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Hilbert scales and approximation theory 
Lecture notes 

 

The Eigenvalue problem for compact symmetric operators 

 

In the following H denotes an (infinite dimensional) real Hilbert space with scalar product 

 .,.  and the norm ... . We will consider mappings HHK : . Unless otherwise noticed the 

standard assumptions on K are: 

 

i)  K is symmetric, i.e. for all Hyx , it holds    KyxKyx ,, 

 
ii)  K is compact, i.e. for any (infinite) sequence  

nx  bounded in H contains a 

subsequence  
nx   

such that  
nKx   

is convergent, 

iii)  K is injective, i.e. 0Kx  implies 0x  . 

 

A first consequence is 

Lemma: K is bounded, i.e. 

x

Kx
K

x 0

sup:



   . 

Lemma: Let K be bounded, and fulfill condition i) from above, but not necessarily the two 

other condition ii) and iii). Then K  equals 

 

x

Kxx
KN

x

,
sup)(

0


   . 

Theorem: There exists a countable sequence  
ii  , of eigenelements and eigenvalues 

iiiK    with the properties 

i)  the eigenelements are pair-wise orthogonal, i.e.

  

 
kiki ,,  

 
ii)  the eigenvalues tend to zero, i.e. 

i
i




lim

 

iii)  the generalized Fourier sums    xxS i

n

i

in 



1

,:  with n for all Hx  

iv)  the Parseval equation 

 



i

ixx
22

,  

holds for all Hx . 
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Hilbert Scales 

 

Let H be a (infinite dimensional) Hilbert space with scalar product  .,. , the norm ...  and 

A be a linear operator with the properties 

i)  A is self-adjoint, positive definite 

ii)  
1A is compact. 

 Without loss of generality, possible by multiplying A with a constant, we may assume 

  xAxx ,

       

for all )(ADx  

The operator 1 AK has the properties of the previous section. Any eigenelement of K is 
also an eigenelement of A to the eigenvalues being the inverse of the first. Now by replacing 

1 ii  we have from the previous section 

i)  there is a countable sequence  
ii  ,  with 

iiiA    
 ,

   

 
kiki ,,   and  

i
i




lim

 

ii)  any Hx is represented by  

(*)      
i

i

ixx 





1

,   and     



1

22
, ixx  . 

 

Lemma:  Let )(ADx , then  

(**)   
i

i

ii xAx 





1

,   ,     



1

222
,

i

ii xAx  ,

 

    
i

i

ii yxAyAx  ,,,
1

2





. 

Because of (*) there is a one-to-one mapping I of H to the space Ĥ of infinite sequences of 

real numbers 

 ,...),(ˆˆ:ˆ
21 xxxxH   

defined by 

Ixx ˆ    with    
ii xx ,  .    

If we equip Ĥ with the norm  

 



1

22
,ˆ

ixx   

then I is an isometry.  
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By looking at (**) it is reasonable to introduce for non-negative the weighted inner products 

     



i

iiii

i

ii yxyxyx 

  ,,ˆ,ˆ  

and the norms 

 
xxx ˆ,ˆˆ

2
  

Let Ĥ denote the set of all sequences with finite  norm. then Ĥ is a Hilbert space. The 

proof is the same as the standard one for the space 
2l . 

Similarly one can define the spaces
H : they consist of those elements Hx such that 

HIx ˆ  with scalar product  

     



i

iiii

i

ii yxyxyx 
  ,,,

 

and norm   

 
xxx ,

2
 . 

Because of the Parseval identity we have especially 

   yxyx ,,
0
  

and because of (**) it holds 

 0
2

2
, AxAxx   ,

 
)(2 ADH  . 

The set  0H  is called a Hilbert scale. The condition 0  is in our context necessary 

for the following reasons: 

Since the eigen-values
i tend to infinity we would have for 0 : 0lim i

. Then there exist 

sequences ,...),(ˆ
21 xxx  with 


2

2
x̂  , 

2

0
x̂  . 

