us that in C \ [0, +0c) our operator [ + (—A — 2)7 ¢
may be non-invertible only on [—cg, 0).

Let us consider an open and connected set @ in C\ [0, +00) such that [—¢q,0) C Q,
see Figure 3. Tt is easily seen that there exists zg € @Q such that (I + (—A — z5)"1q)™*
exists also. It is not so difficult to show that there exists § > 0 such that (I + (—A —
2)7tq) 7! exists in Us(zp). Indeed, let us choose § > 0 such that

1
17+ A(z0) "l o2

IA(z) = A(z0)ll o2 < (9.4)

for all z such that |z — zo| < 0. Then
(I +A@) " = (I +A(z) (I +B),
where B := (A(z) — A(20))(I + A(z))~!. But ||B]| < 1 due to (9.4) and then
I+B)'=I-B+B*+---+(-1)"B" +---

exists in the strong topology from L? to L?. That’s why we may conclude that I+ A(z)
may be non-invertible only for finitely many points in (). This fact follows from the
holomorphicity of A(z) with respect to z by analogy with the theorem about zeros of the
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i Rez

Figure 3: The set Q.

holomorphic function in complex analysis. Moreover, since A(z) is compact operator
then by Fredholm’s alternative Ker (I + A(z)) has finite dimension. That’s why we
may conclude that (I + (—A — 2z)71¢)™! does not exist only in the finite numbers of
the points (at most) on [—cg, —¢| for any € > 0 and these points are finite multiplicity.
This finishes the proof. O

Let us return to the proof of Theorem 2.

Proof of Theorem 2. Let p be a positive number and p+ c¢o > 0 (H > —col). Let us
consider for such p the second resolvent equation

(H+p)™ = (Ho+p)™ = (H+p) " ogo (Hy+p), (9.5)

where Hy = —A and H = —A + q(x). It follows from Lemma 4 that q o (Hy + p)~*
is compact operator in L*(R™). It means that (H + u)~! is a compact perturbation of
(Ho + p)~'. Hence, by fact 6) above we have

Oess (H + 1) ™") = 0ess (Ho + 1) ™).

But oess (Ho + 11)~") = [0, ;] = 0c((Ho + p1)!). That’s why we may conclude that

Oess (H + 1) = [, +00].
Outside of this set we have only points of the discrete spectrum with one possible
accumulation point at u. This statement is a simple corollary from Lemma 5. Moreover,

these points of discrete spectrum are situated on [ — ¢g, ) and they are of finite
multiplicity. Hence the discrete spectrum o4(H) of H belongs to [—co,0) with only
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one possible accumulation point at {0}. And (0, +o00) is continuous part of o(H).
There is only one problem. As a matter of fact, Weyl’s theorem (fact 6)) states
that the operators H and Hy don’t have the same spectrum but the same essential
spectrum. That’s why on (0,+00) there can be eigenvalues of infinite multiplicity
(see the definition of 0. ). In order to eliminate such possibility and to prove that
0 € 0.(H) and 04(H) is finite let us assume additionally that our potential g(x) has a
special behavior at the infinity:

lg(2)| < el ™, fz] = +oo,

where 1 > 2. In that case we can prove that on the interval [—cg, 0) the operator H has
at most finitely many points of discrete spectrum. And we prove also that 0 € o.(H).

Assume on the contrary that H has infinitely many points of discrete spectrum or
one of them has an infinite multiplicity. It means that in D(H) there exists the infinite
dimensional space of the functions {u} which satisfy the equation

(—A+qu = My, —cp < A <0.

It follows that
/ (IVu(x )|2+q (2)|u d;(:</ 2dx
Rn

where ¢* and ¢~ are the positive and negative parts of the potential ¢(z), respec-
tively. Let us consider an infinite sequence of functions {u(z)} which are orthogonal
in the metric [p, ¢~ (x)|u(x)|*dz. That’s why this sequence is uniformly bounded in
the metric [g.(|Vu|® + |g||u|?)dz and hence, in the metric [g.(|Vu|? + |u|?)dz. But for
every eigenfunction u(z) of the operator H with eigenvalue A € [—cy, 0] the following
inequality holds (see [1]):

D<Al [ )l
\<1

where ¢ does not depend on x. It follows from this inequality that
a) A =0 is not an eigenvalue.
b) this orthogonal sequence is uniformly bounded in every fixed ball.

Lemma 6. Denote by U the set of functions u(x) € D(H) which are uniformly bounded
in every fized ball in R™. Then U is a precompact set in the metric

[ lallufda
]Rn

iof it is a bounded set in the metric

/R (IVul? + |uf?)dz

I0)



Proof. Let {ux(z)}32, C U be an arbitrary sequence which is bounded in the second
metric. Then for u(z) := ug(x) — u,n(z) we have for r large enough that

[@lu@per < of EOLas [ )P

]

/ lg@)lule) Pdz = I + I, + I
|lz|<r,|q(z)|>A
For n > 3 (for n = 2 we need some changes) and pu > 2 we get

I, < CTQ_“/

lz|>r

|2 () [2da < ch—ﬂ/ Vu(z)?dz, ue WRY).
R
Due to the uniform boundedness of U in every ball we may conclude that
I, < c/ lg(z)|dz — 0
|z[<7,lq(x)|>A

as A — +oo uniformly on U with fixed r. Since the embedding W3 C L? for every
ball is compact the boundedness of the sequence in the second metric implies the
precompactness in L? for every ball. That’s why we have

L <A lu(z)|*de — 0, m,k— oo
lz|<r
with r and A fixed. After limiting processes, these inequalities for Iy, I; and Iy show
that
| la(@)llu(a)dz — 0, m,k — oo,
R

Thus lemma is proved. 0

Let us return to the proof of 1). By Lemma 6 we obtain that our sequence (which is
orthogonal in the metric [ ¢~ |u|*dz) is a Cauchy sequence in the first metric. But this
fact contradicts its orthogonality. Thus 1) is proved.

