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Introduction

Since the 1960s, the theory of pseudodifferential operators has played an im-
portant role in many exciting and deep investigations into linear PDE. Since the
1980s, this tool has also yielded many significant results in nonlinear PDE. This
monograph is devoted to a summary and reconsideration of some uses of pseudo-
differential operator techniques in nonlinear PDE.

We begin with a preliminary chapter reviewing pseudodifferential operators as
a tool developed for the linear theory. This chapter sets down some of the funda-
mental results and defines a bit of notation. It is also intended to serve readers
interested in nonlinear PDE but without prior experience with pseudodifferential
operators, to acquaint them with the basics of the theory.

We then turn to an exposition of the further development which has applications
to the nonlinear theory. One goal has been to build a bridge between two approaches
which have been used in a number of papers written in the past decade, one being
the theory of paradifferential operators, pioneered by Bony [Bo] and Meyer [M1],
the other the study of pseudodifferential operators whose symbols have limited
regularity.

The latter approach is a natural sucessor to classical devices of deriving estimates
for linear PDE whose coefficients have limited regularity in order to obtain results on
nonlinear PDE. Of the two approaches, it is initially the simpler. After making some
general observations about symbols with limited smoothness and their associated
operators in §1.1, we illustrate this in §1.2, using very little machinery to derive some
regularity results for solutions to nonlinear elliptic PDE. The results there assume
a priori that the solutions have a fair amount of regularity. To obtain better results,
harder work is required. One useful tool is the symbol decomposition studied in
§1.3. The idea is to write a nonsmooth symbol p(x, ξ) as p#(x, ξ)+ pb(x, ξ) in such
a way that an operator algebra is available for the associated operator p#(x,D)
while pb(x,D) is regarded as a remainder term to be estimated.

Chapter 2 establishes needed estimates on operators with non-smooth symbols.
The material here incorporates ideas of Bourdaud [BG], Kumano-go and Nagase
[KN], Marschall [Ma], and Meyer [M1]. Having these estimates, we return to elliptic
PDE in §2.2, obtaining full strength Schauder estimates, though of course not the
special estimates (for scalar second order elliptic PDE) of de Giorgi et al. and of
Krylov and Safanov.

The symbol smoothing developed in §1.3 and applied in Chapter 2 provides a
transition to the theory of paradifferential operators, which we expose in Chapter
3. In this chapter we take a further look at nonlinear elliptic PDE. Also, in §3.6
we use the paradifferential operator calculus to prove some commutator estimates,
including important estimates of Coifman and Meyer [CM] and of Kato and Ponce
[KP].

Chapter 4 exploits commutator estimates of Coifman and Meyer established in
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§3.6 to derive a sharp operator calculus for C1 symbols, including some classical
results of Calderon. We also compare this material with a C1 paradifferential
calculus.

In subsequent chapters we treat various basic topics in nonlinear PDE. Chapter 5
deals with nonlinear hyperbolic systems. We endeavor to obtain the sharpest results
on regular solutions to symmetric and symmetrizable systems, though generalized
solutions involving shock waves and such are not considered.

In Chapter 6 we establish a variant of Bony’s propagation of singularities theo-
rem. We mention one point; in showing that for a solution u ∈ Hm+σ to a nonlinear
PDE F (x,Dmu) = f, microlocal regularity of order m + σ − 1 + s propagates for
s < r, we require u ∈ Cm+r rather than u ∈ Hn/2+m+r. This implication is slightly
more precise than the usual statement, and also highlights the mechanism giving
rise to the higher regularity. It will be clear that this material could have been
put right after Chapter 3, but since wave propagation is the basic phenomenon
inducing one to be interested in propagation of singularities, it seems natural to
put the material here.

Chapters 7 and 8 treat nonlinear parabolic equations and elliptic boundary prob-
lems, respectively. The latter topic extends the interior analysis done in Chapters
2 and 3. In both of these chapters we discuss some existence theorems which follow
by using the DeGiorgi-Nash-Moser theory in concert with the results proved here.
These arguments are well known but are included in order to help place in perspec-
tive what is done in these chapters. Also in Chapter 7 we derive some results on
semilinear parabolic equations and illustrate these results by discussing how they
apply to work on harmonic mappings.

In various applications to PDE we find different advantages in the diverse tech-
niques developed in Chapters 1–4. For example, for interior elliptic regularity,
symbol smoothing is very useful, but in the quasilinear case both CrSm

1,0-calculus
as developed in Chapter 2 and paradifferential operator calculus as developed in
Chapter 3 seem equally effective, while in the completely nonlinear case the lat-
ter tool seems to work better. The paradifferential approach is used on elliptic
boundary problems in Chapter 8. For nonlinear hyperbolic equations, the sharpest
results seem to be produced by a combination of the Kato-Ponce inequality and
some generalizations, and C1Sm

cl -calculus, developed in Chapter 4. It will be noted
that both these tools have roots in paradifferential operator calculus.

At the end are four appendices. The first collects some facts about various
function spaces, particularly Sobolev spaces, Hölder spaces, and Zygmund spaces,
and also Morrey spaces and BMO. The second ties together some known results
and discusses a few new results on norm estimates of the form

‖u‖X ≤ C‖u‖Y

(
1 + log

‖u‖Z

‖u‖Y

)a

,

in borderline cases when the inclusion Y ⊂ X barely fails. This particularly arises in
a number of important cases where either X or Y is L∞. The third appendix gives



6

a proof of the DeGiorgi-Nash-Moser estimates, largely following works of Moser
and Morrey. Appendix D presents a proof of some paraproduct estimates of [CM]
needed for some of the results of §3.5–§3.6, such as the commutator estimates used
to develop the C1Sm

cl -calculus in Chapter 4.
We also include a notational index, since a rather large number of function spaces

and operator spaces arise naturally during the course of the investigations described
here.

Remark. The original version of this monograph appeared in 1991, in the Birkhäuser
Progress in Mathematics series. I have made some corrections, additions, and stylis-
tic changes here. I have also added references to some further work. A companion
to this work is Tools for PDE, [[T2]], which is cited from time to time in this
revision.
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Chapter 0: Pseudodifferential operators
and linear PDE

In this preliminary chapter we give an outline of the theory of pseudodifferential
operators as it has been developed to treat problems in linear PDE, and which will
provide a basis for further developments to be discussed in the following chapters.
Many results will be proved in detail, but some proofs are only sketched, with
references to more details in the literature. We define pseudodifferential operators
with symbols in Hörmander’s classes Sm

ρ,δ, derive some useful properties of their
Schwartz kernels, discuss their algebraic properties, then show how they can be
used to establish regularity of solutions to elliptic PDE with smooth coefficients.
We proceed to a discussion of mapping properties on L2 and on the Sobolev spaces
Hs, then discuss G̊arding’s inequality, and some of its refinements, known as sharp
G̊arding inequalities. In §0.8 we apply some of the previous material to establish
existence of solutions to hyperbolic equations. We introduce the notion of wave
front set in §0.10 and discuss microlocal regularity of solutions to elliptic equations.
We also discuss how solution operators to a class of hyperbolic equations propagate
wave front sets. In §0.11 we discuss Lp estimates, particularly some fundamental
results of Calderon and Zygmund, and applications to Littlewood-Paley Theory,
which will be an important technical tool for basic estimates established in Chapter
2. We end this introduction with a brief discussion of pseudodifferential operators
on manifolds.

§0.1. The Fourier integral representation and symbol classes

The Fourier inversion formula is

(0.1.1) f(x) =
∫

f̂(ξ) eix·ξ dξ

where f̂(ξ) = (2π)−n
∫

f(x)e−ix·ξ dx is the Fourier transform of a function on Rn.
If one differentiates (0.1.1), one obtains

(0.1.2) Dαf(x) =
∫

ξαf̂(ξ)eix·ξ dξ,

where Dα = Dα1
1 · · ·Dαn

n , Dj = (1/i)∂/∂xj . Hence, if

p(x,D) =
∑

|α|≤k

aα(x)Dα

is a differential operator, we have

(0.1.3) p(x,D)f(x) =
∫

p(x, ξ)f̂(ξ)eix·ξ dξ
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where
p(x, ξ) =

∑

|α|≤k

aα(x)ξα.

One uses the Fourier integral representation (0.1.3) to define pseudodifferential
operators, taking the function p(x, ξ) to belong to one of a number of different
classes of symbols. In this chapter we consider the following symbol classes, first
defined by Hörmander.

Assuming ρ, δ ∈ [0, 1], m ∈ R, we define Sm
ρ,δ to consist of C∞ functions p(x, ξ)

satisfying

(0.1.4) |Dβ
xDα

ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−ρ|α|+δ|β|

for all α, β, where 〈ξ〉 = (1+ |ξ|2)1/2. In such a case we say the associated operator
defined by (0.1.3) belongs to OPSm

ρ,δ.

If there are smooth pm−j(x, ξ), homogeneous in ξ of degree m − j for |ξ| ≥ 1,
i.e., pm−j(x, rξ) = rm−jpm−j(x, ξ) for r, |ξ| ≥ 1, and if

(0.1.5) p(x, ξ) ∼
∑

j≥0

pm−j(x, ξ)

in the sense that

(0.1.6) p(x, ξ)−
N∑

j=0

pm−j(x, ξ) ∈ Sm−N
1,0

for all N, then we say p(x, ξ) ∈ Sm
cl , or just p(x, ξ) ∈ Sm.

It is easy to see that if p(x, ξ) ∈ Sm
ρ,δ, and ρ, δ ∈ [0, 1], then p(x,D) : S(Rn) →

C∞(Rn). In fact, multiplying (0.1.3) by xα, writing xαeix·ξ = (−Dξ)αeix·ξ and
integrating by parts yields

(0.1.7) p(x,D) : S(Rn) −→ S(Rn).

Further mapping properties will be described below, but for now we make note of
the following.

Lemma 0.1.A. If δ < 1, then

(0.1.8) p(x,D) : S ′(Rn) −→ S ′(Rn).

Proof. Given u ∈ S ′, v ∈ S, we have formally

(0.1.9) 〈v, p(x,D)u〉 = 〈pv, û〉
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where
pv(ξ) = (2π)−n

∫
v(x)p(x, ξ)eix·ξ dx.

Now integration by parts gives

ξαpv(ξ) = (2π)−n

∫
Dα

x

(
v(x)p(x, ξ)

)
eix·ξ dx,

so
|pv(ξ)| ≤ Cα〈ξ〉m+δ|α|−|α|.

Thus if δ < 1 we have rapid decrease of pv(ξ). Similarly we get rapid decrease of
derivatives of pv(ξ), so it belongs to S. Thus the right side of (0.1.9) is well defined.

As the case δ = 1 will be very important in later chapters, the failure of (0.1.8)
in this case will have definite consequences.

A useful alternative representation for a pseudodifferential operator is obtained
via a synthesis of the family of unitary operators

(0.1.10) eiq·X eip·D u(x) = eiq·x u(x + p).

Given a(x, ξ) ∈ S(Rn × Rn), we have

(0.1.11)

∫
â(q, p)eiq·Xeip·Du(x) dq dp

= (2π)−2n

∫
a(y, ξ)e−iy·qe−iξ·peix·qu(x + p) dy dξ dq dp

= (2π)−n

∫
a(x, ξ)e−iξ·pu(x + p) dξ dp

= (2π)−n

∫
a(x, ξ)eix·ξû(ξ) dξ.

In other words,

(0.1.12) a(x,D)u =
∫

â(q, p)eiq·Xeip·Du(x) dq dp.

This can be compared to the Weyl calculus, defined by

(0.1.13)
a(X, D)u =

∫
â(q, p)ei(q·X+p·D)u(x) dq dp

= (2π)−n

∫
a
(1

2
(x + y), ξ

)
ei(x−y)·ξu(y) dy dξ,

which has been extensively studied (see [H1]), but will not be used here.
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§0.2. Schwartz kernels of pseudodifferential operators

To an operator p(x, D) ∈ OPSm
ρ,δ defined by (0.1.3) corresponds

a Schwartz kernel K ∈ D′(Rn × Rn), satisfying

(0.2.1)
〈u(x)v(y),K〉 =

∫∫
u(x)p(x, ξ)v̂(ξ)eix·ξ dξ dx

= (2π)−n

∫∫∫
u(x)p(x, ξ)ei(x−y)·ξv(y) dy dξ dx.

Thus, K is given as an “oscillatory integral”

(0.2.2) K = (2π)−n

∫
p(x, ξ)ei(x−y)·ξ dξ.

We have the following basic result.

Proposition 0.2.A. If ρ > 0, then K is C∞ off the diagonal in Rn × Rn.

Proof. For given α ≥ 0,

(0.2.3) (x− y)αK =
∫

ei(x−y)·ξ Dα
ξ p(x, ξ) dξ.

This integral is clearly absolutely convergent for |α| so large that m − ρ|α| <
−n. Similarly it is seen that applying j derivatives to (0.2.3) yields an absolutely
convergent integral provided m + j − ρ|α| < −n, so in that case (x − y)αK ∈
Cj(Rn × Rn). This gives the proof.

Generally, if T has the mapping properties

T : C∞0 (Rn) −→ C∞(Rn), T : E ′(Rn) −→ D′(Rn),

and its Schwartz kernel K is C∞ off the diagonal, it follows easily that

sing supp Tu ⊂ sing supp u for u ∈ E ′(Rn).

This is called the pseudolocal property. By (0.1.7)–(0.1.8) it holds for T ∈ OPSm
ρ,δ

if ρ > 0 and δ < 1.
We remark that the proof of Proposition 0.2.A leads to the estimate

(0.2.4) |Dβ
x,yK| ≤ C|x− y|−k

where k ≥ 0 is any integer strictly greater than (1/ρ)(m + n + |β|). In fact, this
estimate is rather crude. It is of interest to record a more precise estimate which
holds when p(x, ξ) ∈ Sm

1,δ.
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Proposition 0.2.B. If p(x, ξ) ∈ Sm
1,δ, then the Schwartz kernel K of p(x,D) sat-

isfies estimates

(0.2.5) |Dβ
x,yK| ≤ C|x− y|−n−m−|β|

provided m + |β| > −n.

The result is easily reduced to the case p(x, ξ) = p(ξ), satisfying |Dαp(ξ)| ≤
Cα〈ξ〉m−|α|, for which p(D) has Schwartz kernel K = p̂(y − x). It suffices to prove
(0.2.5) for such a case, for β = 0 and m > −n. We make use of the following simple
but important characterization of such symbols.

Lemma 0.2.C. Given p(ξ) ∈ C∞(Rn), it belongs to Sm
1,0 if and only if

(0.2.6) pr(ξ) = r−mp(rξ) is bounded in C∞(1 ≤ |ξ| ≤ 2) for r ∈ [1,∞).

Given this, we can write p(ξ) = p0(ξ)+
∫∞
0

qτ (e−τξ) dτ with q0(ξ) ∈ C∞0 (Rn) and
e−mτqτ (ξ) bounded in the Schwartz space S(Rn), for τ ∈ [0,∞). Hence e−mτ q̂τ (z)
is bounded in S(Rn). In particular, we have e−mτ |q̂τ (z)| ≤ CN 〈z〉−N , so

(0.2.7)
|p̂(z)| ≤ |p̂0(z)|+ CN

∫ ∞

0

e(n+m)τ
(
1 + |eτz|)−N

dτ

≤ C + CN |z|−n−m

∫ ∞

log |z|
e(n+m)τ (1 + eτ )−N dτ,

which implies (0.2.5). We also see that in the case m+ |β| = −n, we obtain a result
upon replacing the right side of (0.2.5) by C log |x− y|−1, (provided |x− y| < 1/2).

§0.3. Adjoints and products

Given p(x, ξ) ∈ Sm
ρ,δ, we obtain readily from the definition that

(0.3.1) p(x,D)∗v = (2π)−n

∫
p(y, ξ)∗ei(x−y)·ξv(y) dy dξ.

This is not quite in the form (0.1.3) as the amplitude p(y, ξ)∗ is not a function
of (x, ξ). Before continuing the analysis of (0.3.1), we are motivated to look at a
general class of operators

(0.3.2) Au(x) = (2π)−n

∫
a(x, y, ξ)ei(x−y)·ξu(y) dy dξ.

We assume

(0.3.3) |Dγ
yDβ

xDα
ξ a(x, y, ξ)| ≤ Cαβγ〈ξ〉m−ρ|α|+δ1|β|+δ2|γ|,
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and then say a(x, y, ξ) ∈ Sm
ρ,δ1,δ2

. A brief calculation transforms (0.3.2) to

(0.3.4) (2π)−n

∫
q(x, ξ)ei(x−y)·ξu(y) dy dξ

with

(0.3.5)
q(x, ξ) = (2π)−n

∫
a(x, y, η)ei(x−y)·(η−ξ) dy dη

= eiDξ·Dya(x, y, ξ)
∣∣
y=x

.

Note that a formal expansion eiDξ·Dy = I + iDξ ·Dy − (1/2)(Dξ ·Dy)2 + · · · gives

(0.3.6) q(x, ξ) ∼
∑

α≥0

i|α|

α!
Dα

ξ Dα
y a(x, y, ξ)

∣∣
y=x

.

If a(x, y, ξ) ∈ Sm
ρ,δ1,δ2

with 0 ≤ δ2 < ρ ≤ 1, then the general term in (0.3.6) belongs

to S
m−(ρ−δ)|α|
ρ,δ , δ = min(δ1, δ2), so the sum on the right is formally asymptotic.

This suggests the following result:

Proposition 0.3.A. If a(x, y, ξ) ∈ Sm
ρ,δ1,δ2

with 0 ≤ δ2 < ρ ≤ 1, then the operator
(0.3.2) belongs to OPSm

ρ,δ, with δ = max(δ1, δ2). In fact A = q(x,D) where q(x, ξ)
has the asymptotic expansion (0.3.6).

To prove this proposition, one can first show that the Schwartz kernel K(x, y) =
(2π)−n

∫
a(x, y, ξ)ei(x−y)·ξ dξ satisfies the same estimates as established in Propo-

sition 0.2.A, and hence, altering A only by an operator in OPS−∞, we can assume
a(x, y, ξ) is supported on |x− y| ≤ 1. Let

(0.3.7) b̂(x, η, ξ) = (2π)−n

∫
a(x, x + y, ξ)e−iy·η dy,

so

(0.3.8) p(x, ξ) =
∫

b̂(x, η, ξ + η) dη.

The hypotheses on a(x, y, ξ) imply

(0.3.9) |Dβ
xDα

η b̂(x, η, ξ)| ≤ Cναβ〈ξ〉m+δ|β|+δ2ν−ρ|α|〈η〉−ν

where δ = max (δ1, δ2). Since δ2 < 1, it follows that p(x, ξ) and any of its derivatives
can be bounded by some power of 〈ξ〉.
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Now a power series expansion of b̂(x, η, ξ + η) in the last argument about ξ gives

(0.3.10)

∣∣∣b̂(x, η, ξ + η)−
∑

|α|<N

1
α!

(iDξ)αb̂(x, η, ξ)ηα
∣∣∣

≤ Cν |η|N 〈η〉−ν sup
0≤t≤1

〈ξ + tη〉m+δ2ν−ρN .

With ν = N we get a bound

(0.3.11) C〈ξ〉m−(ρ−δ2)N if |η| ≤ 1
2
|ξ|,

and if ν is large we get a bound by any power of 〈η〉−1 for |ξ| < 2|η|. Hence

(0.3.12)
∣∣∣p(x, ξ)−

∑

|α|<N

1
α!

(iDξ)αDα
y a(x, x + y, ξ)|y=0

∣∣∣ ≤ C〈ξ〉m+n−(ρ−δ2)N ,

from which the proposition follows.
If we apply Proposition 0.3.A to (0.3.1), we obtain:

Proposition 0.3.B. If p(x,D) ∈ OPSm
ρ,δ, 0 ≤ δ < ρ ≤ 1, then

(0.3.13) p(x, D)∗ = p∗(x,D) ∈ OPSm
ρ,δ

with

(0.3.14) p∗(x, ξ) ∼
∑

α≥0

i|α|

α!
Dα

ξ Dα
x p(x, ξ)∗.

The result for products of pseudodifferential operators is the following.

Proposition 0.3.C. Given pj(x, ξ) ∈ OPS
mj

ρj ,δj
, suppose

(0.3.15) 0 ≤ δ2 < ρ ≤ 1 with ρ = min(ρ1, ρ2).

Then

(0.3.16) p1(x,D)p2(x,D) = q(x,D) ∈ OPSm1+m2
ρ,δ

with δ = max(δ1, δ2), and

(0.3.17) q(x, ξ) ∼
∑

α≥0

i|α|

α!
Dα

ξ p1(x, ξ) Dα
x p2(x, ξ).
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This can be proved by writing

(0.3.18) p1(x, D)p2(x,D)u = p1(x,D)p∗2(x,D)∗u = Au

for A as in (0.3.2) with

(0.3.19) a(x, y, ξ) = p1(x, ξ)p∗2(y, ξ)∗

and then applying Proposition 0.3.A and 0.3.B. Alternatively, one can compute
directly that p1(x,D)p2(x,D) = q(x,D) with

(0.3.20)
q(x, ξ) = (2π)−n

∫
p1(x, η)p2(y, ξ)ei(x−y)·(η−ξ) dη dy

= eiDη·Dyp1(x, η)p2(y, ξ)
∣∣
y=x,η=ξ

,

and then apply an analysis such as used to prove Proposition 0.3.A. Carrying out
this latter approach has the minor advantage that the hypothesis (0.3.15) can be
weakened to 0 ≤ δ2 < ρ1 ≤ 1, which is quite natural since the right side of (0.3.17)
is formally asymptotic under such a hypothesis.

§0.4. Elliptic operators and parametrices

We say p(x,D) ∈ OPSm
ρ,δ is elliptic if, for some r < ∞,

(0.4.1) |p(x, ξ)| ≥ C〈ξ〉m for |ξ| ≥ r.

Thus, if ψ(ξ) ∈ C∞(Rn) is equal to 0 for |ξ| ≤ r, 1 for |ξ| ≥ 2r, it follows easily
from the chain rule that

(0.4.2) ψ(ξ)p(x, ξ)−1 = q0(x, ξ) ∈ S−m
ρ,δ .

As long as 0 ≤ δ < ρ ≤ 1, we can apply Proposition 0.3.C to obtain

(0.4.3)
q0(x, D)p(x,D) = I + r0(x, D)

p(x,D)q0(x,D) = I + r̃0(x, D)

with

(0.4.4) r0(x, ξ), r̃0(x, ξ) ∈ S
−(ρ−δ)
ρ,δ .

Using the formal expansion

(0.4.5) I − r0(x,D) + r0(x,D)2 − · · · ∼ I + s(x,D) ∈ OPS0
ρ,δ

and setting q(x,D) = (I + s(x,D))q0(x, D) ∈ OPS−m
ρ,δ , we have

(0.4.6) q(x,D)p(x,D) = I + r(x,D), r(x, ξ) ∈ S−∞.
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Similarly we obtain q̃(x, D) ∈ OPS−m
ρ,δ satisfying

(0.4.7) p(x,D)q̃(x,D) = I + r̃(x,D), r̃(x, ξ) ∈ S−∞.

But evaluating

(0.4.8)
(
q(x,D)p(x,D)

)
q̃(x,D) = q(x, D)

(
p(x,D)q̃(x,D)

)

yields q(x,D) = q̃(x,D) mod OPS−∞, so in fact

(0.4.9)
q(x,D)p(x,D) = I mod OPS−∞

p(x,D)q(x,D) = I mod OPS−∞.

We say q(x,D) is a two-sided parametrix for p(x,D).
The parametrix can establish local regularity of a solution to

(0.4.10) p(x,D)u = f.

Suppose u, f ∈ S ′(Rn), and p(x,D) ∈ OPSm
ρ,δ is elliptic, with 0 ≤ δ < ρ ≤ 1.

Constructing q(x,D) ∈ OPS−m
ρ,δ as in (0.4.6), we have

(0.4.11) u = q(x,D)f − r(x,D)u.

Now a simple analysis parallel to (0.1.7) implies that

(0.4.12) R ∈ OPS−∞ =⇒ R : E ′ −→ S.

By duality, since taking adjoints preserves OPS−∞,

(0.4.13) R ∈ OPS−∞ =⇒ R : S ′ −→ C∞.

Thus (0.4.11) implies

(0.4.14) u = q(x,D)f mod C∞.

Applying the pseudolocal property to (0.4.10) and (0.4.14), we have the following
elliptic regularity result.

Proposition 0.4.A. If p(x,D) ∈ OPSm
ρ,δ is elliptic and 0 ≤ δ < ρ ≤ 1, then, for

any u ∈ S ′(Rn),

(0.4.15) sing supp p(x,D)u = sing supp u.

More refined elliptic regularity involves keeping track of Sobolev space regularity.
As we have the parametrix, this will follow simply from mapping properties of
pseudodifferential operators, to be established in subsequent sections.

§0.5. L2 estimates

Here we want to obtain L2 estimates for pseudodifferential operators. The fol-
lowing simple basic estimate will get us started.
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Proposition0.5.A. Let (X, µ) be a measure space. Suppose k(x, y) is measurable
on X ×X and

(0.5.1)
∫

X

|k(x, y)| dµ(x) ≤ C1,

∫

X

|k(x, y)| dµ(y) ≤ C2,

for all y and x, respectively. Then

(0.5.2) Tu(x) =
∫

k(x, y)u(y) dµ(y)

satisfies

(0.5.3) ‖Tu‖Lp ≤ C
1/p
1 C

1/q
2 ‖u‖Lp

for p ∈ [1,∞], with 1/p + 1/q = 1.

Proof. For p ∈ (1,∞), estimate

(0.5.4)
∣∣∣
∫∫

k(x, y)u(y)v(x) dµ(y) dµ(x)
∣∣∣

via |uv| ≤ |u(x)|p/p + |v(y)|q/q. Then (0.5.4) is dominated by (C1/p)‖u‖p
Lp +

(C2/q)‖v‖q
Lq . Replacing u, v by tu, t−1v and minimizing the resulting bound over

t ∈ (0,∞), we dominate (0.5.4) by C
1/p
1 C

1/q
2 ‖u‖Lp‖v‖Lq , thus proving (0.5.3). The

exceptional cases p = 1 and ∞ are easily treated.

To apply this when X = Rn and k = K is the Schwartz kernel of p(x,D) ∈
OPSm

ρ,δ, note from the proof of Proposition 0.2.A that

(0.5.5) |K(x, y)| ≤ CN |x− y|−N for |x− y| ≥ 1

as long as ρ > 0, while

(0.5.6) |K(x, y)| ≤ C|x− y|−(n−1) for |x− y| ≤ 1

as long as m < −n + ρ(n− 1). (Recall this last estimate is actually rather crude.)
Hence we have the following preliminary result.

Lemma 0.5.B. If p(x,D) ∈ OPSm
ρ,δ, ρ > 0, and m < −n + ρ(n− 1), then

(0.5.7) p(x,D) : Lp(Rn) −→ Lp(Rn), 1 ≤ p ≤ ∞.

If p(x,D) ∈ OPSm
1,δ, then (0.5.7) holds for m < 0.

The last observation follows from the improvement of (0.5.6) given in (0.2.5).
Our main goal in this section is to prove the following.
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Theorem 0.5.C. If p(x,D) ∈ OPS0
ρ,δ and 0 ≤ δ < ρ ≤ 1, then

(0.5.8) p(x,D) : L2(Rn) −→ L2(Rn).

The proof we give, following [H4], begins with:

Lemma 0.5.D. If p(x,D) ∈ OPS−a
ρ,δ , 0 ≤ δ < ρ ≤ 1, and a > 0, then (0.5.8)

holds.

Proof. Since ‖Pu‖2L2 = (P ∗Pu, u), it suffices to prove that some power of p(x, D)∗p(x,D)
= Q is bounded on L2. But Qk ∈ OPS−2ka

ρ,δ , so for k large enough this follows from
Lemma 0.5.B.

To proceed with the proof of Theorem 0.5.C, taking

q(x,D) = p(x,D)∗p(x, D) ∈ OPS0
ρ,δ,

suppose |q(x, ξ)| ≤ M − b, b > 0, so

(0.5.9) M − Re q(x, ξ) ≥ b > 0.

In the matrix case, take Re q(x, ξ) = (1/2)(q(x, ξ) + q(x, ξ)∗). It follows that

(0.5.10) A(x, ξ) =
(
M − Re q(x, ξ)

)1/2 ∈ S0
ρ,δ

and

(0.5.11)
A(x, D)∗A(x,D) = M − q(x, D) + r(x,D),

r(x,D) ∈ OPS
−(ρ−δ)
ρ,δ .

Applying Lemma 0.5.D to r(x,D), we have

(0.5.12)
M‖u‖2L2 − ‖p(x, D)u‖2L2 = ‖A(x, D)u‖2L2 − (r(x,D)u, u)

≥ −C‖u‖2L2

or

(0.5.13) ‖p(x,D)u‖2 ≤ (M + C)‖u‖2L2 ,

finishing the proof.
From these L2-estimates easily follow L2-Sobolev space estimates. The Sobolev

space Hs(Rn) is often defined as

(0.5.14) Hs(Rn) = {u ∈ S ′(Rn) : 〈ξ〉sû(ξ) ∈ L2(Rn)}.
Equivalently, with

(0.5.15) Λsu =
∫
〈ξ〉sû(ξ)eix·ξdξ; Λs ∈ OPSs,

we have

(0.5.16) Hs(Rn) = Λ−sL2(Rn).

The operator calculus easily gives:
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Proposition 0.5.E. If p(x,D) ∈ OPSm
ρ,δ, 0 ≤ δ < ρ ≤ 1, m, s ∈ R, then

(0.5.17) p(x, D) : Hs(Rn) −→ Hs−m(Rm).

Note that, in view of the boundedness of operators with symbols ξα〈ξ〉−k, |α| ≤
k ∈ Z+, and 〈ξ〉2k

[∑
|α|≤k |ξα|2]−1

, we easily see that, given u ∈ L2(Rn), then
u ∈ Hk(Rn) if and only if Dαu ∈ L2(Rn) for |α| ≤ k, so the definition (0.5.16) is
consistent with other common notions of Hk when s = k ∈ Z+.

Given Proposition 0.5.E, one easily obtains Sobolev regularity of solutions to the
elliptic equations studied in §0.4.

Calderon and Vaillancourt sharpened Theorem 0.5.C, showing that

(0.5.18) p(x, ξ) ∈ S0
ρ,ρ, 0 ≤ ρ < 1 =⇒ p(x,D) : L2(Rn) −→ L2(Rn).

This result, particularly for ρ = 1/2, has played an important role in linear PDE,
especially in the study of subelliptic operators, but it will not be used in this
monograph.

§0.6. G̊arding’s inequality

In this section we establish a fundamental estimate, first obtained by G̊arding
in the case of differential operators.

Theorem 0.6.A. If p(x, D) ∈ OPSm
ρ,δ, 0 ≤ δ < ρ ≤ 1, and

(0.6.1) Re p(x, ξ) ≥ C|ξ|m for |ξ| large,

then, for any s ∈ R, there are C0, C1 such that

(0.6.2) Re (p(x, D)u, u) ≥ C0‖u‖2Hm/2 − C1‖u‖2Hs .

Proof. Replacing p(x, D) by Λ−m/2p(x,D)Λ−m/2, we can suppose without loss of
generality that m = 0. Then, as in the proof of Theorem 0.5.C, take

(0.6.3) A(x, ξ) =
(
Re p(x, ξ)− 1

2
C

)1/2

∈ S0
ρ,δ,

so

(0.6.4)
A(x,D)∗A(x,D) = Re p(x,D)− 1

2
C + r(x,D),

r(x,D) ∈ OPS
−(ρ−δ)
ρ,δ .



19

This gives

(0.6.5)
Re (p(x,D)u, u) = ‖A(x,D)u‖2L2 +

1
2
C‖u‖2L2 + (r(x,D)u, u)

≥ 1
2
C‖u‖2L2 − C1‖u‖2Hs

with s = −(ρ− δ)/2, so (0.6.2) holds in this case. If s < −(ρ− δ)/2 = s0, use the
simple estimate

(0.6.6) ‖u‖2Hs ≤ ε‖u‖2L2 + C(ε)‖u‖2Hs0

to obtain the desired result in this case.

§0.7. The sharp G̊arding inequality

In this section we will sketch a proof of the following sharp G̊arding inequality,
first proved by Hörmander for scalar operators and then by Lax and Nirenberg for
matrix valued operators.

Proposition 0.7.A. If p(x, ξ) ∈ S1
1,0 and p(x, ξ) ≥ 0, then

(0.7.1) Re (p(x,D)u, u) ≥ −C‖u‖2L2 .

We begin with the following characterization of Sm
1,0, a variant of (0.2.6). Cover

R2n with “rectangles” Rj , centered at points (xj , ξj), such that |x − xj | ≤ 1/2
and |ξ − ξj | ≤ (1/2)Mj defines Rj ; here Mj = max (|ξj1|, . . . , |ξjn|), if this max
is ≥ 1, Mj = 2 otherwise; ξj = (ξj1, . . . , ξjn). Let Ψj be the natural affine map
from the unit “cube” Q0 in R2n, defined by |x| ≤ 1/2, |ξ| ≤ 1/2, onto Rj . Then
p(x, ξ) ∈ C∞(R2n) defines a sequence of functions p ◦ Ψj ∈ C∞(Q0), and p(x, ξ)
belongs to Sm

1,0 if and only if {M−m
j p ◦Ψj} is bounded in C∞(Q0).

One can pick a cover Rj of R2n and a subordinate partition of unity ψj(x, ξ) ≥ 0,
bounded in S0

1,0. Let

(0.7.2) qj(x, ξ) = (ψjp) ◦Ψj .

Then p(x, ξ) ∈ S1
1,0 implies M−1

j qj bounded in C∞0 (Q0).
Now one can construct “by hand” an operator A = a1(x,D), such that a1(x, ξ) ∈

S(R2n),
∫

a1(x, ξ) dx dξ = 1, and (Au, u) ≥ 0 for all u. One can take A to be given
by (0.3.2) with

(0.7.3) a(x, y, ξ) = C0e
−|x|2e−|ξ|

2
e−|y|

2

and verify that this works, for some C0 > 0. Then set

(0.7.4) at(x, ξ) = tn/2a(t1/2x, t1/2ξ)
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and define p̃j ∈ S(R2n) by

(0.7.5) p̃j ◦Ψj = qj ∗ aMj
.

Thus

(0.7.6) p̃j = (ψjp) ∗ bj

where bj is obtained from a1(x, ξ) via a linear symplectic transformation; bj(x,D)
is unitarily conjugate to a1(x,D), and hence bj(x,D) ≥ 0. Since (ψjp)(x, ξ) ≥ 0, it
follows from (0.7.6) that

p̃j(x,D) =
∫

(ψjp)(y, η)bj(x− y,D − η) dy dη ≥ 0.

Now let

(0.7.7) p̃(x, ξ) =
∑

j

p̃j(x, ξ).

It is clear that p̃(x,D) ≥ 0. It is also not hard to show that

(0.7.8) p(x, ξ)− p̃(x, ξ) ∈ S0
1,0.

This gives (0.7.1).
Note that, multiplying p(x,D) on both sides by Λm/2, you can restate the sharp

G̊arding inequality in the apparently more general form: if p(x, ξ) ∈ Sm
1,0 is ≥ 0,

then

(0.7.9) Re (p(x,D)u, u) ≥ −C‖u‖2H(m−1)/2 .

There is also the following variant for symbols of type (ρ, δ) :

Proposition 0.7.B. Given 0 ≤ δ < ρ ≤ 1, then p(x, ξ) ∈ Sm
ρ,δ, p(x, ξ) ≥ 0 implies

(0.7.1) provided m = ρ− δ.

The proof is parallel to that sketched above. One covers R2n by rectangles Rj ,

defined by |x− xj | ≤ (1/2)M−δ
j , |ξ − ξj | ≤ (1/2)Mρ

j .
For scalar operators, there is the following tremendous strengthening, due to

Fefferman and Phong [FP]:

Theorem 0.7.C. If p(x, ξ) ∈ Sm
ρ,δ, is ≥ 0 and scalar, then (0.7.1) holds provided

m = 2(ρ− δ).

A variant of the sharp G̊arding inequality, for symbols with limited smooth-
ness, will be established in Chapter 2 and applied in Chapter 6. The approach
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in Chapter 2 will be to write p(x, ξ) = p#(x, ξ) + pb(x, ξ) and apply Proposition
0.7.B to p#(x, ξ), while bounding the norm of pb(x, ξ). Actually, in order to state
the sharpest available result, we will apply Theorem 0.7.C to p#(x, ξ), but for the
application in Chapter 6 the weaker result following from Proposition 0.7.B suffices.

§0.8. Hyperbolic evolution equations

In this section we examine first order systems of the form

(0.8.1)
∂u

∂t
= L(t, x, Dx)u + g(t, x), u(0) = f.

We assume L(t, x, ξ) ∈ S1
1,0, with smooth dependence on t, so

(0.8.2) |Dj
t D

β
xDα

ξ L(t, x, ξ)| ≤ Cjαβ〈ξ〉1−|α|.

Here L(t, x, ξ) is a K ×K matrix-valued function, and we make the hypothesis of
symmetric hyperbolicity:

(0.8.3) L(t, x, ξ)∗ + L(t, x, ξ) ∈ S0
1,0.

We suppose f ∈ Hs(Rn), s ∈ R, g ∈ C(R,Hs(Rn)).
Our strategy will be to obtain a solution to (0.8.1) as a limit of solutions uε to

(0.8.4)
∂uε

∂t
= JεLJεuε + g, uε(0) = f,

where

(0.8.5) Jε = ϕ(εDx)

for some ϕ(ξ) ∈ S(Rn), ϕ(0) = 1. The family of operators Jε is called a Friedrichs
mollifier. Note that, for any ε > 0, Jε ∈ OPS−∞, while, for ε ∈ (0, 1], Jε is
bounded in OPS0

1,0.
For any ε > 0, JεLJε is a bounded linear operator on each Hs, and solvability

of (0.8.4) is elementary. Our next task is to obtain estimates on uε, independent of
ε ∈ (0, 1]. Use the norm ‖u‖Hs = ‖Λsu‖L2 . We derive an estimate for

(0.8.6)
d

dt
‖Λsuε(t)‖2L2 = 2(ΛsJεLJεuε) + 2(Λsg, Λsuε).

Write the first two terms on the right as

(0.8.7) 2(LΛsJεuε,ΛsJεuε) + 2([Λs, L]Jεuε, ΛsJεuε).

By (0.8.3), L + L∗ = B(t, x,D) ∈ OPS0
1,0, so the first term in (0.8.7) is equal to

(0.8.8)
(
B(t, x, D)ΛsJεuε, ΛsJεuε

) ≤ C‖Jεuε‖2Hs .
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Meanwhile, [Λs, L] ∈ OPSs
1,0, so the second term in (0.8.7) is also bounded by the

right side of (0.8.8). Applying Cauchy’s inequality to 2(Λsg, Λsuε), we obtain

(0.8.9)
d

dt
‖Λsuε(t)‖2L2 ≤ C‖Λsuε(t)‖2L2 + C‖g(t)‖2Hs .

Thus Gronwall’s inequality yields an estimate

(0.8.10) ‖uε(t)‖2Hs ≤ C(t)
[‖f‖2Hs + ‖g‖2C([0,t],Hs)

]
,

independent of ε ∈ (0, 1]. We are now prepared to establish the following existence
result.

Proposition 0.8.A. If (0.8.1) is symmetric hyperbolic and

f ∈ Hs(Rn), g ∈ C(R,Hs(Rn)), s ∈ R,

then there is a solution u to (0.8.1), satisfying

(0.8.11) u ∈ L∞loc(R,Hs(Rn)) ∩ Lip(R,Hs−1(Rn)).

Proof. Take I = [−T, T ]. The bounded family

uε ∈ C(I,Hs) ∩ C1(I, Hs−1)

will have a weak limit point u satisfying (0.8.11), and it is easy to verify that such
u solves (0.8.1). As for the bound on [−T, 0], this follows from invariance of the
class of hyperbolic equations under time reversal.

Analogous energy estimates can establish uniqueness of such a solution u and
rates of convergence of uε → u as ε → 0. Also (0.8.11) can be improved to

(0.8.12) u ∈ C(R,Hs(Rn)) ∩ C1(R,Hs−1(Rn)).

As details of such arguments, applied to nonlinear problems, can be found in Chap-
ter 5, we will skip them here.

There are other notions of hyperbolicity. In particular, (0.8.1) is said to be
symmetrizable hyperbolic if there is a K ×K matrix valued S(t, x, ξ) ∈ S0

1,0 which
is positive definite, and such that S(t, x, ξ)L(t, x, ξ) = L̃(t, x, ξ) satisfies (0.8.3).
It can be shown that (0.8.1) is symmetrizable whenever it is strictly hyperbolic,
i.e., if L ∈ S1

cl and L1(t, x, ξ) has, for each (t, x, ξ), ξ 6= 0, K distinct purely
imaginary eigenvalues. Proposition 0.8.A extends to the case of symmetrizable
hyperbolic systems. First order systems of this nature arise from higher order
strictly hyperbolic PDE. Such arguments as justify these statements can also be
found, applied to nonlinear problems, in Chapter 5.
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§0.9. Egorov’s Theorem

We want to examine the behavior of operators obtained by conjugating a pseu-
dodifferential operator P0 ∈ OPSm

1,0 by the solution operator to a scalar hyperbolic
equation of the form

(0.9.1)
∂u

∂t
= iA(t, x, Dx)u,

where we assume A = A1 + A0 with

(0.9.2) A1(t, x, ξ) ∈ S1
cl real, A0(t, x, ξ) ∈ S0

cl.

We suppose A1(t, x, ξ) is homogeneous in ξ, for |ξ| ≥ 1. Denote by S(t, s) the
solution operator to (0.9.1), taking u(s) to u(t). This is a bounded operator on
each Sobolev space Hσ, with inverse S(s, t). Set

(0.9.3) P (t) = S(t, 0)P0S(0, t).

We aim to prove the following result of Egorov.

Theorem 0.9.A. If P0 = p0(x,D) ∈ OPSm
1,0, then for each t, P (t) ∈ OPSm

1,0,

modulo a smoothing operator. The principal symbol of P (t) (mod Sm−1
1,0 ) at a point

(x0, ξ0) is equal to p0(y0, η0), where (y0, η0) is obtained from (x0, ξ0) by following
the flow C(t) generated by the (time dependent) Hamiltonian vector field

(0.9.4) HA1(t,x,ξ) =
n∑

j=1

(∂A1

∂ξj

∂

∂xj
− ∂A1

∂xj

∂

∂ξj

)
.

To start the proof, differentiating (0.9.3) with respect to t yields

(0.9.5) P ′(t) = i[A(t, x, D), P (t)], P (0) = P0.

We will construct an approximate solution Q(t) to (0.9.5) and then show that
Q(t)− P (t) is a smoothing operator.

So we are looking for Q(t) = q(t, x, D) ∈ OPSm
1,0, solving

(0.9.6) Q′(t) = i[A(t, x,D), Q(t)] + R(t), Q(0) = P0,

where R(t) is a smooth family of operators in OPS−∞. We do this by constructing
the symbol q(t, x, ξ) in the form

(0.9.7) q(t, x, ξ) ∼ q0(t, x, ξ) + q1(t, x, ξ) + · · · .
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Now the symbol of i[A,Q(t)] is of the form

(0.9.8) HA1q + {A0, q}+ i
∑

|α|≥2

i|α|

α!

(
A(α)q(α) − q(α)A(α)

)

where A(α) = Dα
ξ A, A(α) = Dα

x A, etc. Since we want the difference between this
and ∂q/∂t to have order −∞, this suggests defining q0(t, x, ξ) by

(0.9.9)
( ∂

∂t
−HA1

)
q0(t, x, ξ) = 0, q0(0, x, ξ) = p0(x, ξ).

Thus q0(t, x0, ξ0) = p0(y0, η0), as in the statement of the Theorem; therefore
q0(t, x, ξ) ∈ Sm

1,0. The equation (0.9.9) is called a transport equation. Recursively
we obtain transport equations

(0.9.10)
( ∂

∂t
−HA1

)
qj(t, x, ξ) = bj(t, x, ξ), qj(0, x, ξ) = 0,

for j ≥ 1, with solutions in Sm−j
1,0 , leading to a solution to (0.9.6).

Finally we show P (t) − Q(t) is a smoothing operator. Equivalently, we show
that, for any f ∈ Hσ(Rn),

(0.9.11) v(t)− w(t) = S(t, 0)P0f −Q(t)S(t, 0)f ∈ H∞(Rn),

where H∞(Rn) = ∩sH
s(Rn). Note that

(0.9.12)
∂v

∂t
= iA(t, x, D)v, v(0) = P0f

while use of (0.9.6) gives

(0.9.13)
∂w

∂t
= iA(t, x, D)w + g, w(0) = P0f

where

(0.9.14) g = R(t)S(t, 0)w ∈ C∞(R, H∞(Rn)).

Hence

(0.9.15)
∂

∂t
(v − w) = iA(t, x, D)(v − w)− g, v(0)− w(0) = 0.

Thus energy estimates for hyperbolic equations yield v(t) − w(t) ∈ H∞ for any
f ∈ Hσ(Rn), completing the proof.

A check of the proof shows that

(0.9.16) P0 ∈ OPSm
cl =⇒ P (t) ∈ OPSm

cl

Also the proof readily extends to yield the following:
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Proposition 0.9.B. With A(t, x, D) as before,

(0.9.17) P0 ∈ OPSm
ρ,δ =⇒ P (t) ∈ OPSm

ρ,δ

provided

(0.9.18) ρ >
1
2
, δ = 1− ρ.

One needs δ = 1− ρ to insure that p(C(t)(x, ξ)) ∈ Sm
ρ,δ, and one needs ρ > δ to

insure that the transport equations generate qj(t, x, ξ) of progressively lower order.

§0.10. Microlocal regularity

We define the notion of wave front set of a distribution u ∈ H−∞(Rn) =
∪sH

s(Rn), which refines the notion of singular support. If p(x, ξ) ∈ Sm has princi-
pal symbol pm(x, ξ), homogeneous in ξ, then the characteristic set of P = p(x,D)
is given by

(0.10.1) Char P = {(x, ξ) ∈ Rn × (Rn \ 0) : pm(x, ξ) = 0}.
If pm(x, ξ) is a K ×K matrix, take the determinant. Equivalently, (x0, ξ0) is non-
characteristic for P, or P is elliptic at (x0, ξ0), if |p(x, ξ)−1| ≤ C|ξ|−m, for (x, ξ)
in a small conic neighborhood of (x0, ξ0), and |ξ| large. By definition, a conic set
is invariant under the dilations (x, ξ) 7→ (x, rξ), r ∈ (0,∞). The wave front set is
defined by

(0.10.2) WF (u) =
⋂
{Char P : P ∈ OPS0, Pu ∈ C∞}.