Because of Bessel’s inequality there exists no Hx   with xIx ˆ . This difficulty could be 

overcome by duality arguments which we omit here. 
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There are certain relations between the spaces 0H  
for different indices: 

Lemma: Let   . Then 


xx   

and the embedding 
 HH  is compact. 

 

Lemma: Let   . Then 








xxx   for 

Hx  

with 








  

and  








 . 

 

Lemma: Let   . To any 
Hx  and 0t  there is a )(xyy t according to 

i) 





xtyx    

ii) 


xyx   ,
  

xy 
 

iii) 





xty )( 

  
.
 

 

Corollary: Let   . To any 
Hx  and 0t  there is a )(xyy t according to 

i) 





xtyx      for     

ii) 





xty )(         for      . 

 

Remark: Our construction of the Hilbert scale is based on the operator A with the two 

properties i) and ii). The domain )(AD of A equipped with the norm  

 



1

222
,

i

ii xAx   

turned out to be the space
2H which is densely and compactly embedded in 

0HH  . It can 

be shown that on the contrary to any such pair of Hilbert spaces there is an operator A with 
the properties i) and ii) such that 

                       2)( HAD 

 
0)( HAR   and  Axx 

2
. 
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We give three examples of differential operator and singular integral operators, whereby the 
integral operators are related to each other by partial integration:  

 

Example 1: Let  )1,0(2LH   and  

uAu :  

with  

)1,0()1,0(:)1,0()(

2

2

1

2

2

2 WWWAD 
 

. 

Building on the orthogonal set of eigenpairs   
ii  ,  of

iA , i.e. 

iii    
   0)1()0(  ii   

it holds the inclusion  

)1,0()1,0()( 2

1

21 LHHAD WA 


. 

 

Example 2: Let  )(*
22 LH   with )(: 21 RS , i.e.   is the boundary of the unit sphere. Then 

H

 

is the space of  integrable periodic function in R  . Let 

dyyuyxkdyyu
yx

xAu )()(:)(
2

sin2log:))((  


     

and   

)()( *
22 LHAD   . 

The Fourier coefficients of this convolution are 




uukAu
2

1
)( 

 

i.e. it holds   )()( 2/1  HHAD A
 . 

 

A relation of this Fourier representation to the fractional function is given by 

  



1

2sin

2

1



x
xx  
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Remark: We give some further background and analysis of the even function 

2
sin2log:

2
sin2ln:)(

xx
xk 

  . 

Consider the model problem 

0 U          in   

       fU         on  :  , 

whereby the area   is simply connected with sufficiently smooth boundary. Let 

 1,0)(  ssyy  be a parametrization of the boundary   . Then for fixed z  the functions 

zxxU  log)(

 

Are solutions of the Lapace equation and for any  )(1 L  integrable function )(tuu   the 

function 

dttuxxAu 





)(log:))((

 

is a solution of the model problem. In an appropriate Hilbert space H  this defines an integral 

operator ,which is coercive for certain areas    and which fulfills the Garding inequality for 

general areas   . We give the Fourier coefficient analysis in case of  )(*

2 LH   with 

)(: 21 RS , i.e.  is the boundary of the unit sphere. Let ))sin(),(cos(:)( sssx   be a 

parametrization of )(: 21 RS  then it holds 

2
sin4

2
sin22))

2
2cos(1(2)cos(22

)sin()sin(

)cos()cos(
)()( 22

2

2 tststs
ts

ts

ts
txsx










 
















   

and therefore 

)(
2

sin2log)()(log tsk
ts

txsx 


  . 

The Fourier coefficients k  of the kernel )(xk  are calculated as follows 











 




   kdtt
t

dte
t

dxexkk tixi )cos(
2

sin2log
2

2

2
sin2log

2

1
)(

2

1
:

0

2

0

    

As  0
2

sin2log
0





  partial integration leads to     

dt
t

tt

dt
t

t
t

tk 






















000

2
sin2

)
2

12
sin()

2

12
sin(

1

2
sin2

2
cos)sin(2

1
)sin(

1
  










1
)))1cos(()..cos(

2

1
)cos()..cos(

2

1
(

1

0


















  dtttttk

. 
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Extension and generalizations 

 

For 0t we introduce an additional inner product resp. norm by 







1

2

)( ),)(,(),(
i

ii

t

t yxeyx i 


    

2

)(

2

)(
),( tt

xxx   . 