2) Let us discuss (briefly) the situation with a positive eigenvalue at the continuous
spectrum. If we consider the homogeneous equation

[T+ (=A - k*—i0) 'qlf =0, k*>0,

in the space C'(R") then by Green’s formula one can show (see, [2] or [3]) that the
solution f(z) of this equation behaves at the infinity as o(|z|~"z ). That’s why may
conclude (T. Kato) that f(z) = 0 outside some ball in R™. By the unique continuation
principle for the Schrédinger operator (see, for example, [4]) it follows that f = 0 in
the whole R". O

Let us consider now the spectral representation of the Schrodinger operator H =
—A+¢q(z), with ¢(x) as in Theorem 2 with the behavior O(|xz|™*), u > 2 at the infinity.
For any f € D(H),

M

Hi@) = @n) " [ Ru@, KR [ f@uly. F)dy+ > A fuso).

n R le
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where u(z, ?) are the solutions of the equation Hu = k*u, u;(z) are the ortonor-
mal eigenfunctions corresponding to the negative eigenvalues );, taking into account
multiplicity of A; and f; = (f,u;)r2@ny. The functions u(z, k) are called generalized
eigenfunctions. In the case when ¢ = 0 the generalized eigenfunctions have the form
u(z, ?) — ¢/ %) This fact follows by Fourier transform. Indeed,

(—A - k)u =0
if and only if
(I = k*)u =0
or -
=Y cud (¢~ k),
since

€* = &
if and only if .
E—k =0.

Hence
u(z, k) = an H(8(€ — &) (x)
= anzmk 5(‘1) ch zack) a

But u(z, ?) must be bounded. That’s why u(z, ?) = c)ell@k ). We choose =1 1If
we have the Schrodinger operator H = —A + ¢ with ¢ # 0 then it 1s natural to look
H

for the solutions of Hu = k%u of the form u(z, k) = ™ ) 4 Use (2, k:) Due to this
representation we have

(—A — k2)(ei(x’?) + Use) = —qu

or

(—A — E*)uge = —qu.

In order to find ug. let us recall that from Chapter 8 we know the fundamental solution
of the operator —A — k2. That’s why

ulw k) = P — [ G (e~ yha(v)uly)dy,

where
; kN7
Gt (lal) = & (%m) 10 (K

is the fundamental solution for the operator —A — k2. This equation is called the
Lippmann-Schwinger integral equation.
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In order to investigate this equation we will investigate the integral operator (—A —
k*—i0)~! in some weighted spaces. As a matter of fact, (—A—k?—:0)"! is not bounded
in L?(R") but it is bounded from L§(R") to L? ;(R™)) for § > 3 with the norm estimate

I(=A = k2 = i0) |2z, < 1
=1 =

This fact was proved by S. Agmon in [5]. We will prove this estimate for n > 3 in
Chapter 10.
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10 Estimates for Laplacian and Hamiltonian

Let us recall Agmon’s (2, 2)-estimate for Laplacian:

2 -1 ¢
[(=A = k* —i0) HL?;HLZ’_5 < [k

where 0 > % In fact, this estimate allows us to consider the Hamiltonian with Lg -
potentials only (if we want to preserve (2, 2)-estimates). But we would like to consider
Hamiltonian with L} -potentials. That’s why we need to prove (p,q)-estimates. In
this case we follow A. Ruiz.

1 1

We have proved in Example 4.9 that the limit hl%l = exists in the sense
€

r—ie x—10

of tempered distributions and

1 1
——g =PV + imo(z)

1.e.

1 o o(x) :
<x—z’0’“">_aliri‘o/x|>a p G timel0).

In Example 4.3 we have considered the simple layer

(T.0) = [ al€)p()doe,

where o is a hypersurface of dimension n — 1 in R™ and a(§) is a density. These
examples can be extended as follows. If H : R" — R and |[VH| # 0 at any point where
H(&) = 0 then we can define the distribution

(H(&) =)™ o= Jim g =

in S’(R) and we can also prove that

(H(&) —i0)™" =p.v.

1 B

where 0(H (&) = 0) is defined as follows:
0, o)= [, eledoe, o e SR,

The equality H(§) = 0 defines an n — 1 dimensional hypersurface and o is any (n—1)-

form such that dog¢ A % = d¢ (in local coordinates).

Exercise 48. Prove that 1
d(aH)=—0(H)
o

for any function a which does not vanish at any point £ where H (&) = 0.

79



. Dge to Exercise 48 we may conclude that §(H) = ﬁd (%) if [VH| # 0 for

Let us consider now H(E) := —|> + k%, k > 0. Then H({) =0 or || = k is a
sphere and VH (&) = —2¢ and |V H (§)| = 2k at any point on this sphere. If we change
the variables then we obtain

(0(H), )= p(k6)do.

o = —
H(£)=0 #(8)doe 2k Jsn—
We know that (—A — k% —40)~'f can be represented as

(~a—k=i)"f = [ Gl(x—y)f)dy,

where G}/ (|z) = £ (2L’TL|)% HY, (|k||z]). On the other hand we can write
A 12 -l o -1 N % T B N -2 J?(f)ei(m’g)df
(A=K =)' = FUFl(-A—k =) f)) = (@) [ e
-z 1 n i(x
= (2m)"2 Rnp-Vomf(f)@( Sde
im(2m)"% F(£)ei@)
v s fe)eag
f©)et=Ode  in I
= (27) 2p.v. - k0)e™ "0 dg
G L TP =R T 2k /s f(kb)e
_ (on)h fe)e=de
= (2m) 2p.v. o [ 2
i ik(0,x—y)
+ (2 /Rn f(y)dy/Sn1 e de.

Our aim is to prove the following result.

Theorem 1. Letk:>0and%21—%Ziforn23and1>l—%22forn:2,
p P n+1 p P 3

where % + z% = 1. Then there exists a constant C independent of k and f such that

1

cAN — n(i-L )2
8= = i0) Fll oy < CF G e,
Remark. In what follows we will use Gy, instead of (—A — k2 — i0)~L,

Proof. First we prove that if the claim holds for £ = 1 then it holds for any k£ > 0. So,
let us assume that

HG1f||Lp’(Rn) < C||f||LP(R”)'

Denote T5f := f(dx),6 > 0. It is clear that ||Tsf]||rr@n) = (S_%”f“LP(]Rn). It is not so
difficult to show that G, = k‘QTkGlT%. Indeed, since

Iy i(y,€) —y)ded
e
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we get

- ') f (24 dedy
Giryf=m [ [ ° e 50
I f ) - |f|2—1—20

It follows that

. W f — NYdedy
LT = o[ [ f - -
kGl Ef 7T " n ‘€|2_1_ZO ) (Z y/k777 kf)
. eCME= f(x — 2)k"dzdn
= (27T) / / 2 ( )
n JR" k—Q —1—10

~ () ”kZ// x—z)dzdn‘
n JRn |77|2 k? — 0

KGyf = ka;lT% f.