Clearly WF (u) is a closed conic subset of Rn × (Rn \ 0). If π is the projection
(x, ξ) 7→ x, we have:

Proposition 0.10.A. π(WF (u)) = sing supp u.

Proof. If x0 /∈ sing supp u, there is a ϕ ∈ C∞0 (Rn), ϕ = 1 near x0, such that
ϕu ∈ C∞0 (Rn). Clearly (x0, ξ) /∈ Char ϕ for any ξ 6= 0, so π(WF (u)) ⊂ sing supp
u.

Conversely, if x0 /∈ π(WF (u)), then for any ξ 6= 0 there is a Q ∈ OPS0 such that
(x0, ξ) /∈ Char Q and Qu ∈ C∞. Thus we can construct finitely many Qj ∈ OPS0

such that Qju ∈ C∞ and each (x0, ξ), |ξ| = 1 is noncharacteristic for some Qj . Let
Q =

∑
Q∗jQj ∈ OPS0. Then Q is elliptic near x0 and Qu ∈ C∞, so u is C∞ near

x0.

We define the associated notion of ES(P ) for a pseudodifferential operator. Let
U be an open conic subset of Rn × (Rn \ 0). We say p(x, ξ) ∈ Sm

ρ,δ has order −∞
on U if for each closed conic set V of U we have estimates, for each N,

(0.10.3) |Dβ
xDα

ξ p(x, ξ)| ≤ CαβNV 〈ξ〉−N , (x, ξ) ∈ V.
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If P = p(x,D) ∈ OPSm
ρ,δ, we define the essential support of P (and of p(x, ξ)) to

be the smallest closed conic set on the complement of which p(x, ξ) has order −∞.
We denote this set by ES(P ).

From the symbol calculus of §0.3 it follows easily that

(0.10.4) ES(P1P2) ⊂ ES(P1) ∩ ES(P2)

provided Pj ∈ OPS
mj

ρj ,δj
and ρ1 > δ2. To relate WF (Pu) to WF (u) and ES(P ),

we begin with the following.

Lemma 0.10.B. Let u ∈ H−∞(Rn) and suppose U is a conic open set satisfying
WF (u)∩U = ∅. If P ∈ OPSm

ρ,δ, ρ > 0, and δ < 1, and ES(P ) ⊂ U, then Pu ∈ C∞.

Proof. Taking P0 ∈ OPS0 with symbol identically 1 on a conic neighborhood of
ES(P ), so P = PP0 mod OPS−∞, it suffices to conclude that P0u ∈ C∞, so we
can specialize the hypothesis to P ∈ OPS0.

By hypothesis, we can find Qj ∈ OPS0 such that Qju ∈ C∞ and each (x, ξ) ∈
ES(P ) is noncharacteristic for some Qj , and if Q =

∑
Q∗jQj , then Qu ∈ C∞ and

Char Q ∩ ES(P ) = ∅. We claim there exists A ∈ OPS0 such that AQ = P mod
OPS−∞. Indeed, let Q̃ be an elliptic operator whose symbol equals that of Q on a
conic neighborhood of ES(P ), and let Q̃−1 denote a parametrix for Q̃. Now simply
set set A = PQ̃−1. Consequently (mod C∞) Pu = AQu ∈ C∞, so the lemma is
proved.

We are ready for the basic result on the preservation of wave front sets by a
pseudodifferential operator.

Proposition 0.10.C. If u ∈ H−∞ and P ∈ OPSm
ρ,δ, with ρ > 0, δ < 1, then

(0.10.5) WF (Pu) ⊂ WF (u) ∩ ES(P ).

Proof. First we show WF (Pu) ⊂ ES(P ). Indeed, if (x0, ξ0) /∈ ES(P ), choose
Q = q(x,D) ∈ OPS0 such that q(x, ξ) = 1 on a conic neighborhood of (x0, ξ0)
and ES(Q) ∩ ES(P ) = ∅. Thus QP ∈ OPS−∞, so QPu ∈ C∞. Hence (x0, ξ0) /∈
WF (Pu).

In order to show that WF (Pu) ⊂ WF (u), let Γ be any conic neighborhood of
WF (u) and write P = P1 + P2, Pj ∈ OPSm

ρ,δ, with ES(P1) ⊂ Γ and ES(P2) ∩
WF (u) = ∅. By Lemma 0.10.B, P2u ∈ C∞. Thus WF (u) = WF (P1u) ⊂ Γ, which
shows WF (Pu) ⊂ WF (u).

One says that a pseudodifferential operator of type (ρ, δ), with ρ > 0 and δ < 1,
is microlocal. As a corollary, we have the following sharper form of local regularity
for elliptic operators, called microlocal regularity.
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Corollary 0.10.D. If P ∈ OPSm
ρ,δ is elliptic, 0 ≤ δ < ρ ≤ 1, then

(0.10.6) WF (Pu) = WF (u).

Proof. We have seen that WF (Pu) ⊂ WF (u). On the other hand, if E ∈ OPS−m
ρ,δ

is a parametrix for P, we see that WF (u) = WF (EPu) ⊂ WF (Pu). In fact, by an
argument close to the proof of Lemma 0.10.B, we have for general P that

(0.10.7) WF (u) ⊂ WF (Pu) ∪ Char P.

We next discuss how the solution operator eitA to a scalar hyperbolic equation
∂u/∂t = iA(x,D)u propagates the wave front set. We assume A(x, ξ) ∈ S1

cl, with
real principal symbol. Suppose WF (u) = Σ. Then there is a countable family of op-
erators pj(x,D) ∈ OPS0, each of whose complete symbols vanish in a neighborhood
of Σ, but such that

(0.10.8) Σ =
⋂

j

{(x, ξ) : pj(x, ξ) = 0}.

We know that pj(x,D)u ∈ C∞ for each j. Using Egorov’s Theorem, we want
to construct a family of pseudodifferential operators qj(x,D) ∈ OPS0 such that
qj(x,D)eitAu ∈ C∞, this family being rich enough to describe the wave front set
of eitAu.

Indeed, let qj(x,D) = eitApj(x,D)e−itA. Egorov’s Theorem implies that qj(x,D) ∈
OPS0, (modulo a smoothing operator) and gives the principal symbol of qj(x, D).
Since pj(x,D)u ∈ C∞, we have eitApj(x,D)u ∈ C∞, which in turn implies qj(x,D)eitAu ∈
C∞. From this it follows that WF (eitAu) is contained in the intersection of the
characteristics of the qj(x,D), which is precisely C(t)Σ, the image of Σ under the
canonical transformation C(t), generated by HA1 . In other words,

WF (eitAu) ⊂ C(t)WF (u).

However, our argument is reversible; u = e−itA(eitAu). Consequently, we have:

Proposition 0.10.E. If A = A(x,D) ∈ OPS1 is scalar with real principal symbol,
then, for u ∈ H−∞,

(0.10.9) WF (eitAu) = C(t)WF (u).

The same argument works for the solution operator S(t, 0) to a time-dependent
scalar hyperbolic equation.
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§0.11. Lp estimates

As shown in §0.2, if p(x,D) ∈ OPS0
1,δ, 0 ≤ δ ≤ 1, then its Schwartz kernel

K(x, y) satisfies estimates

(0.11.1) |K(x, y)| ≤ C|x− y|−n,

and

(0.11.2) |∇x,yK(x, y)| ≤ C|x− y|−n−1.

Furthermore, at least when δ < 1, we have an L2 bound:

(0.11.3) ‖Pu‖L2 ≤ K‖u‖L2 ,

and smoothings of these operators have smooth Schwartz kernels satisfying (0.11.1)–
(0.11.3) for fixed C, K. Our main goal here is to sketch a proof of the following
fundamental result of Calderon and Zygmund.

Theorem 0.11.A. Suppose P : L2(Rn) → L2(Rn) is a weak limit of operators
with smooth Schwartz kernels satisfying (0.11.1)–(0.11.3) uniformly. Then

(0.11.4) P : Lp(Rn) −→ Lp(Rn), 1 < p < ∞.

The hypotheses do not imply boundedness on L1(Rn) or on L∞(Rn). They will
imply that P is of weak type (1, 1). By definition, an operator P is of weak type
(q, q) provided that, for any λ > 0,

(0.11.5) meas {x : |Pu(x)| > λ} ≤ C

λq
‖u‖q

Lq .

Any bounded operator on Lq is a fortiori of weak type (q, q), in view of the simple
inequality

(0.11.6) meas {x : |u(x)| > λ} ≤ 1
λ
‖u‖L1 .

A key ingredient in proving Theorem 0.11.A is the following result.

Proposition 0.11.B. Under the hypotheses of Theorem 0.11.A, P is of weak type
(1, 1).

Once this is established, Theorem 0.11.A will then follow from the next result,
known as the Marcinkiewicz Interpolation Theorem.
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Proposition 0.11.C. If r < p < q and if P is both of weak type (r, r) and of weak
type (q, q), then T : Lp → Lp.

See [S1] for a proof of this result. Also in [S1] is a proof of the following de-
composition lemma of Calderon and Zygmund. These results can also be found in
Chapter 13 of [[T1]].

Lemma 0.11.D. Let u ∈ L1(Rn) and λ > 0 be given. Then there exist v, wk ∈
L1(Rn) and disjoint cubes Qk, 1 ≤ k < ∞, with centers xk, such that

(0.11.7) u = v +
∑

k

wk, ‖v‖L1 +
∑

k

‖wk‖L1 ≤ 3‖u‖L1 ,

(0.11.8) |v(x)| ≤ 2nλ,

(0.11.9)
∫

Qk

wk(x) dx = 0 and supp wk ⊂ Qk,

(0.11.10)
∑

k

meas(Qk) ≤ λ−1‖u‖L1 .

One thinks of v as the “good” piece and w =
∑

wk as the “bad” piece. What is
“good” about v is that ‖v‖2L2 ≤ 2nλ‖u‖L1 , so

(0.11.11) ‖Pv‖2L2 ≤ K2‖v‖2L2 ≤ 4nK2λ‖u‖L1 .

Hence

(0.11.12)
(λ

2

)2

meas
{

x : |Pv(x)| > λ

2

}
≤ Cλ‖u‖L1 .

To treat the action of P on the “bad” term w, we make use of the following
essentially elementary estimate on the Schwartz kernel K.

Lemma 0.11.E. There is a C0 < ∞ such that, for any t > 0, if |y| ≤ t, x0 ∈ Rn,

(0.11.13)
∫

|x|≥2t

∣∣K(x, x0 + y)−K(x, x0)
∣∣ dx ≤ C0.
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To estimate Pw, we have

(0.11.14)

Pwk(x) =
∫

K(x, y)wk(y) dy

=
∫

Qk

[
K(x, y)−K(x, xk)

]
wk(y) dy.

Before we make further use of this, a little notation: Let Q∗
k be the cube concentric

with Qk, enlarged by a linear factor of 2n1/2, so meas Q∗
k = (4n)n/2 meas Qk. For

some tk > 0, we can arrange that

(0.11.15)
Qk ⊂ {x : |x− xk| ≤ tk}
Yk = Rn \Q∗

k ⊂ {x : |x− xk| > 2tk}.

Furthermore, set O = ∪Q∗k, and note that

(0.11.16) meas O ≤ L

λ
‖u‖L1

with L = (4n)n/2. Now, from (0.11.14), we have

(0.11.17)

∫

Yk

|Pwk(x)| dx

≤
∫

|y|≤tk,

∫

|x|≥2tk

∣∣K(x + xk, y)−K(x + xk, xk)
∣∣ · |wk(y + xk)| dx dy

≤ C0‖wk‖L1 ,

the last estimate using Lemma 0.11.E. Thus

(0.11.18)
∫

Rn\O

|Pw(x)| dx ≤ 3C0‖u‖L1 .

Together with (0.11.16), this gives

(0.11.19)
λ

2
meas

{
x : |Pw(x)| > λ

2

}
≤ C1‖u‖L1 ,

and this estimate together with (0.11.12) yields the desired weak (1,1) estimate:

(0.11.20) meas {x : |Pu(x)| > λ} ≤ C2

λ
‖u‖L1 .
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This completes the proof.
We next describe an important generalization to operators acting on Hilbert

space valued functions. Let H1 and H2 be Hilbert spaces and suppose

(0.11.21) P : L2(Rn,H1) −→ L2(Rn,H2).

The P has an L(H1,H2)-operator valued Schwartz kernel K. Let us impose on K
the hypotheses of Theorem 0.11.A, where now |K(x, y)| stands for the L(H1,H2)-
norm of K(x, y). Then all the steps in the proof of Theorem 0.11.A extend to this
case. Rather than formally state this general result, we will concentrate on an
important special case.

Proposition 0.11.F. Let P (ξ) ∈ C∞(Rn,L(H1,H2)) satisfy

(0.11.22) ‖Dα
ξ P (ξ)‖L(H1,H2) ≤ Cα〈ξ〉−|α|

for all α ≥ 0. Then

(0.11.23) P (D) : Lp(Rn,H1) −→ Lp(Rn,H2) for 1 < p < ∞.

This leads to an important circle of results known as Littlewood-Paley Theory.
To obtain this, start with a partition of unity

(0.11.24) 1 =
∞∑

j=0

ϕj(ξ)2

where ϕj ∈ C∞, ϕ0(ξ) is supported on |ξ| ≤ 1, ϕ1(ξ) is supported on 1/2 ≤ |ξ| ≤ 2,
and ϕj(ξ) = ϕ1(21−jξ) for j ≥ 2. We take H1 = C, H2 = `2, and look at

(0.11.25) Φ : L2(Rn) −→ L2(Rn, `2)

given by

(0.11.26) Φ(f) =
(
ϕ0(D)f, ϕ1(D)f, ϕ2(D)f, . . .

)
.

This is clearly an isometry, though of course it is not surjective. The adjoint

Φ∗ : L2(Rn, `2) −→ L2(Rn),

given by

(0.11.27) Φ∗(g0, g1, g2, . . . ) =
∑

ϕj(D)gj
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satisfies

(0.11.28) Φ∗Φ = I

on L2(Rn). Note that Φ = Φ(D), where

(0.11.29) Φ(ξ) = (ϕ0(ξ), ϕ1(ξ), ϕ2(ξ), . . . ).

It is easy to see that the hypthesis (0.11.22) is satisfied by both Φ(ξ) and Φ∗(ξ).
Hence, for 1 < p < ∞,

(0.11.30)
Φ : Lp(Rn) −→ Lp(Rn, `2)

Φ∗ : Lp(Rn, `2) −→ Lp(Rn).

In particular, Φ maps Lp(Rn) isomorphically onto a closed subspace of Lp(Rn, `2),
and we have compatibility of norms:

(0.11.31) ‖u‖Lp ≈ ‖Φu‖Lp(Rn,`2).

In other words,

(0.11.32) C ′p‖u‖Lp ≤
∥∥∥
∞∑

j=0

|ϕj(D)u|2
∥∥∥

1/2

Lp
≤ Cp‖u‖Lp ,

for 1 < p < ∞. This Littlewood-Paley estimate will be used in Chapter 2.

§0.12. Operators on manifolds

If M is a smooth manifold, a continuous linear operator P : C∞0 (M) → D′(M)
is said to be a pseudodifferential operator in OPSm

ρ,δ(M) provided its Schwartz
kernel is C∞ off the diagonal in M × M, and there exists an open cover Ωj of
M, a subordinate partition of unity ϕj , and diffeomorphisms Fj : Ωj → Oj ⊂ Rn

which transform the operators ϕkPϕj : C∞(Ωj) → E ′(Ωk) into pseudodifferential
operators in OPSm

ρ,δ, as defined in §0.1.
This is a rather “liberal” definition of OPSm

ρ,δ(M). For example, it poses no
growth restrictions on the Schwartz kernel K ∈ D′(M × M) at infinity. Conse-
quently, if M happens to be Rn, the class of operators in OPSm

ρ,δ(M) as defined
above is a bit larger than the class OPSm

ρ,δ defined in §0.1. One negative con-
sequence of this definition is that pseudodifferential operators cannot always be
composed. One drastic step to fix this would be to insist that the kernel be prop-
erly supported, so P : C∞0 (M) → C∞0 (M). If M is compact, these problems do not
arise. If M is noncompact, it is often of interest to place specific restrictions on K
near infinity, but analytical problems inducing one to do so will not be studied in
this monograph.
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Another way in which the definition of OPSm
ρ,δ(M) given above is liberal is that it

requires P to be locally transformed to pseudodifferential operators on Rn by some
coordinate cover. One might ask if then P is necessarily so transformed by every
coordinate cover. This comes down to asking if the class OPSm

ρ,δ defined in §0.1 is
invariant under a coordinate transformation, i.e., a diffeomorphism F : Rn → Rn. It
would suffice to establish this for the case where F is the identity outside a compact
set.

In case ρ ∈ (1/2, 1] and δ = 1 − ρ, this invariance is a special case of the
Egorov Theorem established in §0.9. Indeed, one can find a time-dependent vector
field X(t) whose flow at t = 1 coincides with F and apply Theorem 0.9.A to
iA(t, x,D) = X(t). Note that the formula for the principal symbol of the conjugated
operator given there implies

(0.12.1) p(1, F (x), ξ) = p0(x, F ′(x)tξ),

so that the principal symbol is well defined on the cotangent bundle of M.
Alternatively, one can insert the coordinate changes into the Fourier integral

representation of P and work on that. This latter approach has the advantage of
working for a larger set of symbol classes Sm

ρ,δ than the more general conjugation
invariance applies to. In fact, one needs only

ρ >
1
2
, ρ + δ ≥ 1.

A proof of this can be found in [H1], [T2]. While this coordinate invariance is good
to know, it will not play a crucial role in the analysis done in this monograph.
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Chapter 1: Symbols with limited smoothness

Here we establish some very general facts about symbols p(x, ξ) with limited
smoothness in x. We prove some operator bounds on p(x,D) when p(x, ξ) is homo-
geneous in ξ.

In §1.2 we show that these simple results lead to some easy regularity theorems,
for solutions to an elliptic PDE, F (x,Dmu) = f, under the assumption that u al-
ready possesses considerable smoothness, e.g., roughly 2m derivatives. Though this
is a rather weak result, which will be vastly improved in Chapters 2 and 3, neverthe-
less it has some uses, beyond providing a preliminary example of techniques to be
developed here. For example, when examining local solvability of F (x,Dmu) = f,
one can use a Banach space implicit function theorem to find u ∈ Hs with s large,
and then apply such a regularity result as Theorem 1.2.D to obtain local C∞ solu-
tions.

One key tool for further use of symbols introduced here is to write p(x, ξ) =
p#(x, ξ) + pb(x, ξ), with p#(x, ξ) a C∞ symbol, in Sm

1,δ, and pb(x, ξ) having lower
order. This symbol decomposition is studied in §1.3.

§1.1. Symbol classes

We introduce here some general classes of symbols p(x, ξ) which have limited
regularity in x. To start with, let X be any Banach space of functions, such that

(1.1.1) C∞0 ⊂ X ⊂ C0.

We say

(1.1.2) p(x, ξ) ∈ XSm
1,0 ⇐⇒ ‖Dα

ξ p(·, ξ)‖X ≤ Cα〈ξ〉m−|α|, α ≥ 0.

For applications, we will generally want X to be a Banach algebra under pointwise
multiplication, and more specifically

f ∈ C∞(R), u ∈ X =⇒ f(u) ∈ X;

(1.1.3)
f maps bounded sets to bounded sets in X.

Such an X as we consider will usually be one of a family {Xs : s ∈ Σ} of spaces,
known as a scale. The set Σ will be of the form [σ0,∞) or (σ0,∞), and we assume

(1.1.4) Xs ⊂ Xt if t < s,

provided t, s ∈ Σ, and, if s ∈ Σ,m ∈ Z+, then s + m ∈ Σ and

(1.1.5) OPDm : Xs+m −→ Xs,
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where OPDm denotes the space of differential operators of order m (with smooth
coefficients).

Examples of scales satisfying the conditions above are

(1.1.6) Xs = Cs(Rn), Σ = [0,∞)

and

(1.1.7) Xs = Hs,p(Rn), Σ = (n/p,∞),

for any given p ∈ [1,∞). In (1.1.6), Cs is the space of Ck functions whose kth

derivatives satisfy the Hölder condition

(1.1.8) |u(x + y)− u(x)| ≤ C|y|σ, |y| ≤ 1,

where s = k + σ, 0 ≤ σ < 1. The spaces (1.1.7) are Sobolev spaces.
We say {Xs} is microlocalizable if, for m ∈ R, s, s + m ∈ Σ,

(1.1.9) OPSm
1,0 : Xs+m −→ Xs.

The Sobolev spaces (1.1.7) have this property provided p ∈ (1,∞). The property
(1.1.9) fails for the spaces Cs if s is an integer. In such a case, one needs to use the
Zygmund spaces

(1.1.10) Xs = Cs
∗(Rn), Σ = (0,∞),

which coincide with Cs is s is not an integer, but differ from Cs if s is an integer.
Some important properties of Sobolev spaces and Zygmund spaces are discussed in
Appendix A.

We will say p(x, ξ) ∈ XSm
cl , or merely XSm, provided p(x, ξ) ∈ XSm

1,0 and p(x, ξ)
has a classical expansion

(1.1.11) p(x, ξ) ∼
∑

j≥0

pj(x, ξ)

in terms homogeneous of degree m − j in ξ (for |ξ| ≥ 1), in the sense that the
difference between p(x, ξ) and the sum over j < N belongs to XSm−N

1,0 .

As usual, we define the operator associated to p(x, ξ)

(1.1.12) p(x,D)u =
∫

p(x, ξ) û(ξ) eix·ξ dξ.

We also consider p(D, x), defined by

(1.1.13) p(D, x)u = (2π)−n

∫∫
p(y, ξ) ei(x−y)·ξ u(y) dy dξ.

We now derive some mapping properties for the operators (1.1.12)–(1.1.13), in the
case p(x, ξ) ∈ XsSm

cl . The analogues for p(x, ξ) ∈ XsSm
1,0 are somewhat harder to

establish. These will be discussed in §2.1.
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Proposition 1.1.A. Assume {Xs} is a microlocalizable scale. If m ∈ R, s ∈
Σ, p(x, ξ) ∈ XsSm

cl , then

(1.1.14) p(x, D) : Xs+m −→ Xs if s + m ∈ Σ,

and

(1.1.15) p(D, x) : Xs −→ Xs−m if s−m ∈ Σ.

Proof. Considering p(x, D)(1 − ∆)−m/2 and (1 − ∆)−m/2p(D, x), respectively, it
suffices to treat the case m = 0. Via such decompositions as

(1.1.16) p0(x, ξ) =
∞∑

l=0

p0l(x)ωl

( ξ

|ξ|
)
,

where ωl ∈ C∞(Sn−1) are the spherical harmonics, such mapping properties are
easily established. The operators ωl(D) have norms bounded by C〈l〉K , if hypoth-
esis (1.1.9) holds, while the factors p0l have rapidly decreasing norms as l −→ ∞.
Note that p0(D, x)u =

∑
l

ωl(D)(p0lu).

It is worthwhile to record the following generalization. If X and Y are two
Banach spaces satisfying (1.1.1), we say X is a Y -module if pointwise multiplication
gives a continuous bilinear map Y ×X −→ X.

Proposition 1.1.B. If {Xs} is microlocalizable and p(x, ξ) ∈ Y Sm
cl , then the map-

ping properties (1.1.14)–(1.1.15) hold, provided Xs is a Y -module.

In fact, it is sometimes useful to consider a scale {Xs} for s in a larger interval
Σ̃ (containing Σ), on which (1.1.1) might not hold. For example we can consider
Xs = Hs,p(Rn), for s ∈ R. In this more general situation, if Y is a Banach space of
functions satisfying (1.1.1) and Xs is a Banach space of distributions, we say Xs is
a Y -module provided there is a natural continuous product Y ×Xs −→ Xs. It is
clear that Proposition 1.1.B generalizes to this case.

It is occasionally even useful to consider p(x, ξ) ∈ Y Sm
1,0 for a Banach space Y

of distributions not satisfying (1.1.1). For such a case, one would tend to have
m < 0 and consider only p(D, x). The following result follows in the same way as
Proposition 1.1.A and Proposition 1.1.B.

Proposition 1.1.C. Let Xs, Y, Z and W be Banach spaces of distributions, and
assume p(x, ξ) ∈ Y Sm

cl . Then

(1.1.17) p(D, x) : Z −→ Xs

provided pointwise multiplication yields a continuous bilinear map

(1.1.18) Y × Z −→ W
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and

(1.1.19) OPSm
cl : W −→ Xs.

A basic family of special cases of (1.1.18) is

(1.1.20) H−s,p(Rn)×Hr,q(Rn) −→ H−s,p(Rn),

with

(1.1.21)
1
p

+
1
q

= 1, r >
n

q
, 0 ≤ s ≤ r,

which follows by duality from Hs,q ×Hr,q −→ Hs,q.

§1.2. Some simple elliptic regularity theorems

Throughout this section we suppose {Xs : s ∈ Σ} is a microlocalizable scale.
Suppose we have an elliptic differential operator of order m,

A(x,D) =
∑

|α|≤m

aα(x) Dα,

with coefficients in Xs, where s is an element of Σ. Then we can take p(x, ξ) ∈
XsS−m

cl , equal to A(x, ξ)−1 for |ξ| large. The formal transpose of A(x,D) is given
by

(1.2.1) A(x,D)tu =
∑

|α|≤m

(−D)αaα(x)u,

and we have

(1.2.2)

p(D, x)A(x,D)u =
∫∫

p(y, ξ)[A(y, D)u(y)]ei(x−y)·ξ dy dξ

=
∫∫

u(y) A(y, D)t
[
p(y, ξ)ei(x−y)·ξ] dy dξ

= u + Ru

where

(1.2.3) Ru(x) =
∫∫

u(y)R(y, ξ)ei(x−y)·ξ dy dξ.

Here

R(y, ξ) = eiy·ξA(y, D)t
[
p(y, ξ)e−iy·ξ]− 1(1.2.4)

=
m∑

j=1

rj(y, ξ),
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with

(1.2.5) rj(y, ξ) ∈ Xs−jS−j
cl .

From (1.1.15) of Proposition 1.1.A, it follows that

(1.2.6) rj(D, x) : Xs−j −→ Xs, if s− j ∈ Σ,

so

(1.2.7) R : Xs−1 −→ Xs, if s−m ∈ Σ.

Now if

(1.2.8) A(x,D)u = f

then

(1.2.9) u = p(D, x)f −Ru.

Since p(D,x) : Xr −→ Xr+m for r ≤ s, we have most of the proof of the following
regularity result.

Theorem 1.2.A. Let A(x,D) be an elliptic differential operator with coefficients
in Xs; assume s −m ∈ Σ. Assume A(x,D)u = f ∈ Xr, and assume a priori that
u ∈ Xs−1. Then u ∈ Xr+m, provided r = s−m + k, k = 0, 1, . . . , m

Proof. A look at (1.2.9) shows that u ∈ Xs under these hypotheses, which covers the
case r = s−m of the theorem. We now treat the cases r = s−m+k, k = 1, . . . , m.
Thus we suppose f ∈ Xs−m+k. By induction, we can assume u ∈ Xs+k−1.

Let uβ = Dβu. If |β| ≤ k, applying Dβ to (1.2.8) gives

∑

|α|≤m

Dαuβ = Dβf −
∑

|α|≤m

(
β

σ

)
[Dσaα(x)]Dα+γu(1.2.10)

= fβ ∈ Xs−m,

where in the second sum, σ + γ = β, |γ| ≤ k − 1. Now we can regard

(1.2.11) A(x,D)uβ = Fβ ∈ Xs−m, |β| ≤ k,

as an elliptic system, to which the k = 0 case of our theorem applies, since u ∈
Xs+k−1 =⇒ uβ ∈ Xs−1. This completes our inductive step and proves the rest of
the theorem.

Though it is desirable to have results for less regular coefficients, nevertheless
Theorem 1.2.A leads to some useful regularity results for solutions to nonlinear
elliptic PDE, as we now show. Consider the equation

(1.2.12)
∑

|α|≤m

aα(x,Dm−1u)Dαu = f.

Assume it is elliptic of order m, the coefficients aα(x, ζ) being smooth in their
arguments.
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Theorem 1.2.B. Assume (1.2.12) holds with f ∈ Xs; assume u ∈ Xs+m−1, so
that one has aα(x,Dm−1u) ∈ Xs, and assume s−m ∈ Σ. Then u ∈ Xs+m.

Proof. With aα(x) = aα(x,Dm−1u), the case r = s of Theorem 1.2.A applies.

Corollary 1.2.C. If u ∈ Xs+m−1 solves (1.2.12) with f ∈ C∞, and
s−m ∈ Σ, then u ∈ C∞.

We also note the following regularity result for solutions to a completely nonlinear
PDE

(1.2.13) F (x,Dmu) = f,

assumed to be elliptic, F = F (x, ζ) being smooth in its arguments, ζ = (ζα : |α| ≤
m).

Theorem 1.2.D. Assume u ∈ Xs+m solves (1.2.13), with f ∈ Xs+1, and that
(1.2.13) is elliptic. Then u ∈ Xs+m+1, provided s−m ∈ Σ.

Proof. Set uj = ∂u/∂xj . Then differentiating (1.2.13) with respect to xj gives

∑

|α|≤m

∂F

∂ζα
(x,Dmu)Dαuj = −Fxj (x,Dmu) +

∂f

∂xj
(1.2.14)

= fj ∈ Xs.

As a PDE for uj , this has similar structure to the quasi-linear PDE (1.2.12), and
the analysis proving Theorem 1.2.B applies.

Clearly Corollary 1.2.C has an analogue in this case, when one assumes a priori
that u ∈ Xs+m.

The main drawback of these results is the hypothesis that s − m ∈ Σ, which
requires that s > m + n/p in case (1.1.7) and s > m in case (1.1.10). We will
obtain sharper results which include the classical results of Schauder in §2.2, after
developing stronger tools in §1.3–§2.1. Here we note a simple improvement that can
be made if we use Proposition 1.1.C to tighten up the reasoning leading to (1.2.7).

Namely, suppose the scale {Xs : s ∈ Σ}, satisfying (1.1.1), (1.1.3), (1.1.9), is
enlarged to {Xs : s ∈ Σ̃}, satisfying (1.1.9). To get (1.2.7), one really needs in
(1.2.6) only that

rj(D,X) : Xs−1 −→ Xs, for rj(x, ξ) ∈ Xs−jS−j
cl .

In some cases one can get this with s − j ∈ Σ̃ \ Σ. As noted in Proposition 1.1.C,
this happens if multiplication gives a continuous bilinear map

(1.2.15) Xs−j ×Xs−1 −→ Xs−j , j = 1, . . . , m.
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For example, if Xs = Hs(Rn), this holds as long as s > n/2+1 and s ≥ (m+1)/2.
This is an improvement over Theorem 1.2.A, which would require s > n/2 + m.
Nevertheless, it is not nearly as good an improvement as will be obtained in §2.2.

§1.3. Symbol smoothing

Our goal in this section is to write a symbol p(x, ξ) ∈ XsSm
1,0 as a sum of a

smooth symbol and a remainder of lower order. The smooth part will not belong
to Sm

1,0, but rather to one of Hörmander’s classes Sm
1,δ.

We will use a partition of unity

(1.3.1) 1 =
∞∑

j=0

ψj(ξ), ψj supported on 〈ξ〉 ∼ 2j ,

such that ψj(ξ) = ψ1(21−jξ) for j ≥ 2. To get this, you can start with positive
ψ0(ξ), equal to 1 for |ξ| ≤ 1, 0 for |ξ| ≥ 2, set Ψj(ξ) = ψ0(2−jξ), and set ψj(ξ) =
Ψj(ξ) − Ψj−1(ξ) for j ≥ 1. We will call this an S0

1 partition of unity. It is also
sometimes called a Littlewood-Paley partition of unity.

Given p(x, ξ) ∈ XsSm
1,0, choose δ ∈ (0, 1] and set

(1.3.2) p#(x, ξ) =
∞∑

j=0

Jεj p(x, ξ)ψj(ξ)

where Jε is a smoothing operator on functions of x, namely

(1.3.3) Jεf(x) = φ(εD)f(x)

with φ ∈ C∞0 (Rn), φ(ξ) = 1 for |ξ| ≤ 1 (e.g., φ = ψ0), and we take

(1.3.4) εj = 2−jδ.

We then define pb(x, ξ) to be p(x, ξ)− p#(x, ξ), so our decomposition is

(1.3.5) p(x, ξ) = p#(x, ξ) + pb(x, ξ).

To analyze these terms, we use the folowing simple result.

Lemma 1.3.A. If {Xs : s ∈ Σ} is a microlocalizable scale, then, for
ε ∈ (0, 1],

(1.3.6) ‖Dβ
xJεf‖Xs ≤ Cβ ε−|β|‖f‖Xs

and

(1.3.7) ‖f − Jεf‖Xs−t ≤ Cεt‖f‖Xs for s, s− t ∈ Σ, t ≥ 0.
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Proof. The estimate (1.3.6) follows from the fact that, for each β ≥ 0,

ε|β|Dβ
xφ(εD) is bounded in OPS0

1,0

and the estimate (1.3.7) follows from the fact that, with Λ = (1−∆)1/2,

Λt : Xs −→ Xs−t isomorphically, if s, s− t ∈ Σ,

plus the fact that

ε−tΛ−t(1− φ(εD)) is bounded in OPS0
1,0,

for 0 < ε ≤ 1.

Using this, we easily derive the following conclusion.

Proposition 1.3.B. If {Xs} is a microlocalizable scale and p(x, ξ) ∈ XsSm
1,0, then,

with the decomposition (1.3.5) defined by (1.3.2)–(1.3.4), we have

(1.3.8) p#(x, ξ) ∈ Sm
1,δ

and

(1.3.9) pb(x, ξ) ∈ Xs−tSm−tδ
1,0 if s, s− t ∈ Σ.

Proof. The estimate (1.3.6) yields

(1.3.10) ‖Dβ
xDα

ξ p#(·, ξ)‖Xs ≤ Cαβ〈ξ〉m−|α|+δ|β|,

which implies (1.3.8) since Xs ∈ C0. Similarly (1.3.9) follows from (1.3.7).

A primary class of symbols we will deal with is CsSm
1,0, equal to Cs

∗S
m
1,0 for

s ∈ R+ \ Z+, and contained in the latter for s ∈ Z+. We can obtain more precise
results on the decomposition of p(x, ξ) ∈ CsSm

1,0 by the following supplement to
Lemma 1.3.A.

Lemma 1.3.C. Given f ∈ Cs, s > 0, we have

(1.3.11)
‖Dβ

xJεf‖L∞ ≤ C‖f‖Cs , |β| ≤ s,

Cε−(|β|−s)‖f‖Cs∗ , |β| > s,

and

(1.3.12) ‖f − Jεf‖L∞ ≤ Csε
s‖f‖Cs∗ .
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Proof. The first estimate in (1.3.11) (for |β| ≤ s) is trivial. If |β| > s, we have, for
ε ∼ 2−j ,

(1.3.13)

‖Dβφ(εD)f‖L∞ ≤
∑

l≤j

‖Dβψl(D)f‖L∞

≤ C
∑

l≤j

2l|β|‖ψl(D)f‖L∞

≤ C
∑

l≤j

2l|β| · 2−ls‖f‖Cs∗ .

Since
∑

l≤j 2l(|β|−s) ≤ Cs2j(|β|−s) for s < |β|, we have the rest of (1.3.11). To
obtain (1.3.12), if ε ∼ 2−j , we have

(1.3.14) ‖(1− φ(εD))f‖L∞ ≤
∑

l≥j

‖ψl(D)f‖L∞ ≤ C
∑

l≥j

2−ls‖f‖Cs∗ ,

and since
∑

l≥j 2−ls ≤ Cs2−js for s > 0, we have (1.3.12).

Exploiting (1.3.11) gives the following improvement of (1.3.8).

Proposition 1.3.D. If p(x, ξ) ∈ CsSm
1,0 has decomposition (1.3.5), then

(1.3.15)
Dβ

xp#(x, ξ) ∈ Sm
1,δ for |β| ≤ s,

S
m+δ(|β|−s)
1,δ for |β| > s.

In the course of using the decomposition (1.3.5), we will find it helpful to have
the following generalization of XsSm

1,0, at least for Xs = Cs or Cs
∗ . For δ ∈ [0, 1],

we say p(x, ξ) belongs to Cs
∗S

m
1,δ provided

(1.3.16) |Dα
ξ p(x, ξ)| ≤ Cα〈ξ〉m−|α|

and

(1.3.17) ‖Dα
ξ p(·, ξ)‖Cs∗ ≤ Cα〈ξ〉m−|α|+sδ.

We will say p(x, ξ) ∈ CsSm
1,δ if, in addition

(1.3.18) ‖Dα
ξ p(·, ξ)‖Cj ≤ Cα〈ξ〉m−|α|+jδ for 0 ≤ j ≤ s.

Thus we make a semantic distinction between Cs
∗S

m
1,δ and CsSm

1,δ, even when s /∈ Z+,
in which case Cs

∗ and Cs coincide.



43

Proposition 1.3.E. If p(x, ξ) ∈ CsSm
1,0, then, in the decomposition (1.3.5),

(1.3.19) pb(x, ξ) ∈ CsSm−sδ
1,δ .

Proof. That pb(x, ξ) satisfies an estimate of the form (1.3.17), with m replaced by
m− sδ, follows from (1.3.7), with t = 0. That, for integer j, 0 ≤ j ≤ s, we have an
estimate of the form (1.3.18), with m replaced by m− sδ, follows from (1.3.12) and
its easy generalization

(1.3.20) ‖f − Jεf‖Cj ≤ C εs−j‖f‖Cs∗ , 0 ≤ j < s,

and from the simple estimate ‖f − Jεf‖Cj ≤ C‖f‖Cj , in case s = j is an integer
(which in turn follows from the first part of (1.3.11).

It will also occasionally be useful to smooth out a symbol p(x, ξ) ∈ CsSm
1,δ, for

δ ∈ (0, 1). Pick γ ∈ (δ, 1) and apply (1.3.2), with εj = 2−j(γ−δ), obtaining p#(x, ξ)
and hence a decomposition of the form (1.3.5). In this case, we obtain

(1.3.21) p(x, ξ) ∈ CsSm
1,δ =⇒ p#(x, ξ) ∈ Sm

1,γ , pb(x, ξ) ∈ CsS
m−(γ−δ)s
1,γ .
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Chapter 2: Operator estimates
and elliptic regularity

In order to make use of the symbol smoothing of §1.3, we need operator estimates
on p(x,D) when p(x, ξ) ∈ CsSm

1,δ. We give a number of such results in §2.1, most
of them following from work of Bourdaud [BG]. The main result, Theorem 2.1.A,
treats the case δ = 1. This will be very useful for the treatment of paradifferential
operators in Chapter 3.

In §2.2 we derive a number of regularity results for nonlinear elliptic PDE, in-
cluding the classical Schauder estimates, and some variants. Section 2.3 gives a
brief treatment of adjoints of operators with symbols in CrS1

1,0. In §2.4 we prove
a sharp G̊arding inequality for p(x, ξ) ∈ CrSm

1,0. We use the symbol decomposition
p(x, ξ) = p#(x, ξ) + pb(x, ξ) in such a manner that we can apply the Fefferman-
Phong inequality to p#(x, D) and crudely bound pb(x,D). We also establish an
“ordinary” G̊arding inequality which will be useful.

§2.1. Bounds for operators with nonregular symbols

It is more difficult to establish continuity of operators with symbols in XsSm
1,0,

and other classes which arose in Chapter 1, than those with symbols in XsSm
cl , but

very important to do so, in order to exploit the symbol smoothing of §1.3. Most of
our continuity results will be consequences of the following result of G. Bourdaud
[BG], itself following pioneering work of Stein [S2].

Theorem 2.1.A. If r > 0 and p ∈ (1,∞), then, for p(x, ξ) ∈ Cr
∗S

m
1,1,

(2.1.1) p(x,D) : Hs+m,p −→ Hs,p

provided 0 < s < r. Furthermore, under these hypotheses,

(2.1.2) p(x,D) : Cs+m
∗ −→ Cs

∗ .

We will present Bourdaud’s proof below. First we record some implications.
Note that any p(x, ξ) ∈ Sm

1,1 satisfies the hypotheses for all r > 0. Since operators in
OPSm

1,δ possess good multiplicative properties for δ ∈ [0, 1), we have the following:

Corollary 2.1.B. If p(x, ξ) ∈ Sm
1,δ, 0 ≤ δ < 1, we have the mapping properties

(2.1.1) and (2.1.2) for all s ∈ R.

It is known that elements of OPS0
1,1 need not be bounded on Lp, even for p = 2,

but by duality and interpolation we have the following.
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Corollary 2.1.C. If p(x,D) and p(x,D)∗ belong to OPSm
1,1, then (2.1.1) holds for

all s ∈ R.

The main thesis of Bourdaud [BG] is that OPSm
1,1 ∩ (OPSm

1,1)
∗ possesses good

algebraic properties as well as good mapping properties. See also Hörmander [H2],
[H4]; he characterizes these operators by the behavior of their symbols.

The following result will be of great use to us.

Proposition 2.1.D. If p ∈ (1,∞) and p(x, ξ) ∈ CsSm
1,0, then

(2.1.3)
p(x,D) : Hr+m,p −→ Hr,p

p(x,D) : Cr+m
∗ −→ Cr

∗ ,

privided −s < r < s.

Proof. It suffices to take m = 0. The result follows from (2.1.1) if 0 < r < s, so it
remains to consider r ∈ (−s, 0]. For this, we make the decomposition (1.3.5), i.e.,

(2.1.4) p(x, ξ) = p#(x, ξ) + pb(x, ξ), p#(x, ξ) ∈ S0
1,δ, pb(x, ξ) ∈ CsS−sδ

1,δ ,

with δ ∈ (0, 1). Now Corollary 2.1.B applies to p#(x, D). Meanwhile, applying
(2.1.1) to pb(x,D) with m = −sδ gives

pb(x,D) : Hσ−sδ,p −→ Hσ,p(: Cσ−sδ
∗ −→ Cσ

∗ ), 0 < σ < s.

Picking δ close to 1 then yields (2.1.3) (with m = 0) for −s < r ≤ 0.

The following extension will also be useful.

Proposition 2.1.E. If p(x, ξ) ∈ CsS0
1,δ, with s > 0, δ ∈ (0, 1), then, for 1 < p <

∞,

(2.1.5) p(x,D) : Hr,p −→ Hr,p(: Cr
∗ −→ Cr

∗) for − (1− δ)s < r < s.

Proof. Use the decomposition p = p# + pb having the property (1.3.21), with δ <
γ < 1, m = 0. Applying the proof of Proposition 2.1.D to pb(x,D), and letting
γ → 1, we obtain (2.1.5).

We prepare to prove Theorem 2.1.A. Following [BG], and also [Ma], we make use
of the following results from Littlewood-Paley theory, whose proofs can be found
in §A.1.
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Lemma 2.1.F. Let fk ∈ S ′(Rn) be such that, for some A > 0,

(2.1.6) supp f̂k ⊂ {ξ : A · 2k−1 ≤ |ξ| ≤ A · 2k+1}, k ≥ 1.

Say f̂0 has compact support. Then, for p ∈ (1,∞), s ∈ R, we have

(2.1.7)
∥∥
∞∑

k=0

fk

∥∥
Hs,p ≤ C

∥∥∥
{ ∞∑

k=0

4ks|fk|2
}1/2

∥∥∥
Lp

.

If fk = ϕk(D)f , with ϕk supported in the shell defined by (2.1.6) and bounded in
S0

1,0, then the converse of the estimate (2.1.7) also holds.

Lemma 2.1.G. Let fk ∈ S ′(Rn) be such that

(2.1.8) supp f̂k ⊂ {ξ : |ξ| ≤ A · 2k+1}, k ≥ 0.

Then, for p ∈ (1,∞), s > 0, we have

(2.1.9)
∥∥∥
∞∑

k=0

fk

∥∥∥
Hs,p

≤ C
∥∥∥
{ ∞∑

k=0

4ks|fk|2
}1/2

∥∥∥
Lp

.

The next ingredient is a symbol decomposition to replace (1.1.16). This is nec-
essarily more complicated for symbols in Cr

∗S
m
1,1 than for XsSm

cl . We begin with the
S0

1 -partition of unity (1.3.1), and with

(2.1.10) p(x, ξ) =
∞∑

j=0

p(x, ξ)ψj(ξ) =
∞∑

j=0

pj(x, ξ).

Now, let us take a basis of L2(1/2 < |ξ| < 2) of the form

|ξ|(1−n)/2e4πik|ξ|/3ωl

( ξ

|ξ|
)

= βkl(ξ),

and write (for j ≥ 1)

(2.1.11) pj(x, ξ) =
∑

k,l

pjkl(x)βkl(2−jξ)ψ#
j (ξ),

where ψ#
1 (ξ) has support on 1/2 < |ξ| < 2 and is 1 on supp ψ1, ψ#

j (ξ) =
ψ#

1 (2−j+1ξ), with an analogous decomposition for p0(ξ). Inserting these decom-
positions into (2.1.10) and summing over j, we obtain p(x, ξ) as a sum of a rapidly
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decreasing sequence of elementary symbols. By definition, an elementary symbol
in Cr

∗S
0
1,δ is of the form

(2.1.12) q(x, ξ) =
∞∑

k=0

Qk(x)ϕk(ξ),

where ϕk is supported on 〈ξ〉 ∼ 2k and bounded in S0
1 , in fact ϕk(ξ) = ϕ1(2−k+1ξ),

for k ≥ 2, and Qk(x) satisfies

(2.1.13) |Qk(x)| ≤ C, ‖Qk‖Cr ≤ C · 2krδ.

For the purpose of proving Theorem 2.1.A, we take δ = 1. It suffices to estimate
the Hr,p-operator norm of q(x,D) when q(x, ξ) is such an elementary symbol.

Set Qkj(x) = ψj(D)Qk(x), with {ψj} the S0
1 partition of unity described above.