Now the factor have exponential decay 
tie


 instead of a polynomial decay in case of 

i . 

Obviously we have 


 xtcx

t
),(

)(
  for 

Hx  

with ),( tc  depending only from  and 0t . Thus the normt )(  is weaker than 

any norm . On the other hand any negative norm, i.e. 


x  with 0 , is bounded by the  

norm0 and the newly introduced normt )( . It holds: 

 

Lemma: Let 0 be fixed. The norm  of any 
0Hx  is bounded by 

2

)(

/2

0

22

t

t xexx 





 

with 0 being arbitrary. 

 

Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of 
the norm , which can be reformulated in the form ( 0,  , 1 ) 

2/22










xexx 
 

applying Young’s inequality to 









)()(
222

xxx   . 

The counterpart of lemma 4 above is 

Lemma: Let 0, t be fixed. To any 
0Hx  there is a )(xyy t according to 

i) xyx    

ii) xy 1

1

 
 

iii) xeyx t

t

/

)(


  
. 
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Eigenfunctions and Eigendifferentials 

 

Let H be a (infinite dimensional) Hilbert space with inner product  .,. , the norm ...  

and A be a linear self-adjoint, positive definite operator, but we omit the additional 

assumption, that 
1A compact. Then the operator 1 AK does not fulfill the properties leading 

to a discrete spectrum.  

We define a set of projections operators onto closed subspaces of H in the following way: 

),( HHLR   

 





 dE ,*)(:

0

    
,
     ,0  , 

i.e.                                                      ddE ,*)(  . 

The spectrum CA )(  of the operator A is the support of the spectral measure dE . 

The set E  fulfills the following properties: 

i) E  is a projection operator for all R  

ii) for    it follows 
 EE   i.e. 

 EEEEE   

iii) 0lim 





E  and IdE 




lim  

iv) 





EE 




lim  . 

 

Proposition: Let E  be a set of projection operators with the properties i)-iv) having a 

compact support  ba, . Let    Rbaf ,:  be a continuous function. Then there exists exactly 

one Hermitian operator HHA f :  with 






 ),()(),( xxEdfxxA f   . 

Symbolically one writes                            





 dEA  . 

Using the abbreviation 

),(:)(, yxEyx     
, 

 ),(:)(, yxEdd yx    

one gets 










 )(),(),( ,   xxdyxEdyAx         
,   









 )(,

22

1
  xxdxEdx  










 )(),(),( ,

222   xxdyxEdyxA  ,  








 )(,

2222
  xxdxEdAx  . 
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The function
 

2
:)( xE   is called the spectral function of A  for the vector x . It has the 

properties of a distribution function. 

It hold the following eigenpair relations 

iiiA          A     
2

  
,
 )(),(     . 

The   are not elements of the Hilbert space. The so-called eigendifferentials, which play a 

key role in quantum mechanics, are built as superposition of such eigenfunctions.  

 

Let I be the interval covering the continuous spectrum of A . We note the following 
representations: 

  dxxx
I

ii ),(),(
1

 


 
, 

   dxxAx
I

iii ),(),(
1

 


 

  dxxx
I

i  


2

1

22
),(),(  

, 
 

  dxxx
I

ii  


2

1

22

1
),(),(

 

  dxxAxx
I

ii  


2
22222

2
),(),(  . 

 

Example: The location operator 
xQ  

and the momentum operator 
xP  both have only a 

continuous spectrum. For positive energies 0  the Schrödinger equation 

)()( xxH     

delivers no element of the Hilbert space H , but linear, bounded functional with an underlying 

domain HM  which is dense in H . Only if one builds wave packages out of )(x it results 

into elements of H . The practical way to find Eigen-differentials is looking for solutions of a 
distribution equation. 

 

 

 

 

 

 

 

 