This proves that

We use it to get

Geflr = K ITEGATL g = k2K P ICTy
_o_n o_n (1 5 n( L L/
< O ATl = 0877 (1) Tl = RGP

That’s why it is enough to prove this theorem for £ = 1.
Lemma 1. Let w(z) € S(R"),0 <& <1 and o.w(§) = e "w (%). Let us denote

P.(€) = poo (wl_1 <ow) (©)

Then
1P:(§)] <

Proof. For P. we have the following representation:

PE:p.V.(/ +/ +/ )dez[l—i-fg—l—]g.
1—e<|y<ite  Jppl<i—e  Jpi>14e)  |n2—1

The integrals I and I3 can be easily bounded by e~ !||w]|| ;1 because |n| < 1 — ¢ implies

that ’WQ 1’ =3 TU‘Q < L and || > 1+ ¢ implies that ‘| 2o 1‘ = \n|21—1 < % By the

13
definition of p.v. we have

o1

: o.w(€—n) 1+s> Fn—l
1= Jim [ TS = gy = i / / | oweté- .
! 5520 s<fi-pll<e |n|*—1 dn = 540 ( * sn-1 oew( r9)r2 - 1d9dr

Replacing r with 2 — r in the latter integral we obtain

I, = lim /1_5 UGTINN

5—7"!‘0 l—e T — 1
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where

n—1 (2 - T)nfl

F(r,¢) = /S"l {aew(ﬁ - T’Q)Zﬁ —ow(—(2—1)0) 5=, } de.

If we observe that F(1,£) = 0 then we get by the mean value theorem (Lagrange
formulae) that

1= F(Ta f) 1-9 F(?“, 5) _ F(l,f) or
———2dr| = < (e — or
I e SRR
< oF
Su —_— .
o 1—€<17?<1 or
But
oF pn—1 !
ar (7“ + 1) /Sn—l oew(& —r9)d
rrl (2 — )ty
_ . B (2=t e
T [0 Viowte —ronas - (B ) [ owsle - 2 - oy
2 _ n—1
N (7”)/ 0.V (0.0(€ — (2= 1)8))d6 = Oy + 6 + 05 + O,
3—r sn-1

By the proof of Lemma 2 below we get [0;] < cie™! and |65] < cze™!, where the
constants ¢; and c3 depend on w. The second integral 6, can be estimated as (see
Lemma 2)

T g (D )(5 0)df < cye?
0. | —w —r < .
o+ 1 /s ! Ox; 2
The same estimate holds for ;. Thus, Lemma 1 is proved. O

Lemma 2. Let us assume that f € L>(S"™!) and w € S(R™). Then

H/51 o.w(§ —0)f(0)do

< Ce b
Loo(RM)

Proof. We can reduce the proof to compactly supported w, since C§° 5 S, Let us take
a C§e-partition of unity in R such that 3352, 1;(£) = 1 or even }>22, 1, (%) = 1, where
1o is supported in [¢] < 1 and ¢; = (279€) for j = 1,2,3,..., with ¢ supported in
the annulus 1/2 < || < 2. That’s why we may write

[ ouele — 0/ (0)d0 = f; L= (B20)« (520) s,

9 9

For j = 1,2,3,..., the function v; (%) w (5;—9) is supported in the annulus 277! <
|| <291 Since w is rapidly decreasing we have that, in this annulus,

()= arae
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for all M € N. Hence

(2j+16)n71

—-n r _—1 (Qj)ni
Araprs =CuE

aro

/S ) (529> f(H)d@’ < Cu

Taking M large enough the sum in j converges to Ce™!. To end the proof of Lemma

2 notice that the term for j = 0 satisfes this inequality trivially. O]
Exercise 49. Prove that (—A)™!: L3(R3) — L2 5(R3) for § > 1.
Let us return to the proof of Theorem 1. We can rewrite G, f in the form

Glf C’pv/ f g

T—i_[lﬁ

where

Lf= C’/ )ei0:2) g,

Let us take a partition of unity >22,;(x) = 1 such that suppyy C {|z| < 1} and
suppt; C {2771 < |z| < 27t} where ¢; = ¢(277z) with a fixed function ¢ € S.
Denote ¥; := ;G and K, f := U, x f, where G{ is the kernel of the integral operator
(1. Using the estimates of the Hankel function H & (|z]) for |z| < 2 we obtain

2

|Wo| < Clz]*™, n>3

and
|Wo| < C([log [z]| +1), n=2.

3e

Exercise 50 (Sobolev inequality). Let 0 < a < n,1 < p < ¢ < oo and % =
Then

/ fy)dy

e |z —y[nme L
Hint: For K := |z|""* use the representation K = K; + K, where

K < 0 <
P L (O Y
0, |z|>p K, |z|> p.

S

< Yl fllze-

From Sobolev inequality for o = 2 we may conclude that the operator K is bounded
from LP(R") — L¥(R") for the range 2 > 1 — 1 >0ifn>3and 1 > % — [% > 0 if

n = 2. From Lemma 1 and 2 with ¢ = 27 We can obtain that

(%) oo = NI(1€]* = 1 = i0) " # thylloc < C'- 27,

This inequality leads to .
| Kl 22 < C -2,
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because
1K flle = 1F (W5 f)lle = ClIY; - flle < 19 e fllz2 < C - 27[ f || 2.