Set

(2.1.14)
q(x, ξ) =

∑

k

{ k−4∑

j=0

Qkj(x) +
k+3∑

j=k−3

Qkj(x) +
∞∑

j=k+4

Qkj(x)
}
ϕk(ξ)

= q1(x, ξ) + q2(x, ξ) + q3(x, ξ).

To estimate q(x,D)f, let fk = ϕk(D)f. By Lemma 2.1.F, since 〈ξ〉 ∼ 2j on the
spectrum of Qkj ,

(2.1.15)

‖q1(x,D)f‖Hs,p ≤ C
∥∥{ ∞∑

k=4

4ks
∣∣
k−4∑

j=0

Qkjfk

∣∣2}1/2∥∥
Lp

≤ C
∥∥{ ∞∑

k=4

4ks|fk|2
}1/2∥∥

Lp

≤ C‖f‖Hs,p ,

for all s ∈ R.
To estimate q2(x,D)f, note that ‖Qkj‖L∞ ≤ C · 2−jr+kr. Then Lemma 2.1.G

implies

(2.1.16) ‖q2(x,D)f‖Hs,p ≤ C
∥∥{ ∞∑

k=0

4ks|fk|2
}1/2∥∥

Lp ≤ C‖f‖Hs,p ,

for s > 0.
To estimate q3(x,D)f, we again apply Lemma 2.1.F, to obtain

(2.1.17)

‖q3(x,D)f‖Hs,p ≤ C
∥∥{ ∞∑

j=4

4js
∣∣
j−4∑

k=0

Qkjfk

∣∣2}1/2∥∥
Lp

≤ C
∥∥∥
{ ∞∑

j=4

4j(s−r)
(j−4∑

k=0

2kr|fk|
)2}1/2∥∥∥

Lp
.
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Now, if we set gj =
∑j−4

k=0 2(k−j)r|fk| and then set Gj = 2jsgj and Fj = 2js|fj |,
we see that Gj =

∑j−4
k=0 2(k−j)(r−s)Fj . As long as r > s, Young’s inequality yields

‖(Gj)‖`2 ≤ C‖(Fj)‖`2 , so the last line in (2.1.17) is bounded by

C
∥∥{ ∞∑

j=0

4js|fj |2
}1/2∥∥

Lp ≤ C‖f‖Hs,p .

This proves (2.1.1).
The proof of (2.1.2) is similar. We replace (2.1.7) by

(2.1.18) ‖f‖Cr∗ ∼ sup
k≥0

2kr‖ψk(D)f‖L∞

We also need an analogue of Lemma 2.1.G:

Lemma 2.1.H. If fk ∈ S ′(Rn) and supp f̂k ⊂ {ξ : |ξ| ≤ A · 2k+1}, then, for r > 0,

(2.1.19)
∥∥
∞∑

k=0

fk

∥∥
Cr∗
≤ C sup

k≥0
2kr‖fk‖L∞ .

Proof. For some finite N , we have ψj(D)
∑

k≥0 fk = ψj(D)
∑

k≥j−N

fk. Suppose that

supk 2kr ‖fk‖L∞ = S. Then

∥∥∥ψj(D)
∑

k≥0

fk

∥∥∥
L∞

≤ CS
∑

k≥j−N

2−kr ≤ C ′S2−jr.

This proves (2.1.19).

Now, to prove (2.1.2), as before it suffices to consider elementary symbols, of the
form (2.1.12)–(2.1.13), and we use again the decomposition q(x, ξ) = q1 + q2 + q3

of (2.1.14). Thus it remains to obtain analogues of the estimates (2.1.15)–(2.1.17).
Parallel to (2.1.15), using the fact that

∑k−4
j=0 Qkj(x)fk has spectrum in 〈ξ〉 ∼ 2k,

and ‖Qk‖L∞ ≤ C, we obtain

(2.1.20)

‖q1(x, D)f‖Cs∗ ≤ C sup
k≥0

2ks
∥∥

k−4∑

j=0

Qkjfk

∥∥
L∞

≤ C sup
k≥0

2ks‖fk‖L∞

≤ C‖f‖Cs∗ ,
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for all s ∈ R. Parallel to (2.1.16), using ‖Qkj‖L∞ ≤ C · 2−jr+kr and Lemma 2.1.H,
we have

(2.1.21)

‖q2(x,D)f‖Cs∗ ≤
∥∥
∞∑

k=0

gk

∥∥
Cs∗

≤ C sup
k≥0

2ks‖gk‖L∞

≤ C sup
k≥0

2ks‖fk‖L∞ ≤ C‖f‖Cs∗ ,

for all s > 0, where the sum of 7 terms

gk =
k+3∑

j=k−3

Qkj(x)fk

has spectrum contained in |ξ| ≤ C · 2k, and ‖gk‖L∞ ≤ C‖fk‖L∞ .

Finally, parallel to (2.1.17), as
∑j−4

k=0 Qkjfk has spectrum in 〈ξ〉 ∼ 2j , we have

(2.1.22)

‖q3(x,D)f‖Cs∗ ≤ C sup
j≥0

2js
∥∥

j−4∑

k=0

Qkjfk

∥∥
L∞

≤ C sup
j≥0

2j(s−r)

j−4∑

k=0

2kr‖fk‖L∞ .

If we bound this last sum by

(2.1.23)
(j−4∑

k=0

2k(r−s)
)

sup
k

2ks‖fk‖L∞ ,

then

(2.1.24) ‖q3(x,D)f‖Cs∗ ≤ C
(
sup
j≥0

2j(s−r)

j−4∑

k=0

2k(r−s)
)
‖f‖Cs∗

and the factor in brackets is finite as long as s < r. The proof of Theorem 2.1.A is
complete.

Things barely blow up in (2.1.24) when s = r. The following result is of some
use.

Proposition 2.1.I. If p(x, ξ) ∈ CrS0
1,1, r > 0, then

(2.1.25) p(x,D) : Cr+ε
∗ −→ Cr

∗ for all ε > 0.
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Furthermore, if δ ∈ [0, 1), then

(2.1.26) p(x, ξ) ∈ CrS0
1,δ =⇒ p(x,D) : Cr

∗ → Cr
∗ .

Proof. We follow the proof of (2.1.2). The estimates (2.1.20) and (2.1.21) continue
to work; (2.1.22) yields

‖q3(x,D)f‖Cr∗ ≤ C sup
j≥0

j−4∑

k=0

2kr‖fk‖L∞

= C

∞∑

k=0

2kr‖fk‖L∞

≤ C

∞∑

k=0

2kr · 2−kr−kε‖f‖Cr+ε
∗

which proves (2.1.25).
To prove (2.1.26), we use the symbol smoothing of (1.3.21), with m = 0. We get

p(x, ξ) = p#(x, ξ) + pb(x, ξ). We have p#(x,D) : Cr
∗ → Cr

∗ by Corollary 2.1.B. We
have pb(x,D) : Cr

∗ → Cr
∗ by (2.1.25).

Extensions of Bourdaud’s results have been obtained by Marschall [Ma]. Some
of them are summarized as follows:

Proposition 2.1.J. Suppose 1 ≤ q ≤ ∞, s > n
q , 1 < p < ∞, m ∈ R. Then

(2.1.27) p(x, ξ) ∈ Hs,qSm
1,0 =⇒ p(x,D) : Hr+m,p −→ Hr,p

provided

(2.1.28) n
(1

p
+

1
q
− 1

)+

− s < r ≤ s− n
(1

q
− 1

p

)+

.

Note that, when q = p, the condition (2.1.28) becomes

(2.1.29) n
(2

p
− 1

)+

− s < r ≤ s.

We refer to [Ma] for a proof of this and other results. Marschall also defines other
symbol classes, of the form XsSm

1,δ, analogous to the definition (1.3.16)–(1.3.17),
for Xs = Hs,p, δ ∈ [0, 1], and has further results on these symbols. We also mention
related results of Nagase [N] and Kumano-go and Nagase [KN].

The case q = p = 2 of Proposition 2.1.J had been obtained by Beals-Reed [BR].
We include their short proof here. As in [BR], we make use of the following:
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Lemma 2.1.K. Suppose that

(2.1.30) sup
ξ

∫
|g(η, ξ)|2 dη = A2 < ∞

and

(2.1.31) sup
η

∫
|G(η, ξ)|2 dξ = B2 < ∞.

Then

(2.1.32) Tf(η) =
∫

G(η, ξ)g(η − ξ, η)f(ξ) dξ

satisfies

(2.1.33) ‖Tf‖L2 ≤ A ·B ‖f‖L2 .

Proof. Simple consequence of the Schwartz inequality.

We now use this to prove Proposition 2.1.J when q = p = 2 and r = s. It suffices
to consider the case m = 0. We will also assume p(x, ξ) has compact support in x.
Then

(2.1.34) (p(x,D)u)ˆ(η) =
∫

p̂(η − ξ, ξ)û(ξ) dξ,

where p̂ denotes the partial Fourier transform with respect to x. The hypothesis
p ∈ HsS0

1,0 implies

(2.1.35) p̂(ζ, ξ) = g(ζ, ξ)〈ζ〉−s, with (2.1.30) holding for g.

If f = 〈ξ〉sû, then u ∈ Hs implies f ∈ L2, and we have

(2.1.36) 〈η〉s(p(x,D)u)ˆ(η) =
∫

G(η, ξ)g(η − ξ, ξ)f(ξ) dξ

where

(2.1.37) G(η, ξ) =
〈η〉s

〈η − ξ〉s〈ξ〉s .

One can show that G satisfies (2.1.31), granted that s > n/2, so Lemma 2.1.K gives
a bound for the L2-norm of (2.1.36), hence a bound for ‖p(x,D)u‖Hs , as desired.
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§2.2. Further elliptic regularity theorems

We return to the setting of §1.2, first considering an elliptic differential operator
of order m

(2.2.1) A(x,D) =
∑

|α|≤m

aα(x) Dα,

whose coefficients have limited regularity. We will eschew the generality of §1.2 and
concentrate on Xs = Cs. Thus A(x, ξ) ∈ CsSm

cl is elliptic. Pick δ ∈ (0, 1) and write

(2.2.2) A(x, ξ) = A#(x, ξ) + Ab(x, ξ)

with

(2.2.3) A#(x, ξ) ∈ Sm
1,δ, Ab(x, ξ) ∈ CsSm−δs

1,δ .

Consequently, by Proposition 2.1.E,

(2.2.4) Ab(x,D) : Cm+r−δs
∗ −→ Cr

∗ , −(1− δ)s < r < s.

Now let p(x,D) ∈ OPS−m
1,δ be a parametrix for A#(x,D), which is elliptic.

Hence, mod C∞,

(2.2.5) p(x,D)A(x,D)u = u + p(x,D)Ab(x, D)u,

so if

(2.2.6) A(x,D)u = f,

then, mod C∞,

(2.2.7) u = p(x,D)f − p(x,D)Ab(x,D)u.

In view of (2.2.5), we see that, when (2.2.7) is satisfied,

(2.2.8) u ∈ Cm+r−δs
∗ , f ∈ Cr

∗ =⇒ u ∈ Cm+r
∗ .

We then have the following.

Proposition 2.2.A. Let A(x, ξ) ∈ CsSm
cl be elliptic and suppose u solves (2.2.6).

Assuming

(2.2.9) s > 0, 0 < δ < 1, and − (1− δ)s < r < s,

we have

(2.2.10) u ∈ Cm+r−δs, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗ .
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Note that, for |α| = m, Dαu ∈ Cr−δs
∗ , and r − δs could be negative. However,

aα(x)Dαu will still be well defined for aα ∈ Cs. Indeed, if (2.1.3) is applied to the
special case of a multiplication operator, we have

(2.2.11) a ∈ Cs, u ∈ Cσ
∗ =⇒ au ∈ Cσ

∗ for − s < σ < s.

Note that the range of r in (2.2.9) can be rewritten as −s < r − δs < (1 − δ)s. If
we set r − δs = −s + ε, this means 0 < ε < (2− δ)s, so we can rewrite (2.2.10) as

(2.2.12) u ∈ Cm−s+ε, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗ , provided ε > 0, r < s,

as long as the relation r = −(1− δ)s + ε holds. Letting δ range over (0, 1), we see
that this will hold for any r ∈ (−s + ε, ε). However, if r ∈ [ε, s), we can first obtain
from the hypothesis (2.2.12) that u ∈ Cm+ρ

∗ , for any ρ < ε. This improves the a
priori regularity of u by almost s units. This argument can be iterated repeatedly,
to yield:

Theorem 2.2.B. If A(x, ξ) ∈ CsSm
cl is elliptic and u solves (2.2.6), and if s > 0

and ε > 0, then

(2.2.13) u ∈ Cm−s+ε, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗ for − s < r < s.

We can sharpen this up to obtain the following Schauder regularity result.

Theorem 2.2.C. Under the hypotheses above,

(2.2.14) u ∈ Cm−s+ε, f ∈ Cs
∗ =⇒ u ∈ Cm+s

∗ .

Proof. Applying (2.2.13), we can assume u ∈ Cm+r
∗ with s−r > 0 arbitrarily small.

Now if we invoke Proposition 2.1.I, we can supplement (2.2.4) with

Ab(x,D) : Cm+s−δs+ε
∗ −→ Cs

∗ , ε > 0.

If δ > 0, and if ε > 0 is picked small enough, we can write m + s− δs + ε = m + r
with r < s, so, under the hypotheses of (2.2.14), the right side of (2.2.7) belongs
to Cm+s

∗ , proving the theorem. We note that a similar argument also produces the
regularity result:

(2.2.15) u ∈ Hm−s+ε,p, f ∈ Cs
∗ =⇒ u ∈ Cm+s

∗ .

As in §1.2, we apply this to solutions to the quasilinear elliptic PDE

(2.2.16)
∑

|α|≤m

aα(x,Dm−1u) Dαu = f.

As long as u ∈ Cm−1+s, aα(x, Dm−1u) ∈ Cs. If also u ∈ Cm−s+ε, we obtain (2.2.13)
and (2.2.14). If r > s, using the conclusion u ∈ Cm+s

∗ , we obtain aα(x,Dm−1u) ∈
Cs+1, so we can reapply (2.2.13)-(2.2.14) for further regularity, obtaining the fol-
lowing.
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Theorem 2.2.D. If u solves the quasilinear elliptic PDE (2.2.16), then

(2.2.17) u ∈ Cm−1+s ∩ Cm−s+ε, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗

provided s > 0, ε > 0, and −s < r. Thus

(2.2.18) u ∈ Cm−1+s, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗

provided

(2.2.19) s >
1
2
, r > s− 1.

We can sharpen up Theorem 2.2.D a bit as follows. Replace the hypothesis in
(2.2.17) by

(2.2.20) u ∈ Cm−1+s ∩Hm−1+σ,p,

with p ∈ (1,∞). Parallel to (2.2.11), we have

(2.2.21) a ∈ Cs, u ∈ Hσ,p =⇒ au ∈ Hσ,p, for − s < σ < s,

as a consequence of (2.1.3), so we see that the left side of (2.2.16) is well defined
provided s + σ > 1. We have (2.2.7), with

(2.2.22) Ab(x,D) : Hm+r−δs,p −→ Hr,p for − (1− δ)s < r < s,

parallel to (2.2.4). Thus, if (2.2.20) holds, we obtain

(2.2.23) p(x,D)Ab(x,D)u ∈ Hm−1+σ+δs,p

provided −(1− δ)s < δs− 1 + σ < s, i.e., provided

(2.2.24) s + σ > 1 and − 1 + σ + δs < s.

Thus, if f ∈ Hρ,p with ρ > σ−1, we manage to improve the regularity of u over the
hypothesized (2.2.20). One way to record this gain is to use the Sobolev imbedding
theorem:

(2.2.25) Hm−1+σ+δs,p ⊂ Hm−1+σ,p1 , p1 =
pn

n− δs
> p

(
1 +

δsp

n

)
.

If we assume f ∈ Cr
∗ with r > σ− 1, we can iterate this argument sufficiently often

to obtain u ∈ Cm−1+σ−ε, for arbitrary ε > 0. Now we can arrange s + σ > 1 + ε, so
we are now in a position to apply Theorem 2.2.D. This proves:
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Theorem 2.2.E. If u solves the quasilinear elliptic PDE (2.2.16), then

(2.2.26) u ∈ Cm−1+s ∩Hm−1+σ,p, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗

provided 1 < p < ∞ and

(2.2.27) s > 0, s + σ > 1, r > σ − 1.

Note that if u ∈ Hm,p for some p > n, then u ∈ Cm−1+s for s = 1 − n/p > 0,
and then (2.2.26) applies, with σ = 1, or even with σ = n/p + ε.

We compare Theorem 2.2.E with material in Chapter 9 of Gilbarg and Trudinger
[GT], treating the case of a scalar elliptic PDE of order 2. In that case, if u
is a solution to (2.2.16), Theorem 9.13–Lemma 9.16 of [GT] imply the following.
Assume u ∈ C1 and u ∈ H2,p for some p ∈ (1,∞). Then, given any q ∈ (p,∞), if
f ∈ Lq, then u ∈ H2,q. If q > n, we can apply the observation above, to conclude:

Theorem 2.2.F. If m = 2 and (2.2.16) is scalar, then, given p ∈ (1,∞),
q > n,

(2.2.28) u ∈ C1 ∩H2,p, f ∈ Lq ∩ Cr
∗ =⇒ u ∈ C2+r

∗ if r > −1 +
n

q
.

We note parenthetically that Lq ⊂ Cρ
∗ for ρ < −n/q.

We also record the following improvement of Theorem 1.2.D, regarding the reg-
ularity of solutions to a completely nonlinear elliptic system

(2.2.29) F (x,Dmu) = f.

We could apply Theorem 2.2.B–Theorem 2.2.C to the equation for uj = ∂u/∂xj :

(2.2.30)
∑

|α|≤m

∂F

∂ζα
(x,Dmu)Dαuj = −Fxj (x,Dmu) +

∂f

∂xj
= fj .

Suppose u ∈ Cm+s, s > 0, so the coefficients aα(x) = (∂F/∂ζα)(x,Dmu) ∈ Cs. If
f ∈ Cr

∗ , then fj ∈ Cs ∪ Cr−1
∗ . We can apply Theorem 2.2.B–Theorem 2.2.C to uj

provided u ∈ Cm+1−s+ε, to conclude that u ∈ Cm+s+1
∗ ∪ Cm+r

∗ . This implication
can be iterated as long as s + 1 < r, until we obtain u ∈ Cm+r

∗ .
This argument has the drawback of requiring too much regularity of u, namely

that u ∈ Cm+1−s+ε as well as u ∈ Cm+s. We can fix this up by considering difference
quotients rather than derivatives ∂ju. Thus, for y ∈ Rn, |y| small, set

vy(x) = |y|−1
[
u(x + y)− u(x)

]
;
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vy satisfies the PDE

(2.2.31)
∑

|α|≤m

Φαy(x)Dαvy(x) = Gy(x,Dmu)

where

(2.2.32) Φαy(x) =
∫ 1

0

∂F

∂ζα

(
x, tDmu(x) + (1− t)Dmu(x + y)

)
dt

and Gy is an appropriate analogue of the right side of (2.2.30). Thus Φαy is in Cs,
uniformly as |y| → 0, if u ∈ Cm+s, while this hypothesis also gives a uniform bound
on the Cm−1+s-norm of vy. Now, for each y, Theorems 2.2.B and 2.2.C apply to vy,
and one can get an estimate on ‖vy‖Cm+ρ , ρ = min (s, r − 1), uniform as |y| → 0.
Therefore we have the following.

Theorem 2.2.G. If u solves the elliptic PDE (2.2.29), then

(2.2.33) u ∈ Cm+s, f ∈ Cr
∗ =⇒ u ∈ Cm+r

∗

provided

(2.2.34) 0 < s < r.

Another proof of this result will be given in §3.3; see Theorem 3.3.C.
We briefly discuss results for PDE in divergence form which hold for less regular

u than required in Theorem 2.2.B–Theorem 2.2.E. We restrict attention to the case
m = 2. Thus consider

(2.2.35)
∑

j,k

∂jajk(x)∂ku = f,

which we assume to be elliptic. We can write this as

(2.2.36)
∑

j

∂jAj(x, D)u = f,

where

(2.2.37) ajk(x) ∈ Cr =⇒ Aj(x, ξ) ∈ CrS1
1,0.

Using the decomposition

(2.2.38)
Aj(x, ξ) = A#

j (x, ξ) + Ab
j(x, ξ),

A#
j (x, ξ) ∈ S1

1,δ, Ab
j(x, ξ) ∈ CrS1−δr

1,δ ,
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with 0 < δ < 1, we have

(2.2.39)
∑

∂jA
#
j (x,D) = B(x, D) ∈ OPS2

1,δ elliptic .

Let p(x,D) ∈ OPS−2
1,δ be a parametrix for B(x,D). Then (2.2.36) implies

(2.2.40) u = p(x,D)f −
∑

p(x, D)∂jA
b
j(x,D)u mod C∞.

Now, for q ∈ (1,∞), Proposition 2.1.E implies

(2.2.41) Ab
j(x, D) : Hσ,q =⇒ Hσ−1+δr,q

provided −(1− δ)r < σ − 1 + δr < r, i.e., provided

(2.2.42) 1− r < σ < 1 + (1− δ)r.

With these results in mind, we can establish the following, which gives an affirmative
answer to a question of Jeff Cheeger.

Theorem 2.2.H. Suppose the PDE (2.2.35) is elliptic, with

(2.2.43) u ∈ Hσ,q, f ∈ H−1,p, ajk ∈ Cr,

where

(2.2.44) 1 < q < p < ∞, r > 0 and σ > 1− r.

Then

(2.2.45) u ∈ H1,p.

Proof. Looking at (2.2.40), we have p(x,D)f ∈ H1,p. If σ < 1, (2.2.40) yields
u ∈ H σ̃,q with σ̃ = min (σ + δr, 1). We can iterate this to get u ∈ H1,q. From
there, we can apply (2.2.41) with σ = 1, to obtain Ab

j(x,D)u ∈ Hδr,q, and hence

(2.2.46) p(x,D)∂jA
b
j(x,D)u ∈ H1+δr,q ⊂ H1,q̃

where

(2.2.47) q̃ =
nq

n− δrq
> q

(
1 +

δrq

n

)
.

Hence u ∈ H1,q1 with q1 = min (p, q̃). Iterating this argument a finite number of
times we obtain the desired property (2.2.45).



58

One use for this is in the study of the Ricci tensor. If one uses local harmonic
coordinates on a Riemannian manifold, then the metric tensor and Ricci tensor are
related by

(2.2.48) −1
2

∑

j,k

gjk∂j∂kg`m + Q`m(g, Dg) = R`m,

where Q`m(g, ζ) is a certain quadratic form in ζ, with coefficients smooth in g. We
can rewrite this as

(2.2.49) −1
2

∑

j,k

∂jg
jk∂kg`m + Q′

`m(g, Dg) = R`m,

with a slightly different Q′`m of the same nature. The goal is to presume a priori
some weak estimates on gjk, and, given certain regularity of R`m, deduce better
estimates on the metric tensor, in this coordinate system. Thus it is useful to
supplement Theorem 2.2.H with the following.

We consider a PDE of the form

(2.2.50)
∑

∂jajk(x, u)∂ku + B(x, u, Du) = f,

assumed to be elliptic on a region in Rn. Assume B(x, u,Du) is a quadratic form
in Du, with coefficients smooth in x, u, and ajk(x, u) smooth in its arguments.

Proposition 2.2.I. Let the elliptic PDE (2.2.50) be solved by

(2.2.51) u ∈ H1,q, q > n.

Let q < p < ∞ and assume

(2.2.52) f ∈ H−1,p.

Then

(2.2.53) u ∈ H1,p.

Proof. Note that (2.2.51) implies that u ∈ Cr for some r > 0, and hence

(2.2.54) B(x, u,Du) ∈ Lq/2.

Rewrite (2.2.50) as

(2.2.55)
∑

∂jajk(x)∂ku = g = f −B,
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with ajk(x) = ajk(x, u) ∈ Cr. From (2.2.52), (2.2.54), and the Sobolev imbedding
theorem,

Lq/2 ⊂ H−1,s, s =
1
2q

1− q
2n

,

we deduce that g ∈ H−1,q̃, q̃ = min (s, p). Then Theorem 2.2.H implies u ∈ H1,q̃.
This is an improvement over the hypothesis (2.2.51) if q > n, since

q = n + a =⇒ 1− q

2n
=

1
2

(
1− a

n

)
=⇒ s > q

(
1 +

a

n

)
.

Iterating this argument gives the conclusion (2.2.53).

This gives results on (2.2.49) complementary to the result of DeTurk and Kazdan
[DK] that, if g is C2 and R`m is Ck+α, in harmonic coordinates, then g is Ck+2+α.
It is clear that further generalizations can be established. For example, if (2.2.50)
is elliptic and (2.2.51) holds, then

(2.2.56) f ∈ Hσ,p, σ ≥ −1 =⇒ u ∈ Hσ+2,p.

Proposition 2.2.I can be brought to bear on some of the material in [AC]. Further
related results arise in [[AK2LT]].

To end this section, we recall and apply a result established by the DeGeorgi-
Nash-Moser theory for the divergence form PDE (2.2.35) in the case when the
coefficients ajk(x) are scalar. A proof is given in Appendix C.

Theorem 2.2.J. Suppose the PDE (2.2.35) is elliptic on Ω with

(2.2.57) ajk ∈ L∞ scalar,

(2.2.58) f = g +
∑

∂jfj , with g ∈ Lq/2, fj ∈ Lq, q > n,

and u ∈ H1,2. Then

(2.2.59) u ∈ Cr for some r > 0,

with Cr-norm on compact sets bounded by ‖u‖L2 , ‖fj‖Lq , ‖g‖Lq/2 and the ellipticity
constants.

Sometimes this can be used in concert with the last two theorems.
We recall a classical use of Theorem 2.2.J. Given a domain Ω ⊂ Rn, with smooth

boundary, ϕ ∈ Hs(∂Ω), s ≥ 1/2, we seek to minimize

(2.2.60) I(u) =
∫

Ω

F (∇u) dx
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over V 1
ϕ = {u ∈ H1(Ω) : u = ϕ on ∂Ω}, assuming that F (p) is smooth in its

arguments and satisfies

C1|p|2 −K1 ≤ F (p) ≤ C2|p|2 + K2

(2.2.61)

A1|ξ|2 ≤
∑

∂pj ∂pk
F (p)ξjξk ≤ A2|ξ|2.

The existence of such a minimum is established in the early part of [Mor]. Such u
is a weak solution to the nonlinear PDE

(2.2.62)
∑

j

∂xj (∂pj F )(∇u) = 0.

One next wants to establish higher regularity of u, first on the interior of Ω. Given
y ∈ Rn, |y| small, the difference quotient

wy(x) = |y|−1
[
u(x + y)− u(x)

]

satisfies the divergence form PDE

(2.2.63)
∑

j,k

∂ja
jk
y (x)∂kwy(x) = 0

with

(2.2.64) ajk
y (x) =

∫ 1

0

(∂pj ∂pk
F )

(
(1− t)∇u(x) + t∇u(x + y)

)
dt.

Each wy ∈ H1, and we have an L2-bound on wy over any O ⊂⊂ Ω, as |y| → 0.
From Theorem 2.2.J there follows a Cr-bound on wy on any O ⊂⊂ Ω, hence we
have u ∈ C1+r on the interior of Ω. Now u` = ∂`u satisfies

(2.2.65)
∑

j,k

∂ja
jk(x)∂ku` = 0,

with

(2.2.66) ajk(x) = (∂pj ∂pk
F )(∇u(x)) ∈ Cr,

so the Schauder theory now kicks in to yield further regularity. Boundary regularity
will be examined in §8.3.

We remark on the fact that, in Theorem 2.2.J, even though we require u ∈ H1,2,
we can use ‖u‖L2 rather than ‖u‖H1,2 to estimate the Cr-norm. This arises as
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follows. If K ⊂⊂ Ω, pick ψ ∈ C∞0 (Ω), ψ = 1 on K, and, for u ∈ H1,2
loc (Ω) solving

(2.2.35), write

(2.2.67)

∑ ∫

Ω

ψ(x)2ajk(x)(∂ju)(∂ku) dx

= −2
∑∫

Ω

(∂jψ)ψajk(∂ku)u dx

+
∫

Ω

{[
2

∑
(∂jψ)ψfj − ψ2g

]
u +

∑
ψ2(∂ju)fj

}
dx,

integrating by parts. In the first term on the right, group together ψ(∂ku) and
(∂jψ)u, and apply Cauchy’s inequality. Give a similar treatment to the last term.
This leads to an estimate

(2.2.68)
∫

Ω

ψ(x)2|∇u|2 dx ≤ C

∫

Ω

[
|∇ψ|2|u|2 +

∑
ψ2|fj |2 + ψ2|g| · |u|

]
dx,

hence

(2.2.69) ‖∇u‖L2(K) ≤ C‖u‖2L2(Ω) + C‖g‖2L2(Ω) + C
∑

‖fj‖2L2(Ω)

for a solution to (2.2.35). Here, C depends on the ellipticity constants but not on
any regularity of the coefficients ajk.

§2.3. Adjoints

It is useful to understand some things about adjoints of operators with symbols
in CrSm

1,0. The results we record here follow simply from the symbol smoothing
techniques of §1.3 and mapping properties of §2.1, plus standard results on pseu-
dodifferential operators.

We are particularly interested in p(x, D)∗ when p(x, ξ) ∈ CrS1
1,0. Recall that, in

this case,

(2.3.1) p(x, ξ) = p#(x, ξ) + pb(x, ξ),

with

(2.3.2) p#(x, ξ) ∈ S1
1,δ

and, for r = ` + σ, 0 < σ < 1,

(2.3.3) Dβ
xp#(x, ξ) ∈ S1

1,δ for |β| ≤ `.
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Meanwhile,

(2.3.4) pb(x, ξ) ∈ CrS1−rδ
1,δ .

It follows from Proposition 2.1.D that

(2.3.5) pb(x,D) : Hs −→ Hs for − r < s < r, if rδ ≥ 1.

In view of (2.3.3), the standard symbol expansion for p#(x,D)∗ gives

(2.3.6) p#(x,D)∗ − q#(x,D) ∈ OPS0
1,δ if r > 1,

with

(2.3.7) q#(x, ξ) = p#(x, ξ)∗.

Noting (2.3.4)–(2.3.5), we deduce:

Proposition 2.3.A. Given p(x, ξ) ∈ CrS1
1,0, r > 1, we have

(2.3.8) p(x,D)∗ − q(x,D) : Hs −→ Hs for − r < s < r

with

(2.3.9) q(x, ξ) = p(x, ξ)∗.

§2.4. Sharp G̊arding inequality

Let p(x, ξ) ∈ CsSm
1,0 be scalar, with p(x, ξ) ≥ −C0. We aim to show that, for a

certain range of positive m, p(x,D) is semi-bounded on L2; this is a sharp G̊arding
inequality. We will derive it simply by decomposing p(x, ξ) and applying known
results for pseudodifferential operators. Recall we can write

(2.4.1) p(x, ξ) = p#(x, ξ) + pb(x, ξ)

with

(2.4.2) p#(x, ξ) ∈ Sm
1,δ, pb(x, ξ) ∈ CsSm−sδ

1,δ ,

for any given δ ∈ (0, 1). Furthermore, pb(x,D) is bounded on L2, by Proposition
2.1.E, as long as

(2.4.3) m− δs ≤ 0.

If this condition holds, it remains only to consider semiboundedness of p#(x, D),
which belongs to OPSm

1,δ. We may as well apply the best available estimate for
this, the Fefferman-Phong inequality [FP], which implies p#(x,D) is semibounded
on L2 as long as

(2.4.4) m ≤ 2(1− δ).

Thus, we have semiboundedness of p(x,D) on L2 as long as, for some δ ∈ (0, 1),
we have m ≤ min{δs, 2(1− δ)}. Maximizing over 0 < δ < 1 gives 2s/(2 + s) as the
optimal value of m. We have proved:
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Proposition 2.4.A. Let p(x, ξ) ∈ CsSm
1,0 be scalar, and bounded from below, p(x, ξ) ≥

−C0. Then, for all u ∈ C∞0 ,

(2.4.5) Re (p(x,D)u, u) ≥ −C1 ‖u‖2L2 ,

provided s > 0 and m ≤ 2s/(2 + s).

In particular, this result applies when p(x, ξ) ∈ Hσ,2Sm
1,0, σ = n/2 + s. In

this case, a strengthened version of Lemma 3.1 of Beals-Reed [BR] is obtained.
The proposition above can also be compared with Theorem 7.1 in [H2]. There
is demonstrated a semiboundedness result for a class of operators with symbols
contained in C0Sm0

1,0 ∩C2Sm2+2
1,0 , with m0+m2 ≤ 0. More precisely, using notation to

be defined in (3.3.34), it is assumed that p(x, ξ) ∈ S̃m0
1,1 and, for |β| = 2, Dβ

xp(x, ξ) ∈
S̃m2+2

1,1 , with m0 + m2 ≤ 0.

If p(x, ξ) is a positive semidefinite L × L matrix, then we cannot appeal to
Fefferman-Phong, so instead of (2.4.4) we must require m ≤ 1 − δ. Thus, in this
case, we have semiboundedness of (2.4.5) provided s > 0 and

(2.4.6) m ≤ s

1 + s
.

We will also have occasion to use the folowing ordinary G̊arding inequality, valid
for L× L systems.

Proposition 2.4.B. Let p(x, ξ) ∈ CsS2m
1,0 be an L×L system. Assume s > m and

(2.4.7) p(x, ξ) + p(x, ξ)∗ ≥ C|ξ|2mI, for |ξ| ≥ K.

Then, for any µ < m, there exist C1 and C2 such that

(2.4.8) Re (p(x, D)u, u) ≥ C1‖u‖2Hm − C2‖u‖2Hµ .

Proof. It suffices to establish (2.4.8) for some µ < m. Use the decomposition (2.4.1),
with p# ∈ S2m

1,δ , pb ∈ Cs−tS2m−δt
1,0 . For δ slightly less than 1, we can apply G̊arding’s

inequality in its familiar form to p#(x,D), and since, by Proposition 2.1.D, the
perturbation pb(x,D) maps Hm to H−m+γ , provided s− t > m− γ and δt > γ, we
obtain an estimate of the form (2.4.8).
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Chapter 3: Paradifferential operators

The key tool of paradifferential operator calculus is developed in this chapter.
This tool was introduced by J.-M. Bony [Bo] and developed by many others, par-
ticularly Y. Meyer [M1]–[M2]. We begin in §3.1 with Meyer’s ingenious formula for
F (u) as M(x,D)u+R where F is smooth in its argument(s), u belongs to a Hölder
or Sobolev space, M(x,D) is a pseudodifferential operator of type 1, 1, and R is
smooth. From there, one applies symbol smoothing to M(x, ξ) and makes use of
results established in Chapter 2. The tool that arises is quite powerful in nonlinear
analysis. The first glimpse we give of this is that it automatically encompasses some
important Moser estimates. We re-derive elliptic regularity results established in
Chapter 2, after establishing some microlocal regularity results. In §3.3 we do this
using symbol smoothing with δ < 1; in §3.4 we present some results of Bony and
Meyer dealing with the δ = 1 case, the case of genuine paradifferential operators.

In §3.5 some product estimates are established which, together with the operator
calculus of §3.4, yield in §3.6 some useful commutator estimates, including impor-
tant commutator estimates of Coifman and Meyer [CM] and of Kato and Ponce
[KP]. We also discuss connections with the T (1) Theorem.

§3.1. Composition and paraproducts

Following [M1], we discuss the connection between F (u), for smooth nonlinear
F, and the action on u of certain pseudodifferential operators of type 1,1. Let {ψj}
be the S0

1 partition of unity (1.3.1), and set Ψk(ξ) =
∑

j≤k ψj(ξ). Given u, e.g., in
Cr(Rn), set

(3.1.1) uk = Ψk(D)u,

and write

(3.1.2) F (u) = F (u0) + [F (u1)− F (u0)] + · · ·+ [F (uk+1)− F (uk)] + · · ·
Then write

(3.1.3)
F (uk+1)− F (uk) = F (uk + ψk+1(D)u)− F (uk)

= mk(x)ψk+1(D)u,

where

(3.1.4) mk(x) =
∫ 1

0

F ′(Ψk(D)u + tψk+1(D)u) dt

Consequently, we have

(3.1.5)
F (u) = F (u0) +

∞∑

k=0

mk(x)ψk+1(D)u

= M(x,D)u + F (u0)
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where

(3.1.6) M(x, ξ) =
∞∑

k=0

mk(x)ψk+1(ξ) = MF (u; x, ξ).

We claim

(3.1.7) M(x, ξ) ∈ S0
1,1,

provided u is continuous. To estimate M(x, ξ), note first that, by (3.1.4),

(3.1.8) ‖mk‖L∞ ≤ sup |F ′(λ)|.

To estimate higher derivatives, we use the classical estimate

(3.1.9) ‖D`g(h)‖L∞ ≤ C
∑

1≤ν≤`

‖g′‖Cν−1‖h‖ν−1
L∞ ‖D`h‖L∞

to obtain

(3.1.10) ‖D`
xmk‖L∞ ≤ C`‖F ′′‖C`−1〈‖u‖L∞〉`−1 · 2k`,

granted the following estimates, which hold for all u ∈ L∞:

(3.1.11) ‖Ψk(D)u + tψk+1(D)u‖L∞ ≤ C‖u‖L∞ ,

and

(3.1.12) ‖D`[Ψk(D)u + tψk+1(D)u]‖L∞ ≤ C`2k`‖u‖L∞

for t ∈ [0, 1]. Consequently, (3.1.6) yields

(3.1.13) |Dα
ξ M(x, ξ)| ≤ Cα sup

λ
|F ′(λ)|〈ξ〉−|α|

and, for |β| ≥ 1,

(3.1.14) |Dβ
xDα

ξ M(x, ξ)| ≤ Cαβ‖F ′′‖C|β|−1〈‖u‖L∞〉|β|−1〈ξ〉|β|−|α|.

We give a formal statement of the result just established.
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Proposition 3.1.A. If F is C∞ and u ∈ Cr with r ≥ 0, then

(3.1.15) F (u) = MF (u; x,D)u + R(u)

where
R(u) = F (ψ0(D)u) ∈ C∞

and

(3.1.16) MF (u; x, ξ) = M(x, ξ) ∈ S0
1,1.

Applying Theorem 2.1.A, we have

(3.1.17) ‖M(x,D)f‖Hs,p ≤ K‖f‖Hs,p

for p ∈ (1,∞), s > 0, with

(3.1.18) K = KN (F, u) = C‖F ′‖CN [1 + ‖u‖N
L∞ ],

provided 0 < s < N, and similarly

(3.1.19) ‖M(x,D)f‖Cs∗ ≤ K‖f‖Cs∗ .

Using f = u, we have the following well known and important Moser-type estimates:

(3.1.20) ‖F (u)‖Hs,p ≤ KN (F, u)‖u‖Hs,p + ‖R(u)‖Hs,p ,

and

(3.1.21) ‖F (u)‖Cs∗ ≤ KN (F, u)‖u‖Cs∗ + ‖R(u)‖Cs∗ ,

given 1 < p < ∞, 0 < s < N, with KN (F, u) as in (3.1.18); this involves the
L∞-norm of u, and one can use ‖F ′‖CN (I) where I contains the range of u. Note
that, if F (u) = u2, then F ′(u) = 2u, and higher powers of ‖u‖L∞ do not arise;
hence we recover the familiar estimate

(3.1.22) ‖u2‖Hs,p ≤ Cs‖u‖L∞ · ‖u‖Hs,p , s > 0,

with a similar estimate on ‖u2‖Cs∗ .
It will be useful to have further estimates on the symbol M(x, ξ) = MF (u; x, ξ),

when u ∈ Cr with r > 0. The estimate (3.1.12) extends to

(3.1.23)

∥∥D`
[
Ψk(D)f + tψk+1(D)f

]∥∥
L∞ ≤ C`‖f‖Cr , ` ≤ r,

C`2k(`−r)‖f‖Cr , ` > r,
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so we have, when u ∈ Cr,

(3.1.24)
|Dβ

xDα
ξ M(x, ξ)| ≤ Kαβ〈ξ〉−|α|, |β| ≤ r,

Kαβ〈ξ〉−|α|+|β|−r, |β| > r,

with
(3.1.25) Kαβ = Kαβ(F, u) = Cαβ‖F ′‖C|β| [1 + ‖u‖|β|Cr ].
Also, since Ψk(D)+ tψk+1(D) is uniformly bounded on Cr, for t ∈ [0, 1], k ≥ 0, we
have
(3.1.26) ‖Dα

ξ M(·, ξ)‖Cr ≤ Kαr〈ξ〉−|α|,
where Kαr is as in (3.1.25), with |β| = [r] + 1. This last estimate shows that

(3.1.27) u ∈ Cr =⇒ MF (u; x, ξ) ∈ CrS0
1,0.

This is useful additional information; for example (3.1.17) and (3.1.19) hold for
s > −r, and of course we can apply the symbol smoothing of §1.3.

It will be useful to have terminology expressing the structure of the symbols we
produce. Given r ≥ 0, we say

(3.1.28)
p(x, ξ) ∈ ArSm

1,δ ⇐⇒ ‖Dα
ξ p(·, ξ)‖Cr ≤ Cα〈ξ〉m−|α|

and |Dβ
xDα

ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−|α|+δ(|β|−r), |β| > r.

Thus (3.1.24)–(3.1.26) yield

(3.1.29) M(x, ξ) ∈ ArS0
1,1

for the M(x, ξ) of Proposition 3.1.A. If r ∈ R+ \Z+, the class ArSm
1,1 coincides with

the symbol class denoted by Am
r by Meyer [M1]. Clearly A0Sm

1,δ = Sm
1,δ, and

ArSm
1,δ ⊂ CrSm

1,0 ∩ Sm
1,δ.

Also from the definition we see that

(3.1.30)
p(x, ξ) ∈ ArSm

1,δ =⇒ Dβ
xp(x, ξ) ∈ Sm

1,δ for |β| ≤ r

S
m+δ(|β|−r)
1,δ for |β| ≥ r.

It is also natural to consider a slightly smaller symbol class:

(3.1.31) p(x, ξ) ∈ Ar
0S

m
1,δ ⇐⇒ ‖Dα

ξ p(·, ξ)‖Cr+s ≤ Cαs〈ξ〉m−|α|+δs, s ≥ 0.

Considering the cases s = 0 and s = |β| − r, we see that
Ar

0S
m
1,δ ⊂ ArSm

1,δ.

We also say
(3.1.32) p(x, ξ) ∈ rSm

1,δ ⇐⇒ the right side of (3.1.30) holds ,

so
ArSm

1,δ ⊂ rSm
1,δ.

The following result refines (3.1.29).
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Proposition 3.1.B. For the symbol M(x, ξ) = MF (u; x, ξ) of Proposition 3.1.A,
we have

(3.1.33) M(x, ξ) ∈ Ar
0S

m
1,1

provided u ∈ Cr, r ≥ 0.

Proof. For this, we need

(3.1.34) ‖mk‖Cr+s ≤ C · 2ks.

Now, extending (3.1.9), we have

(3.1.35) ‖g(h)‖Cr+s ≤ C‖g‖CN [1 + ‖h‖N
L∞ ](‖h‖Cr+s + 1)

with N = [r + s] + 1, as a consequence of (3.1.21) when r + s is not an integer, and
by (3.1.9) when it is. This gives, via (3.1.4),

(3.1.36) ‖mk‖Cr+s ≤ C(‖u‖L∞) sup
t∈I

‖(Ψk + tψk+1)u‖Cr+s

where I = [0, 1]. However,

(3.1.37) ‖(Ψk + tψk+1)u‖Cr+s ≤ C · 2ks‖u‖Cr .

For r + s ∈ Z+, this follows from (1.3.11); for r + s /∈ Z+ it follows as in the proof
of Lemma 1.3.A, since

(3.1.38) 2−ksΛs(Ψk + tψk+1) is bounded in OPS0
1,0.

This establishes (3.1.34), and hence (3.1.33) is proved.

Returning to symbol smoothing, if we use the method of §1.3 to write

(3.1.39) M(x, ξ) = M#(x, ξ) + M b(x, ξ),

then (3.1.27) implies

(3.1.40) M#(x, ξ) ∈ Sm
1,δ, M b(x, ξ) ∈ CrSm−rδ

1,δ .

We now refine these results; for M# we have a general result.



69

Proposition 3.1.C. For the symbol decomposition of §1.3,

(3.1.41) p(x, ξ) ∈ CrSm
1,0 =⇒ p#(x, ξ) ∈ Ar

0S
m
1,δ.

Proof. This is a simple modification of Proposition 1.3.D, which essentially says
p#(x, ξ) ∈ ArSm

1,δ; we simply supplement (1.3.11) with

(3.1.42) ‖Jεf‖Cr+s
∗

≤ C ε−s‖f‖Cr∗ , s ≥ 0,

which is basically the same as (3.1.37).

To treat M b(x, ξ), we have, for δ ≤ γ,

(3.1.43) p(x, ξ) ∈ Ar
0S

m
1,γ =⇒ pb(x, ξ) ∈ CrSm−δr

1,δ ∩ Ar
0S

m
1,γ ⊂ Sm−δr

1,γ ,

where containment in CrSm−δr
1,δ follows from Proposition 1.3.E. To see the last

inclusion, note that for pb(x, ξ) to belong to the intersection above implies

(3.1.44)
‖Dα

ξ pb(·, ξ)‖Cs ≤ C〈ξ〉m−|α|−δr+δs for 0 ≤ s ≤ r

C〈ξ〉m−|α|+(s−r)γ for s ≥ r.

In particular these estimates imply pb(x, ξ) ∈ Sm−rδ
1,γ . This proves:

Proposition 3.1.D. For the symbol M(x, ξ) = MF (u; x, ξ) with decomposition
(3.1.39),

(3.1.45) u ∈ Cr =⇒ M b(x, ξ) ∈ S−rδ
1,1 .

We now discuss a few consequences of making the decomposition (3.1.39). Note
that

(3.1.50) u ∈ Cr ∩Hs,p =⇒ F (u) = M#(x,D)u + R, with R ∈ Hs+rδ,p,

provided r, s > 0. If we pick δ ∈ (0, 1), using the good algebraic, hence microlocal,
properties of OPSm

1,δ, we have the following extension of Rauch’s Lemma.