On the other hand, due to the elstimate of the fundamental solution at infinity we can
obtain that |¥;(z)| < C'-277"% and

1K | < C - 277"

We have used here two facts:

C
o el

L (2| <

and supp U, (z) C {x: 277! < |z| < 27F'}. Interpolating these estimates we obtain the
self-dual estimates:

n—1

WG| o < 0(2]')2(17%)77(%71)'

For convergence of this series we need the condition 2(1 — %) — ”T_l(% —1) < 0or
l ; > -2 If we want to get the sharper inequality 1 i ; > % we have to use
Stem S theorem about interpolation. Thus, Theorem 1 is proved. [l

It follows from Theorem 1 that if we consider the values of p from the interval

2n §p§2n+2, n>3
n—+ 2 n—+3

1<p<6/5, n=2,

then we have the self-dual estimate

G < ¢
ol <y

But we would like to extend the estimates for Gj, for RQ—fQ < p<2,n >3 and

1 <p<2,n=2. Inorder to do so we use interpolation of the Agmon’s estimate and
the latter estimate for p = 2”“ This process leads to the estimate

C
o S D (LI_1\’
s ‘k|1 (n 1)(p 2)

IGl

Where2"+2<p<2n>2and5>f—(n+1)(—p—%).

Theorem 2. Assume that the potential q(x) belongs to LE(R™),n > 2, with § < p < oo
and o =0 for 5 <p < %Ll and o > 1 — ”+1 for"*’1 < p < 4oo. Then for all k # 0
the limit
Gy = lim (H— k> — i)™}
e—+0

84



2p

2p
exists in the uniform operator topology from L%“ (R™) to Lﬁ’%l (R™) with the norm
estimate R
IGofll 2 < ClE[T S]]
L7, L
-2

for large k with p and o as above and with vy =2— "2 for © < p < =L

2 =2
for”TH<p§oo.

and’yzl—’g—;l

Proof. Let us prove first that the integral operator K with the kernel
K(x,y) = lq|?(x)G{ (|2 = yDas (v),

where q%(y) = |q(v)|2 sgnq(y) maps from L2(R") to L2(R"™) with the same norm es-
timate as in Theorem 2. Indeed, if f € L2(R") and ¢ € L2(R") then |q|z € LQ%p(R”)

_2p
and, therefore, f |q|% € L%“ (R™). Applying Theorem 1 we obtain

IGx(lgl2 f)] 2 < ClE[T £l
LP L

2

2p_,
p+1

(S

where 7 is as in Theorem 2. Then, by Holder’s inequality we have that |¢|2 G (g Lf ) €

L?*(R") as asserted.
Let us consider now the operator GGy. This operator satisfies the resolvent equation

é\q = é\k — é\kqé\q
which follows easily from (H — k:2)@q — I. Denote by G; and G, the integral operators

having the kernels G (|z — y])q% (y) and |q(2)|2G{ (Jx —y|), respectively. Then one can
show that L L

G,=Gr—G(1+K)'G,
for large k. Since K : L* — L2,G, : L? — L and G, : L* — Lf? then we may
conclude that Theorem 2 is proved. [l

There are some corollaries from these two theorems.

Corollary 1. Assume that the potential q(z) belongs to L2(R"™) N L*(R™) with p and
o as in Theorem 2. Then for A > 0 large enough there is a unique solution u of the
equation

(A +qg—Nu=0

of the form
u(z, B) = 6F) 1 ug(a, ),
— — —
where k,x € R" (k, k)= X\ and
1 C 1
|||Q|2uSC||L2(R") < /\?HQHLZA(R")

with v as in Theorem 2.
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Proof. Let us rewrite the Lippmann-Schwinger equation

—

— . —
u(w, K) = ¢ = [ G (e = ylaly)uly, F)dy

in the form

!

(@) u(e, B) = la@)5e ™ = [ K(e,y)la) uly, F)dy

or N
v =1y — Kv,
— = —~
where v(z) = |q(z)|2u(z, k), vo(z) = lg(z)|2¢'(*2) and K is as above. Since vy € L2
if and only if ¢ € L' and K : L? — L? with a good norm estimate, we may conclude
that

v:vo—i—f(\vo—i—f(\QvoqL...
for \?] large enough and
lo = wollz2 < CIIK]| g2z |[voll 2
le. )
o) Buncloz < soglal
[l

Corollary 2. Let v be the outgoing solution of the inhomogeneous Schrodinger equation
(H — 1) =]

1.€.
v=(H -k —i0)"'f,

where f € S(R™). Then the following representation holds:
v(@) = Gi(f = 4Gy(f)) ().
Moreover, for |x| — oo and fized positive k,

iklz| . 252
v(z, k) =C c

Y
]2

Ap(k,0") +o <1> ,

n—1
[

where ' = ‘i—' and the function Ay is defined by

Ag(k,0) = [ O (f(y) = o(y)Go(F)dy.

n
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Proof. The first representation follows immediately from the definition of é\q. Indeed,
since v = @qf then Gif = v+ Grqu or v = Gpf — Grqu = ak(f — q@qf).

In order to prove the asymptotic behavior for v let us assume that ¢ and f have
compact support, say in the ball {x : |z| < R}. We will use the following asymptotic
behavior of G (|z|) :

1) kla| <1:

a) Gy (lz]) ~ Cla[*™, n =3,
b) Gy (|z]) ~ Clog(klz[), n=2.

2) klx| >1:
=
Gl (lel) ~ Clzre™, 22
x| 2

Since k is fixed, |y| < R and |z| — +00 we may assume that k|z — y| > 1 for x large
enough. That’s why

eik\x|k”T_3 ‘ N
U((];) = 07/ elk(\x*ylf\xl)(f_ngf)dy
ly|<R

n—1
Edhe

/y|<R0 <1> (f — q@qf)dy =1 + L.

n—1
lz —y| 2

It is clear that for I the following is true

B0 [ U0 a0t w)in) =0 ().

because f — qéq f is an integrable function. Next, let us note that

lz—yl+ 2] | —y[+ ]| ||’ x|/ '

That’s why we can rewrite the integral appearing in I; as follows:
/ M EO) (f - oGof)dy = / e M (f — gGf)dy
lyl<R lyl<R

ly|<R

|

. ~ 1
= [ e = aCapdy + 0 (1)
ly|<R

]

where 0 = % € Sn=1. Thus, Corollary 2 is proved when ¢ and f have compact support.
The proof in the general case is much more difficult and is therefore omitted. O]
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Remark. Hint for the general case: The integral over R” might be divided in two parts:
ly| < |z|® and |y| > |z|?, where € > 0 is chosen appropriately.

Lemma 3 (Optical lemma). For the function A¢(k,0') the following equality holds:

1
NP7/ —
/Snl A, 0) ) = — 5 /R Im (f7)dx,

where C'is the constant from the asymptotic representation of v = (H — k* —i0)71f.

Proof. Let p be a smooth real-valued function on [0, +00) such that 0 < p < 1 and
p(r) =1for 0 <r < 1and p(r) =0 for r > 2. We set p,,(r) =p (%) . Multiplying f
by Tpm(|z|), integrating over R™ and taking imaginary parts leads to

[ f@pn(fal)o(e)dr = I [ (~Av)pn(e](a)de

As m tends to infinity, the left-hand side converges to Im [p. f(2)0(x)dx. To get the
desired limit for the right-hand side, we integrate by parts and obtain

Im /Rn(—Av)pmﬂxD@(x)dx -~ Im/ L Verehe()ds
= [ [0 Vo = iko)o()ol (a]) + ikt ) o] da
= Im - (0" - Vv — ikv)v(x)p,,(z)dx

+ k:/R o (le)o(@)Pde = I + I,

Since v = (H —k?—i0)~! f then using the asymptotical representation we may conclude
that v satisfies the Sommerfeld radiation condition

1
g:—zkv—o<7121>, r=|z|

at the infinity. That’s why Iy — 0 as m — oo. By Corollary 2 the second term I is
equal to

b AalleDlePs = b [ (el)- 02 00

+ k[ il ( ) o
QmT”*1

= o [ Ak )P [ ()

+ k s d@/jmr”_lo(rl )pgn(r)dr
= R [ Ak 0P [+ (1)
= % [ A, 0)8 [p(2) = p(1)] + o (1)

— /S Ay (k. )28 + 0,n(1).
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Letting m — oo we obtain
m [ f(a)o(z)de = —C2h"? / A )
Rn Sn—

Thus, Lemma 3 is proved. [l

Exercise 51. Let n = 2 or n = 3. Assume that ¢ € LP(R") N L'(R") with 1 < p < oo
—_
if n =2 and 3 < p < oo if n=3. Prove that the generalized eigenfunctions u(zx, k)
H
are uniformly bounded with respect to € R" and | k | large enough.

We will obtain very important corollaries from Optical lemma. Let A (k) denote
the linear mapping that takes the inhomogeneity f to the corresponding scattering
amplitude

Ag(k) : f(x) — Ag(k,0").
Lemma 4. Let the potential q(x) satisfy the conditions from Theorem 2. Then A,
is a well-defined bounded operator from L?(R”) to L*(S™™1) with the operator norm

estimate o
14, || S TREEE=E
k|27

w\q’t}‘

where p,o and v are as in Theorem 2.

Proof. By Lemma 3 and the definition of A,f we have that

bl
+\

1
2 _ 2 _ 7
HAquL2(S"—1) = /Sn_l | Ay (K, 070" = T2 ‘k‘n—2 /n Im (f - v)dz
1
< — v

[N

Further, since v = @q f, we obtain from Theorem 2 that

C
|k|n 2

1Agf I Z2en ) k[T ||f||27

TR

w\q ~=x

Thus, Lemma 4 is proved. O

Let us denote by Ay (k) the operator A, (k) which corresponds to the potential ¢ = 0
ie.

Aof(0) = [ e O f(y)dy.
It is not so difficult to see that

Agf(8) = As(k,0) = [ F(y)uly, k. 0)dy,
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where u(-, k, 0") is the solution of Lippmann-Schwinger equation. Indeed, by Corollary
2 of Theorem 2 we have

As(k,0) = / e MOV (f(y) = aW)Go())dy = (I = aGo) f, ™) 2y
= (1= Gol)e™ ™ Ny = [ F@)T = Cola)) (40 (y)dy

= [ F)uly. k. 0)dy,

since é\q is a self-adjoint operator.
Let us prove now that

u(y, k,0") == (I — Go(@) (™)) (y)

is the solution of Lippmann-Schwinger equation. Indeed,

(H=k)u = (H=E)") = (H = 1)Gy(q) - (¢*)(y)
— (_A . k2)eik(0’,y) + qeik(e’,y) . qeik(ﬂ’,y) -0

since (—A — k2)e*@ ) — 0 and (H — k2)G, = I. It means that this u(y, k, @) is the
solution of the equation (H — k?)u = 0.

Remark. Let us consider the Lippmann-Schwinger equation

u(z, k,0) = "0 — /R GE(lz = yDa(y)uly. k,0)dy.

Then for fixed £ > 0 and |z| — oo the solution u(x,k,#) admits the asymptotical
representation

n—3

(@, k,0) = @0 £ 0, KT a0 0y 1o () ,

n—1

xT

where 0" = Tal and the function A(k, ¢, 60) is called the scattering amplitude and has
the form

n

A(k,0,0) =/ e MW q(y)uly, k, 0)dy.
For k < 0 we set
A(k,0',0) = A(—Fk,0,0), wu(x,k,0)=u(x,—k,0).

Proof. If (H — k*)u = 0 and u = e*0®) 4y (z,k,0) then ug(z,k,0) satisfies the
equation '

(H — E)uge = —qe* ),
That’s why we may apply Corollary 2 of Theorem 2 with v := ug. and f := —ge’
and obtain

k(0,z)

use(x, k,0) = C, ¢ :

n n—1
]2

Ak, 0) + 0 (1) |

n—1
]2
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where
Alh ) = [ MO (g0 4 B, (4O (y))dy

But we have proved that ¢*@%) — G, (qe?*))(y) is solution of the equation (H —k2)u =
0. That’s why we may conclude that

A = = [ HOD g guly. k. B)dy = Ak 0.6).

Thus, this remark is proved. [
Now let ®y(k) and ®(k) be the operators defined for f € L*(S"!) as

(@o(k) f)(2) = |q(x)|2 [ ™= f(6)do (10.1)

§n—1

and
(@(k)f)(x) = |g(x)|? [ ulw,k,0)f(0)db. (10.2)

S§n—1

Lemma 5. The operators ®o(k) and ®(k) are bounded from L*(S"~1) to L*(R™) with
the norm estimates

@) 20 < por b >0,
where ~ s as in Theorem 2.
Proof. Let us prove that
(o(k) /() = la(@)]*(451) () (10.3)
and .
(®(0) 1)) = o)} (43)(2), (109

where A and A} are the adjoint operators for A, and A,, respectively. Indeed, if
f e L?S" ') and g € L*(R") then

[ rotagme = |

[ O [ gy

gy [ e f(0)d0
Sn—1

L.
J

It means that



and (10.3) is immediate. Similarly for (10.4). Since (see Lemma 4)

C
A A <
ol 14l 2 S
2
we have that o
1451114z <o
L2(Sn—1)—LP,L (Rn) k272

The proof is finished by

Loy 3 *
[P0 (k) fl L2 ey Hal2 (A5 )l 2@n) < IIQIIEg(Rn)IlefIIL%(Rn)
-$

C

1
= Hquig(Rn)HfHLZ(S”—l),

2

where we have made use of Holder inequality in the first estimate. It is clear that the
same is true for ®(k).