Proposition 3.1.E. If u ∈ Cr ∩Hs,p, r, s > 0, p ∈ (1,∞), then

(3.1.51) u ∈ Hσ,p
mcl(Γ) =⇒ F (u) ∈ Hσ,p

mcl(Γ)

provided

(3.1.52) s ≤ σ < s + r.
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In (3.1.51), Γ is a closed conic subset of T ∗Rn \ 0, and the meaning of the
hypothesis

u ∈ Hσ,p
mcl(Γ)

is that there exists

A(x,D) ∈ OPS0, elliptic on Γ, such that A(x,D)u ∈ Hσ,p.

For the proof, note that

B(x, D)F (u) = B(x,D)M#(x,D)u + B(x,D)R;

if B(x,D) ∈ OPS0, then B(x,D)R ∈ Hs+rδ,p, by (3.1.50).
Using F (u) = u2, it follows that Cr ∩ Hs,p ∩ Hσ,p

mcl(Γ) is an algebra, granted
(3.1.52). It has been typical to establish this result in case s = n/p + r, which
implies Hs,p ⊂ Cr (if r /∈ Z), but there may be an advantage to the more general
formulation given above.

Results discussed above extend easily to the case of a function F of several
variables, say u = (u1, . . . , uL). Directly extending (3.1.2)–(3.1.6), we have

(3.1.53) F (u) =
L∑

j=1

Mj(x,D)uj + F (Ψ0(D)u)

with

(3.1.54) Mj(x, ξ) =
∑

k

mj
k(x)ψk+1(ξ)

where

(3.1.55) mj
k(x) =

∫ 1

0

(∂jF )(Ψk(D)u + tψk+1(D)u) dt.

Clearly the results established above apply to the Mj(x, ξ) here, e.g.,

(3.1.56) u ∈ Cr =⇒ Mj(x, ξ) ∈ Ar
0S

m
1,1.

In the particular case F (u, v) = uv, we obtain

(3.1.57) uv = A(u;x, D)v + A(v;x,D)u + Ψ0(D)u ·Ψ0(D)v

where

(3.1.58) A(u; x, ξ) =
∞∑

k=1

[
Ψk(D)u +

1
2
ψk+1(D)u

]
ψk+1(ξ).
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Since this symbol belongs to S0
1,1 for u ∈ L∞, we obtain the following well known

extension of (3.1.22):

(3.1.59) ‖uv‖Hs,p ≤ C
[‖u‖L∞‖v‖Hs,p + ‖u‖Hs,p‖v‖L∞

]
,

for s > 0, 1 < p < ∞.

§3.2. Various forms of paraproduct

A linear operator related to the operator M(x,D) of Proposition 3.1.A is the
paraproduct, used in [Bo], [M1]. There are several versions of the paraproduct; one
is

(3.2.0) π(a, f) =
∑

k≥1

(Ψk−1(D)a)(ψk+1(D)f).

Note that this is a special case of the symbol smoothing of §1.3, in which δ = 1. In
particular, we have the following.

Proposition 3.2.A. If a ∈ Cr, then

(3.2.1) af = π(a, f) + ρa(x,D)f

with

(3.2.2) ρa(x, ξ) ∈ CrS−r
1,1 .

Hence, for p ∈ (1,∞),

(3.2.3) ρa(x,D) : Hs−r,p −→ Hs,p, 0 < s < r.

Note that this result does not imply that π(f, f) is a particularly good approxi-
mation to f2; this point will be clarified below; see (3.2.13).

We will also use the notation

(3.2.4) π(a, f) = πa(x,D)f = Taf,

the latter notation being due to Bony [Bo]. We want to compare

M(x, ξ) =
∞∑

k=0

mk(x)ψk+1(ξ),

given by (3.1.4)–(3.1.6), with

πF ′(x, ξ) =
∞∑

k=0

m̃k(x)ψk+1(ξ),

where

(3.2.5) m̃k(x) = Ψk−1(D)F ′(f).

Comparing this with

(3.2.6) mk(x) =
∫ 1

0

F ′(Ψk(D)f + tψk+1(D)f) dt

gives the following.
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Proposition 3.2.B. If f ∈ Cr, M(x, ξ) given by (3.1.4)–(3.1.6), then

(3.2.7) M(x, ξ)− πF ′(x, ξ) ∈ S−r
1,1 .

Proof. What is needed is the estimate

(3.2.8) |Dβ
x(mk − m̃k)| ≤ Cβ · 2−rk+|β|k,

given f ∈ Cr, which follows from (3.2.5) - (3.2.6).

In order to establish estimates of the form (3.2.8), we use the fact that, for
r ∈ R+ \ Z+,

(3.2.9)
g ∈ Cr ⇐⇒ ‖ψk(D)g‖L∞ ≤ C · 2−kr

=⇒ ‖(1−Ψk(D))g‖L∞ ≤ C · 2−kr.

Thus, for F smooth,

(3.2.10)
f ∈ Cr =⇒ ‖F ′(f)−Ψk(D)F ′(f)‖L∞ ≤ C · 2−kr

and ‖F ′(f)− F ′(Ψk(D)f)‖L∞ ≤ C · 2−kr,

giving the case β = 0 of (3.2.8). If we write

(3.2.11)
Ψk(D)F (f)− F (Ψk(D)f) = Ψk(D)

(
F (f)− F (Ψk(D)f)

)

− (1−Ψk(D))F (Ψk(D)f),

and use

(3.2.12) ‖Dβ
xΨk(D)g‖Cr ≤ Cβ2k|β|‖g‖Cr ,

the rest of (3.2.8) easily follows.
Remark. (3.2.8) is related to Hörmander’s Prop. 8.6.13 in [H4]. Furthermore, one
can take f ∈ Cr

∗ .
In view of the identity (3.1.5), we have:

Proposition 3.2.C. If f ∈ Cr ∩Hs,p, r, s > 0, p ∈ (1,∞), then

(3.2.13) F (f) = π(F ′(f), f) + R, R ∈ Hs+r,p.

Taking F (f) = f2, we see that a good approximation to f2 is 2π(f, f).
We can also treat functions of several variables, as in (3.1.53)–(3.1.54). Thus, if

f = (f1, . . . , fL),

(3.2.14) F (f) =
∑

π
(
(∂jF )(f), fj

)
+ R,
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where f ∈ Cr ∩Hs,p =⇒ R ∈ Hs+r,p.
There are a number of variants of the paraproduct (3.2.0). For example, picking

P, Q ∈ S(Rn) with P (0) = 1, Q(0) = 0, one can consider

(3.2.15) π(a, f) =
∫ ∞

0

Q(tD)(P (tD)a ·Q(tD)f) t−1 dt,

which differs little from (3.2.0). With a bit more effort, one can use the simpler-
looking expression

(3.2.16) π(a, f) =
∫ ∞

0

P (tD)a ·Q(tD)f t−1 dt.

A generalization of (3.2.16) is used in (5.9) of Hörmander [H3] to produce a variant
of the Nash-Moser implicit function theorem.

Another variant of the paraproduct is

(3.2.17) π(a, f) = aχ(x,D)f

with

(3.2.18) âχ(η, ξ) = â(η)χ(η, ξ),

where we choose χ ∈ C∞(Rn × Rn), homogeneous of degree 0 outside a compact
set, such that

(3.2.19)
χ(η, ξ) = 0 for |η| > 1

2
|ξ|

1 for |η| < |ξ|
16

and |ξ| > 2.

One has aχ(x, ξ) ∈ S0
1,1, and more precisely

(3.2.20)
|Dα

ξ Dβ
xaχ(x, ξ)| ≤ Cαβ〈ξ〉−|α|, |β| < r

Cαβ〈ξ〉|β|−|α|−r, |β| ≥ r

if a ∈ Cr. This formulation of paraproducts is the one mainly used by Bony [Bo].
It is proved in Lemma 4.1 of Hörmander [H2] that, in this case,

(3.2.21) aχ(x,D) ∈ OPS0
1,1 ∩ (OPS0

1,1)
∗.

Also Hörmander has results on compositions of operators, in Theorem 6.4 of [H2].
See also Prop. 10.2.2 of [H4].

From (2.1.15) easily follows the estimate

(3.2.22) ‖π(a, f)‖Hs,p ≤ Csp‖a‖L∞‖f‖Hs,p ,
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for p ∈ (1,∞), s ∈ R, at least when the form (3.2.0) is used. It follows from
Theorem 33 of [CM] that, for p ∈ (1,∞),

(3.2.23) ‖π(a, f)‖Lp ≤ Cp‖a‖Lp‖f‖BMO,

an estimate which suggests emphasizing the role of f as a multiplier rather than a.
In fact, a notational switch, with f and a interchanged in the definition of π(a, f),
is frequently seen. This other convention was the one originally used in Coifman-
Meyer [CM]. Closely related estimates will play an important role in §3.5, and will
be proven in Appendix D.

§3.3. Nonlinear PDE and paradifferential operators

If F is smooth in its arguments, in analogy with (3.1.53)–(3.1.55) we have

(3.3.1) F (x,Dmu) =
∑

|α|≤m

Mα(x, D)Dαu + F (x, DmΨ0(D)u),

where F (x,DmΨ0(D)u) ∈ C∞ and

(3.3.2) Mα(x, ξ) =
∑

k

mα
k (x)ψk+1(ξ)

with

(3.3.3) mα
k (x) =

∫ 1

0

∂F

∂ζα
(Ψk(D)Dmu + tψk+1(D)Dmu) dt.

As in Proposition 3.1.A and Proposition 3.1.B we have, for r ≥ 0,

(3.3.4) u ∈ Cm+r =⇒ Mα(x, ξ) ∈ Ar
0S

0
1,1 ⊂ S0

1,1 ∩ CrS0
1,0.

In other words, if we set

(3.3.5) M(u; x,D) =
∑

|α|≤m

Mα(x,D)Dα,

we obtain

Proposition 3.3.A. If u ∈ Cm+r, r ≥ 0, then

(3.3.6) F (x,Dmu) = M(u; x,D)u + R

with R ∈ C∞ and

(3.3.7) M(u; x, ξ) ∈ Ar
0S

m
1,1 ⊂ Sm

1,1 ∩ CrSm
1,0.
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Decomposing each Mα(x, ξ), we have as in (3.1.39)–(3.1.45),

(3.3.8) M(u;x, ξ) = M#(x, ξ) + M b(x, ξ)

with

(3.3.9) M#(x, ξ) ∈ Ar
0S

m
1,δ ⊂ Sm

1,δ

and

(3.3.10) M b(x, ξ) ∈ CrSm−δr
1,δ ∩ Ar

0S
m
1,1 ⊂ Sm−rδ

1,1 .

Let us explicitly recall that (3.3.9) implies

(3.3.11)
Dβ

xM#(x, ξ) ∈ Sm
1,δ, |β| ≤ r,

S
m+δ(|β|−r)
1,δ , |β| ≥ r.

Note that the linearization of F (x,Dmu) at u is given by

(3.3.12) Lv =
∑

|α|≤m

M̃α(x)Dαv,

where

(3.3.13) M̃α(x) =
∂F

∂ζα
(x,Dmu).

Comparison with (3.3.1)–(3.3.3) gives (for u ∈ Cm+r)

(3.3.14) M(u; x, ξ)− L(x, ξ) ∈ CrSm−r
1,1 ,

by the same analysis as in the proof of the δ = 1 case of (1.3.19). More generally, the
difference in (3.3.14) belongs to CrSm−rδ

1,δ , 0 ≤ δ ≤ 1. Thus L(x, ξ) and M(u; x, ξ)
have many qualitative properties in common.

In particular, given u ∈ Cm+r, the operator M#(x,D) ∈ OPSm
1,δ is microlocally

elliptic in any direction (x0, ξ0) ∈ T ∗Rn\0 which is noncharacteristic for F (x,Dmu),
which by definition means noncharacteristic for L. Now if

(3.3.15) F (x,Dmu) = f,

and if A ∈ OPS0 is microlocally supported near (x0, ξ0) and Q ∈ OPS−m
1,δ is a

microlocal parametrix for M#(x,D) near (x0, ξ0), we have

(3.3.16) Au = AQ(f −M b(x,D)u), mod C∞.

By (3.3.10) we have

(3.3.17) AQM b(x,D) : Hm−rδ+s,p −→ Hm+s,p, s > 0.

(In fact s > −(1 − δ)r suffices.) This gives the folowing microlocal regularity
theorem.
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Theorem 3.3.B. Suppose u ∈ Cm+r satisfies (3.3.15), for which (x0, ξ0) is non-
characteristic. Then, for any s > 0, p ∈ (1,∞), δ ∈ (0, 1),

(3.3.18) u ∈ Hm−rδ+s,p, f ∈ Hs,p
mcl(x0, ξ0) =⇒ u ∈ Hm+s,p

mcl (x0, ξ0).

If u ∈ Cm+r solves (3.3.15) in the elliptic case, where every direction is nonchar-
acteristic, we can deduce from (3.3.18) that

(3.3.19) u ∈ Hm−δr+s,p, f ∈ Hs,p =⇒ u ∈ Hm+s,p,

granted r > 0, s > 0, p ∈ (1,∞). This sort of implication can be iterated, leading
to the following re-proof of Theorem 2.2.G.

Theorem 3.3.C. Suppose, given r > 0, u ∈ Cm+r satisfies (3.3.15) and this PDE
is elliptic. Then, for each s > 0, p ∈ (1,∞),

(3.3.20) f ∈ Hs,p =⇒ u ∈ Hm+s,p and f ∈ Cs
∗ =⇒ u ∈ Cm+s

∗ .

By way of further comparison with the methods of §2.2, we now re-derive Theo-
rem 2.2.E, a regularity result for solutions to a quasi-linear elliptic PDE. Note that,
in the quasi-linear case,

(3.3.21) F (x,Dmu) =
∑

|α|≤m

aα(x,Dm−1u)Dαu = f,

the construction above gives F (x,Dmu) = M(u; x,D)u + R0(u) with the following
properties:

(3.3.22)
u ∈ Cm+r (r ≥ 0) =⇒

M(u;x, ξ) ∈ Cr+1Sm
1,0 ∩ Sm

1,1 + CrSm−1
1,0 ∩ Sm−1

1,1 .

Of more interest to us now is that, for 0 < r < 1,

(3.3.23) u ∈ Cm−1+r =⇒ M(u; x, ξ) ∈ CrSm
1,0 ∩ Sm

1,1 + Sm−r
1,1 ,

which follows from (3.1.23). Thus we can decompose the term in CrSm
1,0 ∩ Sm

1,1 as
in §1.3 and throw the term in Sm−r

1,1 into the remainder, to get

(3.3.24) M(u;x, ξ) = M#(x, ξ) + M b(x, ξ)

with

(3.3.25) M#(x, ξ) ∈ Sm
1,δ, M b(x, ξ) ∈ Sm−rδ

1,1 .
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If P (x,D) ∈ OPS−m
1,δ is a parametrix for the elliptic operator M#(x,D), then

whenever u ∈ Cm−1+r ∩Hm−1+ρ,p is a solution to (3.3.21), we have, mod C∞,

(3.3.26) u = P (x,D)f − P (x,D)M b(x, D)u.

Now

(3.3.27) P (x,D)M b(x, D) : Hm−1+ρ,p −→ Hm−1+ρ+rδ,p, if r + ρ > 1,

by the last part of (3.3.25). As long as this holds, we can iterate this argument,
and obtain Theorem 2.2.E, with a shorter proof than given in §2.2.

More generally, consider

(3.3.28) F (x,Dmu) =
∑

|α|≤m

aα(x,Dju)Dαu,

with 0 ≤ j < m. We see that the conclusion of (3.3.23) holds if u ∈ Cj+r, and then
the arguments yielding (3.3.24)–(3.3.27) continue to hold. Hence, in this case, one
has regularity theorems assuming a priori that, with p > 1, r > 0,

(3.3.29) u ∈ Cj+r ∩Hm−1+ρ,p, r + ρ > 1.

Under this hypothesis, we conclude that f ∈ Hs,q =⇒ u ∈ Hs+m,q, etc.
In Bony’s analysis of F (x,Dmu), in [Bo], he used, in place of (3.3.1)–(3.3.3) the

paraproduct approximation:

(3.3.30) F (x,Dmu) =
∑

|α|≤m

π
(
(∂F/∂ζα)(x,Dmu), Dαu

)
+ R,

where

(3.3.31) u ∈ Cm+r =⇒ R ∈ C2r,

and π(a, f) is as in one of the 3 definitions of §3.2.
In addition to paraproducts, Bony considered paradifferential operators, which

can be defined as follows. Let p(x, ξ) ∈ CrSm
1,0. Then

(3.3.32) Tpu(x) = pχ(x,D)u

where, in analogy with (3.2.18)–(3.2.19),

(3.3.33) p̂χ(η, ξ) = χ(η, ξ)p̂(η, ξ).

Then

(3.3.34) pχ(x,D) ∈ OPSm
1,1 ∩ (OPSm

1,1)
∗ = OPS̃m

1,1,
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as in (3.2.21). In fact, in Prop. 10.2.2 of [H4] it is shown that

(3.3.35)
Dβ

xpχ(x, ξ) ∈ S̃m
1,1 |β| < r,

S̃
m−r+|β|
1,1 , |β| > r.

We make a parenthetical comment. As noted above, we can write

(3.3.36) F (x,Dmu) = M(u; x,D)u + R0(u)

with R0(u) ∈ C∞ and M(u;x,D) ∈ OPSm
1,1 if u ∈ Cm. Consequently, the operator

norm of M(u;x,D) in L(Hm+s,p, Hs,p), 1 < p < ∞, depends on ‖u‖Cm , for s > 0,
while for s = 0 it seems to depend on ‖u‖Cm+r for some r > 0. An improvement
on this is given in Proposition 3.5.G.

§3.4. Operator algebra

The operators M(u; x,D) ∈ OPSm
1,1 which arose in §3.1 and §3.3 are not as

well behaved as one would like under composition on the left by pseudodifferential
operators. That is why decomposition into M#(x, D) + M b(x,D) was useful. The
applications we have made so far have involved such a decomposition, defined in
§1.3, choosing δ < 1, so that M#(x, D) ∈ OPSm

1,δ has a convenient symbol calculus.
The remainder term M b(x,D) belongs to OPSm−rδ

1,1 , and one despairs of doing
anything with it except utilizing boundedness properties on various function spaces.

As noted, the paraproduct, defined by (3.2.0), is also an example of the construc-
tion of M#(x, ξ) by symbol smoothing, this time with δ = 1. Bony [Bo] and Meyer
[M1] made use of the fact that M#(x, D) ∈ OPSm

1,1 has a special property that
allows a bit of symbol calculus to carry through. Though the algebraic structure on
such M#(x,D) is less well behaved than in the δ < 1 case, one has the advantage
that the recalcitrant remainder term M b(x, D) belongs to OPSm−r

1,1 , hence has a
(slightly) lower order than one achieves by using symbol smoothing with δ < 1.

The special property possessed by M#(x,D) when it is a paradifferential opera-
tor, of the form (3.2.0) or more generally (3.3.30), is that its symbol belongs to the
class BrSm

1,1, defined as follows:

(3.4.1)
p(x, ξ) ∈ BrSm

1,1 ⇐⇒ p(x, ξ) ∈ ArSm
1,1 and

p̂(η, ξ) is supported in |η| < |ξ|/10.

Here p̂(η, ξ) =
∫

p(x, ξ)e−ix·η dx. Thus the paradifferential operator construction
writes an operator M(u;x, D) of the form (3.3.6) as a sum

(3.4.2) M(u;x,D) = M#(x,D) + M b(x,D)

with

(3.4.3) M#(x, ξ) ∈ BrSm
1,1, M b(x, ξ) ∈ Sm−r

1,1 .
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If r ∈ R+ \ Z+, the class BrSm
1,1 coincides with the symbol class denoted Bm

r by
Meyer [M1].

We now analyze products a(x,D)b(x,D) = p(x,D) when we are given a(x, ξ) ∈
Sµ

1,1(Rn) and b(x, ξ) ∈ BSm
1,1(Rn). We are particularly interested in estimating the

remainder rν(x, ξ), arising in

(3.4.4) a(x,D)b(x, D) = pν(x,D) + rν(x,D),

where

(3.4.5) pν(x, ξ) =
∑

|α|≤ν

i−|α|

α!
∂α

ξ a(x, ξ) · ∂α
x b(x, ξ).

Theorem 3.4.A below is a variant of results of [Bon] and [Mey], established in [[AT]].
To begin the analysis, we have the formula

(3.4.6) rν(x, ξ) =
1

(2π)n

∫ [
a(x, ξ + η)−

∑

|α|≤ν

ηα

α!
∂α

ξ a(x, ξ)
]
eix·η b̂(η, ξ) dη.

Write

(3.4.7) rν(x, ξ) =
∑

j≥0

rνj(x, ξ)

with

(3.4.8)
rνj(x, ξ) =

∫
Âνj(x, ξ, η)B̂j(x, ξ, η) dη

=
∫

Aνj(x, ξ, y)Bj(x, ξ,−y) dy,

where the terms in these integrands are defined as follows. Pick ϑ > 1 and take a
Littlewood-Paley partition of unity {ϕ2

j : j ≥ 0}, such that ϕ0(η) is supported in
|η| ≤ 1, while for j ≥ 1, ϕj(η) is supported in ϑj−1 ≤ |η| ≤ ϑj+1. Then we set

(3.4.9)
Âνj(x, ξ, η) =

1
(2π)n

[
a(x, ξ + η)−

∑

|α|≤ν

ηα

α!
∂α

ξ a(x, ξ)
]
ϕj(η),

B̂j(x, ξ, η) = b̂(η, ξ)ϕj(η)eix·η.

Note that

(3.4.10) Bj(x, ξ, y) = ϕj(Dy)b(x + y, ξ).
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Thus

(3.4.11) ‖Bj(x, ξ, ·)‖L∞ ≤ Cϑ−rj‖b(·, ξ)‖Cr∗ .

Also,

(3.4.12) supp b̂(η, ξ) ⊂ {|η| < ρ|ξ|} =⇒ Bj(x, ξ, y) = 0 for ϑj−1 ≥ ρ|ξ|.

We next estimate the L1-norm of Aνj(x, ξ, ·). Now, by a standard proof of
Sobolev’s imbedding theorem, given K > n/2, we have

(3.4.13) ‖Aνj(x, ξ, ·)‖L1 ≤ C‖ΓjÂνj(x, ξ, ·)‖HK ,

where Γjf(η) = f(ϑjη), so ΓjÂνj is supported in |η| ≤ ϑ. Let us use the integral
formula for the remainder term in the power series expansion to write

Âνj(x, ξ, ϑjη) =

(3.4.14)

ϕj(ϑjη)
(2π)n

∑

|α|=ν+1

ν + 1
α!

(∫ 1

0

(1− s)ν+1∂α
ξ a(x, ξ + sϑjη) ds

)
ϑj|α|ηα.

Since |η| ≤ ϑ on the support of ΓjÂνj , if also ϑj−1 < ρ|ξ|, then |ϑjη| < ρϑ2|ξ|.
Now, given ρ ∈ (0, 1), choose ϑ > 1 such that

ρϑ3 < 1.

This implies 〈ξ〉 ∼ 〈ξ + sϑjη〉, for all s ∈ [0, 1]. We deduce that the hypothesis

(3.4.15) |∂α
ξ a(x, ξ)| ≤ Cα〈ξ〉µ2−|α| for |α| ≥ ν + 1

implies

(3.4.16) ‖Aνj(x, ξ, ·)‖L1 ≤ Cνϑj(ν+1)〈ξ〉µ2−ν−1, for ϑj−1 < ρ|ξ|.

Now, when (3.4.11) and (3.4.16) hold, we have

(3.4.17) |rνj(x, ξ)| ≤ Cνϑj(ν+1−r)〈ξ〉µ2−ν−1‖b(·, ξ)‖Cr∗ ,

and if also (3.4.12) applies, we have

(3.4.18) |rν(x, ξ)| ≤ Cν〈ξ〉µ2−r‖b(·, ξ)‖Cr∗ , if ν + 1 > r,

since ∑

ϑj−1<ρ|ξ|
ϑj(ν+1−r) ≤ C|ξ|ν+1−r
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in such a case.
To estimate derivatives of rν(x, ξ), we can write

Dβ
xDγ

ξ rνj(x, ξ) =

(3.4.19)
∑

β1+β2=β

∑
γ1+γ2=γ

(
β

β1

)(
γ

γ1

) ∫
Dβ1

x Dγ1
ξ Aνj(x, ξ, y) ·Dβ2

x Dγ2
ξ Bj(x, ξ,−y)dy.

Now Dβ1
x Dγ1

ξ Aνj(x, ξ, y) is produced just like Aνj(x, ξ, y), with the symbol a(x, ξ)
replaced by Dβ1

x Dγ1
ξ a(x, ξ), and Dβ2

x Dγ2
ξ Bj(x, ξ,−y) is produced just like Bj(x, ξ,−y),

with b(x, ξ) replaced by Dβ2
x Dγ2

ξ b(x, ξ). Thus, if we strengthen the hypothesis
(3.4.15) to

(3.4.20) |∂β
x ∂α

ξ a(x, ξ)| ≤ Cαβ〈ξ〉µ2−|α|+|β| for |α| ≥ ν + 1,

we have

(3.4.21) ‖Dβ1
x Dγ1

ξ Aνj(x, ξ, ·)‖L1 ≤ Cνϑj(ν+1)〈ξ〉µ2−|γ1|+|β1|−ν−1,

for ϑj−1 < ρ|ξ|. Furthermore, extending (3.4.11), we have

(3.4.22) ‖Dβ2
x Dγ2

ξ Bj(x, ξ, ·)‖L∞ ≤ Cϑ(|β2|−r)j‖Dγ2
ξ b(·, ξ)‖Cr∗ .

Now

(3.4.23)
∑

ϑj−1<ρ|ξ|
ϑj(ν+1+|β2|−r) ≤ C|ξ|ν+1+|β2|−r,

if ν + 1 > r, so, as long as (3.4.12) applies, (3.4.21)–(3.4.22) yield

(3.4.24) |Dβ
xDγ

ξ rν(x, ξ)| ≤ C
∑

γ1+γ2=γ

〈ξ〉µ2+|β|−|γ1|−r‖Dγ2
ξ b(·, ξ)‖Cr∗ ,

if ν + 1 > r. These estimates lead to the following result.

Theorem 3.4.A. Assume

(3.4.25) a(x, ξ) ∈ Sµ
1,1, b(x, ξ) ∈ BSm

1,1.

Then

(3.4.26) a(x,D)b(x, D) = p(x,D) ∈ OPSµ+m
1,1 .
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Assume furthermore that

(3.4.27) |∂β
x ∂α

ξ a(x, ξ)| ≤ Cαβ〈ξ〉µ2−|α|+|β|, for |α| ≥ ν + 1,

with µ2 ≤ µ, and that

(3.4.28) ‖Dα
ξ b(·, ξ)‖Cr∗ ≤ Cα〈ξ〉m2−|α|.

Then, if ν + 1 > r, we have (3.4.4)–(3.4.5) with

(3.4.29) rν(x,D) ∈ OPSµ2+m2−r
1,1 .

In particular, if (3.4.25) holds and in addition

(3.4.30) b(x, ξ) ∈ BrSm
1,1,

for some r > 0, then a(x,D)b(x,D) ∈ OPSm+µ
1,1 and (3.4.4)–(3.4.5) hold with

(3.4.31) rν(x, ξ) ∈ Sm+µ−r
1,1 , for ν ≥ r.

Following [M2], we next construct a microlocal parametrix. As usual, we say
q(x, ξ) ∈ Sm

1,1 is elliptic on a closed conic set Γ if |q(x, ξ)| ≥ C|ξ|m on Γ, for |ξ|
large. It is clear that in such a case there exists p0(x, ξ) ∈ S−m

1,1 , equal to q(x, ξ)−1

on Γ.

Theorem 3.4.B. Let Γ1 ⊂⊂ Γ be conic sets in T ∗Rn \ 0. If r > 0 and q(x, ξ) ∈
BrSm

1,1 is elliptic on Γ, there exists p(x, ξ) ∈ S−m
1,1 such that

(3.4.32) p(x, D)q(x,D) = P (x,D) + R(x,D)

with

(3.4.33) P (x, ξ) ∈ S0
cl, elliptic on Γ1,

and

(3.4.34) R(x, ξ) ∈ S−r
1,1 .

Proof. Take any P (x, ξ) of the form (3.4.33), with conic support in Γ, and let
p0(x, ξ) = q(x, ξ)−1P (x, ξ), for |ξ| large, p0(x, ξ) ∈ S−m

1,1 . Then Theorem 3.4.A
applies to p0(x,D)q(x,D). By a straightforward and standard induction one can
construct pj(x, ξ) ∈ S−m−j

1,1 , j ≤ [r], such that (3.4.32) holds for p = p0 + · · ·+ p[r].

We remark that p(x, ξ) so constructed actually belongs to ArS−m
1,1 . Thus we can

write

(3.4.35) p(x, ξ) = p#(x, ξ) + pb(x, ξ), p# ∈ BrS−m
1,1 , pb ∈ S−m−r

1,1

and hence

(3.4.36) p#(x,D)q(x,D) = P (x,D) + R1(x,D)

with P (x,D) as in (3.4.32)–(3.4.33), and R1(x, ξ) ∈ S−r
1,1 .

We next establish a regularity result.
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Lemma 3.4.C. If q(x, ξ) ∈ BrSm
1,1 is elliptic on a conic set Γ and if u ∈ Hs,p while

q(x,D)u ∈ Hσ,p, then u ∈ Hσ+m,p
mcl (Γ), provided p ∈ (1,∞), s > m, and

(3.4.37) 0 < σ + m ≤ s + r.

Proof. Taking p(x, ξ) ∈ ArS−m
1,1 , P (x, ξ) ∈ S0

cl, as in Theorem 3.4.B, we have

(3.4.38) P (x,D)u = p(x,D)(q(x,D)u)−R(x,D)u ∈ Hσ+m,p,

provided (3.4.37) holds, which gives the proof

Next we obtain a result on the extent to which an operator with symbol in BrSm
1,1

is microlocal.

Proposition 3.4.D. If q(x, ξ) ∈ BrSm
1,1 and u ∈ Hs,p ∩Hσ,p

mcl(Γ), then q(x, D)u ∈
Hσ−m,p

mcl (Γ), provided s > m, s > 0, and

(3.4.39) s ≤ σ ≤ s + r.

Proof. Adding K〈ξ〉m, we can assume q(x, ξ) is elliptic on Γ. Set v = q(x,D)u ∈
Hs−m,p, granted m < s. By Theorem 3.4.B and the comment following its proof,
given conic Γ1 ⊂⊂ Γ, there exists p#(x, ξ) ∈ BrS−m

1,1 such that (3.4.22) holds, with
P (x, ξ) ∈ S0

cl elliptic on Γ1. Hence

p#(x,D)v = P (x, D)u + R1(x,D)u ∈ Hσ,p,

granted s+r ≥ σ. Since p#(x, ξ) is elliptic on Γ1, Lemma 3.4.C applies, to complete
the proof.

We now obtain an improvement of Lemma 3.4.C to the following microlocal
regularity result.

Proposition 3.4.E. The assertion of Lemma 3.4.C holds with the hypothesis on
q(x,D)u weakened to q(x,D)u ∈ Hσ,p

mcl(Γ).

Proof. In (3.4.24), we see now that p(x,D)(q(x,D)u) ∈ Hσ+m,p
mcl (Γ), so therefore

P (x,D)u ∈ Hσ+m,p, under the hypotheses of the Lemma.

We can use these propositions to sharpen up some of the results of §3.1 and §3.3.
For example, using

F (u) = M#(x,D)u + R

with M#(x, ξ) ∈ BrS0
1,1, R ∈ Hs+r,p, given u ∈ Cr ∩ Hs,p, r, s > 0, we see that

in the Rauch Lemma, Proposition 3.1.E, the condition (3.1.52) can be sharpened
to s ≤ σ ≤ s + r. Similarly, in the microlocal regularity result on solutions to a
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nonlinear PDE, F (x,Dmu) = f, given in Theorem 3.3.B, one can sharpen (3.3.18)
to

(3.4.40) u ∈ Hm−r+s,p ∩ Cm+r, f ∈ Hs,p
mcl(x0, ξ0) =⇒ u ∈ Hm+s,p

mcl (x0, ξ0).

However, this does not yield a sharpening of the elliptic regularity result of Theorem
3.3.C.

Whether these sharpenings constitute major or minor improvements might be
regarded as a matter of taste. Material in following sections should demonstrate
essential advantages of results on BrSm

1,1 described above. In the next section we
establish a commutator estimate which seems to be inaccessible by the tools used in
§3.1 and §3.3, involving operator calculus in OPSm

1,δ, with δ < 1. In later chapters,
particularly Chapter 5, we use such an estimate to obtain results which are not only
sharper than those available by techniques involving use of the latter calculus, but
have a natural feel to them which should provide good evidence of the usefulness
of the paradifferential calculus.

Though we have concentrated on the study of BrSm
1,1 for r > 0, it is of interest

to note the following.

Proposition 3.4.F. If p(x, ξ) ∈ B0Sm
1,1 and 1 < p < ∞, then

(3.4.41) p(x,D) : Hs+m,p =⇒ Hs,p for all s ∈ R.

Proof. Looking at the proof of Theorem 2.1.A, reduced to the study of q(x, ξ) =
q1 + q2 + q3 in (2.1.14), we see that it suffices to consider q1(x,D). This is done in
(2.1.15).

Hörmander [H2] shows that operators with symbol in BrSm
1,1 belong to Ψ̃m

1,1 =
OPSm

1,1∩ (OPSm
1,1)

∗. This contains the results (3.2.21), (3.3.35), and (3.4.41). The-
orem 3.4.A is generalized in [H2] to the case q(x,D) ∈ Ψ̃m

1,1. See also Bourdaud
[BG] for algebraic properties of Ψ̃m

1,1.
The space OPBrS∗1,1 does not quite form an algebra. However, it is easy to

see that, if p(x, ξ) ∈ BrSµ
1,1 and q(x, ξ) ∈ BrSm

1,1 have the further property of
p̂(η, ξ), q̂(η, ξ) being supported on |η| < |ξ|/30, then parallel to (3.4.4) we have
p(x, D)q(x,D) = P (x,D) + R(x,D) with

(3.4.42) P (x, ξ) ∈ B0Sm+µ
1,1 , R(x, ξ) ∈ B0Sm+µ−r

1,1 .

To see this, note that the symbol p#q of p(x,D)q(x,D) is given by

(p#q)(x, ξ) = (2π)−n

∫
p(x, ξ + ζ)eix·ζ q̂(ζ, ξ) dζ,

so
(p#q)ˆ(η, ξ) =

∫
p̂(η − ζ, ξ + ζ)q̂(ζ, ξ) dζ.

Also note that, if we start with p(x, ξ) ∈ BrSµ
1,1, applying a cutoff to achieve the

further restriction on p̂(η, ξ) alters p(x, ξ) by an element of BrSµ−r
1,1 . Thus from

Theorem 3.4.A we have:
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Corollary 3.4.G. If r > 0, p(x, ξ) ∈ BrSµ
1,1, q(x, ξ) ∈ BrSm

1,1, then

(3.4.43) p(x,D)q(x,D) = P1(x,D) + R1(x,D)

with P1(x, ξ) ∈ B0Sm+µ
1,1 , given mod Sm+µ−r

1,1 similarly to (3.4.5), with ν = r, and

(3.4.44) R1(x,D) : Hs,p −→ Hs−m−µ+r,p

for all s ∈ R, p ∈ (1,∞). Consequently, in the scalar case,

(3.4.45) [p(x, D), q(x,D)] : Hs,p −→ Hs−m−µ+σ,p, σ = min(r, 1).

Having discussed operators with symbols in BrSm
1,1, we now note some applica-

tions to a smaller class of operators, with symbols in a space denoted Σm
r . These

operators are the ones used by Bony in [Bo]. By definition, Σm
r is the image of

CrSm
cl under a smoothing process, with δ = 1, of the form

(3.4.46) a#(·, ξ) =
∑

k≥5

Ψk−5(D)a(·, ξ)ψk+1(ξ).

In case a = a(x) is independent of ξ, then

(3.4.47) a#(x,D)u = π(a, u) = Tau

is paramultiplication, as in (3.2.0). If we have

(3.4.48) a(x, ξ) =
∑

aj(x)βj(ξ),

then

(3.4.49) a#(x,D)u =
∑

Taj βj(D)u.

As in [Bo], we also denote this operator by Ta. we will also denote by T ′a the operator
obtained by replacing Ψk−5(D) by Ψk−10(D) in (3.4.46). It is clear that, for r ≥ 0,

(3.4.50) a(x, ξ) ∈ CrSm
cl =⇒ Ta ∈ OPBrSm

1,1, Ta − T ′a ∈ OPBrSm−r
1,1 .

In particular,

(3.4.51) Ta − T ′a : Hs,p −→ Hs−m+r,p

for all s ∈ R, p ∈ (1,∞). From Corollary 3.4.G we have:
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Corollary 3.4.H. If aj(x, ξ) ∈ CrS
mj

cl , then

(3.4.52) T ′a1
T ′a2

− T ′a1a2
∈ OPBrSm1+m2−σ

1,1 , σ = min(r, 1).

Consequently,

(3.4.53) Ta1Ta2 − Ta1a2 : Hs,p −→ Hs−m1−m2+σ,p

for s ∈ R, p ∈ (1,∞).

§3.5. Product estimates

There are results more sophisticated than (3.1.59) on products that can be ob-
tained from a careful analysis of the terms in

(3.5.1) fg = Tfg + Tgf + R(f, g),

where, as in (3.4.47),

(3.5.2) Tfg =
∑

k

(
Ψk−5(D)f

) · (ψk+1(D)g
)
,

and

(3.5.3) R(f, g) =
∑

k

(
ψa

k(D)f
) · (ψk(D)g

)

where

(3.5.4) ψa
k(ξ) =

k+5∑

`=k−5

ψ`(ξ).

Note that R(f, g) = R(g, f).
A number of results on Tfg and Tgf follow from the obvious fact that

(3.5.5) f ∈ L∞ =⇒ Tf ∈ OPB0S0
1,1.

Hence

(3.5.6) ‖Tfg‖Hs,p ≤ Csp‖f‖L∞‖g‖Hs,p

for s ∈ R, p ∈ (1,∞). Almost equally obvious is

(3.5.7) f ∈ C−µ
∗ =⇒ Tf ∈ OPB0Sµ

1,1 if µ > 0,
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so

(3.5.8) ‖Tfg‖Hs−µ,p ≤ C‖f‖C−µ
∗
‖g‖Hs,p , µ > 0,

for s ∈ R, p ∈ (1,∞). Since

(3.5.9) Hr,p ⊂ C−µ
∗ for

n

p
− r = µ,

we have in particular

(3.5.10) ‖Tfg‖Hr+s−n/p,p ≤ C‖f‖Hr,p‖g‖Hs,p , r <
n

p
,

for s ∈ R, p ∈ (1,∞).
As for R(f, g) = Rfg, we have in partial analogy to (3.5.5) and (3.5.7) that

(3.5.11) f ∈ Cr
∗ =⇒ Rf ∈ OPS−r

1,1 , r ∈ R,

so, in analogy to (3.5.6) and (3.5.8),

(3.5.12) ‖R(f, g)‖Hs+r,p ≤ C‖f‖Cr∗‖g‖Hs,p , r ∈ R, s > −r,

for p ∈ (1,∞), while, in analogy to (3.5.10), we have

(3.5.13) ‖R(f, g)‖Hr+s−n/p,p ≤ C‖f‖Hr,p‖g‖Hs,p , r + s >
n

p
,

if p ∈ (1,∞).
More subtle results on Rf , as well as useful results on

(3.5.14) T ρ
f g = Tgf,

can be deduced from the following important result, Theorem 33 of [CM]:

Theorem 3.5.A. Let ϕ,ψ ∈ S(Rn), ψ(0) = 0. (Slightly more general ϕ,ψ are
handled in [CM].) Let m ∈ L∞(R+). Then the operator

(3.5.15) τ(a, f) =

∞∫

0

(
ϕ(tD)f

) · (ψ(tD)a
)m(t)

t
dt

satisfies

(3.5.16) ‖τ(a, f)‖L2 ≤ C‖a‖BMO‖f‖L2 .
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There is a corresponding estimate for the discrete analogue

(3.5.17)
∑

k

(
ϕ(2−kD)f

) · (ψ(2−kD)a
)
mk.

The operators R(a, f) and T ρ
a f are special cases of this. Consequently,

(3.5.18) ‖R(f, g)‖L2 ≤ C‖f‖BMO‖g‖L2

and

(3.5.19) ‖Tfg‖L2 ≤ C‖g‖BMO‖f‖L2 .

In Appendix D we establish variants of Theorem 3.5.A, strong enough to yield the
estimates (3.5.18) and (3.5.19).

Since Rf ∈ OPS0
1,1 is a singular integral operator for f ∈ BMO ⊂ C0

∗ , Calderon-
Zygmund theory, discussed in §0.11, implies that (3.5.18) can be extended to

(3.5.20) ‖R(f, g)‖Lp ≤ Cp‖f‖BMO‖g‖Lp , p ∈ (1,∞).

We produce an extension of this which will be useful. (See Lemma 3.5.E for further
results.)

Proposition 3.5.B. Let Xr be a Banach space with the property

(3.5.21) P ∈ OPSr
1,0 =⇒ P : Xr −→ BMO.

Then, for p ∈ (1,∞), r ∈ R,

(3.5.22) ‖R(f, g)‖Lp ≤ C‖f‖Xr‖g‖H−r,p .

Remark. In fact, the natural choice for Xr is the bmo-Sobolev space

(3.5.23) Xr = hr,∞ = (1−∆)−r/2bmo,

where bmo denotes the local version of BMO. See [[T2]] for further discussion. Note
that the spaces Hr+n/p,p, r ∈ R, and Ck, r = k ∈ Z+, have the property (3.5.21).
These spaces are all subspaces of the space given in (3.5.23).

Proof. Decompose f into
∑20

`=1 f`, via operators in OPS0
1,0, so the Fourier trans-

forms of f` lie in 2k ≤ |ξ| ≤ 2k+2 with k = ` mod 20. Similarly decompose g. It
suffices to estimate each R(f`, gm). In such a case, we can find

(3.5.24) F` = Q+f` ∈ BMO, Gm = Q−gm ∈ Lp, Q± ∈ OPS±r
1,0
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such that, for each k,

(3.5.25) ψa
k(D)f` = 2−krψa

k(D)F`, ψk(D)gm = 2krψk(D)Gm.

Hence R(f`, gm) = R(F`, Gm), so the estimate (3.5.22) follows from (3.5.20).

To give one example of how (3.5.22) helps to sharpen conclusions using (3.5.12),
note that, if we apply (3.5.10) and (3.5.13) to the decomposition (3.5.1) of fg, we
conclude that

(3.5.26) f ∈ Hr,p, g ∈ Hs,p, r <
n

p
, s <

n

p

implies

(3.5.27) fg ∈ Hr+s−n/p,p provided also r + s >
n

p
.

The only term for which this extra condition is required is R(f, g); the weakness is
in (3.5.13). By Proposition 3.5.B and (3.5.25), we can extend this implication to
the case r + s = n/p :

(3.5.28) fg ∈ Lp provided r + s =
n

p
,

assuming (3.5.26) holds. Of course, this also follows from the Sobolev imbedding
theorem:

(3.5.29) Hr,p ⊂ Lnp/(n−rp), r <
n

p
,

together with Hölder’s inequality, so it provides only a minor illustration of the
effectiveness of Proposition 3.5.B.

As a more substantial illustration, we provide a proof of the following estimate,
which for p = 2 was announced in [Che2] and applied to interesting results on the
Navier-Stokes equations.

Proposition 3.5.C. Let u ∈ Hs,p, v ∈ Hr,p be vector valued. Assume r < n/p, s <
n/p + 1, r + s ≥ n/p. Then

(3.5.30) div v = 0 =⇒ v · ∇u ∈ Hr+s−n/p−1,p.

Proof. Using v · ∇u = div (u⊗ v)− u(div v), we see that, when div v = 0,

divR(u, v) =
∑

|j−k|≤5

div (ψj(D)u⊗ ψk(D)v)

=
∑

|j−k|≤5

(ψj(D)v) · ∇ψk(D)u

= R(v,∇u).
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Hence, when div v = 0,

(3.5.31)
v · ∇u = Tv(∇u) + T(∇u)v + R(v,∇u)

= Tv(∇u) + T(∇u)v + div R(u, v).

The hypotheses on u and v imply

Tv ∈ OPB0S
n/p−r
1,1 , T∇u ∈ OPB0S

n/p−s+1
1,1 ,

so the first two terms on the right side of (3.5.31) belong to the space in (3.5.30).
Whenever r < n/p and r + s > n/p, we can apply (3.5.11) to obtain

(3.5.32) R(u, v) ∈ Hr+s−n/p,p.

It remains to consider the case r < n/p and r + s = n/p. Then we can apply
Proposition 3.5.B, with f = u ∈ X−r = Hn/p−r,p, g = v ∈ Hr,p, to get R(u, v) ∈ Lp

in this case, so again div R(u, v) belongs to the space in (3.5.31).

Remark. In case n = 2, (3.5.30) is related to the “div-curl lemma” of [[CLMS]],
which implies that

div v = 0, v ∈ L2, u ∈ H1,2 =⇒ v · ∇u ∈ h1,

where h1 denotes the Hardy space. Note that for n = 2, p = 2, r = 0, s = 1,
(3.5.30) says

div v = 0, v ∈ L2, u ∈ H1,2 =⇒ v · ∇u ∈ H−1,2 (if n = 2).

To relate the two results, note that since (h1)∗ = bmo and H1,2(R2) ⊂ bmo, we have
h1(R2) ⊂ H−1,2(R2). On the other hand, L1(R2) is not a subspace of H−1,2(R2).

We record a further extension of Proposition 3.5.B.

Proposition 3.5.D. Given r ∈ R, let Xr have the property (3.5.21). Then, for any
s ∈ [0,∞), p ∈ (1,∞),

(3.5.33) ‖R(f, g)‖Hs,p ≤ C‖f‖Xr‖g‖Hs−r,p .

Proof. The content of (3.5.22) is that

Rf : H−r,p −→ Lp for f ∈ Xr.

We claim Rf : H1−r,p → H1,p for f ∈ Xr. This follows from

∂jRfg = R∂jfg + Rf∂jg.