O
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11 Some inverse problems for the Schrodinger op-
erator

The classical inverse scattering problem is to reconstruct the potential ¢(x) from the
knowledge of the far field data (scattering amplitude) A(k, ¢, 6), when k, 0" and 0 are
restricted to some given set.
If ¢ € LY(R™) then q(y)u(y, k,0) € L'(R"™) uniformly with respect to § € S"~! due
to
a(y)u(y, k,0) = g(u) (€ + ue(y, k,0)) = a(y)e™ ) + |g]? - qrucc(y, k. 6)
—_— =~ < .
eL? €L? cL?
and Holder’s inequality. That’s why we may conclude that the scattering amplitude
A(k, 0, 0) is well-defined and continuous. Also the following representation holds:

Ak, 0',0) = / e D q(y) (€O + uge)dy = / e MU0 g(y)dy + R(k,0',0)
Rn R"
= (2m)"2(Fq)(k(¢0' — 0)) + R(k,',0),
where R(k,0',0) — 0 as k — oo uniformly with respect to " and 6. This fact implies

that
A(k,0',0) =~ (2m)"*(Fq)(k(0' — 0))

or

q(w) = (2m) "2 FT (AR, 0,0))(2),

where the inverse Fourier transform must be understood in some special sense.
Let us introduce the cylinders My = R x S" ! and M = M, x S"!, and the
measures tg and g on My and M, respectively, as

1
dpio(k,0) = J K"~ k|0 — 0'[*de

1
du(k, ¢, 0) = Wdedﬂe(k% o)
where |S"7!| = % is the area of the unit sphere S"~! and df and d#’ denote the
2

usual Lebesgue measures on S"'. We shall define the inverse Fourier transform on

My and M as .
(Fien)() = G €001 (6.6,
0

- 1 —ik(0—0" /
(Fit2)(@) = Gy [, &0 0a(h. 0, 0)d

If we write £ = k(0 — ¢') then k and €' are obtained by

<
€’

€] / N F
k=L g =0-20,8¢ E=
20.6) (0,6)¢, &

(11.1)
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Exercise 52. Let uy(k,0’) be the coordinate mapping My, — R™ given as
ug(k,0") = k(0 — 6,
where 0 is considered as a fixed parameter. Prove that

1) the formulas (11.1) for k£ and 6" hold

2) the following is true:

n

[ 0ok, 0)dpo(k,0) :/ o(z)dz

if ¢ € S is even and

/ o ug(k, 8 du(k, ¢, 0) = / o()dx
M n
it pels.

3) in addition:
Fypy(poug) = F 7l
if ¢ € S'is even and
Fif'(poug) = F '

if o € S. Here F~! is the usual inverse Fourier transform in R™.
Exercise 53. Prove that
1) A(—k,0,0) = A(k.0,9)
2) A(k,0',0) = A(k,—0,—0").

The approximation ¢(z) ~ (2m)~2 F~1(A(k,0',0)(x)) for all ¢ and # and for suffi-
ciently large k allows us to introduce the following definitions.

Definition. The inverse Born approximations ¢%(x) and ¢g(z) of the potential ¢(x)
are defined by

—n — 1 —ik(0—0",x /
dh(e) = (2m) " AERAY) = o [ e DA B)dp,
and )
() = (2m) P (F A)w) = g [ O A 6

Remark. The equalities from the latter definition must be understood in the sense of
distributions.
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Theorem 1 (Uniqueness). Assume that the potential q(x) belongs Li, (R™),5 < p <
oo,n > 3, and has the special behavior |q(z)| < Clx|™, pu > 2, |x| — oo at the infinity.
Then the knowledge of q%(x) with 6 restricted to an (n — 2) dimensional semisphere

determines q(x) uniquely.

Proof. 1t is not so difficult to check that if ¢(z) satisfies the conditions of present
theorem then ¢(x) will satisfy the conditions of Theorem 2 from Chapter 10:

1
q € LP(R"), Z<p§n;L

or
1 1
qg € LE(R"), n;<p§+oo, a>1—n2+.

P

Now we can represent gi(x) in the form

1 —ik(0—0",x / /
&) = G [0 Ak, 0, O)dpao (. 0
0
1

0

1 o y
= G i [ RO ) Oty k),
0

where u(y, k, 0) is the solution of the Lippmann-Schwinger equation. Denoting
vy, k. 0) := e O Du(y, k, 0)

and making the change of variables £ = k(6 — ¢') we obtain

0 _ 1 —i(&,x—y |€|
qB(':C> - (27‘{')” /n dé'/n € « )Q<y>v <y’ 2(675)7‘9> dy

The usual Fourier transform of ¢%(x) is equal to

s oty ) o

g
! (y’ 2(6,@’9) 1"@’

where the function v(y, k, 0) solves the equation

—

A& =) + em 2 [

n

and it implies that

-l < m) " [ ()

v k,0) = 1= [ MG (2 — yl)e O q(y)o(y, k. 0)dy

n

ie. e
v=1—Gg(qv),
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where G, = e~ *k@=v9 G For k large enough we may obtain that

v=(1+Gya) (1)

or

o~

v=1-G,(q), (11.2)

where Z?q is the integral operator with the kernel CNJQ = e*ik(x*y’g)Gq and the integral
operator @q with this kernel satisfies also the equation (H — k2)§q = [. In order to
prove (11.2) we recall that L

Gq = Gk — quGq
and, therefore -

aq = ak — akqaq

or

—~

Gq = (I + 5kq)’1§k
The last equality implies that

—~

Golq) = (I + Grq)'Gilq) = —(v — 1)
because . .
(I+Grg)'Gilg) = —(v — 1)
is equivalent to
G(a) = —(I+Gr)(v—1) = =(v = 1) = (Gxq)(v) + (Gra)(1)
= —v+1- 1+v+§k(q) :E}'N\k(q).
That’s why we may apply Theorem 2 of Chapter 10 and get

IIU—IIIL%R) Ic. ()Ilf_k,y

2

lall 2o

t\)\q’d

where v,p and o are as in that theorem. It remains to check only that the potential
2p

q € L} .(R™) with the special behavior at the infinity belongs to L? (R™). But it is a
very simple exercise. Hence, the letter inequality leads to

- a 0 v
A& — () < CllalP = @&”),5¢o
L2 T wey \ [€]

with the same . If ¢; and ¢y are as ¢ then

@) = B©)] = @€ — b+ b — O] < 10(S) — gb] + g5 — (O]

o~ - Y
e r@mg ol C@m>zo
M”m@<m\ +Cll? g, (1

a
2

IN

M\Q ’B

if (E ,0) = 0. Thus, this theorem is proved because (E ,0) = 0 precisely when 6 runs
through an (n — 2)-dimensional semisphere, see [6, 7]. O
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Theorem 2 (Saito’s formula). Under the same assumptions for q(z) as in Theorem
1

Y

(2m)" / q(y)dy

T n |z — gyt

lim k" / 1 / RO A, 07, 0)d0de =
sn—1 Jgn—

k—+o00
where the limit holds in classical sense for n < p < oo and in the sense of the distri-
butions for 5 <p < n.

Proof. Let us consider only the case n < p < oo. The proof for § < p < n takes place

with some changes.
By definition of the scattering amplitude,

[ = k! / / Ak, 0',0)e= 009 g4’
Snfl Snfl

_ kn—l/ q(y)dy/ / eik(@—H’,y—x)dedel
Rn sn-1 Jgn—1

+ K / q(y)dy / / e FONR(y, k,0)e *O-00)dgde’ = I + I,
R" gn=t Jgn-t
where R(y, k, 0) is given by
R(y.k.0) =~ [ GE(ly ~ Dal2)uz k. 0)dz

and u(z, k, 0) is the solution of the Lippmann-Schwinger equation. Since

/ / k0= =) 100" — ’ / ik (Oy—2) dgr
§n—1 Jgn—1 Sn—1
471'”_1

"o —zx| cos : n— 2
- P ( /0 U105 (sin )2l
Tl )

= Oy

then I; can be represented in the form

Q(y) 2
1 ( () R" ‘ZL‘ y‘n,Q TZ( |'I y|) Y

We consider two cases: k|z —y| < 1 and k|x — y| > 1. In the first case using Holder’s
inequality the integral I] over {y : k|z — y| < 1} can be estimated by

la(y)|(klz —y))" 2

o—yl<L |z — y|n2

< (Jk”‘l( pd>”( 1-d>
- /:v—y|<,i la(y)Pdy /w—y|<}€ Y

1

= okt ([ awlay) e ([ awlay) 0
lz—y|<f lz—y|<4
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as k — +oo since n < p < oco. This means that for every fixed = (or even uniformly
with respect to ) I] approaches to zero as k — 0o. Hence, we need only to estimate
the integral I7 over {y : k|z —y| > 1}. The asymptotic behavior of the Bessel function
J,(+) for large argument implies that

I~ () q9(y)

lz—y|>+ |z — y|"2

2
nT T 1
X ”7? cos(k\:c—y\—4+4>+O<(k’x_y’)3/2>] dy

q(y) [26082(’?\96—@/\—T+D ( 1 )]
= (27 +0O0|——— )| d
Gk J s Te =y ke — ) ke — 12 )| Y
_ et
T J—ysL |z —yn Tt
(27T)n Q(y) nw T
_J) Ole —yl — — + =
+ /Ix Joi o=y cos( klz — y| 5 T Z)dy
1 O(1
Llp lawlow,

k Jjz—y/>1 |z —y|"
= IV 4+ 1P 4 ®,

It is clear that

i 151):(%) / q(y)dy
R

hoo T Jre o —y[rt
and

lim I{) 0.
k—+o00

The latter fact follows from the following arguments. Since ¢ belongs to LP(R™) for

p > n and has the special behavior at the infinity then we may conclude that L'-norm

of the function E (|,)L  is uniformly bounded with respect to . Hence it follows from
(2)

the Riemann-Lebesgue lemma that [;™ approaches to zero uniformly with respect to

x as k — +o0. For 11(3) we have the estimate

C / lq(y)|dy

10 Jgn |z — y|nd

RIRS

If we choose  such that 1 > ) >0 2 then fRn ‘fyé will be uniformly bounded with

respect to . Therefore, 1 ;7 —0as k — unlformly with respect to x. If we collect
all estimates we obtain that

lim [1 =
k—oo

(2m)" / q(y)dy

T n o —y|nt

Our next task is to prove that Iy — 0 as k — oco. Since
L=kt [ aldy [ eI Ry, k,0)e O doad
Rn Snfl Snfl
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where

Rly,k.0) = = [ Gi(ly— =Na(=)u(z, k. 0)dz = ~Ci(qu)

then one can check that R(y, k,0) = —Gy(qe™*®?). Hence, I, can be represented as

L = _k%l/ gly)dy | Mg G, <(J(z) / eikw"z*x)de)
n S§n—1 S§n—1

Jnoz(klz —yl) Iz (k| —yl)
_ _kn—l 27\ 2 — - Gq z 2 — d
(2) / q(y) T <q( ) (klx_y|)2> y

Janl’— ankx—
N I == 1 <|q< iz y”)dy,

R (|$—y|) (|fv—y|)

where f(\q is the integral operator with the kernel
1
Ko(z,y) = —lq(@)|>Go(k, 2, y)q1 (y).

It follows from Theorem 2 of Chapter 10 that K, : L2(R") — L*(R") with the norm
estimate

— C
[ Kgllzo—r < o= =2

where 7 is as in that theorem. That’s why we can estimate I5 using Holder’s inequality

as
Jaa (Kl —yl)
Ll < / —

By the same arguments as in the proof for I; we can obtain that

T2 (Kl =)
b, )= gy < oo

lz—y

uniformly with respect to z. It implies that
C
\IQ|SE—>O, k — 4o0.