By induction, one has Rf : Hj−r,p → Hj,p for j = 1, 2, 3, . . . , when f ∈ Xr. Then,
by interpolation, Rf : Hs−r,p → Hs,p, s ≥ 0, giving (3.5.33).

Above, we made use of the extension of (3.5.18) to Lp-estimates, based on Rf ∈
OPS0

1,1. In fact, it is useful to note that, in general, (3.5.16) can be extended to Lp

estimates. This is based on the following simple estimate.
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Lemma 3.5.E. If ϕ,ψ ∈ S(Rn), and τaf = τ(a, f) is given by (3.5.17), then

(3.5.34) τaf(x) =
∫

Ka(x, y)f(y) dy,

with

|Ka(x, y)| ≤ C‖a‖C0∗ |x− y|−n,

(3.5.35)

|∇x,yKa(x, y)| ≤ C‖a‖C0∗ |x− y|−n−1.

Proof. We have the formula

Ka(x, y) =
∑

mkak(x)2nkϕ̂(2k(x− y))

with Ak = ψ(2−kD)a, so ‖ak‖L∞ ≤ C‖a‖C0∗ . From this the estimates (3.5.35) are
easily obtained.

As discussed in §0.11, it is a basic result of Calderon and Zygmund that, when
an L2-bounded operator has a kernel satisfying (3.5.35), then the operator is of
weak type (1, 1), and bounded on Lp for p ∈ (1,∞). Thus the estimate (3.5.16)
extends to

(3.5.36) ‖τ(a, f)‖Lp ≤ Cp‖a‖BMO‖f‖Lp , 1 < p < ∞.

Propositions 3.5.B and 3.5.D cannot extend completely to general τ(a, f), since
in particular they cannot extend completely for Tfa, but the following partial ex-
tension is very useful.

Proposition 3.5.F. Let ϕ,ψ ∈ S(Rn) and assume ψ(ξ) = 0 for |ξ| ≤ c0. Let
τ(a, f) be given by (3.5.17). Let r ∈ Z+ and assume Xr satisfies (3.5.21). Then

(3.5.37) ‖τ(a, f)‖Hs,p ≤ C‖a‖Xr‖f‖Hs−r,p , 0 ≤ s ≤ r.

Proof. First take the case s = 0. Say f = Dαg, |α| = r, g ∈ Lp. Write a =
∑10

`=1 a`,
with â` supported in 2k ≤ |ξ| ≤ 2k+1 with k = ` mod 10, such that there exist
b` ∈ BMO with

ψ(2−kD)a` = 2−krψ(2−kD)b`, ∀k ∈ Z+,

as in the proof of Proposition 3.5.B. Thus, denoting (3.5.17) by τψ,ϕ(a, f), we have

(3.5.38) τψ,ϕ(a`, D
αg) = τψ,ϕα(b`, g)
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where ϕα(ξ) = ξαϕ(ξ). Thus (3.5.36) yields (3.5.37) for s = 0. For s = j ≤ r, f ∈
Hj−r,p, write

(3.5.39) Dβτ(a, f) =
∑

γ+σ=β

Cγστ(Dγa,Dσf),

and use induction to obtain (3.5.37) for such integers s. The general result for
0 ≤ s ≤ r follows by interpolation.

In particular this applies to τ(a, f) = Tfa, so for example we have the estimate

(3.5.40) ‖Tfg‖Hs,p ≤ C‖f‖Hs−1,p‖g‖Lip1 , 0 ≤ s ≤ 1,

which will be useful for commutator estimates in the next section.
To end this section, we note results on the terms in the decomposition of

(3.5.41) M(u;x, D) = M#(u; x,D) + M b(u; x,D)

for M(u;x, D) arising from F (x,Dmu) as in (3.3.6), so

(3.5.42) F (x,Dmu) = M(u;x,D)u mod C∞,

when the Bony-Meyer paradifferential method is used to construct M#, so

(3.5.43)
u ∈ Cm+r =⇒M#(u; x, ξ) ∈ BrSm

1,1

M b(u;x, ξ) ∈ Sm−r
1,1 .

Estimates of the form above for Twv apply to M#(u; x,D) and estimates of the
form above for R(w, v) apply to M b(u; x,D). Looking at the analysis behind (3.5.5),
(3.5.33), (3.5.37), and (3.5.40), one verifies the following. The spaces Xr are as in
Propositions 3.5.B and 3.5.D.

Proposition 3.5.G. For the decomposition (3.5.41) described above for M(u;x, D),
arising as in Proposition 3.3.A, we have the following estimates, for p ∈ (1,∞) :

(3.5.44) ‖M#(u;x,D)v‖Hs,p ≤ Csp(‖u‖L∞)‖u‖Cm‖v‖Hs+m,p , s ∈ R,

and, for r ∈ R,

(3.5.45) ‖M b(u; x,D)v‖Hs,p ≤ Csp(‖u‖L∞)‖u‖Xm+r‖v‖Hs+m−r,p , s ≥ 0.

Furthermore, given r ∈ Z+,

(3.5.46) ‖M#(u; x,D)v‖Hs,p ≤ C(‖u‖L∞)‖v‖Xm+r‖u‖Hs+m−r,p , 0 ≤ s ≤ r;
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in particular,

(3.5.47) ‖M#(u; x,D)v‖Hs,p ≤ C(‖u‖L∞)‖v‖Cm+1‖u‖Hs+m−1,p , 0 ≤ s ≤ 1.

§3.6. Commutator estimates

In this section we establish a number of estimates, including the following two:

(3.6.1) ‖P (fu)− fPu‖Lp ≤ C‖f‖Lip1‖u‖Hs−1,p + C‖f‖Hs,p‖u‖L∞

given P ∈ OPSs
1,0, s > 0, p ∈ (1,∞), and

(3.6.2) ‖P (fu)− fPu‖Lp ≤ C‖f‖Lip1‖u‖Lp

given P ∈ OPS1
1,0. The first generalizes an estimate of Moser [Mo] when P is a

differential operator. Such an estimate was proved by Kato and Ponce [KP] when
P = (1−∆)s/2, by a different method than used here. The second estimate is due
to Coifman-Meyer [CM2], generalizing the case when P ∈ OPS1

cl due to Calderon
[Ca1]. Both these estimates will play important roles in subsequent chapters.

To begin, write, as in (3.5.1),

(3.6.3)
f(Pu) = TfPu + TPuf + R(f, Pu)

P (fu) = PTfu + PTuf + PR(f, u).

Using Theorem 3.4.A and the observations leading to Corollary 3.4.G, we have

(3.6.4) f ∈ Lip1, P ∈ OPSs
1,0 =⇒ [Tf , P ] ∈ OPB0Ss−1

1,1 .

hence

(3.6.5) ‖[Tf , P ]u‖Hσ,p ≤ C‖f‖Lip1‖u‖Hs−1+σ,p , σ ∈ R,

for s ∈ R, p ∈ (1,∞).
We estimate separately the other four terms on the right sides in (3.6.3). First,

(3.6.6) u ∈ L∞ =⇒ Tu ∈ OPB0S0
1,1,

so

(3.6.7) ‖PTuf‖Hσ,p ≤ C‖u‖L∞‖f‖Hs+σ,p , σ ∈ R,

for s ∈ R, p ∈ (1,∞). Similarly, by (3.5.7),

(3.6.8) u ∈ L∞, P ∈ OPSs
1,0 =⇒ TPu ∈ OPB0Ss

1,0 if s > 0,
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so

(3.6.9) ‖TPuf‖Hσ,p ≤ C‖u‖L∞‖f‖Hs+σ,p , σ ∈ R,

for s > 0, p ∈ (1,∞).
To estimate R(f, Pu), we can use

(3.6.10) f ∈ Lip1 =⇒ Rf ∈ OPS−1
1,1

to deduce

(3.6.11) ‖R(f, Pu)‖Hσ,p ≤ C‖f‖Lip1‖u‖Hs−1+σ,p , σ > 0.

But since we are particularly interested in the case σ = 0 in (3.6.1), we will appeal
to Proposition 3.5.D, with Xr = X1 = Lip1, to obtain

(3.6.12) ‖R(f, Pu)‖Hσ,p ≤ C‖f‖Lip1‖u‖Hs−1+σ,p , σ ≥ 0.

Similarly, using this proposition, we have

(3.6.13) ‖PR(f, u)‖Hσ,p ≤ C‖f‖Lip1‖u‖Hs−1+σ,p , σ ≥ −s,

such an estimate for σ > −s following more simply from (3.6.10).
Thus the estimates (3.6.5), (3.6.7), (3.6.9), (3.6.12), and (3.6.13) yield the fol-

lowing extension of the Kato-Ponce estimate.

Proposition 3.6.A. Given P ∈ OPSs
1,0, s > 0, we have

(3.6.14) ‖P (fu)− fPu‖Hσ,p ≤ C‖f‖Lip1‖u‖Hs−1+σ,p + C‖f‖Hs+σ,p‖u‖L∞ ,

for σ ≥ 0, p ∈ (1,∞).

The one point in the proof of this proposition which depends on Theorem 3.5.A,
i.e., Theorem 33 of [CM], is the estimate (3.6.12), improving (3.6.11). Thus (3.6.14)
is proved for σ > 0 without using this result of [CM]. We now show how it can
also be proved for σ = 0, independently of Theorem 3.5.A, using some simple
commutations.

The only element of (3.6.3) that did not give rise to an adequate estimate for
σ = 0, without depending on Theorem 3.5.A, is R(f, Pu). However, we will find it
more convenient to estimate

(3.6.15) TR
Puf = TPuf + R(f, Pu),

where generally

(3.6.16) fg = Tfg + TR
g f ; TR

g f = Tgf + R(f, g).
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The advantage is that, from (3.6.6) and the obvious estimate on fg, we have

(3.6.17) ‖TR
g f‖Lp ≤ C‖f‖L∞‖g‖Lp ,

without using Theorem 3.5.A. We need to prove

(3.6.18) ‖TR
Puf‖Lp ≤ C‖u‖L∞‖f‖Hs,p + C‖u‖Hs−1,p‖f‖Lip1 .

Given u ∈ Hs−1,p ∩ L∞, we can write

(3.6.19) u =
∑

Λ−1∂jvj + Λ−1v0, Λs = (1−∆)s/2,

with ‖vj‖Hs−1,p ≤ C‖u‖Hs−1,p , ‖vj‖C0∗ ≤ C‖u‖L∞ . It suffices to examine the case
u = Λ−1∂jvj . Write

Pj = [PΛ−1, ∂j ] ∈ OPSs−1
1,0 , Q = PΛ−1 ∈ OPSs−1

1,0 .

Now, with u = Λ−1∂jvj , since TR
∂jwf = ∂jT

R
w f − TR

w ∂jf, we have

(3.6.20) TR
Puf = TR

Pjvj
f + ∂jT

R
Qvj

f − TR
Qvj

∂jf.

We estimate the three terms on the right. By (3.6.17),

(3.6.21)
‖TR

Qvj
∂jf‖Lp ≤ C‖∂jf‖L∞‖Qvj‖Lp

≤ C‖f‖Lip1‖vj‖Hs−1,p ,

and TR
Pjvj

f has an even simpler bound. To estimate the other term, i.e., the H1,p-
norm of TR

Qvj
f, we will use the fact that

(3.6.22) v ∈ C0
∗ =⇒ TR

Qv ∈ OPSs−1
1,1 , if s > 1,

to get

(3.6.23) ‖∂jT
R
Qvj

f‖Lp ≤ C‖vj‖C0∗‖f‖Hs,p , if s > 1.

Consequently, we have a proof of (3.6.1) which does not depend on Theorem 3.5.A,
as long as s > 1.

We now turn to the commutator estimate (3.6.2), which is sharper than the
s = 1 case of (3.6.1). From what we have done so far, we see from (3.6.5), (3.6.12),
and (3.6.13) that, for P ∈ OPS1

1,0, σ ≥ 0,

(3.6.24)
‖P (fu)− fPu‖Hσ,p

≤ C‖f‖Lip1‖u‖Hσ,p + C‖PTuf‖Hσ,p + C‖TPuf‖Hσ,p .
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Before, we dominated the last two terms by C‖u‖L∞‖f‖Hs+σ,p , using (3.6.6) and
(3.6.8). This time, we use instead (3.5.40), i.e.,

(3.6.25) ‖Tvf‖Hr,p ≤ C‖v‖Hr−1,p‖f‖Lip1 , 0 ≤ r ≤ 1,

to dominate the last two terms in (3.6.24) by C‖f‖Lip1‖u‖Lp , in case σ = 0. This
proves (3.6.2).

We mention that another path from Theorem 3.5.A to the commutator estimate
(3.6.2) is indicated in Chapter 6 of [CM].

We briefly discuss how the estimate (3.6.2) follows from the T(1) Theorem of
David-Journe [DJ]. First we recall the statement of that result. Consider a function
K on Rn × Rn satisfying

(3.6.26)
|K(x, y)| ≤ C|x− y|−n,

|∇x,yK(x, y)| ≤ C|x− y|−n−1.

Suppose K agrees on Rn × Rn \ ∆ with the distributional kernel of an operator
T : C∞0 → D′, satisfying the weak boundedness condition

(3.6.27) |〈Tϕy,λ, ψy,λ〉| ≤ Cλn

for all ϕ,ψ in any bounded subset of C∞0 (Rn), where

ϕy,λ(x) = ϕ
(
(x− y)/λ

)
.

Then the Theorem states that there is a bounded extension

(3.6.28) T : Lp(Rn) −→ Lp(Rn), 1 < p < ∞,

provided that also

(3.6.29) T (1), T ∗(1) ∈ BMO.

We recall the following property, which actually characterizes BMO :

(3.6.30) A ∈ OPS0
1,0 =⇒ A : L∞ −→ BMO.

We claim that, if P ∈ OPS1
1,0 and f ∈ Lip1, then T = [P, f ] has these properties.

If P has Schwartz kernel L(x, x− y), then the Schwartz kernel of T is

(3.6.31) K(x, y) = L(x, x− y)[f(x)− f(y)],

which implies (3.6.26) from standard estimates on L. Note that

(3.6.32)
T (1) = P (f)− fP (1) ∈ BMO,

T ∗(1) = −P ∗(f) + fP ∗(1) ∈ BMO,
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by (3.6.30). It remains to verify the weak boundedness condition (3.6.27).
When P ∈ OPS1

1,0 has symmetric Schwartz kernel, then T = [P, f ] has antisym-
metric Schwartz kernel. As noted in [DJ], the estimate (3.6.27) is easy in this case.
Furthermore, it is easy to see that P ∈ OPS1

1,0 has a symmetric Schwartz kernel
(mod OPS0

1,0) if and only if its symbol p(x, ξ) ∈ S1
1,0 is symmetric in ξ (mod S0

1,0).
There is a corresponding result on antisymmetry.

Thus it remains to consider the case of p(x, ξ) ∈ S1
1,0 antisymmetric in ξ. Hence

we can consider P =
∑

DjBj(x,D), with Bj(x, ξ) ∈ S0
1,0, symmetric in ξ. Now we

have

(3.6.33) [DjBj(x,D), f ] = [Dj , f ]Bj(x,D) + Dj [Bj(x,D), f ].

The first term on the right is obviously bounded on Lp. Write the second term on
the right as (DjΛ−1)Λ[Bj(x,D), f ], and write

(3.6.34) Λ[Bj(x,D), f ] = [ΛBj(x, D), f ]− [Λ, f ]Bj(x,D).

The operators ΛBj(x, D), Λ ∈ OPS1
1,0 both have even kernels (mod OPS0

1,0), so
the case discussed above applies. Thus we have the Lp-boundedness of (3.6.33),
finishing the derivation of (3.6.2) from the T (1) Theorem.

The T (1) Theorem is proved in [DJ]. A discussion of background material is given
in [Ch]. We note that a key ingredient in the proof is the paraproduct, including
Theorem 3.5.A.

To close this section, we extend Proposition 3.6.A to the case s = 0. In the
derivation of (3.6.14), only the step involving (3.6.9) required s > 0. We can extend
this result to s = 0 if we replace ‖u‖L∞ on the right side of (3.6.14) by ‖u‖L∞ +
‖Pu‖L∞ . We also note that, using (3.6.25), we can estimate TPuf and PTuf in the
Hσ,p-norm by C‖f‖Lip1‖u‖Hσ−1,p , for 0 ≤ σ ≤ 1. Thus we have the following.

Proposition 3.6.B. Given P ∈ OPS0
1,0, we have

(3.6.35) ‖P (fu)− fPu‖Hσ,p ≤ C‖f‖Lip1‖u‖Hσ−1,p , for 0 ≤ σ ≤ 1,

and, for σ > 1,

(3.6.36)
‖P (fu)− fPu‖Hσ,p

≤ C‖f‖Lip1‖u‖Hσ−1,p + C‖f‖Hσ,p

(‖u‖L∞ + ‖Pu‖L∞
)
.
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Chapter 4: Calculus for OPC1Sm
cl

In the last chapter, we developed an operator calculus and used it for several
purposes, including obtaining commutator estimates in §3.6. Here we work in the
opposite order. In §4.1 we recall the estimate (3.6.2) of Coifman-Meyer (generalizing
results of Calderon) and show how it leads to further commutator estimates for
operators with C1-regular symbols. Then we use these commutator estimates to
establish an operator calculus for symbols in C1Sm

cl . For this, Calderon’s estimates
suffice, and much of the material of §4.2 is contained in [Ca2], [Ca3]. In §4.3, we
look at a G̊arding inequality, more precise, though less general, than the G̊arding
inequality in Proposition 2.4.B.

Section 4.4 discusses relations between OPC1Sm
cl and paradifferential operators

with symbols in Bony’s class Σm
1 .

§4.1. Commutator estimates

We begin by recalling the commutator estimate of Coifman-Meyer proved in
§3.6.

Proposition 4.1.A. If P ∈ OPS1
1,0, p ∈ (1,∞), then

(4.1.1) ‖P (fu)− fPu‖Lp ≤ C‖f‖Lip1‖u‖Lp .

We will derive several generalizations of this, with implications for OPC1Sm
cl . To

begin, we obtain a generalization of (4.1.1) with f replaced by A(x,D) ∈ OPC1S0
cl,

as follows. Modulo minor additional terms,

(4.1.2) A(x,D) =
∑

`

a`(x)ω`(D),

as noted in the proof of Proposition 1.1.A. We have

(4.1.3) ‖a`‖C1 ≤ CM 〈`〉−M ,

where CM is dominated by some seminorm

(4.1.4) π0
N,C1(A) = sup

{‖Dα
ξ A(·, ξ)‖C1 · 〈ξ〉|α| : ξ ∈ Rn, |α| ≤ N

}
.

Meanwhile we have a polynomial bound

(4.1.5) ‖ω`(D)‖L(Lp) ≤ Cp〈`〉K , 1 < p < ∞.

Given (4.1.2), we have

(4.1.6) [P, A(x,D)] =
∑

`

[P, a`]ω`(D) +
∑

`

a`(x)[P, ω`(D)].
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We can apply (4.1.1) to [P, a`]. To analyze the last sum in (4.1.6), we use the
estimate

(4.1.7)
∥∥[P, ω`(D)]

∥∥
L(Lp)

≤ Cp〈`〉K ,

coming from [P, ω`(D)] ∈ OPS0
1,0, with easily established symbol bounds. Putting

these estimates together, we have:

Proposition 4.1.B. If P ∈ OPS1
1,0, A(x, ξ) ∈ C1S0

cl, 1 < p < ∞, then, for some
N,

(4.1.8)
∥∥[P,A(x, D)]u

∥∥
Lp ≤ Cpπ

0
N,C1(A)‖u‖Lp .

In the same way, given B(x, ξ) ∈ C1S1
cl, we can write

(4.1.9) B(x,D) =
∑

`

b`(x)ω`(D)Λ

and then

(4.1.10) [B(x,D), A(x,D)] =
∑

`,m

[bm(x)ωm(D)Λ, a`(x)ω`(D)].

Each commutator in the sum can be expanded to

(4.1.11) bm[ωm(D)Λ, a`]ω` + a`[bmΛ, ω`]ωm.

We can apply (4.1.1) to the first term in (4.1.11). We can rewrite the second term,
using

[bmΛ, ω`] = [bm, ω`Λ]− ω`[bm, Λ],

and again apply (4.1.1). Thus we have:

Proposition 4.1.C. If B(x, ξ) ∈ C1S1
cl, A(x, ξ) ∈ C1S0

cl, 1 < p < ∞, then, for
some N,

(4.1.12) ‖[B(x,D), A(x,D)]u‖Lp ≤ Cπ0
N,C1(A) · π1

N,C1(B)‖u‖Lp .

Here, generalizing (4.1.4), we set

(4.1.13) πs
N,X(B) = sup

{‖Dα
ξ B(·, ξ)‖X · 〈ξ〉−s+|α| : ξ ∈ Rn, |α| ≤ N

}
.

Note that, under the hypotheses above, by Proposition 1.1.B,

(4.1.14)
A(x,D)B(x, D) : Hs+1,p −→ Hs,p, −1 ≤ s ≤ 1

B(x,D)A(x, D) : Hs+1,p −→ Hs,p, 0 ≤ s ≤ 1,

for 1 < p < ∞.
Noting that Λ[P, f ] = [ΛP, f ] − [Λ, f ]P and [P, f ]Λ = [PΛ, f ] − P [Λ, f ], we see

that Proposition 4.1.A implies:
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Proposition 4.1.D. If P ∈ OPS0
1,0, f ∈ Lip1, 1 < p < ∞, then

[P, f ] : Hs,p −→ Hs+1,p, −1 ≤ s ≤ 0.

Then the analysis establishing Proposition 4.1.B and Proposition 4.1.C also gives:

Proposition 4.1.E. If P ∈ OPS0
1,0, Aj(x, ξ) ∈ C1S0

cl, 1 < p < ∞, then

[P, Aj(x,D)] : Hs,p −→ Hs+1,p, −1 ≤ s ≤ 0

and
[A1(x,D), A2(x,D)] : Hs,p −→ Hs+1,p, −1 ≤ s ≤ 0.

We end this section with a generalization of the Kato-Ponce estimate (3.6.1),
replacing f ∈ Lip1 ∩ Hs,p by A(x,D) ∈ OPC1S0

cl ∩ OPHs,pS0
cl, given 1 < p <

∞, s > 0. Write A(x,D) in the form (4.1.2). Then, given P ∈ OPSs
1,0,

(4.1.15) [P,A(x, D)]u =
∑

`

[P, a`]ω`(D)u +
∑

`

a`(x)[P, ω`(D)]u.

By (3.5.1), with f = a`, we have

(4.1.16)∥∥[P, a`](ω`(D)u)
∥∥

Lp ≤ C‖a`‖C1‖ω`(D)u‖Hs−1,p + C‖a`‖Hs,p‖ω`(D)u‖L∞ .

Now a` has a bound of the form (4.1.3), both in the C1-norm and in the Hs,p-norm.
In light of (4.1.5), we have

(4.1.17) C‖a`‖C1‖ω`(D)u‖Hs−1,p ≤ CpM 〈`〉−M+Kπ0
N,C1(A)‖u‖Hs−1,p .

Now OPS0 is not bounded on L∞, so we need to work with a smaller Banach space,
call it C0

#, with the property that

(4.1.18) B ∈ OPS0
cl =⇒ B : C0

# −→ C0 ⊂ L∞.

Then we have an estimate

(4.1.19) C‖a`‖Hs,p‖ω`(D)u‖L∞ ≤ CpM 〈`〉−M+Kπ0
N,Hs,p(A)‖u‖C0

#
.

We have then a good estimate on the first sum in (4.1.15). For the last sum, we
can use the simple estimate

∥∥[P, ω`(D)]u
∥∥

Lp ≤ Cp〈`〉K‖u‖Hs−1,p .

We have the following result:
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Proposition 4.1.F. If P ∈ OPSs
1,0 and A(x, ξ) ∈ C1S0

cl ∩ Hs,pS0
cl with 1 < p <

∞, s > 0, then

(4.1.20) ‖[P, A(x,D)]u‖Lp ≤ Cπ0
N,C1(A)‖u‖Hs−1,p + Cπ0

N,Hs,p(A)‖u‖C0
#
.

Whatever choice of C0
# is made in (4.1.18), we note that, if

(4.1.21) Cr
# = Λ−r(C0

#), r ≥ 0,

then

(4.1.22) B ∈ OPS0
cl =⇒ B : Cr

# −→ Cr, r ≥ 0.

For r /∈ Z, this is clear from C0 ⊂ C0
∗ and Λ−r : C0

∗ −→ Cr
∗ . If r = k ∈ Z, u =

Λ−rv, v ∈ C0
#, we have, for |α| ≤ k, DαBΛ−kv = Av, A ∈ OPS0

cl, which belongs
to C0 by hypothesis (4.1.18), so (4.1.22) is established. One candidate for C0

# is
the Besov-type space

(4.1.23) B0
∞,1 = {u ∈ S ′(Rn) :

∑

j≥0

‖ψj(D)u‖L∞ < ∞},

where {ψj} is the partition of unity (1.3.1). Note that

(4.1.24) C0 ⊃ B0
∞,1 ⊃ Cr, r > 0.

In fact, this is the space we will use:

(4.1.25) C0
# = B0

∞,1.

In the 1991 version of this work we proposed instead to take

u ∈ C0
# ⇐⇒ sup

`
〈`〉−K‖ω`(D)u‖C0 < ∞

where K is a constant which is picked to be sufficiently large. In the process of
producing [[T2]], the author realized that (4.1.25) works best. In particular, the
results of §B.2 apply to make this a good candidate.

§4.2. Operator algebra

The analysis proving Proposition 4.1.C can also be applied to products Aj(x,D)B(x,D)
where, with j = 0 or 1,

(4.2.1) Aj(x, ξ) ∈ C1Sj
cl, B(x, ξ) ∈ C1Sµ

cl.
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We suppose expansions such as (4.1.2) and (4.1.9) hold. Then, in analogy with
(4.1.10), we have

(4.2.2)
A0(x,D)B(x,D) =

∑

`,m

a`(x)ω`(D)bm(x)ωm(D)Λµ

= C0(x,D) + R0

where

(4.2.3) C0(x, ξ) = A0(x, ξ)B(x, ξ)

and

(4.2.4) R0 =
∑

`,m

a`(x)[ω`(D), bm(x)]Λµωm(D).

Applying Proposition 4.1.E, keeping in mind such estimates as (4.1.3), we have the
first half of:

Proposition 4.2.A. Given (4.2.1), j = 0, 1,

(4.2.5) Aj(x,D)B(x,D) = Cj(x, D) + Rj ,

where

(4.2.6) Cj(x, ξ) = Aj(x, ξ)B(x, ξ) ∈ C1Sµ+j
cl ,

(4.2.7) R0 : Hµ+s,p −→ Hs+1,p, −1 ≤ s ≤ 0,

and

(4.2.8) R1 : Hµ,p −→ Lp.

For the second half, note that

(4.2.9) R1 =
∑

`,m

bm(x)[ωm(D)Λ, a`(x)]ω`(D)Λµ.

Note that Proposition 4.2.A contains Proposition 4.1.C.
Next we establish a result on adjoints, more precise, though less general, than

Proposition 2.3.A.
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Proposition 4.2.B. If B(x, ξ) ∈ C1S1
cl, and B∗(x, ξ) = B(x, ξ)∗, then

(4.2.10) B(x, D)∗ −B∗(x,D) : Lp −→ Lp, 1 < p < ∞.

Proof. Given the expansion (4.1.9), we have

(4.2.11) B(x,D)∗ −B∗(x, D) =
∑

`

[ω`(D)Λ, b`(x)∗],

so the boundedness follows from (4.1.1) and the analogue of (4.1.3).

In a similar fashion, we can use Proposition 4.1.D to establish the following.

Proposition 4.2.C. If A(x, ξ) ∈ C1S0
cl, then

(4.2.12) A(x,D)∗ = A∗(x, D) + R

with

(4.2.13) R : Hs,p −→ Hs+1,p, −1 ≤ s ≤ 0.

§4.3. G̊arding inequality

We use the operator algebra of §4.2 to establish the following useful version of
G̊arding’s inequality.

Propossition 4.3.A. If p(x, ξ) ∈ C1S2
cl is a K ×K matrix valued symbol and

(4.3.1) p(x, ξ) = p(x, ξ)∗ ≥ C|ξ|2I

for |ξ| large, then

(4.3.2) Re (p(x, D)u, u) ≥ C1‖u‖2H1 − C2‖u‖2L2 .

Proof. Without loss of generality, we can assume

(4.3.3) p(x, ξ) = p(x, ξ)∗ ≥ C〈ξ〉2I for all x, ξ.

Picking C1 < C, we can hence write

(4.3.4) p(x, ξ)− C1〈ξ〉2 = a(x, ξ)2,

with a(x, ξ) = a(x, ξ)∗ ∈ C1S1
cl. Hence

(4.3.5) (p(x,D)u, u) = C1‖u‖2H1 + (a2(x,D)u, u)
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where a2(x, ξ) = a(x, ξ)2. Applying Proposition 4.2.A and Proposition 4.2.B, we
can write

(4.3.6) a2(x,D) = a(x,D)∗a(x,D) + R, R : H1 −→ L2.

Hence

(4.3.7) (p(x,D)u, u) = C1‖u‖2H1 + ‖a(x,D)u‖2L2 + (Ru, u)

and

(4.3.8) |(Ru, u)| ≤ C3‖u‖H1‖u‖L2 .

This gives the desired estimate (4.3.2).
We can replace (4.3.1) by a more standard hypothesis on p(x, ξ)+p(x, ξ)∗, though

a little care is required to do so, since the relation between p(x,D)∗ and p∗(x,D)
is not as good for p(x, ξ) ∈ C1S2

cl as it is for symbols in C1S1
cl.

Lemma 4.3.B. Given q(x, ξ) = q(x, ξ)∗ ∈ C1S2
cl, we can write

(4.3.9) q(x,D) = Q + R

where Q is a symmetric operator on L2, with domain H2, and

(4.3.10) R : H1 −→ L2.

Proof. There exists C0 > 0 such that p(x, ξ) = q(x, ξ) + C0〈ξ〉2 satisfies (4.3.3).
Then (4.3.4) and (4.3.6) give

(4.3.11) q(x,D) = (C1 − C0)Λ + a(x,D)∗a(x,D) + R,

which does it. Note that it does not follow that Q ∈ OPC1S2
cl, nor that q(x,D)−

q(x,D)∗ maps H1 to L2.

Consequently the hypothesis on q(x, ξ) implies

(4.3.12) |Im (q(x,D)u, u)| ≤ C‖u‖H1‖u‖L2 .

Therefore, if p(x, ξ) ∈ C1S2
cl and ps(x, ξ) = (1/2)(p(x, ξ) + p(x, ξ)∗), then

(4.3.13) |Re (p(x,D)u, u)− Re (ps(x,D)u, u)| ≤ C‖u‖H1‖u‖L2 .

This immediately yields
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Corollary 4.3.C. In Proposition 4.3.A, the hypothesis (4.3.1) can be replaced by

(4.3.14) p(x, ξ) + p(x, ξ)∗ ≥ C|ξ|2I.

§4.4. C1-paradifferential calculus

In this section we discuss the relation of operators with symbols in C1Sm
cl and

those with symbols in the class Σm
1 . This is the case of Bony’s symbol class Σm

r with
r = 1, which has played a role in recent work of Gerard-Rauch [GR] and Metivier
[Met2]. Recall from (3.4.32) that a symbol in Σm

1 arises from one in C1Sm
cl via a

symbol smoothing process, with δ = 1, of the form

(4.4.1) a#(·, ξ) =
∑

k≥0

Ψk−5(D)a(·, ξ)ψk+1(ξ).

As in §3.4, we follow Bony [Bo] and denote a#(x,D) also by Ta. The first basic
result is the following, part of which was stated by Metivier in (9.7) of [Met2].

Proposition 4.4.A. If a(x) ∈ C1, then, for −1 ≤ s ≤ 0, p ∈ (1,∞),

(4.4.2) u ∈ Hs,p =⇒ au− Tau ∈ Hs+1,p.

Proof. We write

(4.4.3) au− Tau = Tua + R(a, u)

and use results of §3.5 to analyze the two terms on the right. From Proposition
3.5.D we have

(4.4.4) ‖R(a, u)‖Hs+1,p ≤ C‖a‖C1‖u‖Hs,p , s ≥ −1,

while (3.5.40) implies

(4.4.5) ‖Tua‖Hs+1,p ≤ C‖a‖C1‖u‖Hs,p , −1 ≤ s ≤ 0.

Thus (4.4.2) follows.

Using (4.4.2) it is fairly easy to establish:

Proposition 4.4.B. If a(x, ξ) ∈ C1Sm
cl , then, for −1 ≤ s ≤ 0, p ∈ (1,∞),

(4.4.6) u ∈ Hs+m,p =⇒ a(x,D)u− Tau ∈ Hs+1,p.

Proof. Writing a(x, ξ) =
∑

aj(x)βj(ξ) with βj ∈ Sm
cl , it suffices to apply (4.4.2) to

a = aj(x), with u replaced by βj(D)u.
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Using this we can relate such commutator estimates as in Proposition 4.1.E to
that from Corollary 3.4.H, which implies for scalar aj(x, ξ) ∈ C1S

mj

cl ,

(4.4.7) Ta1Ta2 − Ta2Ta1 ∈ L(Hs,p,Hs−m1−m2+1,p)

for s ∈ R, p ∈ (1,∞). Given Proposition 4.4.B, we see that Proposition 4.1.E is
equivalent to (4.4.7), for s ∈ [−1, 0], and m1 = m2 = 0. Similarly, (4.4.7) implies
(4.1.1) for P ∈ OPS1

cl, which is Calderon’s case of Proposition 4.1.A. Of course,
we saw already in §3.6 that the full strength of Proposition 4.1.A follows from such
ingredients, so this is nothing new.
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Chapter 5: Nonlinear hyperbolic systems

In this chapter we treat various types of hyperbolic equations, beginning in
§5.1 with first order symmetric hyperbolic systems. In this case, little direct use
of pseudodifferential operator techniques is made, mainly an appeal to the Kato-
Ponce estimates. We use Friedrichs mollifiers to set up a modified Galerkin method
for producing solutions, and some of their properties, such as (5.1.43), can be ap-
proached from a pseudodifferential operator perspective. The idea to use Moser
type estimates and to aim for results on persistence of solutions as long as the
C1-norms remain bounded was influenced by [Mj]. We provide a slight sharpen-
ing, demonstrating persistence of solutions as long as the C1

∗ -norm is bounded.
In §5.2 we study two types of symmetrizable systems, the latter type involving
pseudodifferential operators in an essential way. Here and in subsequent sections,
including a treatment of higher order hyperbolic equations, we make strong use of
the C1Sm

cl -calculus developed in Chapter 4.

§5.1. Quasilinear symmetric hyperbolic systems

In this section we examine existence, uniqueness, and regularity for solutions to
a system of equations of the form

(5.1.1)
∂u

∂t
= L(t, x, u, Dx)u + g(t, x, u), u(0) = f.

We derive a short time existence theorem, under the following assumptions. We
suppose

(5.1.2) L(t, x, u,Dx)v =
∑

j

Aj(t, x, u)∂jv,

that each Aj is a K ×K matrix, smooth in its arguments, and furthermore sym-
metric:

(5.1.3) Aj = A∗j .

We suppose g is smooth in its arguments, with values in RK ; u = u(t, x) takes
values in RK . We then say (5.1.1) is a symmetric hyperbolic system. For simplicity
we will suppose x ∈ M where M is an n-dimensional torus, though any compact
M could be treated with minor modifications, as could the case M = Rn. We will
suppose f ∈ Hs(M), s > n/2 + 1.

Our strategy will be to obtain a solution to (5.1.1) as a limit of solutions uε to

(5.1.4)
∂uε

∂t
= JεLεJεuε + gε, uε(0) = f,
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where

(5.1.5) Lεv =
∑

j

Aj(t, x, Jεuε)∂jv

and

(5.1.6) gε = Jεg(t, x, Jεuε).

In (5.1.4), f might also be replaced by Jεf, though this is not crucial. Here {Jε :
0 < ε ≤ 1} is a Friedrichs mollifier. For any ε > 0, (5.1.4) can be regarded as
a (Banach space)ODE for uε, for which we know there is a unique solution, for t
close to 0. Our task will be to show that the solution uε exists for t in an interval
independent of ε ∈ (0, 1], and has a limit as ε → 0 solving (5.1.1).

To do this we estimate the Hs-norm of solutions to (5.1.4). We use the norm
‖u‖Hs = ‖Λsu‖L2 . We can arrange for Λs and Jε to commute. We proceed to derive
an estimate for

(5.1.7)
d

dt
‖Λsuε(t)‖2L2 = 2(ΛsJεLεJεuε, Λsuε) + 2(Λsgε,Λsuε).

Write the first term as

(5.1.8) 2(LεΛsJεuε,ΛsJεuε) + 2([Λs, Lε]Jεuε, ΛsJεuε).

To estimate the first term of (5.1.8), use

(5.1.9) (Lε + L∗ε) = −
∑

j

[∂jAj(t, x, Jεuε)]v,

so

(5.1.10) 2(LεΛsJεuε, ΛsJεuε) ≤ C(‖Jεuε(t)‖C1) · ‖ΛsJεuε‖2L2 .

Next consider

(5.1.11) [Λs, Lε]v =
∑

j

[Λs(Ajε∂jv)−AjεΛs(∂jv)],

where Ajε = Aj(t, x, Jεuε). By the Kato-Ponce estimate (3.6.1), we have

(5.1.12) ‖[Λs, Lε]v‖L2 ≤ C
∑

j

[
‖Ajε‖Hs‖∂jv‖L∞ + ‖Ajε‖C1‖∂jv‖Hs−1

]
.

Also, there is the Moser estimate

(5.1.13) ‖Aj(t, x, w)‖Hs ≤ C(‖w‖L∞)(1 + ‖w‖Hs),

and a similar estimate on ‖gε‖Hs ; compare (3.1.20). Using these estimates, we
obtain from (5.1.7) that

(5.1.14)
d

dt
‖Λsuε(t)‖2L2 ≤ C(‖Jεuε(t)‖C1)(1 + ‖Jεuε(t)‖2Hs).

This puts us in a position to prove the following.
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Lemma 5.1.A. Given f ∈ Hs, s > n/2 + 1, the solution to (5.1.4) exists for t in
an interval I = (−A,B), independent of ε, and satisfies an estimate

(5.1.15) ‖uε(t)‖Hs ≤ K(t), t ∈ I,

independent of ε ∈ (0, 1].

Proof. Using the Sobolev imbedding theorem, we can dominate the right side of
(5.1.14) by E(‖uε(t)‖2Hs), so ‖uε(t)‖2Hs = y(t) satisfies the differential inequality

(5.1.16)
dy

dt
≤ E(y), y(0) = ‖f‖2Hs .

Gronwall’s inequality yields a function K(t), finite on some interval [0, B), giving
an upper bound for all y(t) satisfying (5.1.16). Time-reversal gives such an upper
bound on an interval (−A, 0]. This I = (−A,B) and K(t) work for (5.1.15).

We are now prepared to establish the following existence result.

Theorem 5.1.B. Provided (5.1.1) is symmetric hyperbolic and f ∈ Hs(M), with
s > n/2 + 1, there is a solution u, on an interval I about 0, with

(5.1.17) u ∈ L∞(I, Hs(M)) ∩ Lip(I, Hs−1(M)).

Proof. Take the I above and shrink it slightly. The bounded family

uε ∈ C(I,Hs) ∩ C1(I, Hs−1)

will have a weak limit point u satisfying (5.1.17). Furthermore, by Ascoli’s theorem,
there is a sequence

(5.1.18) uεν −→ u in C(I, Hs−1(M))

since the inclusion Hs ⊂ Hs−1 is compact. Also, by interpolation inequalities,
{uε : 0 < ε ≤ 1} is bounded in Cσ(I, Hs−σ(M)) for 0 < ε ≤ 1, so since the
inclusion Hs−σ ⊂ C1(M) is compact for small σ > 0 if s > n/2+1, we can arrange
that

(5.1.19) uεν −→ u in C(I, C1(M)).

Consequently (with ε = εν)

(5.1.20)
JεL(t, x, Jεuε, D)Jεuε + Jεg(t, x, Jεuε)

−→ L(t, x, u,D)u + g(t, x, u) in C(I ×M),
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while clearly ∂uεν
/∂t → ∂u/∂t weakly. Thus (5.1.1) follows in the limit from

(5.1.4).

There are questions of uniqueness, stability, and rate of convergence of uε to u,
which we can treat simultaneously. Thus, with ε ∈ [0, 1], we compare a solution u
to (5.1.1) to a solution uε to

(5.1.21)
∂uε

∂t
= JεL(t, x, Jεuε, D)Jεuε + Jεg(t, x, Jεuε), uε(0) = h.

Set
v = u− uε

and subtract (5.1.21) from (5.1.1). Suppressing the variables (t, x), we have

(5.1.22)
∂v

∂t
= L(u,D)v + L(u,D)uε − JεL(Jεuε, D)Jεuε + g(u)− Jεg(Jεuε).

Write

(5.1.23)

L(u, D)uε − JεL(Jεuε, D)Jεuε

= [L(u,D)− L(uε, D)]uε

+ (1− Jε)L(uε, D)uε + JεL(uε, D)(1− Jε)uε

+ Jε[L(uε, D)− L(Jεuε, D)]Jεuε

and

(5.1.24)
g(u)− Jεg(Jεuε) = [g(u)− g(uε)] + (1− Jε)g(uε)

+ Jε[g(uε)− g(Jεuε)].

Now write

(5.1.25) g(u)− g(w) = G(u,w)(u− w), G(u,w) =
∫ 1

0

g′(τu + (1− τ)w)dτ,

and similarly

(5.1.26) L(u, D)− L(w,D) = (u− w) ·M(u,w, D).

Then (5.1.22) yields

(5.1.27)
∂v

∂t
= L(u,D)v + A(u, uε,∇uε)v + Rε

where

(5.1.28) A(u, uε,∇uε)v = v ·M(u, uε, D)uε + G(u, uε)v
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incorporates the first terms on the right sides of (5.1.23) and (5.1.24), and Rε is
the sum of the rest of the terms in (5.1.23)–(5.1.24). Note that each term making
up Rε has a factor I − Jε, acting on either uε, g(uε), or L(uε, D)uε. Thus there is
an estimate

(5.1.29) ‖Rε(t)‖2L2 ≤ Cs(‖uε(t)‖C1)(1 + ‖uε(t)‖2Hs)rs(ε)2

where

(5.1.30) rs(ε) = ‖I − Jε‖L(Hs−1,L2) ≈ ‖I − Jε‖L(Hs,H1).

Now, estimating (d/dt)‖v(t)‖2L2 via the obvious analogue of (5.1.9) yields

(5.1.31)
d

dt
‖v(t)‖2L2 ≤ C(t)‖v(t)‖2L2 + S(t)

with

(5.1.32) C(t) = C(‖uε(t)‖C1 , ‖u(t)‖C1), S(t) = ‖Rε(t)‖2L2 .

Consequently, by Gronwall’s inequality, with K(t) =
∫ 1

0
C(τ)dτ,

(5.1.33) ‖v(t)‖2L2 ≤ eK(t)
[
‖f − h‖2L2 +

∫ 1

0

S(τ)e−K(τ)dτ
]
.

This estimate establishes the following

Proposition 5.1.C. For s > n/2 + 1, solutions to (5.1.1) satisfying (5.1.17) are
unique. They are limits of solutions uε to (5.1.4), and, for t ∈ I,

(5.1.34) ‖u(t)− uε(t)‖L2 ≤ K1(t)‖I − Jε‖L(Hs−1,L2).

Note that if Jε = ϕ(εΛ) with ϕ ∈ C∞0 (R), ϕ(λ) = 1 for |λ| < 1, then we have
the operator norm estimate

(5.1.35) ‖I − Jε‖L(Hs−1,L2) ≤ C · εs−1.

Returning to properties of solutions to (5.1.1), we establish the following small
but significant improvement of (5.1.17).



112

Proposition 5.1.D. Given f ∈ Hs(M), s > n/2 + 1, the solution u to (5.1.1)
satisfies

(5.1.36) u ∈ C(I, Hs(M)).

For the proof, note that (5.1.17) implies that u(t) is a continuous function of t
with values in Hs(M), given the weak topology. To establish (5.1.36), it suffices to
demonstrate that the norm ‖u(t)‖Hs is a continuous function of t. We estimate the
rate of change of ‖u(t)‖2Hs by a device similar to the analysis of (5.1.7). Unfortu-
nately, it is not useful to look directly at (d/dt)‖Λsu(t)‖2L2 , since LΛsu will not be
in L2. To get around this, we throw in a factor of Jε, and look at

(5.1.37)
d

dt
‖ΛsJεu(t)‖2L2 = 2(ΛsJεL(u, D)u, ΛsJεu) + 2(ΛsJεg(u), ΛsJεu).

As above, we have suppressed the dependence on t, x, for notational convenience.
The last term on the right is easy to estimate; we write the first term as

(5.1.38) 2(ΛsL(u,D)u,ΛsJ2
ε u) = 2(LΛsu,ΛsJ2

ε u) + 2([Λs, L]u, ΛsJ2
ε u).

Here, for fixed t, L(u,D)Λsu ∈ H−1(M), whish can be paired with ΛsJ2
ε u ∈

C∞(M). Now we use the Kato-Ponce estimate to obtain

(5.1.39) ‖[Λs, L]u‖L2 ≤ C
∑

j

[
‖Aj(u)‖Hs‖u‖C1 + ‖Aj(u)‖C1‖u‖Hs

]
,

parallel to (5.1.12). This gives control over the last term in (5.1.38). We can write
the first term on the right side of (5.1.38) as

(5.1.40) ((L + L∗)ΛsJεu,ΛsJεu) + 2([Jε, L]Λsu, ΛsJεu).

The first term is bounded just as in (5.1.9)–(5.1.10). As for the last term, we have

(5.1.41) [Jε, L]w =
∑

j

[Aj(u), Jε]∂jw.

We have the estimate

(5.1.42) ‖[Aj , Jε]∂jw‖L2 ≤ C‖Aj‖C1‖w‖L2 ,

following by duality from the elementary bound

(5.1.43) ‖[Aj , Jε]f‖H1 ≤ C‖Aj‖C1‖f‖L2 .
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Consequently we have a bound

(5.1.44)
d

dt
‖Jεu(t)‖2Hs ≤ C(‖u(t)‖C1)‖u(t)‖2Hs ,

the right side being independent of ε ∈ (0, 1]. Using time-reversal gives a bound on
the absolute value of the left side of (5.1.44). Thus ‖Jεu(t)‖2Hs = Nε(t) is Lipschitz
continuous in t, uniformly in ε. As Jεu(t) −→ u(t) in Hs-norm for each t ∈ I, it
follows that ‖u(t)‖2Hs = N0(t) = limε→0 Nε(t) has this same Lipschitz continuity.
The proof is complete.