]

Remark. This proof holds also for n = 2. In dimension n = 1 there is an analogous
result in which we replace the double integral in the left hand side by the sum of four
values of the integrand at 6 = +1 and ¢’ =

Theorem 3. Let us assume that n > 2. Under the same assumptions for ¢ (x), gz2(x)
as in Theorem 2 let us assume that the corresponding scattering amplitudes A, and
A,, coincide for some sequence k; — oo and for all 0,0 € S"™'. Then q(z) = ¢(x)
in the sence of LP forn < p < oo and in the sense of distributions for 5 <p <mn.
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Proof. Saito’s formula shows that we only have to show that the homogeneous equation

_ aw)dy
Y= Ly

has only the trivial solution ¢(y) = 0. Let us assume that n < p < oco. Introduce the
space So(R™) of all functions from the Schwartz space which vanish in some neighbor-
hood of the origin. Due to the conditions for the potential ¢(z) we may conclude (as it
was before) that ¢ € L*(R™) and it defines a tempered distribution. Then for every
function ¢ € Sp(R™) it follows that

0= (b, ) = Coll€]71T(E), ) = Culd@(€), €] ).

Since ©(£) € Sp(R™) then |£]7'p € Sp(R™) also. Hence, for every h € Sy(R") the
following equation holds

(q,h) =0.
This means that the support of g(§) is at most at the origin and therefore (&) can be
represented as

= > C,D%.

la<m

Hence, ¢(x) is a polynomial. But due to the behavior at the infinity we must conclude
that ¢ = 0. This proves Theorem 3. O

Let us return now to the Born approximation of ¢(x). A repeated use of the

Lippmann-Schwinger equation leads to the following representation for the scattering
amplitude A(k, 0, 0):

A 0,0) = 3 [ ey ()R - (gl e ) g)dy

b [ Oy ()R (gl ule, k. 0)) ().

where u(zx, k, 0) is the solution of the Lippmann-Schwinger equation and K is an inte-
gral operator with the kernel

K(z,y) = lg(@)]2G{ (lr - yl)as (y)-

The equality for A can be reformulated in the sense of integral operators in L*(S"!)
as

A= > ®j(k)sgn qK @ (k) + OF (k) sgn g K™ d(k),
=0

where ®y and ®(k) are defined by (10.1) and (10.2) and ®} is the L*-adjoint of ®,.
Using this equality and the definition of Born’s potential gg(x) we obtain

Z Fyy [@5(k) sgn gl @0 (k)] + Fy! [@5(k) sgn g K™ @ (k)]
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where the inverse Fourier transform is applied to the kernels of the corresponding
integral operators. If we rewrite the latter formula as

5(2) = 3 (&) + s 0,

then the term ¢; has the form

g(r) = Fy ( / lq(z)[2e* 0z / sgnq(z)Kj(z,y,k)|q(y)\%eik<e',y>dy>
R™ R™
= Fi (@ smn g (g ™))
1

)" Jm

and a similar formula holds for ¢,,.1 with obvious changes.

In order to formulate the result about the reconstruction of singularities of the
unknown potential ¢(x) let us set A(k, ¢, 6) = 0 for |k| < ko, where ko > 0 is arbitrarily
large.

Theorem 4. Assume that the potential q(x) satisfies all conditions of Theorem 1 and
also belongs to L*(R™). Then ¢;(x) and g;(x) for any j > 1 belong to the Sobolev space
H'(R") for any t < ~(j + 5) — 1 with v as in Theorem 2 of Chapter 10.

Proof. Using the change of variables £ = k(6 — ') we obtain
gl Fre@ny = 1L+ €72 Fg; ()72

= Gy /Rn(l + €% /Sn_l (@ sgn K7 ®] (2(?,'9)’9 —2(&,0)¢, 0) do

where in the brackets [-] there is the kernel of the corresponding integral operator. The
last estimate can further be bounded by

< Cn/Rn(1+|§|2)t/Snl (@5 sen K7 0) (...)| dode

= O, /Mo(l + k(0 —0)*) /gnl Hq)s sen qj(\jq)o] (k(¢,9))

2

dg,

i

< G, k”‘1(1+k2)tdk/ / | (sen g5 (|q| 2O 0) [ dode
ko Sn—1 J§n—

< Gof RN RYR [ IBPIR (ol
ko Sn=

< G [ R R AR [ 1R glade
ko Sn—

00 kn_l+2td/€
< g [Tl
ko k2U+z)+n-2

But the latter integral converges if and only if ¢t < (5 + %) — 1. This proves the
theorem. u
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Theorem 5 (Reconstruction of singularities). Assume that the potential q(x) belongs to
LP (R3) for 3 < p < oo and has the special behavior |q(z)| < Colx|™, > 3, |z| — oo
at the infinity. Then

¢5(x) = q(2) — qr(z) € H'(R?),
where t < 3 — % and q(z) is continuous and bounded (more precisely, ¢ (x) € W (R?)
forp>3).

Proof. The statement about the first nonlinear term ¢;(x) was proved by Lassi Péi-
virinta and Valery Serov, see [8]. It is also easy to check that go(z) is simply the
unknown potential ¢(x). Hence, we can write

B—q9—q=q
and so the claim follows from Theorem 4. O

Remark. Let us assume that 3 < p < co. Then the following embedding holds

1) ¢ wy B ) = o),

where « =t — 3 (% — I%) and, therefore, a < i. It means that ¢ belongs to the
”smoother” space than the unknown potential ¢(z) and so we can reconstruct main

singularities of the potential ¢(x) by the Born approximation.

Remark. Actually it is possible to prove (see [9]) that
1-3 3
¢(z) € C77(R7)

for any 3 < p < oo. Using Theorem 4 we obtain that ¢gg — q — ¢ — qo € H' for any
t<2— %. But for 3 < p < oo the following embedding holds: H* € C'(R"). It means
that for 3 < p < oo we can reconstruct all singularities of the unknown potential
because ¢; and ¢, are continuous in this case.

Remark. 1t follows from this theorem that by Born approximation we can reconstruct
an arbitrary bounded domain D. In order to see this fact it is enough to consider

q(z) = xp().
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