It is well known that in general symmetric quasilinear hyperbolic equations might
have solutions that break down in finite time. We mention two simple illustrative
examples. First consider

(5.1.45)
∂u

∂t
= u2, u(0, x) = 1.

The solution is u(t, x) = (1− t)−1, which blows up as t → 1. Next, consider

(5.1.46) ut + uux = 0, u(0, x) = f(x).

We see that u(t, x) is constant on straight lines through (x, 0), with slope f(x)−1,
in the (x, t)-plane. However, it is inevitable that such lines intersect. At the point
of first intersection, ux(t, x) blows up. A shock wave is formed.

We now show that, in a general context, breakdown of a classical solution must
involve blow-up of either supx |u(t, x)| or supx |∇xu(t, x)|.
Proposition 5.1.E. Suppose u ∈ C([0, T ),Hs(M)), s > n/2 + 1, and assume u
solves (5.1.1) for t ∈ (0, T ). Assume also that

(5.1.47) ‖u(t)‖C1(M) ≤ K < ∞,

for t ∈ [0, T ). Then there exists T1 > T such that u extends to a solution to (5.1.1),
belonging to C([0, T1),Hs(M)).

Proof. This follows easily from the estimate (5.1.44), which has the form dNε/dt ≤
C1(t)N0(t). If we write this in an equivalent integral form:

Nε(t + τ) ≤ Nε(t) +
∫ t+τ

t

C1(s)N0(s)ds,

it is clear that we can pass to the limit ε → 0, obtaining the differential inequality

(5.1.48)
dN0

dt
≤ C(‖u(t)‖C1)N0(t)
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for the Lipschitz function N0(t). Now Gronwall’s inequality implies N0(t) cannot
blow up as t → T unless ‖u(t)‖C1 does, so we are done

This result was established in [Mj] for s an integer. Proving such results for
noninteger s was one of the principal motivations for Kato and Ponce to establish
their commutator estimate in [KP].

We make the following remark on the factor of the form C(‖u‖C1) that appears
in the estimates (5.1.14) and (5.1.44). Namely, a check of the ingredients which
produced this factor, such as (5.1.12)–(5.1.13), shows that this factor has linear
dependence on the C1-norm, though possibly nonlinear dependence on the sup
norm. Hence

(5.1.49) C(‖u‖C1) = C0(‖u‖L∞)
[‖u‖C1 + 1

]
.

Using this and an argument similar to one in [BKM], we can sharpen up Proposition
5.1.E a bit.

Proposition 5.1.F. In the setting of Proposition 5.1.E, the solution persists as
long as ‖u(t)‖C1∗(M) is bounded.

Proof. We supplement (5.1.48)–(5.1.49) with the following estimate, which follows
from (B.2.12) in Appendix B.

(5.1.50) ‖u(t)‖C1 ≤ C‖u(t)‖C1∗

[
1 + log

‖u‖Hs

‖u‖C1∗

]
,

given s > n/2 + 1. Hence, if ‖u(t)‖C1∗ is bounded, we have

(5.1.51)
dN0

dt
≤ KN0(t)

[
1 + log+ N0(t)

]
,

for N0(t) = ‖u(t)‖2Hs . Since

(5.1.52)
∫ ∞

c

dτ

τ log τ
= ∞,

Gronwall’s inequality applied to this estimate yields a bound on ‖u(t)‖Hs for all t
for which ‖u(t)‖C1∗ ≤ K, completing the proof.

§5.2. Symmetrizable hyperbolic systems

The results of the previous section extend to the case

(5.2.1) A0(t, x, u)
∂u

∂t
=

n∑

j=1

Aj(t, x, u)∂ju + g(t, x, u), u(0) = f,

where, as in (5.1.3), all Aj are symmetric, and furthermore

(5.2.2) A0(t, x, u) ≥ cI ≥ 0.

We have:
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Proposition 5.2.A. Given f ∈ Hs(M), s > n/2+1, the existence and uniqueness
results of §5.1 continue to hold for (5.2.1).

We obtain the solution u to (5.2.1) as a limit of solutions uε to

(5.2.3) A0(t, x, Jεuε)
∂uε

∂t
= JεLεJεuε + gε, uε(0) = f,

where Lε and gε are as in (5.1.5)–(5.1.6). We need to parallel the estimates of §5.1,
particularly (5.1.7)–(5.1.14). The key is to replace L2-inner products by

(5.2.4) (w, A0ε(t)w), A0ε(t) = A0(t, x, Jεuε),

which by hypothesis (5.2.2) will define equivalent L2 norms. We have

(5.2.5)
d

dt
(Λsuε,A0ε(t)Λsuε)

= 2(Λs∂tuε, A0ε(t)Λsuε) + (Λsuε, A
′
0ε(t)Λ

suε).

The first term on the right side of (5.2.5) can be written

(5.2.6) 2(ΛsA0ε∂tuε,Λsuε) + 2([Λs, A0ε](∂uε/∂t), Λsuε);

in the first of these terms, we replace A0ε(∂uε/∂t) by the right side of (5.2.3), and
estimate the resulting expression by the same method as was applied to the right
side of (5.1.7). The commutator [Λs, A0ε] is amenable to an estimate parallel to
(5.1.11); then substitute for ∂uε/∂t, A−1

0ε times the right side of (5.2.3), and the
last term in (5.2.6) is easily estimated. It remains to treat the last term in (5.2.5).
We have

(5.2.7) A′0ε(t) =
d

dt
A0(t, x, Jεuε(t, x)),

hence

(5.2.8) ‖A′0ε(t)‖L∞(M) ≤ C(‖Jεuε‖L∞ , ‖Jεu
′
ε(t)‖L∞).

Of course, ‖∂uε/∂t‖L∞ can be estimated by ‖uε(t)‖C1 by (5.2.3). Consequently,
we obtain an estimate parallel to (5.1.14), namely

(5.2.9)
d

dt
(Λsuε, A0εΛsuε) ≤ Cs(‖uε(t)‖C1)(1 + ‖Jεuε(t)‖2Hs).

From here, the rest of the parallel with §5.1 is clear.
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The class of systems (5.2.1), with all Aj = A∗j and A0 ≥ cI > 0, is an extension
of the class of symmetric hyperbolic systems. We call a system

(5.2.10)
∂u

∂t
=

n∑

j=1

Bj(t, x, u)∂ju + g(t, x, u), u(0) = f

a symmetrizable hyperbolic system provided there exist A0(t, x, u), positive defi-
nite, such that A0(t, x, u)Bj(t, x, u) = Aj(t, x, u) are all symmetric. Then applying
A0(t, x, u) to (5.2.10) yields an equation of the form (5.2.1) (with different g and
f), so the existence and uniqueness results of §5.1 apply. The factor A0(t, x, u) is
called a symmetrizer.

An important example of such a situation is provided by the equations of com-
pressible fluid flow

(5.2.11)

∂v

∂t
+∇vv +

1
ρ
∇p = 0,

∂ρ

∂t
+∇vρ + ρ div v = 0.

Here v is the velocity field of a fluid of density ρ = ρ(t, x). We consider the model
in which p is assumed to be a function of ρ. In this situation one says the flow is
‘isentropic.’ A particular example is

(5.2.12) p(ρ) = Aργ ,

with A > 0, 1 < γ < 2; for air, γ = 1.4 is a good approximation.
The system (5.2.11) is not a symmetric hyperbolic system as it stands. Before

constructing a symmetrizer, we will transform it. It is standard practice to rewrite
(5.2.11) as a system for (p, v); using (5.2.12) one has

(5.2.13)

∂p

∂t
+∇vp + (γp) div v = 0

∂v

∂t
+∇vv +

1
ρ(p)

∇p = 0.

This is symmetrizable. Multiplying these two equations by (γp)−1 and ρ(p), re-
spectively, we can rewrite the system as

(5.2.14)
(γp)−1 ∂p

∂t
= −(γp)−1∇vp− div v

ρ(p)
∂v

∂t
= −∇p− ρ(p)∇vv.

Now (5.2.14) is a symmetric hyperbolic system of the form (5.2.1), since, by the
divergence theorem,

(5.2.15) (div v, p)L2(M) = −(v,∇p)L2(M).
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Thus the results of §5.1 apply to the equations (5.2.13) for compressible fluid flow,
as long as p and ρ(p) are bounded away from 0.

Various important second order quasilinear hyperbolic equations can be con-
verted to symmetrizable first order systems. We indicate how this can be done for
equations of the form

(5.2.16) ∂2
t u−

∑

j

Bj(t, x, D1u)∂j∂tu−
∑

j,k

Ajk(t, x, D1u)∂j∂ku = C(t, x,D1u).

For simplicity we suppose Bj and Ajk are scalar. We will produce a first order
system for W = (u, u0, u1, . . . , un), where

(5.2.17) u0 = ∂tu, uj = ∂ju, 1 ≤ j ≤ n.

We get

(5.2.18)

∂tu = u0

∂tu0 =
∑

Bj(t, x, W )∂ju0 +
∑

Ajk(t, x, W )∂juk + C(t, x, W )

∂tuj = ∂ju0,

which is a system of the form

(5.2.19)
∂W

∂t
=

∑

j

Hj(t, x, W )∂jW + g(t, x, W ).

We can apply to each side of (5.2.19) a matrix of the following form: a block
diagonal matrix, consisting of the 2 × 2 identity matrix in the upper left and the
matrix A−1 in the lower right, where A = (Ajk), provided we make the hypothesis
that A is positive definite, i.e.,

(5.2.20)
∑

Ajk(t, x,W )ξjξk ≥ C|ξ|2.

Under this hypothesis, (5.2.19) is symmetrizable. Consequently, we have

Proposition 5.2.B. Under the hypothesis (5.2.20), if u(0) = f ∈ Hs+1(M), ut(0) ∈
Hs(M), s > n/2 + 1, then there is a unique local solution

(5.2.21) u ∈ C(I,Hs+1(M)) ∩ C1(I, Hs(M))

to (5.2.16), which persists as long as

(5.2.22) ‖u(t)‖C2∗(M) + ‖ut(t)‖C1∗(M)
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is bounded.

We note that (5.2.20) is stronger than the natural hypothesis of strict hyperbol-
icity, which is that, for ξ 6= 0, the characteristic polynomial

(5.2.23) τ2 −
∑

j

Bj(t, x,W )ξjτ −
∑

j,k

Ajk(t, x, W )ξjξk = 0

has two distinct real roots τ = λν(t,W, x, ξ). However, in the more general strictly
hyperbolic case, using Cauchy data to define a Lorentz metric over the initial surface
{t = 0}, we can effect a local coordinate change so that, at t = 0, (Ajk) is positive
definite, when the PDE is written in these new coordinates, and then the local
existence in Proposition 5.2.B applies.

We now introduce a more general notion of symmetrizer, following Lax [L1],
which will bring in pseudodifferential operators. We will say that a function
R(t, u, x, ξ), smooth on R × RK × T ∗M \ 0, homogeneous of degree 0 in ξ, is a
symmetrizer for (5.2.10) provided

(5.2.26) R(t, u, x, ξ) is a positive definite K ×K matrix

and

(5.2.27) R(t, u, x, ξ)
∑

Bj(t, x, u)ξj is self adjoint,

for each (t, u, x, ξ). We then say (5.2.10) is symmetrizable. One reason for the
importance of this notion is the following.

Proposition 5.2.C. Whenever (5.2.10) is strictly hyperbolic, it is symmetrizable.

Proof. If we denote the eigenvalues of L(t, u, x, ξ) =
∑

Bj(t, x, u)ξj by λ1(t, u, x, ξ) <
· · · < λK(t, u, x, ξ), then λν are well defined C∞ functions of (t, u, x, ξ), homoge-
neous of degree 1 in ξ. If Pν(t, u, x, ξ) are the projections onto the λν-eigenspaces
of L∗,

(5.2.28) Pν =
1

2πi

∫

γν

(ζ − L(t, u, x, ξ)∗)−1dζ,

then Pν is smooth and homogeneous of degree 0 in ξ. Then

(5.2.29) R(t, u, x, ξ) =
∑

j

Pj(t, u, x, ξ)Pj(t, u, x, ξ)∗

gives the desired symmetrizer.
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Note that

(5.2.30) u ∈ C1+r =⇒ R ∈ C1+rS0
cl.

Now, with R = R(t, u, x, D), set

(5.2.31) Q =
1
2
(R + R∗) + KΛ−1,

where K > 0 is chosen so that Q is a positive definite operator on L2.
We will work with approximate solutions uε to (5.2.10), given by (5.1.4), with

(5.2.32) Lεv =
∑

j

Bj(t, x, Jεuε)∂jv.

We want to obtain estimates on (Λsuε(t), QεΛsuε(t)), where Qε arises by the process
above, from Rε = R(t, Jεuε, x, ξ). We begin with

(5.2.33)
d

dt
(Λsuε, QεΛsuε) = 2(Λs∂tuε, QεΛsuε) + (Λsuε, Q

′
εΛ

suε).

In the last term we can replace Q′ε by (d/dt)R(t, Jεuε, x, D), and obtain

(5.2.34) |(Λsuε, Q
′
εΛ

suε)| ≤ C(‖uε(t)‖C1)‖uε(t)‖2Hs .

We can write the first term on the right side of (5.2.33) as twice

(5.2.35) (QεΛsJεLεJεuε, Λsuε) + (QεΛsgε, Λsuε).

The last term has an easy estimate. We write the first term as

(5.2.36)
(QεLεΛsJεuε, ΛsJεuε) + (Qε[Λs,Lε]Jεuε, ΛsJεuε)

+ ([QεΛs, Jε]LεJεuε,Λsuε).

Note that, as long as (5.2.30) holds, with r ≥ 0, Rε also has symbol in C1+rS0
cl,

and we have, by Proposition 4.1.E,

(5.2.37) [QεΛs, Jε] bounded in L(Hs−1, L2),

with bound given in terms of ‖uε(t)‖C1 . Now Moser estimates yield

(5.2.38) ‖LεJεuε‖Hs−1 ≤ C(‖uε‖L∞)‖uε‖Hs + C(‖uε‖C1)‖uε‖Hs−1 .

Consequently we deduce

(5.2.39) |([QεΛs, Jε]LεJεuε, Λsuε)| ≤ C(‖uε(t)‖C1)‖uε(t)‖2Hs .
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Moving to the second term in (5.2.36), note that, for L =
∑

Bj(t, x, u)∂j ,

(5.2.40) [Λs, L] =
∑

j

[Λs, Bj(t, x, u)]∂jv.

By the Kato-Ponce estimate, as in (5.1.12), we have

(5.2.41)
∥∥[Λs, L]v

∥∥
L2 ≤ C

∑

j

[
‖Bj‖Lip1‖v‖Hs + ‖Bj‖Hs‖v‖Lip1

]
.

Hence the second term in (5.2.36) is also bounded by C(‖uε‖C1)‖uε‖2Hs .
It remains to estimate the first term in (5.2.36). We claim that

(5.2.42) (QLv, v) ≤ C(‖u‖C1)‖v‖2L2 .

We will obtain this from results of Chapter 4. By Proposition 4.2.C,

(5.2.43) R−R∗ : Hs −→ Hs+1, −1 ≤ s ≤ 0,

so in (5.2.42) we can replace Q by R. By Proposition 4.2.A,

(5.2.44) RL = C(x, D) + S

where C(x, ξ) ∈ C1S1
cl is i times the symbol (5.2.27), hence is skew-adjoint, and

S : L2 −→ L2. Finally, the estimate

(5.2.45) (C(x,D)v, v) ≤ C‖v‖2L2

follows from Proposition 4.2.B.
Our analysis of (5.2.33) is complete; we have

(5.2.46)
d

dt
(Λsuε, QεΛsuε) ≤ C(‖uε(t)‖C1)‖uε(t)‖2Hs .

From here we can parallel the rest of the argument of §5.1, to prove the following.

Theorem 5.2.D. If (5.2.10) is symmetrizable, in particular if it is strictly hyper-
bolic, the initial value problem, with u(0) = f ∈ Hs(M), has a unique local solution
u ∈ C(I,Hs(M)), whenever s > n/2 + 1, which persists as long as ‖u(t)‖C1∗ is
bounded.

§5.3. Higher order hyperbolic equations

In §5.2 we reduced a fairly general class of second order hyperbolic equations to
first order symmetrizable systems. Here we treat equations of degree m, making
heavier use of pseudodifferential operators. Consider a quasilinear equation

(5.3.1) ∂m
t u =

m−1∑

j=0

Aj(t, x, Dm−1u,Dx)∂j
t u + C(t, x, Dm−1u),
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with initial conditions

(5.3.2) u(0) = f0, ∂tu(0) = f1, . . . , ∂
m−1
t u(0) = fm−1.

Here, Aj(t, x, w,Dx) is a differential operator, homogeneous of degree m−j. Assume
u takes values in RK , but for simplicity we suppose Aj have scalar coefficients. We
will produce a first order system for v = (v0, . . . , vm−1) with

(5.3.3) v0 = Λm−1u, . . . , vj = Λm−j−1∂j
t u, . . . , vm−1 = ∂m−1

t u.

We have

(5.3.4)

∂tv0 = Λv1

...
∂tvm−2 = Λvm−1

∂tvm−1 =
∑

Aj(t, x, Pv,Dx)Λ1+j−mvj + C(t, x, Pv),

where Pv = Dm−1u, i.e., ∂β
x∂j

t u = ∂β
xΛj+1−mvj , so P ∈ OPS0

cl. Note that
Aj(t, x, Pv,Dx)Λ1+j−m is an operator of order 1. The initial condition is

(5.3.5) v0(0) = Λm−1f0, . . . , vj(0) = Λm−j−1fj , . . . , vm−1(0) = fm−1.

The system (5.3.4) has the form

(5.3.6) ∂tv = L(t, x, Pv, D)v + G(t, x, Pv),

where L is an m×m matrix of pseudodifferential operators, which are scalar (though
each entry acts on K-vectors). Quasilinear hyperbolic pseudodifferential equations
like this were studied in §4.5 of [T2], though with a less precise analysis than we
give here. Note that the eigenvalues of the principal symbol of L are iλν(t, x, v, ξ),
where τ = λν are the roots of the characteristic equation

(5.3.7) τm −
m−1∑

j=0

Aj(t, x, Pv, ξ)τ j = 0.

We will make the hypothesis of strict hyperbolicity, that for ξ 6= 0 this equation has
m distinct real roots, so L(t, x, Pv, ξ) has m distinct purely imaginary eigenvalues.
Consequently, as in Proposition 5.2.B, there exists a symmetrizer, an m ×m ma-
trix valued function R(t, x, w, ξ), homogeneous of degree 0 in ξ and smooth in its
arguments, such that, for ξ 6= 0,

(5.3.8)
R(t, x, w, ξ) is positive definite,

R(t, x, w, ξ)L(t, x, w, ξ) is skew adjoint.
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Note that

(5.3.9)
Pv ∈ C1 =⇒ L(t, x, Pv, ξ) ∈ C1S1

cl and

R(t, x, Pv, ξ) ∈ C1S0
cl.

Since the operators ∂jΛ−1 do not preserve C1, we need to work with a slightly
smaller space, C1

#, as in (4.1.21)–(4.1.25), with the property that

(5.3.10) P ∈ OPS0
cl =⇒ P : C1

# −→ C1.

Now the analysis of symmetrizable systems in §5.2, involving (5.2.32)–(5.2.46), can
be extended to this case, with one extra complication, namely the form of [Λs, L] is
now more complicated than (5.2.40). Instead of the Kato-Ponce estimate, we make
use of Proposition 4.1.F. If we write

(5.3.11) L(t, x, Pv,D)v =
n∑

j=1

Bj(t, x,D)∂jv + B0(t, x, D)v

with B` ∈ OPC1S0
cl, then we replace the estimate (5.2.41) by

(5.3.12) ‖[Λs, L]v‖L2 ≤ C
∑

j

[
π0

N,C1(Bj)‖v‖Hs + π0
N,Hs(Bj)‖v‖C1

#

]
.

Thus we derive the following analogue of the estimate (5.2.46):

(5.3.13)
d

dt
(Λsvε, QεΛsvε) ≤ C(‖vε(t)‖C1

#
)‖vε(t)‖2Hs .

We have the following result.

Theorem 5.3.A. If (5.3.1) is strictly hyperbolic, with initial data fj ∈ Hs+m−1−j(M),
s > n/2 + 1, then there is a unique local solution

u ∈ C(I, Hs+m−1(M)) ∩ Cm−1(I,Hs(M)),

which persists as long as ‖u(t)‖Cm∗ + ‖ut(t)‖Cm−1
∗

+ · · ·+ ‖∂m−1
t u(t)‖C1∗ is bounded.

There is one point it remains to establish to have a proof of this result. Namely we
need to justify the use of the Cm−j

∗ -norm of ∂j
t u(t) rather than the stronger Cm−j

# -
norms in the statement of a sufficient condition for persistence of the solution. An
argument similar to that used in the proof of Proposition 5.1.F will yield this.

Parallel to (5.1.48) we have the estimate

(5.3.14)
d

dt
‖v(t)‖2Hs ≤ C(‖v(t)‖C1

#
)‖v(t)‖2Hs .
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Furthermore, parallel to (5.1.49), we have

(5.3.15) C(‖v(t)‖C1
#
) = C0(‖v(t)‖C0

#
)
[‖v(t)‖C1

#
+ 1

]
.

Now the C0
#-norm is weaker than the Cr-norm for any r > 0, so the first factor on

the right side of (5.3.15) is harmless. Meanwhile, the boundedness of ‖∂j
t u(t)‖Cm−j

∗
is equivalent to the boundedness of

(5.3.16) ‖v(t)‖C1∗ = Q(t).

Now as shown in Appendix B, if s > n/2 + 1,

(5.3.17) ‖v(t)‖C1
#
≤ CQ(t)

[
1 + log+ ‖v(t)‖2Hs

]
.

Consequently, as long as Q(t) ≤ K, (5.3.14) yields the differential inequality

(5.3.18)
d

dt
‖v(t)‖2Hs ≤ K1‖v(t)‖2Hs

[
1 + log+ ‖v(t)‖2Hs

]
.

Now, by (5.1.52), Gronwall’s inequality applied to this estimate yields a bound on
‖v(t)‖Hs for all t ≥ 0 for which Q(t) ≤ K. This completes the proof of Theorem
5.3.A.

Sometimes equations of the form (5.3.1) arise in which the coefficients Aj depend
on u but not on all derivatives of order ≤ m−1. We consider second order equations
of this nature, i.e., of the form

(5.3.19) ∂2
t u =

∑
Ajk(t, x, u)∂j∂ku +

∑
Bj(t, x, u)∂j∂tu + C(t, x,D1u).

Then the reduction (5.3.3)–(5.3.4) leads to a special case of (5.3.6):

(5.3.20) ∂tv = L(t, x, P1v,D)v + G(t, x, Pv)

with

(5.3.21) P ∈ OPS0
cl, P1 ∈ OPS−1

cl .

Consequently, the symmetrizer (5.3.8) belongs to C1S1
cl as long as P1v ∈ C1, hence

as long as v ∈ C0
#. Thus we can hope to improve the factor C(‖vε‖C1

#
) in the

estimate (5.3.13). At first glance, the last term in the estimate (5.3.12) presents a
problem. However, if we write

(5.3.22) [Λs, Bj ]∂jv = [Λs∂j , Bj ]v − Λs[∂j , Bj ]v,

we overcome this. Therefore, for the system (5.3.15) we obtain the improvement
on (5.3.13):

(5.3.23)
d

dt
(Λsvε, QεΛsvε) ≤ C(‖vε(t)‖C0

#
)‖vε(t)‖2Hs ,

leading to the following improvement of Theorem 5.3.A.
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Proposition 5.3.B. If (5.3.19) is strictly hyperbolic, with initial data f ∈ Hs+1(M),
g ∈ Hs(M), s > n/2, then there is a unique local solution u ∈ C(I, Hs+1(M)) ∩
C1(I, Hs(M)), which persists as long as ‖u(t)‖C1∗ + ‖ut(t)‖C0∗ is bounded.

This result is also established in [HKM], with the exception of the final statement
on persistence of the solution. Note that Proposition 5.2.B applies to equations of
the form (5.3.19), but it yields a result that is cruder than that of Proposition 5.3.B.

One way in which systems of the form (5.3.19) arise is in the Einstein equations,
relating the Ricci tensor on a Lorentz manifold and the stress-energy tensor. As in
the Riemannian case (2.2.48), if (hjk) is the Lorentz metric tensor, and if one uses
local harmonic coordinates, the Ricci tensor is given by

(5.3.24) −1
2

∑

j,k

hjk∂j∂kh`m + Q`m(h,Dh) = R`m.

Thus one obtains a Cauchy problem for the components of the metric tensor of the
form (5.3.19), and Proposition 5.3.B can be applied. This approach to the Einstein
equations is classical, going back to C. Lanczos in 1922 and used by a number
of mathematicians; see [HKM]. On the other hand, there are reasons to have the
flexibility to use other coordinate systems, discussed in [DeT] and in recent work
of [CK].

In [FM], the Einstein equations were reduced to a first order system by such a
device as we noted in §5.2. The improvement coming from a different treatment of
the second order system was noted in [HKM].

§5.4. Completely nonlinear hyperbolic systems

Consider the Cauchy problem for a completely nonlinear first order system

(5.4.1)
∂u

∂t
= F (t, x, D1

xu), u(0) = f.

We assume u takes values in RK . We then form a first order system for v =
(v0, v1, . . . , vn) = (u, ∂1u, . . . , ∂nu).

(5.4.2)

∂v0

∂t
= F (t, x, v)

∂vj

∂t
=

∑

`

(∂v`
F )(t, x, v)∂`vj + (∂xj F )(t, x, v) (j ≥ 1),

with initial data

(5.4.3) v(0) = (f, ∂1f, . . . , ∂nf).
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The behavior of this system is controlled by the operator with K × K matrix
coefficients

(5.4.4)

L(t, x, v,D) =
∑

`

(∂v`
F )(t, x, v)∂`

=
∑

`

B`(t, x, v)∂`.

We see that (5.4.2) is symmetric hyperbolic if

(5.4.5) L(t, x, v, ξ) =
∑

`

B`(t, x, v)ξ`

is a symmetric K ×K matrix, and symmetrizable if there is a symmetrizer, of the
form (5.2.26)–(5.2.27), for L. In these respective cases we say (5.4.1) is a symmetric
(or symmetrizable) hyperbolic system. We also say (5.4.1) is strictly hyperbolic
if, for each ξ 6= 0, (5.4.5) has K distinct real eigenvalues; such equations are sym-
metrizable.

The following is a simple consequence of Theorem 5.2.D.

Proposition 5.4.A. If (5.4.1) is a symmetrizable hyperbolic system and f ∈ Hs(M)
with s > n/2 + 2, then there is a unique local solution u ∈ C(I,Hs(M)). This so-
lution persists as long as ‖u(t)‖C2 + ‖∂tu(t)‖C1 is bounded.

Similarly consider the Cauchy problem for a completely nonlinear second order
equation

(5.4.6) utt = F (t, x, D1u, ∂1
xut, ∂

2
xu), u(0) = f, ut(0) = g.

Here F = F (t, x, ξ, η, ζ) is smooth in its arguments; ζ = (ζjk) = (∂j∂ku), etc. As
before, set v = (v0, v1, . . . , vn) = (u, ∂1u, . . . , ∂nu). We obtain for v a quasilinear
system of the form

(5.4.7)

∂2
t v0 = F (t, x, D1v)

∂2
t vi =

∑

j,k

(∂ζjk
F )(t, x, D1v)∂j∂kvi

+
∑

j

(∂ηj F )(t, x,D1v)∂j∂tvi + Gi(t, x, D1v),

with initial data

(5.4.8) v(0) = (f, ∂1f, . . . , ∂nf), vt(0) = (g, ∂1g, . . . , ∂ng).

The system (5.4.7) is not quite of the form (5.2.16) studied in §5.2, but the difference
is minor. One can construct a symmetrizer in the same fashion, as long as

(5.4.9) τ2 =
∑

(∂ζjk
F )(t, x, D1v)ξjξk +

∑
(∂ηj F )(t, x, D1v)ξjτ

has two distinct real roots τ for each ξ 6= 0. This is the strict hyperbolicity condition.
Proposition 5.2.B holds also for (5.4.7), so we have:
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Proposition 5.4.B. If (5.4.6) is strictly hyperbolic, then given

f ∈ Hs+1(M), g ∈ Hs(M), s >
1
2
n + 2,

there is locally a unique solution

u ∈ C(I, Hs+1(M)) ∩ C1(I,Hs(M)).

This solution persists as long as ‖u(t)‖C3 + ‖ut(t)‖C2 is bounded.

This proposition applies to the equations of prescribed Gaussian curvature, for a
surface S which is the graph of y = u(x), x ∈ Ω ⊂ Rn, under certain circumstances.
The Gauss curvature K(x) is related to u(x) via the PDE

(5.4.10) det H(u)−K(x)
(
1 + |∇u|2)(n+2)/2 = 0,

where H(u) is the Hessian matrix,

(5.4.11) H(u) = (∂j∂ku).

Note that, if F (u) = det H(u), then

(5.4.12) DF (u)v = Tr[C(u)H(v)]

where C(u) is the cofactor matrix of H(u), so

(5.4.13) H(u)C(u) = [det H(u)]I.

Of course, (5.4.10) is elliptic if K > 0. Suppose K is negative and on the hyper-
surface Σ = {xn = 0} Cauchy data are prescribed, u = f(x′), ∂nu = g(x′), x′ =
(x1, . . . , xn−1). Then ∂k∂ju = ∂k∂jf on Σ for 1 ≤ j, k ≤ n− 1, ∂n∂ju = ∂jg on Σ
for 1 ≤ j ≤ n, and then (5.4.10) uniquely specifies ∂2

nu, hence H(u), on Σ, provided
det H(f) 6= 0. If the matrix H(u) has signature (n− 1, 1), and if Σ is spacelike for
its quadratic form, then (5.4.10) is hyperbolic, and Proposition 5.4.B applies.
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Chapter 6: Propagation of singularities

We present a proof of Bony’s propagation of singularities result for solutions to
nonlinear PDE. As mentioned in the Introduction, we emphasize how Cr regular-
ity of solutions rather than Hn/2+r regularity yields propagation of higher order
microlocal regularity, giving in that sense a slightly more precise result than usual.
Our proof also differs from most in using Sm

1,δ calculus, with δ < 1. This simplifies
the linear analysis to some degree, but because of this, in another sense our result
is slightly weaker than that obtained using BrSm

1,1 calculus by Bony and Meyer; see
also Hörmander’s treatment [H4] using S̃m

1,1 calculus. Material developed in §3.4
could be used to supplement the arguments of §6.1, yielding this more precise re-
sult. In common with other approaches, our argument is modeled on Hörmander’s
classic analysis of the linear case.

In §6.2 we give examples of extra singularities, produced by nonlinear interac-
tions rather than by the Hamiltonian flow, and discuss a little the mechanisms
behind their creation. It was the discovery of this phenomenon by [La] and [RR]
which generated interest in the nonlinear propagation of singularities treated in this
chapter.

In §6.3 we discuss a variant of Egorov’s theorem for paradifferential operators.
We do not treat reflection of singularities by a boundary, though much interesting

work has been done there, by [DW], [Lei], [ST], and others. A description of progress
made on such problems can be found in [Be2].

§6.1. Propagation of singularities

Suppose u ∈ Cm+r(Ω) solves the nonlinear PDE

(6.1.1) F (x,Dmu) = f.

We assume r > 0; this assumption will be strengthened below. We discuss here
Bony’s result on propagation of singularities [Bo]. Using (3.3.6)–(3.3.10), we have
the operator M(u;x,D) = M#(x,D) + M b(x,D) = M# + M b, and u satisfies the
equation

(6.1.2) M#u = f + R,

where R = −M bu mod C∞, with M b ∈ OPSm−δr
1,1 , hence

(6.1.3) R ∈ Cr+δr; also u ∈ Hm+σ,p =⇒ R ∈ Hσ+rδ,p, if σ ≥ r.

Recall from (3.3.9) that

(6.1.4) M# ∈ OPAr
0S

m
1,δ ⊂ OPSm

1,δ ∩OPCrSm
1,0



128

and, if r = ` + σ, ` ∈ Z+, 0 < σ < 1, then, on the symbol level,

(6.1.5) Dβ
xM# ∈ Sm

1,δ for |β| ≤ `, Dβ
xM# ∈ Sm+1−σ

1,δ for |β| = ` + 1.

We will use the symbol smoothing decomposition with δ < 1.
To study propagation of singularities for solutions to (6.1.1), we hence study it

for solutions to the linear equation (6.1.2). Our analysis will follow Hörmander’s
well known argument, with some modifications due to the fact that M# is not a
pseudodifferential operator of classical type. In another context, such a variant
arose in [T3]. We will set Λ = (1−∆)1/2 and

(6.1.6) P = im M#Λ1−m ∈ OPAr
0S

1
1,δ ⊂ OPS1

1,δ ∩OPCrS1
1,0.

More generally, for σ ∈ R, set

(6.1.7) Pσ = ΛσPΛ−σ ∈ OPS1
1,δ.

Using the properties (6.1.5), we have the following.

Lemma 6.1.A. Suppose r > 1. Set

(6.1.8) P = A + iB, A = A∗, B = B∗.

Then B ∈ OPS0
1,δ. Furthermore, for each σ ∈ R,

(6.1.9) P − Pσ ∈ OPS0
1,δ.

If a(x, ξ) is the real part of the complete symbol of A, given in Lemma 6.1.A,
then (provided r > 1),

(6.1.10) a(x, ξ) ∈ S1
1,δ, A− a(x,D) ∈ OPS0

1,δ,

and, if r = ` + σ, 0 < σ < 1,

(6.1.11) Dβ
xa(x, ξ) ∈ S1

1,δ for |β| ≤ `, Dβ
xa(x, ξ) ∈ S2−σ

1,δ for |β| = ` + 1.

We will examine propagation of singularities for P, but we will want to interpret
the results in terms of the symbol of the linearization of the operator F (x,Dmu).
Thus, set

(6.1.12) ã(x, ξ) =
∑

|α|≤m

∂F

∂ζα
(x,Dmu)ξα〈ξ〉1−m.
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We need to compare ã(x, ξ) and a(x, ξ). Note that

(6.1.13) ã(x, ξ) ∈ CrS1
1,0,

and if we use the smoothing method of §1.3 to write

(6.1.14) ã(x, ξ) = ã#(x, ξ) + ãb(x, ξ)

with

(6.1.15) ã#(x, ξ) ∈ S1
1,δ, ãb(x, ξ) ∈ CrS1−δr

1,δ ,

then, as a consequence of (3.3.14) and Lemma 6.1.A,

(6.1.16) a(x, ξ)− ã#(x, ξ) ∈ S1−ρ
1,δ , ρ = min(δr, 1).

The analysis of propagation of singularities, following Hörmander [H1], begins
with the basic commutator identity, assuming (6.1.8) holds:

(6.1.17) Im (CPu, Cu) = Re
({i−1C∗[C, A] + C∗BC + C∗[B, C]}u, u

)
.

If B is bounded on L2, then, using

|(CPu,Cu)| ≤ ‖CPu‖2 +
1
4
‖Cu‖2,

we get the basic commutator inequality:

(6.1.18) Re
({i−1C∗[C,A]−MC∗C}u, u

) ≤ ‖CPu‖2 + |(Wu, u)|,

where

(6.1.19) M = ‖B‖+
1
4
, W = Re C∗[B, C].

C will be a pseudodifferential operator, described more fully below. By convention,
Re T = (1/2)(T + T ∗).

Now to establish microlocal regularity of u in a conic neighborhood of a certain
curve γ in T ∗Ω \ 0, the strategy is to construct C and ϕ(x, D) of order µ, such that
ϕ(x, ξ) is elliptic on γ and, roughly,

(6.1.20) Re {i−1C∗[C, A]−MC∗C}(x, ξ)− ϕ(x, ξ)2 + E(x, ξ)2 ≥ 0,

for a certain E(x, ξ) ∈ Sµ supported on a conic neighborhood of one endpoint of
γ. Then we want to apply the sharp G̊arding inequality to (6.1.20), and use the
result together with (6.1.18) to estimate ϕ(x, D)u in terms of CPu, E(x,D)u, and
a small additional term.
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Arranging (6.1.20) brings in the Poisson bracket and Hamiltonian vector field,
defined by

(6.1.21)
Hac = {c, a}(x, ξ)

=
∑( ∂c

∂xj

∂a

∂ξj
− ∂c

∂ξj

∂a

∂xj

)
,

since (1/i)[C,A] has {c, a}(x, ξ) for a principal symbol, in a sense which, for the
symbols considered here, will be made precise in Lemma 6.1.B below. The curve γ
alluded to above will be an integral curve of Hã.

Following Hörmander, we produce the symbol c(x, ξ) of C in the form

(6.1.22) c(x, ξ) = cλ,ε(x, ξ) = d(x, ξ)eλf(x,ξ)
(
1 + ε2g(x, ξ)2

)−1/2

,

where λ > 0 will be taken large (fixed) and ε small (tending to 0). Note that

(6.1.23) Hãc2 −Mc2 = 2dε(Hãdε)e2λf + d2
εe

2λf [2λHãf −M ]

where
dε = d〈εg〉−1

and

(6.1.24) Hãdε = 〈εg〉−1
[
Hãd− ε2〈εg〉−2(Hãg)d

]
.

With these calculations in mind, we impose the following properties on d, f, g :

(6.1.25) d(x, ξ) ∈ Sµ, f(x, ξ) ∈ S0, g(x, ξ) ∈ S1,

all homogeneous for |ξ| large,

(6.1.26) Hãf ≥ 1, Hãd ≥ 0 (except near q), Hãg ≤ 0, d ≥ 0,

and

(6.1.27) Hã ≥ |ξ|µ on Γ, d supported in Γ̃, g elliptic on Γ̃,

for |ξ| ≥ 1, where Γ is a small conic neighborhood of the integral curve γ, running
from p to q, and Γ̃ a slightly bigger conic neighborhood. Here (by slight abuse
of notation) we let Hã denote the Hamiltonian vector field associated with the
principal part ã1(x, ξ) of the symbol (6.1.12). We assume r > 2, so Hã is a C1-
vector field, with well-defined integral curves. It is easy to arrange (6.1.25)–(6.1.27),
in such a fashion that, if Hã flows from p to q in γ, then d vanishes on a conic surface
Σ transversal to γ, intersecting γ at a point just before p. Having first made Hãd ≥ 0
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everywhere on the integral curves through Σ, make a modification in d(x, ξ), cutting
it off on a conic neighborhood of q. Thus one has (for λ large)

(6.1.28)
(
c{c, ã} −Mc2

)
(x, ξ) ≥ ϕε(x, ξ)2 − E(x, ξ)2

where ϕε(x, ξ) = ϕ(x, ξ)〈εg〉−1, with ϕ, E ∈ Sµ, ϕ elliptic on γ, and E supported
on a small conic neighborhood of q.

Now, to relate this to (6.1.20), we need to replace ã by a(x, ξ), the real part of
the complete symbol of A, given by Lemma 6.1.A. Then (provided r > 1), we recall
that a(x, ξ) satisfies (6.1.10); furthermore, if r = ` + σ, 0 < σ < 1,

(6.1.29) Dβ
xa(x, ξ) ∈ S1

1,δ for |β| ≤ `, Dβ
xa(x, ξ) ∈ S2−σ

1,δ for |β| = ` + 1.

Using this, we deduce the following.

Lemma 6.1.B. If r > 1 and C ∈ OPSµ
1,0, then

(6.1.30) {c, a}(x, ξ) ∈ Sµ
1,δ ∩ Cr−1Sµ

1,0

and

(6.1.31) Re (i−1C∗[C, A])(x, ξ)− c{c, a}(x, ξ) ∈ S
2µ−(2−2δ)
1,δ .

If r > 2, the difference (6.1.31) belongs to S
2µ−(2−δ)
1,δ .

Proof. Straightforward check of symbol expansions.

By (6.1.14)–(6.1.16), we have a− ã ∈ CrS1−ρ
1,δ , where ρ = min(δr, 1), hence, given

C ∈ OPSµ
1,0,

(6.1.32) |{c, a}(x, ξ)− {c, ã}(x, ξ)| ≤ K〈ξ〉µ−ρ, if r > 1.

We therefore have the following rigorous version of the result stated loosely in
(6.1.20):

Lemma 6.1.C. Assume r > 2, and let γ be an integral curve of Hã, from p to
q, Γ a small conic neighborhood of γ, Γ̃ a bigger conic neighborhood. There exists
cε(x, ξ), bounded in Sµ

1,0, of the form (6.1.21), such that, with C = Cε = cε(x,D),

(6.1.33) c{c, a}(x, ξ)−Mc(x, ξ)2 − ϕε(x, ξ)2 + E(x, ξ)2 ≥ −K〈ξ〉2µ−ρ,

where E(x, ξ) ∈ Sµ is supported on a small conic neighborhood of q, c(x, ξ) is
supported on Γ̃, and

(6.1.34) ϕε(x, ξ) = 〈εg(x, ξ)〉−1ϕ(x, ξ),
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with ϕ elliptic of order µ on Γ, g satisfying (6.1.27).

Consider the symbol Q(x, ξ), defined to be the left side of (6.1.33). We have

(6.1.35) Q(x, ξ) ∈ S2µ
1,δ ∩ Cr−1S2µ

1,0,

by (6.1.30), so we can apply the sharp G̊arding inequality of §2.4, to obtain

(6.1.36) Re (Q(x,D)v, v) ≥ −C1‖v‖2L2

provided

(6.1.37) µ ≤ (r − 1)/(r + 1) and µ ≤ ρ/2.

In light of Lemma 6.1.B, we can replace c{c, a}(x,D) in Q(x,D) by Re (1/i)C∗[C, A],
and still have the estimate (6.1.36), provided also

(6.1.38) µ ≤ 1− δ

2
(if r > 2).

However, this condition follows automatically from the second part of (6.1.37). If
these conditions hold, we get a lower estimate on the left side of (6.1.18), yielding

(6.1.39) ‖ϕε(x,D)v‖2L2 − ‖E(x,D)v‖2L2 − C1‖v‖2L2 ≤ ‖CεPv‖2L2 + |(Wv, v)|.

Now, if W is given by (6.1.19), with C = Cε bounded in OPSµ
1,0, we have a

priori that W = Wε is bounded in OPS
2µ−(1−δ)
1,δ , given B ∈ OPS0

1,δ, but in fact,
we can say more. From (6.1.5) it follows that, for the symbol b(x, ξ) of B,

(6.1.40) Dα
x b(x, ξ) ∈ S0

1,δ for |α| ≤ `− 1,

if ` < r < ` + 1. Thus

(6.1.41) r > 2 =⇒ Wε bounded in OPS2µ−1
1,δ ,

and hence

(6.1.42) |(Wv, v)| ≤ C2‖v‖2
Hµ− 1

2
.

Thus (6.1.39) yields the estimate

(6.1.43) ‖ϕε(x,D)v‖2L2 ≤ ‖CεPv‖2L2 + K‖v‖2L2 ,
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assuming µ− 1/2 ≤ 0. Provided r > 2, we can take µ = 1/3, δ ∈ [1/3, 1), and have
(6.1.37)–(6.1.38) hold. The estimate (6.1.43) holds provided a priori that v belongs
to L2. Taking ε → 0 then gives v ∈ Hµ microlocally along γ, provided that Pv ∈ Hµ

microlocally along γ and that v ∈ Hµ microlocally on a conic neighborhood of the
endpoint q. This exhibits the prototypical propagation of singularities phenomenon.
Note that we can construct β(x, ξ) ∈ S0

cl, supported on a small conic neighborhood
of γ, equal to 1 on a smaller conic neighborhood, and then v1 = β(x, D)v belongs
to Hµ, while Pv1 coincides with Pv microlocally on a small conic neighborhood of
γ.

Now this argument works if P is replaced by Pσ of (6.1.7), for any σ ∈ R. The
difference P−Pσ satisfies (6.1.9), and its symbol also has the same property (6.1.40)
that b(x, ξ) does. Therefore, microlocal cut-offs and iterations of the argument
above yield the following.

Proposition 6.1.D. Let v ∈ D′ solve M#v = g. Let γ be as above. If g belongs
to Hσ microlocally on γ and v ∈ Hm−1+σ microlocally near q, then v ∈ Hm−1+σ

microlocally on γ.

By (6.1.1)–(6.1.3), we can use this to establish our propagation of singularities
result for solutions to nonlinear PDE. We have:

Theorem 6.1.E. Let u ∈ Cm+r(Ω), r > 2, solve the nonlinear PDE (6.1.1), and
let γ be a null bicharacteristic curve of the linearized operator, q ∈ γ. Assume
f ∈ C∞,

(6.1.44) u ∈ Hm+σ

on Ω, and

(6.1.45) u ∈ Hm−1+σ+s

microlocally at q, with

(6.1.46) 0 ≤ s < r.

Then u satisfies (6.1.45) microlocally on γ.

It is clear that the assumption r > 2 can be weakened for restricted classes
of operators F (x,Dmu), particularly in the semilinear case; (6.1.44) can also be
weakened in the semilinear case, since what is behind it is (6.1.3).

§6.2. Nonlinear formation of singularities

In [RR] there appear examples of the formation, in solutions to nonlinear wave
equations, of extra singularities, arising from nonlinear interactions rather than
propagated by a Hamiltonian flow. We will discuss a few simple examples here.
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Many other examples can be found in [Be2] and references given there. Our ex-
amples involve systems of equations. There are in the literature many examples of
a similar nature for solutions to scalar equations, but generally you have to work
harder to demonstrate their existence.

We begin with a simple 3× 3 system in one space variable:

(6.2.1)

∂tu− ∂xu = 0
∂tv + ∂xv = 0
∂tw = uv

Take initial data

(6.2.2) u(0, x) = H(1− x), v(0, x) = H(1 + x), w(0, x) = 0,

where H(s) = 1 for s ≥ 0, H(s) = 0 for s < 0. Clearly u(t, x) and v(t, x) are given
by

(6.2.3) u(t, x) = H(1− x− t), v(t, x) = H(1 + x− t),

and then w is obtained as

(6.2.4) w(t, x) =
∫ t

0

u(s, x)v(s, x) ds.

Thus u is singular along the line x+t = 1 and v is singular along the line x−t = −1.
For t < 1, w is singular along the union of these two lines; one would typically
have this sort of singularity if uv were replaced by a linear function of u and v in
(6.2.1). However, for t > 1, w is also singular along the line x = 0. Indeed, for
−1 ≤ x ≤ 1, t ≥ 1, we have explicitly

(6.2.5) w(t, x) = 1− |x|.

This is the extra singularity created by the nonlinear interaction at t = 1, x = 0.
The next example involves second order wave equations in two space variables.

Thus, with ∆ = ∂2/∂x2
1 + ∂2/∂x2

2, let

(6.2.6)

∂2uj

∂t2
−∆uj = 0, j = 1, 2, 3

∂2v

∂t2
−∆v = u1u2u3

and set initial conditions such that uj(t, x) are piecewise constant, jumping across
a characteristic hyperplane Σj , taking the value 1 on one side Ωj and the value 0
on the other side, in such a fashion that P = Ω1 ∩ Ω2 ∩ Ω3 looks like an inverted
“pyramid,” with vertex at p = (1, 0, 0) = (t, x1, x2), and such that t ≥ 1 on P. For
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v, set the initial condition v(0, x) = vt(0, x) = 0, so v = 0 for t < 1. Note that there
are constant coefficient vector fields Xj , parallel to the faces of P, such that

L = X1X2X3 =⇒ L(u1u2u3) = δp

where δp is the point mass at the vertex p of P. Hence w = Lv satisfies

(6.2.7)
∂2w

∂t2
−∆w = δp, w(t, x) = 0 for t < 1.

Hence w is given by the fundamental solution to the wave equation, with a well
known singularity on the forward light cone Cp emanating from p. Since applying L
cannot increase the singular support, it follows that u in (6.2.6) also has this extra
singularity along the cone Cp.

The examples above can be modified to produce smoother (not C∞) solutions,
more directly illuminating the results of §6.1, which involve solutions with enough
regularity to be continuous. It is also possible to extend results of §6.1 to apply
to classes of discontinuous solutions, for classes of semilinear equations. In the
quasilinear case, the phenomena become essentially different. For example, for 3×3
quasilinear equations in one space variable, if two shocks interact, the interaction
often produces, not a third weaker singularity, but rather a third shock; cf [L2]. An
analogue of this stronger sort of interaction arises in the rather subtle problem of
interaction of oscillatory solutions to quasilinear equations; cf [Mj4] and references
given there, and also [JMR].

In the examples given above it is clear that the mechanism behind the formation
of extra singularities in the solutions to the PDE (6.2.1) and (6.2.6) is the creation
of extra singularities in taking nonlinear functions F (u), i.e., WF (F (u)) can be
bigger than WF (u). Typically, elements in WF (F (u)) \ WF (u) intersected with
the characteristic variety for the PDE are propagated. In light of the formula

F (u) = MF (u; x,D)u mod C∞,

this illustrates the failure of MF (u; x,D) ∈ OPS0
1,1 to be microlocal, though it is

pseudolocal, since Proposition 0.2.A continues to hold, which is consistent with the
fact that F (u) is C∞ on any open set where u is C∞.

§6.3. Egorov’s theorem

We want to examine the behavior of operators obtained by conjugating a pseu-
dodifferential operator P0 by the solution operator to a “hyperbolic” equation of
the form

(6.3.1)
∂u

∂t
= iA(t, x, Dx)u,

where we assume

(6.3.2) A(t, x, ξ) ∈ rS1
1,δ
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is of the form A = A1 + A2 with A1 real (scalar) and

(6.3.3) A0 ∈ rS0
1,δ.

For simplicity we first look at the case where A = A(x,D) does not depend on t.
The conjugated operators we want to look at then are

(6.3.4) P (t) = eitA P0 e−itA.

We will be able to get a rather precise analysis when δ in (6.3.2) is not too large,
using a more elaborate version of the analysis given in §0.9. Then the δ = 1 case
will be analyzed via symbol smoothing.

Let X be the Hamiltonian field HA1 ; by (6.3.2) the coefficients of ∂/∂xj belong
to rS0

1,δ and those of ∂/∂ξj belong to r−1S1
1,δ, if r ≥ 1. Given (x0, ξ0), let Ω be the

region |x− x0| ≤ 1, |ξ − ξ0| ≤ (1/2)|ξ0|. Map this by the natural affine map to the
“standard” region R, defined by |x| ≤ 1, |ξ| ≤ 1. Let Y be the vector field on R
corresponding to X; Y depends on (x0, ξ0). With z = (x, ξ), we have

(6.3.5) Y (z) =
2n∑

j=1

Yj(z)
∂

∂zj

with

(6.3.6)
|Dα

z Yj(z)| ≤ C for |α| ≤ r − 1,

Cα M |α|−(r−1), for |α| ≥ r − 1,

where

(6.3.7) M = |ξ0|δ.

We will assume that r ≥ 2, so there is a uniform bound on the first order derivatives
of the coefficients of Y.

We want to examine the flow generated by Y :

(6.3.8)
dF

dt
= Y (F ), F (0, z) = z.

We need to estimate the z-derivatives of F. Note that F1 = DzF (z)v1 satisfies

(6.3.9)
dF1

dt
= DY (F )F1, F1(0, z) = v1.

This gives uniform bounds (independent of M) on F1 = DzF, for |t| ≤ T0. Then
F2 = D2F (z)(v1, v2) satisfies

(6.3.10)
dF2

dt
= DY (F )F2 + D2Y (F )(F1, v2), F2(0, z) = 0.
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Consequently

(6.3.11) |D2
zF | ≤ C M (2−(r−1))+ .

More generally,

(6.3.12) |Dj
zF | ≤ Cj M (j−r+1)+ .

Note that if we had r < 2, we would be saddled with the useless bound |DzF | ≤
C eTM .

With these estimates, we are in a position to prove the following. Let Ct be the
flow generated by HA1 .

Proposition 6.3.A. If (6.3.2)–(6.3.3) hold, with r ≥ 2, then

(6.3.13) p(x, ξ) ∈ Sm
ρ,δ =⇒ p(Ct(x, ξ)) ∈ Sm

ρ,δ,

where ρ = 1− δ.

Proof. We need estimates in each region Ω as described above. Let q be the asso-
ciated function on R (q depends on (x0, ξ0)). The hypothesis on p implies

(6.3.14) |Dα
z q(z)| ≤ Cα|ξ0|m M |α|;

recall M = |ξ0|δ. We claim q ◦F (t, z) has the same estimate. This follows from the
chain rule and the estimates (6.3.12).

We now construct inductively the symbol of a pseudodifferential operator Q(t),
which we will show agrees with P (t) in (6.3.4), for restricted δ, using an argument
parallel to that in (0.9.7)- (0.9.10). We start with the assumption δ < 1. We look
for

(6.3.15) Q(t, x, ξ) ∼ Q0(t, x, ξ) + Q1(t, x, ξ) + · · · ,

beginning with

(6.3.16) Q0(t, x, ξ) = P0(Ct(x, ξ)) ∈ Sm
ρ,δ,

by (6.3.13). We want to construct Q(t) solving

(6.3.17) Q′(t) = i[A(x,D), Q(t)] + R(t), Q(0) = P0,

where R(t) is a family of smoothing operators. The symbol of [A(x,D), Q(t)] is
asymptotic to

(6.3.18) HA1Q + {A0, Q}+ i
∑

|α|≥2

1
α!

[
A(α)Q(α) −Q(α)A(α)

]
,
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where A(α)(x, ξ) = Dα
ξ (x, ξ), A(α)(x, ξ) = i−|α|Dα

x A(x, ξ). We want the difference
of ∂tQ(t, x, ξ) and (6.3.18) to be asymptotic to zero. Thus we set up transport
equations for Qj(t, x, ξ) in (6.3.15), j ≥ 0, beginning with

(6.3.19) ∂Q0/∂t−HA1Q0 = 0, Q0(0, x, ξ) = P0(x, ξ),

which is solved by (6.3.16). The transport equation for Q1 will hence be

(6.3.20)
∂Q1/∂t−HA1Q1 ∼ {A0, Q0}+

∑

|α|≥2

i

α!
[
A(α)Q0(α) −Q

(α)
0 A(α)

]

= B1(t, x, ξ),

with initial condition

(6.3.21) Q1(0, x, ξ) = 0.

It is necessary to examine B1(t, x, ξ). As long as (6.3.3) holds, or even more generally
whenever A0 ∈ S0

1,δ,

(6.3.22) Q0 ∈ Sm
ρ,δ =⇒ {A0, Q0} ∈ S

m−(ρ−δ)
ρ,δ .

For this to be useful we will need ρ > δ, i.e., δ < 1/2. Continuing, we see that

(6.3.23) A(α)Q0(α) ∈ S
m+1−|α|+δ|α|
ρ,δ ⊂ Sm−1+2δ

ρ,δ if |α| ≥ 2,

while

(6.3.24)
A(α)Q

(α)
0 ∈ S

m+1+δ(|α|−2)−ρ|α|
ρ,δ

⊂ Sm+1−2ρ
ρ,δ if |α| ≥ 2,

provided (6.3.2) holds with r ≥ 2. We see that B1(t, x, ξ) has order strictly less
than m provided δ < 1/2, so ρ > 1/2.

Higher order transport equations are treated similarly, and we obtain

(6.3.25) Qj(t, x, ξ) ∈ S
m−(2ρ−1)j
ρ,δ = S

m−(ρ−δ)j
ρ,δ

provided ρ = 1 − δ > 1/2. Thus Q, given by (6.3.15), satisfies (6.3.17), with R(t)
smoothing. To complete the analysis of (6.3.4), we need to compare Q(t) with P (t).
Consider

(6.3.26) V (t) = [Q(t)− P (t)]eitA = Q(t)eitA − eitAP0.

We have

(6.3.27) V ′(t) = iAV (t) + R(t)eitA, V (0) = 0.

Thus, for any u ∈ D′, v(t) = V (t)u satisfies

(6.3.28)
∂v

∂t
= iAv + g(t), v(0) = 0,

where g(t) = R(t)eitAu is smooth. Hence standard energy estimates show v(t) is
smooth, so V (t) ∈ OPS−∞. We have proved the following Egorov-type theorem.
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Proposition 6.3.B. If A satisfies (6.3.2)–(6.3.3) with r ≥ 2 and P0 ∈ OPSm
ρ,δ with

ρ = 1− δ > 1/2, then

(6.3.29) P (t) = eitA P0 e−itA = P (t, x, D) ∈ OPSm
ρ,δ

and

(6.3.30) P (t, x, ξ)− P0(Ct(x, ξ)) ∈ S
m−(ρ−δ)
ρ,δ ,

where Ct is the flow generated by HA1 .

We now look at conjugates

(6.3.31) P (t) = eitM P0 e−itM ,

where

(6.3.32) M(x, ξ) ∈ Ar
0S

1
1,1, M = M1 + M2, M1 real, M0 ∈ Ar

0S
0
1,1.

Using the symbol smoothing of §1.3, write

(6.3.33) M(x, ξ) = A(x, ξ) + B(x, ξ)

where

(6.3.34) A(x, ξ) ∈ Ar
0S

1
1,δ, B(x, ξ) ∈ S1−rδ

1,1 .

The symbol A(x, ξ) satisfies (6.3.2)-(6.3.3). Provided r > 2, we can take δ slightly
less than 1/2 so that

(6.3.35) B(x, ξ) ∈ S−γ
1,1 , γ = rδ − 1 > 0.

We can apply Proposition 6.3.B (with a slight change of notation), analyzing

(6.3.36) Q(t) = eitA P0 e−itA = Q(t, x, D) ∈ OPS0
ρ,δ,

given P0 ∈ OPS0
ρ,δ. We now want to compare the operators (6.3.31) and (6.3.36).

Note that

(6.3.37) Q′(t) = i[A,Q(t)], P ′(t) = i[A,P (t)] + R(t)

with

(6.3.38) R(t) = i[B, P (t)] : Hs −→ Hs+γ , for s > −γ.
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Consequently, if we set
V (t) = [Q(t)− P (t)]eitA,

this time we have

V ′(t) = iAV (t)−R(t)eitA, V (0) = 0.

Hence
V (t) : Hs −→ Hs+γ .

Therefore

(6.3.39) eitM P0 e−itM − eitA P0 e−itA : Hs −→ Hs+γ , for s > −γ.

It is possible to apply this result to study propagation of singularities, in analogy
with the proof of Proposition 0.10.E. Indeed, suppose u ∈ Hσ

mcl(Γ), so if P0 ∈ OPS0

has symbol suported inside Γ, P0u ∈ Hσ. If A satisfies the hypotheses of Proposition
6.3.B, eitAu is mapped to Hσ by P (t) in (6.3.29). Thus, if CtΓ contains a cone Γt,
we deduce that eitAu ∈ Hσ

mcl(Γt). We also claim that, if M satisfies (6.3.32) with
r > 2,

(6.3.40)
(
eitMP0e

−itM
)
(eitMu) ∈ Hσ if σ > −γ.

This follows from:

Lemma 6.3.C. If M(x, ξ) satisfies (6.3.32) with r > 2, then

(6.3.41) eitM : Hs −→ Hs, s > −γ.

Proof. Given u ∈ Hs, eitMu = v(t) satisfies

(6.3.42)
∂v

∂t
= iAv + iBv, v(0) = u.

As long as (6.3.35) holds with γ > 0, standard linear hyperbolic techniques apply
to (6.3.42), yielding (6.3.41).

Given (6.3.40), we can use (6.3.39) to conclude

(6.3.43) P (t)(eitMu) ∈ Hσ if s ≤ σ ≤ s + γ

provided

(6.3.44) u ∈ Hs, s > −γ.

Thus, under these hypotheses,

(6.3.45) eitMu ∈ Hσ
mcl(Γt).

This yields a propagation of singularities result along the lines of Theorem 6.1.E,
but substantially weaker, so we will not write out the details.



141

Chapter 7: Nonlinear parabolic systems

We examine existence, uniqueness, and regularity of solutions to nonlinear par-
abolic systems. We begin with an approach to strongly parabolic quasilinear equa-
tions using techniques very similar to those applied to hyperbolic systems in Chap-
ter 5, moving on to symmetrizable quasilinear parabolic systems in §7.2. It turns
out that another approach, making stronger use of techniques of Chapter 3, yields
sharper results. We explore this in §7.3, treating there completely nonlinear as well
as quasilinear systems. For a class of scalar equations in divergence form, we make
contact with the DeGiorgi-Nash-Moser theory and show how some global existence
results follow.

In §7.4 we consider semilinear parabolic systems. We first state a result which
is just a specialization of Proposition 7.3.C, which applies to a class of quasilinear
equations. Then, by a more elementary method, we derive a result for initial data
in C1(M). Neither of these two results contains the other, so having them both
may yield useful information. As one important example of a semilinear parabolic
system, we consider the parabolic equation approach to existence of harmonic maps
M → N, when N has negative sectional curvature, due to Eells and Sampson. In
outline our analysis follows that presented in [J], with some simplifications arising
from taking N to be imbedded in Rk (as in [Str]), and also some simplifications in
the use of parabolic theory.

§7.1. Strongly parabolic quasilinear systems

In this section we study the initial value problem

(7.1.1)
∂u

∂t
=

∑

j,k

Ajk(t, x,D1
xu)∂j∂ku + B(t, x, D1

xu), u(0) = f.

Here, u takes values in RK , and each Ajk can be a symmetric K ×K matrix; we
assume Ajk and B are smooth in their arguments. As in Chapter 5 we assume for
simplicity that x ∈ M, an n-dimensional torus. The strong parabolicity condition
we impose is

(7.1.2)
∑

j,k

Ajk(t, x, D1
xu)ξjξk ≥ C0|ξ|2I.

The analysis will be in many respects similar to that in §5.1. We consider the
approximating equation

(7.1.3)
∂uε

∂t
= Jε

∑
Ajk(t, x,D1

xJεuε)∂j∂kJεuε + JεB(t, x, D1
xJεuε)

= JεLεJεuε + Bε,
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which, for any fixed ε > 0, has a solution satisfying uε(0) = f. To estimate
‖uε(t)‖Hs , we consider

(7.1.4)
d

dt
(Λsuε, Λsuε) = 2(ΛsJεLεJεuε,Λsuε) + 2(ΛsBε, Λsuε).

The last term in (7.1.4) is easy. We have

(7.1.5) (ΛsBε,Λsuε) ≤ C(‖Jεuε‖C1)‖Jεuε‖Hs+1 · ‖Jεuε‖Hs .

To analyze the first term on the right side of (7.1.4), write it as 2 times

(7.1.6) (ΛsLεJεuε, ΛsJεuε) = (LεΛsJεuε, ΛsJεuε) + ([Λs, Lε]Jεuε, ΛsJεuε).

Applying the Kato-Ponce estimate to

(7.1.7) [Λs, Lε] =
∑

[Λs, Ajk(t, x, D1
xJεuε)]∂j∂k,

we dominate the last term in (7.1.6) by

(7.1.8) C(‖Jεuε‖C2)‖Jεuε‖Hs+1 · ‖Jεuε‖Hs .

Now, to analyze the first term on the right side of (7.1.6), write

(7.1.9) Lε =
∑

∂jA
jk(t, x, D1

xJεuε)∂k +
∑

[Ajk(t, x,D1
xJεuε), ∂j ]∂k.

The contribution of the last term of (7.1.9) to the first term on the right side of
(7.1.6) is also seen to be dominated by (7.1.8). Finally, by hypothesis (7.1.2), we
have

(7.1.10) −
∑

Re (∂jA
jk∂kv, v) ≥ C0‖∇v‖2L2 .

Putting these estimates together yields for (7.1.4) the estimate

(7.1.11)
d

dt
(Λsuε, Λsuε) ≤ −C1‖Jεuε‖2Hs+1 + C(‖Jεuε‖C2)‖Jεuε‖Hs+1 · ‖Jεuε‖Hs

≤ −1
2
C1‖Jεuε‖2Hs+1 + C ′(‖Jεuε‖C2)‖Jεuε‖2Hs .

From here, standard arguments entering the proofs of Proposition 5.1.B, Propo-
sition 5.1.C, and Proposition 5.1.E apply, to yield:
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Proposition 7.1.A. Given the strong parabolicity hypothesis (7.1.2), if f ∈ Hs(M)
and s > n/2 + 2, then (7.1.1) has a unique solution

(7.1.12) u ∈ L∞(I, Hs(M)) ∩ Lip(I, Hs−2(M))

for some interval I = [0, T ), T > 0. The solution persists as long as ‖u(t)‖C2 is
bounded.

The argument establishing u ∈ C(I,Hs(M)) in Proposition 5.1.D does not quite
yield that result right away in this setting, since it used reversiblity, valid for hy-
perbolic PDE but not for parabolic PDE. In this context, that argument does yield
right continuity:

(7.1.13) tj ↘ t in I =⇒ u(tj) → u(t) in Hs-norm.

In particular, we have continuity at t = 0. In fact, we have

(7.1.14) u ∈ C(I, Hs(M)),

continuity at points t ∈ (0, T ) following from higher regularity, which we now
establish.

In fact, for any S < T, if we integrate (7.1.11) over J = [0, S), we obtain a bound
on

∫
J
‖Jεuε(τ)‖2Hs+1dτ, if s > n/2 + 2, so that ‖u‖C2 ≤ C‖u‖Hs and ‖Jεuε(t)‖Hs

gets bounded. Passing to the limit ε → 0, we have

(7.1.15) u ∈ L2(J,Hs+1(M)).

This implies that u(t1) “exists” in Hs+1(M) for almost all t1 ∈ J. We expect that
u(t) coincides with the solution v to (7.1.1), with v(t1) = u(t1), for t > t1, implying
we can replace s by s + 1 in (7.1.12) and (7.1.14), at least on (t1, T ). Iterating this
heuristic argument leads to the following regularity result, for which we provide a
rigorous proof.

Proposition 7.1.B. The solution u of Proposition 7.1.A has the property

(7.1.16) u ∈ C∞((0, T )×M).

Proof. Fix any S < T and take J = [0, S). Passing to a subsequence, we can
suppose that, with vj(t) = Jεj uεj (t),

(7.1.17) ‖vj+1 − vj‖L2(J,Hs+1(M)) ≤ 2−j .

Thus, if we consider

(7.1.18) Φ(t) = sup
j
‖vj(t)‖Hs+1 ≤ ‖v1(t)‖Hs+1 +

∞∑

j=1

‖vj+1(t)− vj(t)‖Hs+1 ,
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we deduce that Φ ∈ L2(J), and in particular Φ(t) < ∞ almost everywhere. Let
T = {t ∈ J : Φ(t) < ∞}. Thus, for any t1 ∈ T , {Jεj

uεj
(t1) : j ≥ 1} is bounded in

Hs+1(M). It converges to u(t1) in Hs−2(M); hence u(t1) ∈ Hs+1(M). By unique-
ness, the solution v to (7.1.1), v(t1) = u(t1), which belongs to C([t1, S), Hs+1(M)),
coincides with u(t) on [t1, S). We can iterate this argument, to get u ∈ C(I, C∞(M)),
and then (7.1.16) easily follows.

It is of interest to look at the following special case of (7.1.1),

(7.1.19)
∂u

∂t
=

∑
Ajk(t, x, u)∂j∂ku + B(t, x, D1

xu), u(0) = f,

in which the coefficients Ajk depend on u but not its derivatives. Consequently the
bound (7.1.8) can be improved, replacing C(‖Jεuε‖C2) by C(‖Jεuε‖C1), and this
leads to a corresponding improvement in (7.1.11). Hence we have:

Proposition 7.1.C. If (7.1.19) is strongly parabolic, and if f ∈ Hs(M),
s > n/2 + 1, then there is a unique solution

u ∈ C([0, T ),Hs(M)) ∩ C∞((0, T )×M),

which persists as long as ‖u(t)‖C1 is bounded.

§7.2. Petrowski parabolic quasilinear equations

We continue to study the initial value problem (7.1.1), but we replace the strong
parabolicity hypothesis (7.1.2) with the following more general hypothesis on

(7.2.1) L2(t, v, x, ξ) = −
∑

j,k

Ajk(t, x, v)ξjξk,

namely

(7.2.2) spec L2(t, v, x, ξ) ⊂ {z ∈ C : Re z ≤ −C0|ξ|2}

for some C0 > 0. Again we will try to produce the solution to (7.1.1) as a limit of
solutions uε to (7.1.3). In order to get estimates, we construct a symmetrizer.

Lemma 7.2.A. Granted (7.2.1), there exists P0(t, v, x, ξ), smooth in its arguments,
for ξ 6= 0, homogeneous of degree 0 in ξ, positive definite (i.e., P0 ≥ cI > 0), such
that −(P0L2 + L∗2P0) is also positive definite, i.e.,

(7.2.3) −(P0L2 + L∗2P0) ≥ C|ξ|2I > 0.

The symmetrizer P0, which is not unique, is constructed by establishing first that
if L2 is a fixed K×K matrix with spectrum in Re z < 0, then there exists a K×K
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matrix P0 such that P0 and −(P0L2+L∗2P0) are positive definite. This is an exercise
in linear algebra. One then observes the following facts. One, for a given positive
matrix P0, the set of L2 such that −(P0L2+L∗2P0) is positive definite, is open. Next,
for given L2 with spectrum in Re z < 0, the set {P0 : P0 > 0,−(P0L2 +L∗2P0) > 0},
is an open convex set of matrices, within the linear space of self adjoint K × K
matrices. Using this and a partition of unity argument, one can establish the
following, which then yields Lemma 7.2.A.

Lemma 7.2.B. If M−
K denotes the space of real K ×K matrices with spectrum in

Re z < 0 and P+
K the space of positive definite (complex) K ×K matrices, there is

a smooth map
Φ : M−

K −→ P+
K ,

homogeneous of degree 0, such that, if L ∈M−
K and P = Φ(L), then −(PL+L∗P ) ∈

P+
K .

Having constructed P0(t, v, x, ξ), note that

(7.2.4)
u ∈ C2 =⇒ L(t,D1

xu, x, ξ) ∈ C1S2
cl and

P0(t,D1
xu, x, ξ) ∈ C1S0

cl.

Now, with P = P0(t,D1
xu, x,D), set

(7.2.5) Q =
1
2
(P + P ∗) + KΛ−1,

with K > 0 chosen so that Q is positive definite on L2. Now, with uε defined as
the solution to (7.1.3), uε(0) = f, we estimate

(7.2.6)
d

dt
(Λsuε, QεΛsuε) = 2(Λs∂tuε, QεΛsuε) + (Λsuε, Q

′
εΛ

suε),

where Qε is obtained as in (7.2.5) from Pε = P0(t,D1
xJεuε, x, D). In the last term

we can replace Q′
ε by (d/dt)P0(t,D1

xJεuε, x, D), and obtain

(7.2.7) |(Λsuε, Q
′
εΛ

suε)| ≤ C(‖uε(t)‖C3)‖uε(t)‖2Hs .

The C3-norm arises from the equation (7.1.3) for ∂uε/∂t.
We can write the first term on the right side of (7.2.6) as twice

(7.2.8) (QεΛsJεLεJεuε, Λsuε) + (QεΛsBε,Λsuε),

where Lε is as in (7.1.3). The last term here is easily dominated by

(7.2.9) C(‖uε(t)‖C1)‖Jεuε(t)‖Hs+1 · ‖uε(t)‖Hs .
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We write the first term in (7.2.8) as

(7.2.10)
(QεLεΛsJεuε, ΛsJεuε) + (Qε[Λs, Lε]Jεuε,ΛsJεuε)

+ ([QεΛs, Jε]LεJεuε,Λsuε),

just as in (5.2.36), except now Lε is a second order operator. As long as (7.2.4)
holds, Pε also has symbol in C1S0

cl, and as in (5.2.37) we can apply Proposition
4.1.E to get

(7.2.11) [QεΛs, Jε] bounded in L(Hs−1, L2),

with a bound given in terms of ‖uε‖C2 . Furthermore, we have

(7.2.12) ‖LεJεuε‖Hs−1 ≤ C(‖uε‖C1)‖Jεuε‖Hs+1 + C(‖uε‖C2)‖Jεuε‖Hs ,

so we can dominate the last term in (7.2.10) by

(7.2.13) C(‖uε(t)‖C2)‖Jεuε‖Hs+1 · ‖uε‖Hs .

Moving to the second term in (7.2.10), we can use the Kato-Ponce estimate to get

(7.2.14) ‖[Λs, Lε]v‖L2 ≤ C
∑

j,k

[
‖Ajk‖Lip1 · ‖v‖Hs+1 + ‖Ajk‖Hs · ‖v‖C2

]
.

Hence the second term in (7.2.10) is also bounded by (7.2.13).
This brings us to the first term in (7.2.10), and for this we apply the G̊arding

inequality, Proposition 4.3.A, to get

(7.2.15) (QεLεv, v) ≤ −C0‖v‖2H1 + C(‖uε‖C2)‖v‖2L2 .

Substituting v = ΛsJεuε and using the other estimates on terms from (7.2.6), we
have

d

dt
(Λsuε, QεΛsuε) ≤ −C0‖Jεuε‖2Hs+1

+ C(‖uε‖C3)‖uε‖Hs

[‖Jεuε‖Hs+1 + ‖uε‖Hs

]

which we can further dominate as in (7.1.11).
From here, all the other arguments yielding Proposition 7.1.A and Proposition

7.1.B apply, and we have the following.
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Proposition 7.2.C. Given the parabolicity hypothesis (7.2.1), if f ∈ Hs(M), and
s > n/2 + 3, then (7.1.1) has a unique solution

(7.2.16) u ∈ C([0, T ),Hs(M)) ∩ C∞((0, T )×M)

for some T > 0, which persists as long as ‖u(t)‖C3 is bounded.

§7.3. Sharper estimates

While on the face of it §7.1 seems to be a clean parallel with the analysis of
hyperbolic equations in Chapter 5, in fact the results are not as sharp as they can
be, and we obtain sharper results here, making more use of paradifferential operator
calculus. We begin with completely nonlinear equations:

(7.3.1)
∂u

∂t
= F (t, x, D2

xu), u(0) = f,

for u taking values in RK . We suppose F = F (t, x, ζ), ζ = (ζαj : |α| ≤ 2, 1 ≤ j ≤ K)
is smooth in its arguments, and our strong parabolicity hypothesis is:

(7.3.2) − Re
∑

|α|=2

∂F

∂ζα
ξα ≥ C|ξ|2I,

for ξ ∈ Rn, where Re A = (1/2)(A + A∗) for a K × K matrix A. Using §3.3, we
write

(7.3.3) F (t, x,D2
xv) = M(v; t, x, D)v + R(v).

Thus, for r > 0,

(7.3.4) v(t) ∈ C2+r =⇒ M(v; t, x, ξ) ∈ Ar
0S

2
1,1 ⊂ CrS2

1,0 ∩ S2
1,1.

The hypothesis (7.3.2) implies

(7.3.5) − Re M(v; t, x, ξ) ≥ C|ξ|2I > 0

for |ξ| large. Note that symbol smoothing in x gives

(7.3.6) M(v; t, x, ξ) = M#(t, x, ξ) + M b(t, x, ξ)

and, when (7.3.4) holds (for fixed t)

(7.3.7) M#(t, x, ξ) ∈ Ar
0S

2
1,δ, M b(t, x, ξ) ∈ S2−rδ

1,1 .

We also have

(7.3.8) − Re M#(t, x, ξ) ≥ C|ξ|2I > 0
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for |ξ| large.
We will obtain a solution to (7.3.1) as a limit of solutions uε to

(7.3.9)
∂uε

∂t
= JεF (t, x, D2

xJεuε), uε(0) = f.

Thus we need to show that uε(t, x) exists on an interval t ∈ [0, T ) independent of
ε ∈ (0, 1] and has a limit as ε → 0 solving (7.3.1). As before, all this follows from
an estimate on the Hs-norm, and we begin with

(7.3.10)
d

dt
‖Λsuε(t)‖2L2 = 2(ΛsJεF (t, x,D2

xJεuε),Λsuε)

= (ΛsMεJεuε, ΛsJεuε) + 2(ΛsRε, ΛsJεuε).

The last term is easily bounded by

C(‖uε(t)‖L2)
[‖Jεuε(t)‖2Hs + 1

]
.

Here Mε = M(Jεuε; t, x, D). Writing Mε = M#
ε + M b

ε as in (7.3.6), we see that

(7.3.11)

(ΛsM b
εJεuε, ΛsJεuε)

= (Λs−1M b
εJεuε, Λs+1Jεuε)

≤ C(‖Jεuε‖C2+r )‖Jεuε‖Hs+1−rδ‖Jεuε‖Hs+1

for s > 1, since by (7.3.7), M b
ε : Hs+1−rδ −→ Hs−1. We next estimate

(7.3.12)
(ΛsM#

ε Jεuε, ΛsJεuε)

= (M#
ε ΛsJεuε, ΛsJεuε) + ([Λs,M#

ε ]Jεuε,ΛsJεuε).

By (7.3.7), [Λs, M#
ε ] ∈ OPSs+2−r

1,δ , if 0 < r < 1, so the last term in (7.3.12) is
bounded by

(7.3.13)
(Λ−1[Λs,M#

ε ]Jεuε,Λs+1Jεuε)

≤ C(‖uε‖C2+r )‖Jεuε‖Hs+1−r · ‖Jεuε‖Hs+1 .

Finally, G̊arding’s inequality applies to M#
ε :

(7.3.14) (M#
ε w,w) ≤ −C0‖w‖2H1 + C1(‖uε‖C2+r )‖w‖2L2 .

Putting together the previous estimates, we obtain

(7.3.15)
d

dt
‖uε(t)‖2Hs ≤ −1

2
C0‖Jεuε‖2Hs+1 + C(‖uε‖C2+r )‖Jεuε‖2Hs+1−rδ ,

and using Poincare’s inequality, we can replace −C0/2 by −C0/4 and the Hs+1−rδ-
norm by the Hs-norm, getting

(7.3.16)
d

dt
‖uε(t)‖2Hs ≤ −1

4
C0‖Jεuε(t)‖2Hs+1

+ C ′(‖uε(t)‖C2+r )‖Jεuε(t)‖2Hs .

From here, the arguments used to establish Proposition 7.1.A and Proposition 7.1.B
yield:
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Proposition 7.3.A. If (7.3.1) is strongly parabolic and f ∈ Hs(M), s > n/2 + 2,
then there is a unique solution

(7.3.17) u ∈ C([0, T ),Hs(M)) ∩ C∞((0, T )×M),

which persists as long as ‖u(t)‖C2+r is bounded, given r > 0.

Note that if the method of quasilinearization were applied to (7.3.1) in concert
with the results of §7.1, we would require s > n/2 + 3 and for persistence of the
solution would need a bound on ‖u(t)‖C3 .

We take another look at the quasilinear case (7.1.1), i.e., the special case of
(7.3.1) in which

(7.3.18) F (t, x, D2
xu) =

∑
Ajk(t, x, D1

xu)∂j∂ku + B(t, x,D1
xu).

We form M(v; t, x, D) as before, by (7.3.3). In this case, we can replace (7.3.4) by

(7.3.19) v ∈ C1+r =⇒ M(v; t, x, ξ) ∈ Ar
0S

2
1,1 + S2−r

1,1 .

Thus we can produce a decomposition (7.3.6) such that (7.3.7) holds for v ∈ C1+r.
Hence the estimates (7.3.11)–(7.3.16) all hold with constants depending on the
C1+r-norm of uε(t), rather than the C2+r-norm, and we have the following im-
provement of Proposition 7.1.A–Proposition 7.1.B.

Proposition 7.3.B. If the quasilinear system (7.1.1) is strongly parabolic and f ∈
Hs(M), s > n/2 + 1, then there is a unique solution satisfying (7.3.17), which
persists as long as ‖u(t)‖C1+r is bounded, given r > 0.

We look at the further special subcase of (7.1.19), where

(7.3.20) F (t, x,D2
xu) =

∑
Ajk(t, x, u)∂j∂ku.

In this case, if r > 0, we have

(7.3.22) v ∈ Cr =⇒ M(v; t, x, ξ) ∈ Ar
0S

2
1,1 + S2−r

1,1 ,

and the following improvement of Proposition 7.1.C results.

Proposition 7.3.C. If the system (7.1.19) is strongly parabolic and f ∈ Hs(M), s >
n/2 + 1, then there is a unique solution satisfying (7.3.17), which persists as long
as ‖u(t)‖Cr is bounded, given r > 0.

It is also of interest to consider the case

(7.3.23)
∂u

∂t
=

∑
∂jA

jk(t, x, u)∂ku, u(0) = f.

Arguments similar to those done above yield:



150

Proposition 7.3.D. If the system (7.3.23) is strongly parabolic, and if

(7.3.24) f ∈ Hs(M), s >
n

2
+ 1,

then there is a unique solution to (7.3.23), satisfying (7.3.17), which persists as
long as ‖u(t)‖Cr is bounded, given r > 0.

For (7.3.23), the DeGiorgi-Nash-Moser theory has the following implication,
when the coefficients Ajk are scalar. (A treatment can be found in Chapter 15
of [[T2]].)

Theorem 7.3.E. Suppose (7.3.24) holds on [t0, t0 +a]×M, with scalar coefficients
satisfying

λ0|ξ|2 ≤
∑

Ajk(t, x, u)ξjξk ≤ λ1|ξ|2.
Then u(t0 + a, x) = w(x) belongs to Cr for some r > 0, and there is an estimate

(7.3.25) ‖w‖Cr ≤ K(a, λ0, λ1)‖u(t0, ·)‖L∞ .

In particular, the factor K(a, λ0, λ1) does not depend on the modulus of continuity
of Ajk.

This produces a global existence result; compare Theorem 8 of [Br].

Proposition 7.3.F. If (7.3.24) is a strongly parabolic scalar equation, the solution
guaranteed by Proposition 7.3.D exists for all t > 0.

Proof. An L∞-bound on u(t) follows from the maximum principle, and then (7.3.25)
gives a Cr-bound on u(t), for some r > 0. Hence global existence follows from
Proposition 7.3.D.

Let us also consider the parabolic analogue of the PDE (2.2.62), i.e.,

(7.3.26)
∂u

∂t
=

∑
Ajk(∇u)∂j∂ku, u(0) = f,

with
Ajk(p) = Fpjpk

(p).

Again assume u is scalar. Then Proposition 7.3.B applies, given f ∈ Hs(M), s >
n/2 + 1. Furthermore, u` = ∂`u satisfies

(7.3.27)
∂u`

∂t
=

∑
∂jA

jk(∇u)∂ku`, u`(0) = f` = ∂`f.

This follows by applying ∂` to (7.3.26) and using the symmetry of Fpjpkp`
in (j, k, `).

The maximum principle applies to both (7.3.26) and (7.3.27). Thus, given u ∈
C([0, T ],Hs) ∩ C∞((0, T )×M),

(7.3.28) |u(t, x)| ≤ ‖f‖L∞ , |u`(t, x)| ≤ ‖f`‖L∞ , 0 ≤ t < T.
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Now the De Georgi-Nash-Moser theory applies to (7.3.27) to yield

(7.3.29) ‖u`(t, ·)‖Cr(M) ≤ K, 0 ≤ t < T,

for some r > 0, as long as the ellipticity hypothesis from (2.2.61) applies. Hence
again (via Proposition 7.3.B) there is global solvability:

Proposition 7.3.G. If F (p) satisfies (2.2.61), then (7.3.26) has a solution for all
t > 0, given f ∈ Hs(M), s > n/2 + 1.

§7.4. Semilinear parabolic systems

Here we study equations of the form

(7.4.1)
∂u

∂t
= ∆u + F (x,D1

xu), u(0) = f.

We suppose u(t, x) takes values in Rk, t ∈ [0, T ), x ∈ M, and ∆ is the Laplace
operator on M, acting componentwise in u, though clearly ∆ can be replaced by
more general second order strongly elliptic operators. We begin by stating the
following result, which is merely a specialization of Proposition 7.1.C.

Proposition 7.4.A. If f ∈ Hs(M), s > n/2+1, then there is a unique solution to
(7.4.1), u ∈ C([0, T ), Hs(M))∩C∞((0, T )×M), which persists as long as ‖u(t)‖C1

is bounded.

Though this has been established, we record another proof of the persistence
statement here. Note that

(7.4.2) F (x,D1
xu) = A(u;x,D)u + R(u)

with R(u) ∈ C∞ and

(7.4.3) u ∈ C1 =⇒ A(u;x,D) ∈ OPS1
1,1.

Now we have

(7.4.4)
d

dt
‖Λsu‖2L2 = −2‖Λs+1u‖2L2 + 2(ΛsF (x,D1

xu), Λsu).

We can dominate the last term by

(7.4.5)
2‖Λs+1u‖L2 ·‖Λs−1F (x,D1u)‖L2

≤ ‖Λs+1u‖2L2 + ‖Λs−1F (x,D1u)‖2L2 .

The first term on the right side of (7.4.5) can be absorbed into the first term on
the right side of (7.4.4). Meanwhile, (7.4.2)–(7.4.3) yield

(7.4.6) ‖Λs−1F (x,D1u)‖2L2 ≤ C(‖u‖C1)
[‖u‖2Hs + 1

]
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so

(7.4.7)
d

dt
‖Λsu‖2L2 ≤ −1

2
‖u‖2Hs+1 + C ′(‖u‖C1)

[‖Λsu‖2L2 + 1
]
,

which implies the persistence given a bound on ‖u(t)‖C1 .
Note that, if we do not use (7.4.2)–(7.4.3) but instead appeal to the Moser

estimate

(7.4.8) ‖F (x,D1u)‖2Hs−1 ≤ C(‖u‖C1)
[‖u‖2Hs + 1

]
,

we again have the estimate (7.4.7).
We derive further results on solvability of (7.4.1), making more specific use of

the semilinear structure. We convert (7.4.1) to the integral equation

(7.4.9)
u(t) = et∆f +

∫ t

0

e(t−s)∆F (x,D1u(s))ds

= Ψu(t).

We want to construct a Banach space C([0, T ], X) such that Ψ acts as a contraction
map on a certain closed subset, and hence possesses a unique fixed point. Suppose
there are two Banach spaces X and Y of functions (or maybe distributions) with
the following properties:

(7.4.10)

et∆ is a continuous semigroup on X,

et∆ : Y → X for t > 0 and ‖et∆‖L(Y,X) ∈ L1([0, 1], dt),

Φ : X → Y is locally Lipschitz, where Φ(u) = F (x, D1u).

Given these hypotheses is it easy to show that, if first ε > 0 and then T > 0 are
picked small enough, and

(7.4.11) X = {u ∈ C([0, T ], X) : u(0) = f, ‖u(t)− f‖X ≤ ε},
then Ψ : X → X and is a contraction map here.

As an example, let X = Cr(M), r ≥ 1, integer or not, and let Y = Cr−1(M). It
is easy to verify all the hypotheses in (7.4.10) in this case, as long as F is smooth
in its arguments. We have the following result.

Proposition 7.4.B. Given f ∈ Cr(M), r ≥ 1, the equation (7.4.1) has a solution

(7.4.12) u ∈ C([0, T ], Cr(M)) ∩ C∞((0, T )×M).

The only point left to establish is the smoothness result. But it is easy to see
that Ψ : X → C((0, T ), Cr+ρ(M)) for any ρ < 1. Hence u ∈ C((0, T ), Cr+ρ).
Replacing t = 0 by t = to ∈ (0, T ) and f by u(to) and iterating this argument
yields smoothness.

Note that the persistence result of Proposition 7.4.A is the same as that given by
the proof of the last result, which is persistence given a C1-bound on u(t). On the
other hand, the solvability given only f ∈ C1 is not obtainable from Proposition
7.4.A. The following consequence of Proposition 7.4.B is useful.
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Corollary 7.4.C. If (7.4.1) is solvable with a uniform bound ‖u(t)‖C1 ≤ K1, for
all t ≥ 0, then there are uniform bounds

‖u(t)‖C` ≤ K`, t ≥ 1.

We now turn to an important example of a semilinear parabolic system, arising
in the study of harmonic maps, first treated by Eells and Sampson.

Let M and N be compact Riemannian manifolds, N ⊂ Rk. A harmonic map
u : M → N is a critical point for the energy functional

(7.4.13) E(u) =
∫

M

|∇u(x)|2 dV (x),

amongst all such maps. Such a map, if smooth, is characterized as a solution to
the semilinear equation

(7.4.14) ∆u− Γ(u)(∇u,∇u) = 0

where Γ(u)(∇u,∇u) is a certain quadratic form in ∇u, taking values in the normal
space to N at u(x). For this calculation, see [J] or [Str], or [[T1]], Chapter 15. Denote
the left side of (7.4.14) by τ(u); it can be shown that, given u ∈ C1(M,N), τ(u) is
tangent to N at u(x). Eells and Sampson proved the following result.

Theorem 7.4.D. Suppose N has negative sectional curvature everywhere. Then,
given v ∈ C∞(M, N), there exists a harmonic map w ∈ C∞(M, N) which is homo-
topic to v.

In [ES], the existence of w is established via solving the PDE

(7.4.15)
∂u

∂t
= ∆u− Γ(u)(∇u,∇u), u(0) = v.

It is shown that, under the hypothesis of negative sectional curvature on N, there is
a smooth solution to (7.4.15) for all t ≥ 0, and that, for a sequence tk →∞, u(tk)
tends to the desired w.

Given that τ(u) is tangent to N for u ∈ C∞(M,N), it follows that u(t) : M → N
for each t in the interval [0, T ) on which the solution to (7.4.15) exists. In order to
estimate ∇xu, Eells and Sampson produced a differential inequality for the energy
density e(t, x) = |∇xu(t, x)|2. In fact, there is the identity

(7.4.16)

∂e

∂t
−∆e = −|∇du|2 − 1

2
〈du ·RicM (ej), du · ej〉

+
1
2
〈RN (du · ej , du · ek)du · ek, du · ej〉,
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where {ej} is an orthonormal frame at TxM and we sum over repeated indices.
Given that N has negative sectional curvature, this implies the inequality

(7.4.17)
∂e

∂t
−∆e ≤ ce.

If f(t, x) = e−cte(t, x), we have ∂f/∂t−∆f ≤ 0, and the maximum principle yields
f(t, x) ≤ ‖f(0, ·)‖L∞ , hence

(7.4.18) e(t, x) ≤ ect‖∇v‖2L∞ .

This C1 estimate implies the global existence of a solution to (7.4.15), by Proposi-
tion 7.4.A, or by Proposition 7.4.B.

For the rest of Theorem 7.4.D, we need further bounds on u, including an im-
provement of (7.4.18). For the total energy

(7.4.19) E(t) =
1
2

∫

M

e(t, x) dV (x) =
1
2

∫

M

|∇u|2 dV (x)

we claim there is the identity

(7.4.20) E′(t) = −
∫

M

∣∣∣∂u

∂t

∣∣∣
2

dV (x).

Indeed, one easily obtains E′(t) = − ∫ 〈ut, ∆u〉dV (x). Then replace ∆u by ut +
Γ(u)(∇u,∇u). Since ut is tangent to N and Γ(u)(∇u,∇u) is normal to N, (7.4.20)
follows. The desired improvement of (7.4.18) wil be a consequence of the following
estimate.

Lemma 7.4.E. Let e(t, x) ≥ 0 satisfy the differential inequality (7.4.17). Assume
that E(t) = 1

2

∫
e(t, x)dV (x) is bounded. Then there is a uniform estimate

(7.4.21) e(t, x) ≤ ec K‖e(0, ·)‖L∞ , t ≥ 0,

where K depends only on the geometry of M.

Proof. Writing ∂e/∂t−∆e = ce− g, g(t, x) ≥ 0, we have, for 0 ≤ s ≤ 1,

(7.4.22)
e(t + s, x) = es(∆+c)e(t, x)−

∫ s

0

e(s−τ)(∆+c)g(τ, x) dτ

≤ es(∆+c)e(t, x).

Since es(∆+c) is uniformly bounded from L1(M) to L∞(M) for s ∈ [1/2, 1], the
bound (7.4.21) for t ∈ [1/2,∞) follows from the hypothesized L1-bound on e(t).
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We remark that a more elaborate argument, which can be found on pp. 84-86
of [J], yields a explicit bound K depending on the injectivity radius of M and the
first (nonzero) eigenvalue of the Laplace operator on M.

Since Lemma 7.4.E applies to e(t, x) = |∇u|2 when u solves (7.4.15), we see that
solutions to (7.4.15) satisfy

(7.4.23) ‖u(t)‖C1 ≤ K1‖v‖C1 , for all t ≥ 0.

Hence, by Corollary 7.4.C, there are uniform bounds

(7.4.24) ‖u(t)‖C` ≤ K`‖v‖C1 , t ≥ 1,

for each ` < ∞. Of course there are consequently also uniform Sobolev bounds.
Now, by (7.4.20), E(t) is positive and monotone decreasing as t ↗ ∞. Thus

the quantity
∫

M
|ut(t, x)|2 dV (x) is an integrable function of t, so there exists a

sequence tj →∞ such that

(7.4.25) ‖ut(tj , ·)‖L2 → 0.

From (7.4.24) and the PDE (7.4.15) we have bounds

‖ut(t, ·)‖Hk ≤ Ck

and interpolation with (7.4.25) then gives

(7.4.26) ‖ut(tj , ·)‖H` → 0.

Therefore, by the PDE, one has for uj(x) = u(tj , x),

(7.4.27) ∆uj − Γ(uj)(∇uj ,∇uj) → 0 in H`−2(M),

as well as a uniform bound from (7.4.24). It easily follows that a subsequence
converges in a strong norm to an element w ∈ C∞(M, N) solving (7.4.14) and
homotopic to v, which completes the proof of Theorem 7.4.D.

It is fairly easy to go on to show that there is an energy minimizing harmonic
map w : M → N within each homotopy class, when N has negative sectional
curvature, but Hartman has established a much stronger result, on the essential
uniqueness of harmonic maps; cf. [J], §3.4.

We pursue a little more the method used to establish Proposition 7.4.B, in the
case when F (x,D1

xu) has extra structure such as is possessed by Γ(u)(∇u,∇u)
appearing in (7.4.15). Thus we assume

(7.4.28) F (x,D1
xu) = B(u)(∇u,∇u),

a quadratic form in ∇u. In this case, we take

(7.4.29) X = H1,p, Y = Lq, q = p/2, p > n,

and verify the three parts of the hypothesis (7.4.10), using the Sobolev imbedding
result

H1,p ⊂ L∞, Hs,q ⊂ Lnq/(n−sq), for p > n, 1 < q <
n

s
.

The latter inclusion implies that Hs,p/2 ⊂ Lp for some s < 1, given p > n, and
this yields the needed operator norm bound on et∆ : Lq → H1,p. We obtain the
following.
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Proposition 7.4.F. If (7.4.28) is a quadratic form in ∇u, then the PDE

(7.4.30)
∂u

∂t
= ∆u + B(u)(∇u,∇u), u(0) = f,

has a solution
u ∈ C([0, T ],H1,p) ∩ C∞((0, T )×M),

provided
f ∈ H1,p(M), p > n.

The smoothness is established by the same sort of arguments as described before.
Note that the proof of Proposition 7.4.F yields persistence of solutions as long as
‖u(t)‖H1,p is bounded for some p > n.
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Chapter 8: Nonlinear elliptic boundary problems

We establish estimates and regularity for solutions to nonlinear elliptic boundary
problems. In §8.1 we treat completely nonlinear second order equations, obtaining
L2-Sobolev estimates for solutions assumed a priori to belong to C2+r(M), r > 0.
The analysis here is done on a quite general level, and extends readily to higher order
elliptic systems, by amalgamating the nonlinear analysis in §8.1 with the approach
to linear elliptic boundary problems taken in Chapter 5 of [T2]. In §8.2 we make
note of improved estimates for solutions to quasilinear second order equations. In
§8.3 we show how such results, when supplemented by the DeGiorgi-Nash-Moser
theory, apply to solvability of the Dirichlet problem for certain quasilinear elliptic
PDE.

§8.1. Second order elliptic equations

We examine regularity near the boundary for solutions to a completely nonlinear
second order elliptic PDE, with boundary condition to be prescribed later. Hav-
ing looked at interior regularity in §2.2 and §3.3, we restrict attention to a collar
neighborhood of the boundary ∂M = X, so we look at a PDE of the form

(8.1.1) ∂2
yu = F (y, x,D2

xu, D1
x∂yu),

with y ∈ [0, 1], x ∈ X. We set

(8.1.2) v1 = Λu, v2 = ∂yu,

and produce a first-order system for v = (v1, v2),

(8.1.3)

∂v1

∂y
= Λv2,

∂v2

∂y
= F (y, x, D2

xΛ−1v1, D
1
xv2).

An operator like T = Λ or T = D2
xΛ−1 does not map Ck+1+r(I×X) to Ck+r(I×

X), but if we set

(8.1.4) Ck+r+(I ×X) =
⋃
ε>0

Ck+r+ε(I ×X),

then

(8.1.5) T : Ck+1+r+(I ×X) −→ Ck+r+(I ×X).

Thus we will assume u ∈ C2+r+. This implies v ∈ C1+r+, and the arguments
D2

xΛ−1v1 and D1
xv2 appearing in (8.1.3) belong to Cr+. We will be able to drop

the “+” in the statement of the main result.
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Now if we treat y as a parameter and apply the paradifferential operator con-
struction developed in §3.3 to the family of operators on functions of x, we obtain

(8.1.6)
F (y, x,D2

xΛ−1v1, D
1
xv2) = A1(v; y, x, Dx)v1

+ A2(v; y, x, Dx)v2 + R(v),

with (for fixed y) R(v) ∈ C∞(X),

(8.1.7) Aj(v; y, x, ξ) ∈ Ar
0S

1
1,1 ⊂ CrS1

1,0 ∩ S1
1,1

and

(8.1.8) Dβ
xAj ∈ S1

1,1, for |β| ≤ r, S
1+(|β|−r)
1,1 , for |β| > r,

provided u ∈ C2+r+.
Note that if we write F = F (y, x, ζ, η), ζα = Dα

x u (|α| ≤ 2), ηα = Dα
x ∂yu (|α| ≤

1), then we can set

(8.1.9) B1(v; y, x, ξ) =
∑

|α|≤2

∂F

∂ζα
(D2

xΛ−1v1, D
1
xv2)ξα〈ξ〉−1

(suppressing the y- and x-arguments of F ) and

(8.1.10) B2(v; y, x, ξ) =
∑

|α|≤1

∂F

∂ηα
(D2

xΛ−1v1, D
1
xv2)ξα.

Thus

(8.1.11) v ∈ C1+r+ =⇒ Aj −Bj ∈ CrS1−r
1,1 .

Using (8.1.4), we can rewrite the system (8.1.3) as

(8.1.12)

∂v1

∂y
= Λv2,

∂v2

∂y
= A1(x,D)v1 + A2(x, D)v2 + R(v).

We also write this as

(8.1.13)
∂v

∂y
= K(v; y, x,Dx)v + R (R ∈ C∞),

where K(v; y, x, Dx) is a 2 × 2 matrix of first-order pseudodifferential operators.
Let us denote the symbol obtained by replacing Aj by Bj as K̃, so

(8.1.14) K − K̃ ∈ CrS1−r
1,1 .
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The ellipticity condition can be expressed as

(8.1.15) spec K̃(v; y, x, ξ) ⊂ {z ∈ C : |Re z| ≥ C|ξ|},

for |ξ| large. Hence we can make the same statement about the spectrum of the
symbol K, for |ξ| large, provided v ∈ C1+r+ with r > 0.

In order to derive L2-Sobolev estimates, we will construct a symmetrizer, in
a fashion similar to §7.2. In particular, we will make use of Lemma 7.2.B. Let
Ẽ = Ẽ(v; y, x, ξ) denote the projection onto the {Re z > 0} spectral space of K̃,
defined by

(8.1.16) Ẽ(y, x, ξ) =
1

2πi

∫

γ

(
z − K̃(y, x, ξ)

)−1
dz,

where γ is a curve enclosing that part of the spectrum of K̃(y, x, ξ) contained in
{Re z > 0}. Then the symbol

(8.1.17) Ã = (2Ẽ − 1)K̃ ∈ CrS1
cl

has spectrum in {Re z > 0}. Let P̃ ∈ CrS0
cl be a symmetrizer for the symbol Ã.

Thus P̃ and (P̃ Ã + Ã∗P̃ ) are positive-definite symbols, for |ξ| ≥ 1.
We now want to apply symbol smoothing to P̃ , Ã, and Ẽ. It will be convenient

to modify the construction slightly, and smooth in both x and y. Thus we obtain
various symbols in Sm

1,δ, with the understanding that the symbol classes reflect
estimates on Dy,x-derivatives. For example, we obtain (with 0 < δ < 1)

(8.1.18) P (y, x, ξ) ∈ S0
1,δ; P − P̃ ∈ CrS−rδ

1,δ

by smoothing P̃ , in (y, x). We set

(8.1.19) Q =
1
2
(
P (y, x, Dx) + P (y, x,Dx)∗

)
+ KΛ−1,

with K > 0 picked to make the operator Q positive-definite on L2(X). Similarly,
define A and E by smoothing Ã and Ẽ in (y, x), so

(8.1.20)
A(y, x, ξ) ∈ S1

1,δ, A− Ã ∈ CrS1−rδ
1,δ ,

E(y, x, ξ) ∈ S0
1,δ, E − Ẽ ∈ CrS−rδ

1,δ ,

and we smooth K, writing

(8.1.21) K = K0 + Kb; K0 ∈ S1
1,δ, Kb ∈ CrS1−rδ

1,δ ∩ S1−rδ
1,1 .
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Consequently, on the symbol level,

(8.1.22)
A = (2E − 1)K0 + Ab, Ab ∈ S1−rδ

1,δ ,

PA + A∗P ≥ C|ξ|, for |ξ| large.

Let us note that the homogeneous symbols K̃, Ẽ, and Ã commute, for each (y, x, ξ);
hence the commutators of the various symbols K, E, A have order ≤ rδ units less
than the sum of the orders of these symbols; for example,

(8.1.23) [E(y, x, ξ), K0(y, x, ξ)] ∈ S1−rδ
1,δ .

Using this symmetrizer construction, we will look for estimates for solutions to
a system of the form (8.1.3) in the spaces Hk,s(M) = Hk,s(I ×X), with norms

(8.1.24) ‖v‖2k,s =
k∑

j=0

‖∂j
yΛk−j+sv(y)‖2L2(I×X).

We shall differentiate (QΛsEv,ΛsEv) and (QΛs(1−E)v, Λs(1−E)v) with respect
to y (these expressions being L2(X)-inner products) and sum the two resulting
expressions, to obtain the desired a priori estimates, parallel to the treatment in
§5.2 of [T2].

Using (8.1.13), we have

(8.1.25)

d

dy
(QΛsEv, ΛsEv) = 2 Re(QΛsE(Kv + R), ΛsEv)

+ (Q′ΛsEv,ΛsEv)

+ 2 Re(QΛsE′v, ΛsEv).

Note that given v ∈ C1+r+, r > 0, Q′ and E′ belong to OPSδ
1,δ. Hence, for fixed

y, each of the last two terms is bounded by

(8.1.26) C‖v(y)‖2Hs+δ/2 .

Here and below, we will adopt the convention that C = C(‖v‖C1+r+), with a slight
abuse of notation. Namely, v ∈ C1+r+ belongs to C1+r+ε for some ε > 0, and we
loosely use ‖v‖C1+r+ instead of ‖v‖C1+r+ε .

To analyze the first term on the right side of (8.1.25), we write

(8.1.27)

(QΛsE(Kv + R), ΛsEv) = (QΛsEK0v, ΛsEv)

+ (QΛsKbv, ΛsEv)

+ (QΛsER, ΛsEv),
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where the last term is harmless and, for fixed y,

(8.1.28) |(QΛsEKbv, ΛsEv)| ≤ C‖v(y)‖2Hs+(1−rδ)/2 ,

provided s + (1− rδ)/2− (1− rδ) > −(1− δ)r, that is,

(8.1.29) s >
1
2
− r +

1
2
rδ,

in view of (8.1.21).
Since Ẽ(y, x, ξ) is a projection, we have E(y, x, ξ)2 − E(y, x, ξ) ∈ S−rδ

1,δ and

(8.1.30)
E(y, x, D)− E(y, x,D)2 = F (y, x, D) ∈ OPS−σ

1,δ ,

σ = min (rδ, 1− δ).

Thus

(8.1.31) QEK0 = QAE + G; G(y) ∈ OPS1−σ
1,δ .

Consequently, we can write the first term on the right side of (8.1.27) as

(8.1.32) (QAEΛsv, ΛsEv)− (GΛsv, ΛsEv) + (Q[Λs, EK0]v, ΛsEv).

The last two terms in (8.1.32) are bounded (for each y) by

(8.1.33) C‖v(y)‖2Hs+(1−σ)/2 .

As for the contribution of the first term in (8.1.32) to the estimation of (8.1.25),
we have, for each y,

(8.1.34) (QAEΛsv, ΛsEv) = (QAΛsEv, ΛsEv) + (QA[E, Λs]v, Λsv),

the last term estimable by (8.1.33), and

(8.1.35) 2 Re(QAΛsEv, ΛsEv) ≥ C1‖Ev(y)‖2Hs+1/2 − C2‖Ev(y)‖2Hs ,

by (8.1.22) and G̊arding’s inequality. Keeping track of the various ingredients in
the analysis of (8.1.25), we see that

(8.1.36)
d

dy
(QΛsEv, ΛsEv) ≥ C1‖Ev(y)‖2Hs+1/2

− C2‖v(y)‖2Hs+(1−σ)/2 − C3‖R(y)‖2Hs ,

where Cj = Cj(‖v‖C1+r+) > 0.
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A similar analysis gives

(8.1.37)
d

dy
(QΛs(1− E)v, Λs(1− E)v)

≤ −C1‖(1− E)v(y)‖2Hs+1/2 + C2‖v(y)‖2Hs+(1−σ/2) + C3‖R(y)‖2Hs .

Putting together these two estimates yields

(8.1.38)

1
2
C1‖v(y)‖2Hs+1/2 ≤ C1‖Ev(y)‖2Hs+1/2 + C1‖(1− E)v(y)‖2Hs+1/2

≤ d

dy
(QΛsEv, ΛsEv)− d

dy
(QΛs(1− E)v,Λs(1− E)v)

+C2‖v(y)‖2Hs+(1−σ)/2 + C3‖R(y)‖2Hs .

Now standard arguments allow us to replace Hs+(1−σ)/2 by Ht, with t << s. Then
integration over y ∈ [0, 1] gives

(8.1.39)
C1‖v‖20,s+1/2 ≤ ‖ΛsEv(1)‖2L2 + ‖Λs(1− E)v(0)‖2L2

+ C2‖v‖20,t + C3‖R‖20,s.

Recalling that

(8.1.40) ‖v‖21,s = ‖Λ1+sv‖2L2(M) + ‖Λs∂yv‖2L2(M)

and using (8.1.13) to estimate ∂yv, we have

(8.1.41) ‖v‖21,s−1/2 ≤ C
[
‖Ev(1)‖2Hs + ‖(1− E)v(0)‖2Hs + ‖v‖20,t + ‖R‖20,s

]
,

with C = C(‖v‖C1+r+), provided that v ∈ C1+r+ with r > 0 and that s satisfies
the lower bound (8.1.29). Let us note that

C1

[
‖Λs(1− E)v(1)‖2L2 + ‖ΛsEv(0)‖2L2

]

could have been included on the left side of (8.1.39), so we also have the estimate

(8.1.42) ‖(1− E)v(1)‖2Hs + ‖Ev(0)‖2Hs ≤ right side of (8.1.41).

Having completed a first round of a priori estimates, we bring in a consideration
of boundary conditions that might be imposed. Of course, the boundary conditions
Ev(1) = f1, (1 − E)v(0) = f0 are a possibility, but these are really a tool with
which to analyze other, more naturally occurring boundary conditions. The “real”
boundary conditions of interest include the Dirichlet condition on (8.1.1):

(8.1.43) u(0) = f0, u(1) = f1,
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various sorts of (possibly nonlinear) conditions involving first-order derivatives:

(8.1.44) Gj(x,D1u) = fj , at y = j (j = 0, 1),

and when (8.1.1) is itself a K×K system, other possibilities, which can be analyzed
in the same spirit. Now if we write D1u = (u, ∂xu, ∂yu) = (Λ−1v1, ∂xΛ−1v1, v2),
and use the paradifferential operator construction of §3.3, we can write (8.1.44) as

(8.1.45) Hj(v;x,D)v = gj , at y = j,

where, given v ∈ C1+r+,

(8.1.46) Hj(v; x, ξ) ∈ A1+r
0 S0

1,1 ⊂ C1+rS0
1,0 ∩ S0

1,1.

Of course, (8.1.43) can be written in the same form, with Hjv = v1.
Now the following is the natural regularity hypothesis to make on (8.1.45);

namely, that we have an estimate of the form

(8.1.47)

∑

j

‖v(j)‖2Hs ≤ C
[
‖Ev(0)‖2Hs + ‖(1− E)v(1)‖2Hs

]

+ C
∑

j

[
‖Hj(v; x,D)v(j)‖2Hs + ‖v(j)‖2Hs−1

]
.

We then say the boundary condition is regular. If we combine this with (8.1.41)
and (8.1.42), we obtain the following fundamental estimate:

Proposition 8.1.A. If v satisfies the elliptic system (8.1.3), together with the
boundary condition (8.1.45), assumed to be regular, then

(8.1.48) ‖v‖21,s−1/2 ≤ C
[∑

j

‖gj‖2Hs + ‖v‖20,t + ‖R‖20,s

]
,

provided v ∈ H1,s−1/2 ∩ C1+r, r > 0, and s satisfies (8.1.29). We can take t << s.
In case (8.1.44) holds, we can replace ‖gj‖Hs by ‖fj‖Hs , and in case the Dirich-
let condition (8.1.43) holds and is regular, we can replace ‖gj‖Hs by ‖fj‖Hs+1 in
(8.1.48).

Here, we have taken the opportunity to drop the “+” from C1+r+; to justify this,
we need only shift r slightly. For the same reason, we can assume that, in (8.1.1),
u ∈ C2+r, for some r > 0. In the rest of this section, we assume for simplicity that
s− 1/2 ∈ Z+ ∪ {0}.

We can now easily obtain higher-order estimates, of the form

(8.1.49) ‖v‖2k,s−1/2 ≤ C
[∑

j

‖gj‖2Hs+k−1 + ‖v‖20,t + ‖R‖2k−1,s

]
,
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for t << s− 1/2, by induction from

‖v‖2k,s−1/2 = ‖v‖2k−1,s+1/2 + ‖∂yv‖2k−1,s−1/2,

plus substituting the right side of (8.3) for ∂yv. This follows from the existence of
Moser-type estimates:

(8.1.50)
‖F (·, ·, w1, w2)‖k,s−1/2

≤ C
(‖w1‖L∞ , ‖w2‖L∞

)[‖w1‖k,s−1/2 + ‖w2‖k,s−1/2

]
,

for k, k + s− 1/2 > 0. If s− 1/2 ∈ Z+ ∪ {0}, such an estimate can be established
by methods used in §3 of Chapter 13 in [[T1]].

We also obtain a corresponding regularity theorem, via inclusion of Friedrich
mollifiers in the standard fashion. Thus replace Λs by Λs

ε = ΛsJε in (8.1.25) and
repeat the analysis. One must keep in mind that Kb must be applicable to v(y) for
the analogue of (8.1.28) to work. Given (8.1.21), we need v(y) ∈ Hσ with σ > 1−r.
However, v ∈ C1+r already implies this. We thus have the following result.

Theorem 8.1.B. Let v be a solution to the elliptic system (8.1.3), satisfying the
boundary conditions (8.1.45), assumed to be regular. Assume

(8.1.51) v ∈ C1+r, r > 0,

and

(8.1.52) gj ∈ Hs+k−1(X),

with s− 1/2 ∈ Z+ ∪ {0}. Then

(8.1.53) v ∈ Hk,s−1/2(I ×X).

In particular, taking s = 1/2, and noting that

(8.1.54) Hk,0(M) = Hk(M),

we can specialize this implication to

(8.1.55) gj ∈ Hk−1/2(X) =⇒ v ∈ Hk(I ×X),

for k = 1, 2, 3, . . . , granted (8.1.51) (which makes the k = 1 case trivial).
Note that, in (8.1.36)–(8.1.38), one could replace the term ‖R(y)‖2Hs by the prod-

uct ‖R(y)‖Hs−1/2 · ‖v(y)‖Hs+1/2 ; then an absorption can be performed in (8.1.38),
and hence in (8.1.39)–(8.1.41) we can substitute ‖R‖20,s−1/2, and use ‖R‖2k−1,s−1/2

in (8.1.49).
We note that Theorem 8.1.B is also valid for solutions to a nonhomogeneous ellip-

tic system, where R in (8.1.13) can contain an extra term, belonging to Hk−1,s−1/2,
and then the estimate (8.1.49), strengthened as indicated above, and consequent
regularity theorem are still valid. If (8.1) is generalized to

(8.1.56) ∂2
yu = F (D2

xu,D1
x∂yu) + f,

then a term of the form (0, f)t is added to (8.1.13).
In view of the estimate (8.1.11) comparing the symbol of K with that obtained

from the linearization of the original PDE (8.1.1), and the analogous result that
holds for Hj , derived from Gj , we deduce the following:
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Proposition 8.1.C. Suppose that, at each point on ∂M , the linearization of the
boundary condition of (8.1.44) is regular for the linearization of the PDE (8.1.1).
Assume u ∈ C2+r, r > 0. Then the regularity estimate (8.1.49) holds. In particular,
this holds for the Dirichlet problem, for any scalar (real) elliptic PDE of the form
(8.1.1).

§8.2. Quasilinear elliptic equations

We establish here a strengthened version of Theorem 8.1.B when u solves a
quasilinear second order elliptic PDE, with a regular boundary condition. Thus we
are looking at the special case of (8.1.1) in which

(8.2.1)

F (y, x,D2
xu,D1

x∂yu) = −
∑

j

Bj(x, y, D1u)∂j∂yu

−
∑

j,k

Ajk(x, y,D1u)∂j∂ku + F1(x, y, D1u).

All the calculations of §8.1 apply, but some of the estimates are better. This is
because when we derive the equation (8.1.13), i.e.,

(8.2.2)
∂v

∂y
= K(v; y, x, Dx)v + R (R ∈ C∞)

for v = (v1, v2) = (Λu, ∂yu), (8.1.5) is improved to

(8.2.3) u ∈ Cr+1 =⇒ K ∈ Ar
0S

1
1,1 + S1−r

1,1 (r > 0).

Compare (3.3.23). Under the hypothesis u ∈ Cr+1, one has the result (8.1.17),
Ã ∈ CrS1

cl, which before required u ∈ C2+r. Also (8.1.20)–(8.1.22) now hold for
u ∈ C1+r. Thus all the a priori estimates, down through (8.1.49), hold, with
C = C(‖u‖C1+r ). One point that must be taken into consideration is that, for
the estimates to work, one needs v(y) ∈ Hσ with σ > 1 − r, and now this does
not necessarily follow from the hypothesis u ∈ C1+r. Hence we have the following
regularity result. Compare the interior regularity established in Theorem 2.2.E.

Theorem 8.2.A. Let u satisfy a second order quasilinear elliptic PDE with a reg-
ular boundary condition, of the form (8.1.45), for v = (Λu, ∂yu). Assume that

(8.2.4) u ∈ C1+r ∩H1,σ, r > 0, r + σ > 1.

Then, for k = 0, 1, 2, . . . ,

(8.2.5) gj ∈ Hk−1/2(X) =⇒ v ∈ Hk(I ×X).
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The Dirichlet boundary condition is regular (if the PDE is real and scalar) and

(8.2.6) u(j) = fj ∈ Hk+s(X) =⇒ v ∈ Hk,s−1/2(I ×X),

if s > (1− r)/2. In particular,

(8.2.7)
u(j) = fj ∈ Hk+1/2(X) =⇒ v ∈ Hk(I ×X)

=⇒ u ∈ Hk+1(I ×X).

We consider now the further special case

(8.2.8)

F (y, x, D2
xu,D1

x∂yu) = −
∑

j

Bj(x, y, u)∂j∂yu

−
∑

j,k

Ajk(x, y, u)∂j∂ku + F1(x, y,D1u).

In this case, when we derive the system (8.2.2), we have the implication

(8.2.9) u ∈ Cr(M) =⇒ K ∈ Ar
0S

1
1,1 + S1−r

1,1 (r > 0).

Similarly, under this hypothesis we have Ã ∈ CrS1
cl, etc. Therefore we have the

following.

Proposition 8.2.B. If u satisfies the PDE (8.1.1) with F given by (8.2.8), then the
conclusions of Theorem 8.2.A hold when the hypothesis (8.2.4) is weakened to

(8.2.10) u ∈ Cr ∩H1,σ, r + σ > 1.

Note that associated to this regularity is an estimate. For example, if u satisfies
the Dirichlet boundary condition, we have, for k ≥ 2,

(8.2.11) ‖u‖Hk(M) ≤ Ck(‖u‖Cr(M))
[‖u|∂M‖Hk−1/2(∂M) + ‖u‖L2(M)

]
,

where we have used Poincare’s inequality to replace the H1,σ-norm of u by the
L2-norm on the right.

§8.3. Interface with DeGiorgi-Nash-Moser theory

We resume the discussion begun at the end of §2.2 of a class of quasilinear elliptic
PDEs whose study involves first the DeGiorgi-Nash-Moser regularity theory and
then Schauder type extimates. The version of Theorem 2.2.J for bounded regions,
with Dirichlet boundary conditions, is the following. Suppose M is compact with
smooth boundary ∂M.
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Theorem 8.3.A. Let u ∈ H1(M) solve the scalar PDE

(8.3.1)
∑

∂jajk(x)∂ku = g +
∑

∂jfj on M,

with g ∈ Lq/2, fj ∈ Lq, q > n = dim M, and ajk ∈ L∞(M) satisfying

(8.3.2) λ0|ξ|2 ≤
∑

ajk(x)ξjξk ≤ λ1|ξ|2,
for constants λj > 0. Suppose u|∂M = ϕ ∈ C1(∂M). Then u ∈ Cr(M) for some
r > 0, and

(8.3.3) ‖u‖Cr ≤ K(λ0, λ1,M)
[‖g‖Lq/2 +

∑
‖fj‖Lq + ‖ϕ‖C1(∂M)

]
.

A proof of this is given in Appendix C.
We want to establish existence of smooth solutions to the nonlinear elliptic PDE

(8.3.4) Φ(D2u) =
∑

Fpjpk
(∇u)∂j∂ku = 0 on M, u = ϕ on ∂M,

which we derived in (2.2.62) as a PDE satisfied by the minimizer of

(8.3.5) I(u) =
∫

M

F (∇u) dx

over the space V 1
ϕ . Assume ϕ ∈ C∞(M). We continue to assume F is smooth and

satisfies

C1|p|2 − L1 ≤ F (p) ≤ C2|p|2 + K2,

(8.3.6)

A1|ξ|2 ≤
∑

Fpjpk
(p)ξjξk ≤ A2|ξ|2.

We use the method of continuity, showing that, for each τ ∈ [0, 1], there is a
smooth solution to

(8.3.7) Φτ (D2u) = 0 on M, u = ϕ on ∂M,

where

(8.3.8)
Φτ (D2u) = τΦ(D2u) + (1− τ)∆u

=
∑

Ajk
τ (∇u)∂j∂ku

with

(8.3.9) Ajk
τ (∇u) = τFpjpk

(∇u) + (1− τ)δjk.

Clearly (8.3.7) is solvable for τ = 0. Let J be the largest interval containing {0}
such that (8.3.7) has a solution u = uτ ∈ C∞(M) for each τ ∈ J. We will show
that J is all of [0, 1] by showing it is both open and closed in [0, 1]. The openness
is the relatively easy part.
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Lemma 8.3.B. If τ0 ∈ J, then, for some ε > 0, [τ0, τ0 + ε) ⊂ J.

Proof. Fix k large and define

(8.3.10) Ψ : [0, 1]× V k
ϕ −→ Hk−2(M)

by Ψ(τ, u) = Φτ (D2u), where

(8.3.11) V k
ϕ = {u ∈ Hk(M) : u = ϕ on ∂M}.

This map is C1 and its derivative with respect to the second argument is

(8.3.12) D2Ψ(τ0, u)v = Lv,

where

(8.3.13) L : V k
0 = Hk ∩H1

0 −→ Hk−2(M)

is given by

(8.3.14) Lv =
∑

∂jA
jk
τ0

(∇u(x))∂kv.

L is an elliptic operator with coefficients in C∞(M), when u = uτ0 , clearly an
isomorphism in (8.3.13). Thus, by the implicit function theorem, for τ close enough
to τ0 there will be uτ , close to uτ0 , such that Ψ(τ, uτ ) = 0. Since uτ ∈ Hk(M) solves
the regular elliptic boundary problem (8.3.7), if we pick k large enough we can apply
the regularity result of Theorem 8.1.B to deduce uτ ∈ C∞(M).

The next task is to show that J is closed. This will follow from a sufficient a
priori bound on solutions u = uτ , τ ∈ J. We start with fairly weak bounds. First,
the maximum principle implies

(8.3.15) ‖u‖L∞(M) = ‖ϕ‖L∞(∂M),

for each u = uτ , τ ∈ J.
Next we estimate derivatives. For simplicity we take M = [0, 1] × Tn−1. Each

u` = ∂`u satisfies

(8.3.16)
∑

∂jA
jk(∇u)∂ku` = 0,

where Ajk(∇u) is given by (8.3.9). The ellipticity, which follows from hypothesis
(8.3.6), implies a bound

(8.3.17) ‖u`‖H1(M) ≤ K, 1 ≤ ` ≤ n− 1,
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provided ∂` is tangent to ∂M for 1 ≤ ` ≤ n−1, since u` = ∂`ϕ on ∂M. Also, a fairly
elementary barrier construction bounds ∇u|∂M , and then the maximum principle
applied to (8.3.16) yields a uniform bound

(8.3.18) ‖∇u‖L∞(M) ≤ K.

Now Theorem 8.3.A enters in the following way; it applies to u` = ∂`u, for
1 ≤ ` ≤ n− 1. Thus there is an r > 0 for which we have bounds

(8.3.19) ‖u`‖Cr(M) ≤ K, 1 ≤ ` ≤ n− 1.

Recall from the end of §2.2 that such a property on all first derivatives of a solu-
tion to (8.3.4) led to the applicability of Schauder estimates to establish interior
regularity.

In the case of examining regularity at the boundary, more work is required, since
(8.3.19) does not include a derivative ∂n transverse to the boundary. Now, using
(8.3.7), we can solve for ∂2

nu in terms of ∂j∂ku, for 1 ≤ j ≤ n, 1 ≤ k ≤ n− 1. This
leads, via a nontrivial argument, to the estimate

(8.3.20) ‖u‖Cr+1(M) ≤ K.

This result, due to Morrey, will be established below.
Granted (8.3.20), we can then apply the estimate (8.2.11) to w = ∇u, satisfying∑
∂jA

jk(w)∂kw = 0. Thus, for any k,

(8.3.21) ‖∇u‖Hk(M) ≤ Kk.

Therefore, if [0, τ1) ⊂ J, as τν ↗ τ1 we can pick a subsequence of uτν converging
weakly in Hk+1(M), hence strongly in Hk(M). If k is picked large enough, the
limit u1 is an element of Hk+1(M), solving (8.3.7) for τ = τ1, and furthermore the
regularity result Theorem 8.2.A is applicable; hence u1 ∈ C∞(M). This shows that
J is closed.

Hence, modulo a proof of Morrey’s result (8.3.20), we have the proof of solvability
of the boundary problem (8.3.4).

In order to prove (8.3.20), we will use the Morrey spaces, discussed in §A.2. We
will show that

(8.3.22)
∫

BR∩M

|∇u`|2 dx ≤ CRn−2+2r, 1 ≤ ` ≤ n− 1.

This implies (see (A.2.10)) that

(8.3.23) ∂k∂`u ∈ Mp(M) for 1 ≤ ` ≤ n− 1, 1 ≤ k ≤ n,
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where p ∈ (n,∞) and r ∈ (0, 1) are related by 1 − r = n/p. Now the PDE (8.3.7)
enables us to write ∂2

nu as a linear combination of the terms in (8.3.23), with
L∞(M)-coefficients. Hence ∂2

nu ∈ Mp(M), so

(8.3.24) ∇(∂nu) ∈ Mp(M).

A fundamental result of Morrey is that

(8.3.25) ∇v ∈ Mp(M) =⇒ v ∈ Cr(M).

This is proved in §A.2; see Theorem A.2.A. Thus ∂nu ∈ Cr(M), and this together
with (8.3.19) yields (8.3.20).

It remains to consider (8.3.22); we will establish such an integral estimate with
u` replaced by v` = u` − ϕ`, with ϕ` = ∂`ϕ. This will suffice. For v`, we have the
PDE

∑
∂jA

jk(∇u)∂kv` =
∑

∂jfj ,

(8.3.26)

fj =
∑

k

Ajk(∇u)∂kϕ` ∈ L∞(M).

For any y ∈ M, a center for concentric balls BR and B2R, (which may reach outside
M), choose a positive function ψ ∈ C1

0 (B2R) such that

(8.3.27) ψ = 1 on BR, |∇ψ| ≤ 2/R.

Pick a constant c such that

(8.3.28) c = v`(y) if B2R ⊂ M ; c = 0 if B2R ∩ ∂M 6= ∅.
Hence ψ(x)2

(
v`(x)− c

) ∈ H1
0 (M). We estimate

(8.3.29)
∑ ∫

M

ψ(x)2Ajk∂jv` · ∂kv` dx

from above, substituting v`−c for v`, integrating by parts and using (8.3.26). There
follows readily a bound

(8.3.30)
∫

M

ψ(x)2|∇v`|2 dx ≤ C

∫

M

[
ψ(x)2 + |∇ψ|2(v` − c)2

]
dx.

Compare (2.2.67)–(2.2.68). Now the Hölder estimates (8.3.19) imply that (v`−c)2 ≤
KR2r on B2R, so from (8.3.30) we get

(8.3.31)

∫

BR

|∇v`|2 dx ≤ C[Rn + Rn−2 ·R2r]

≤ C ′Rn−2+2r,
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from which (8.3.22) follows. This proves Morrey’s result, (8.3.20).
As noted, to have ∂`, 1 ≤ ` ≤ n−1, tangent to ∂M, we require M = [0, 1]×Tn−1.

For M ⊂ Rn, if X =
∑

b`∂` is a smooth vector field tangent to ∂M, then uX = Xu
solves, in place of (8.3.16),

∑
∂jA

jk(∇u)∂kuX =
∑

∂jFj

with Fj ∈ L∞ calculable in terms of ∇u. Thus Theorem 8.3.A still applies, and the
rest of the argument above extends easily.
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A: Function spaces

§A.1: Hölder spaces, Zygmund spaces, and Sobolev spaces

Here we collect a few facts about various function spaces used in the paper. More
details can be found in [S1], [Tr], [H4].

If 0 < s < 1, we define Cs(Rn) to consist of bounded functions u such that

(A.1.1) |u(x + y)− u(x)| ≤ C|y|s.

For k = 0, 1, 2, . . . , we take Ck(Rn) to consist of bounded continuous functions u
such that Dβu is bounded and continuous, for |β| ≤ k. If s = k + r, 0 < r < 1,
we define Cs(Rn) to consist of functions u ∈ Ck(Rn) such that, for |β| = k, Dβu
belongs to Cr(Rn).

To connect Hölder spaces to Zygmund spaces, we use the S0
1 partition of unity

introduced in §1.3, 1 =
∑∞

j=0 ψj(ξ) with ψj supported on 〈ξ〉 ∼ 2j , and ψj(ξ) =
ψ1(21−jξ) for j ≥ 1. It is known that, if u ∈ Cs, then

(A.1.2) sup
k

2ks‖ψk(D)u‖L∞ < ∞.

To see this, first note that it is obvious for s = 0. For s = ` ∈ Z+ it then follows
from the elementary estimate

(A.1.3) C12k`|ψk(D)u(x)| ≤
∑

|α|≤`

|ψk(D)Dαu(x)| ≤ C22k`|ψk(D)u(x)|.

Thus it suffices to establish that u ∈ Cs implies (A.1.2) for 0 < s < 1. Since ψ̂1(x)
has zero integral, we have, for k ≥ 1,

(A.1.4)
|ψk(D)u(x)| =

∣∣∣
∫

ψ̂k(y)
[
u(x− y)− u(x)

]
dy

∣∣∣

≤ C

∫
|ψ̂k(y)| · |y|s dy,

which is readily bounded by C 2−ks.
Conversely, if s is not an integer, finiteness in (A.1.2) implies u ∈ Cs. It suffices

to demonstrate this for 0 < s < 1. With Ψk(ξ) =
∑

j≤k ψj(ξ), if |y| ∼ 2−k, write

(A.1.5)
u(x + y)− u(x) =

∫ 1

0

y·∇Ψk(D)u(x + ty) dt

+
(
I −Ψk(D)

)(
u(x + y)− u(x)

)
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and use (A.1.2)-(A.1.3) to dominate the L∞ norm of both terms on the right by
C · 2−sk, since ‖∇Ψk(D)u‖L∞ ≤ C · 2(1−s)k.

This converse breaks down if s ∈ Z+. We define the Zygmund class Cs
∗ to consist

of u such that (A.1.2) is finite, using that to define the Cs
∗-norm. Thus

(A.1.6) Cs = Cs
∗ if s ∈ R+ \ Z+, Ck ⊂ Ck

∗ , k ∈ Z+.

It is known that Cs
∗ is an algebra for each s > 0. Also,

(A.1.7) P ∈ OPSm
1,0 =⇒ P : Cs

∗ −→ Cs−m
∗

if s, s −m > 0. This is proved in §2.1. In fact, one can define Cs
∗ by finiteness of

(A.1.2) for all s ∈ R, and then (A.1.7) holds without restriction. In particular, with
Λ = (1−∆)1/2,

(A.1.8) Λm : Cs
∗ −→ Cs−m

∗ is an isomorphism.

The basic case C1
∗ can be characterized as the set of bounded continuous u such

that

(A.1.9) |u(x + y) + u(x− y)− 2u(x)| ≤ K|y|.

This is Zygmund’s original definition.
For 1 < p < ∞, s ∈ R, the Sobolev spaces Hs,p(Rn) can be defined as

(A.1.10) Hs,p(Rn) = Λ−s
(
Lp(Rn)

)
.

It is then true that, for s = k ∈ Z+, u ∈ S ′(Rn),

(A.1.11) u ∈ Hk,p(Rn) ⇐⇒ Dαu ∈ Lp(Rn) for |α| ≤ k.

There is a natural duality

(A.1.12) Hs,p(Rn)∗ ≈ H−s,p′(Rn),
1
p

+
1
p′

= 1.

There is a characterization of Hs,p(Rn) analogous to (A.1.2), namely that

(A.1.13)
∥∥{ ∞∑

k=0

4ks|ψk(D)u|2}1/2∥∥
Lp

be finite. This is a consequence of the Littlewood-Paley theory of Lp. In fact, for
s = 0, the equivalence of the norm above with ‖u‖Lp is established in §0.11; see
(0.11.32). For more general s, it follows from the simple estimate

(A.1.14) C12ks|ψk(D)u(x)| ≤ |ψk(D)Λsu(x)| ≤ C22ks|ψk(D)u(x)|.
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A complementary result, used in Lemma 2.1.G, is that, with Ψk(ξ) =
∑

`≤k ψ`(ξ),

(A.1.15)
∥∥∥
∞∑

k=0

Ψk(D)fk

∥∥∥
Hs,p

≤ Csp

∥∥∥
{ ∞∑

k=0

4ks|fk|2
}1/2∥∥∥

Lp
, s > 0,

for 1 < p < ∞. To prove this, writing fk = Λ−suk and Ψk(D)uk =
∑k

`=0 ψ`(D)uk,
the Littlewood-Paley estimates show that the left side of (A.1.15) is

(A.1.16) ≈
∥∥∥
{ ∞∑

`=0

∣∣ψ`(D)
∞∑

k=`

uk

∣∣2
}1/2∥∥∥

Lp
,

which by (A.1.14) is

(A.1.17) ≈
∥∥∥
{ ∞∑

`=0

4`s
∣∣ψ`(D)

∞∑

k=`

fk

∣∣2
}1/2∥∥∥

Lp
.

Thus, with wk = 2ksfk, we need to show that

(A.1.18)
∥∥∥
{ ∞∑

`=0

4`s
∣∣ψ`(D)

∞∑

k=`

2−kswk

∣∣2
}1/2∥∥∥

Lp
≤ Csp

∥∥∥
{ ∞∑

k=0

|wk|2
}1/2∥∥∥

Lp
;

in other words, we need so show continuity of

(A.1.19) Γ(D) : Lp(Rn, `2) −→ Lp(Rn, `2)

where

(A.1.20)
Γk`(ξ) = ψk(ξ)2−(`−k)s, ` ≥ k

0 , ` < k

It is straightforward to verify that

(A.1.21)

∑

k

|Dα
ξ Γk`(ξ)| ≤ C〈ξ〉−|α|, s ≥ 0,

∑

`

|Dα
ξ Γk`(ξ)| ≤ Cs〈ξ〉−|α|, s > 0,

so

(A.1.22)
∥∥Dα

ξ Γ(ξ)
∥∥
L(`2)

≤ Cs〈ξ〉−|α|, s > 0.

Hence the vector valued Fourier multiplier result, Proposition 0.11.F, yields (A.1.19),
and completes the proof of (A.1.15).
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There are a number of useful “Sobolev imbedding theorems.” We mention

(A.1.23) Hs,p(Rn) ⊂ Lnp/(n−sp)(Rn), s < n/p.

Also

(A.1.24) Hs,p(Rn) ⊂ L∞(Rn), s > n/p.

In fact, (A.1.24) can be sharpened and extended to

(A.1.25) Hs,p(Rn) ⊂ Cr
∗(Rn), r = s− n/p,

valid for all s ∈ R.

§A.2. Morrey spaces

Let p ∈ (1,∞) and define s ∈ (1− n, 1) by

(A.2.1) 1− s =
n

p
.

By definition, the Morrey space Mp(Rn) consists of f ∈ L1(Rn) such that

(A.2.2)
∫

BR

|f(x)| dx ≤ C Rn−1+s

for any ball BR of radius R ≤ 1 centered at any point y ∈ Rn. If Ω is a subset
of Rn, we say u ∈ Mp(Ω) if its extension by 0 outside Ω belongs to Mp(Rn). The
notation involving p arises from the fact that, for Ω bounded,

(A.2.3) Lp(Ω) ⊂ Mp(Ω),

as a consequence of Hölder’s inequality. The role of Morrey spaces depends on the
following result of Morrey.

Theorem A.2.A. If Ω is smooth and bounded, u ∈ H1,1(Ω), then

(A.2.4) ∇u ∈ Mp(Ω), p > n =⇒ u ∈ Cs(Ω)

where p and s are related by (A.2.1).

In light of (A.2.3), this result is a bit sharper than the Sobolev imbedding theo-
rem

(A.2.5) H1,p(Ω) ⊂ Cs(Ω) for s = 1− n

p
, p > n.

By taking an “even reflection” of u across ∂Ω, it suffices to prove (A.2.4) for Ω =
Rn, u having compact support. This can be done as a consequence of the following
results.
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Lemma A.2.B. Let p(λ) = e−λ2
, f ∈ L1

comp(Rn). Then

(A.2.6) f ∈ Mp(Rn) ⇐⇒ p(r
√
−∆)|f | ≤ C r−1+s, r ∈ (0, 1].

Proof. Exercise.

Proposition A.2.C. If g ∈ E ′(Rn), 0 < s < 1, then

(A.2.7) g ∈ Cs(Rn) ⇐⇒ ‖p(r
√
−∆)(

√
−∆ g)‖L∞ ≤ c r−1+s, r ∈ (0, 1].

Proof. This follows easily from the characterization (A.1.2) of Cs(Rn).

Corollary A.2.D. If f ∈ L1
comp(Rn), then

(A.2.8) f ∈ Mp(Rn), p > n =⇒ (−∆)−1/2f ∈ Cs.

Proof. p(r
√−∆)

(
(−∆)1/2(−∆)−1/2f

)
= p(r

√−∆)f, and |p(r
√−∆)f | ≤ p(r

√−∆)|f |.
Hence, if f ∈ Mp(Rn), the criterion (A.2.7) applies to g = (−∆)−1/2f.

Now, to prove Morrey’s Theorem, note that

(A.2.9)
∇u ∈ Mp(Rn) =⇒ ∇(−∆)−1/2u ∈ Cs

=⇒ u ∈ Cs.

It is useful to note that, given q ∈ (1,∞), f ∈ Lq
comp(Rn), s = 1− n/p ∈ (0, 1),

(A.2.10)
∫

BR

|f(x)|q dx ≤ C Rn−q+qs =⇒ f ∈ Mp(Rn).

Indeed, this follows easily from Hölder’s inequality. We denote by Mp
q (Rn) the

space of functions satisfying (A.2.10).

§A.3. BMO

Given f ∈ L1
loc(Rn), and a cube Q with sides parallel to the coordinate axes, we

set

(A.3.1) fQ = |Q|−1

∫

Q

f(x) dx, |Q| = vol(Q),
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and say f ∈ BMO if and only if

(A.3.2) sup
Q
|Q|−1

∫

Q

|f(x)− fQ| dx = ‖f‖BMO

is finite. A constant has BMO-seminorm 0; (A.3.2) defines a norm on BMO
modulo constants. Clearly L∞ ⊂ BMO. It was shown by John and Nirenberg [JN]
that, for a cube Q such as above,

(A.3.3) meas {x ∈ Q : |f(x)− fQ| > λ} ≤ C e−cλ/‖f‖BMO .

Also, for any p < ∞,

(A.3.4) |Q|−1

∫

Q

|f(x)− fQ|p dx ≤ Cp‖f‖p
BMO.

Fefferman and Stein [FS] established many important results on BMO. We men-
tion a few here. Define

(A.3.5) f#(x) = sup
{
|Q|−1

∫

Q

|f(x)− fQ| dx : Q 3 x
}

,

the sup being over all cubes containing x. Then, for p ∈ (1,∞),

(A.3.6) ‖f#‖Lp ≤ Cp‖f‖Lp .

Of course, f# ∈ L∞ if and only if f ∈ BMO. Another very important result of
[FS] is that f belongs to BMO if and only if it can be written in the form

(A.3.7) f = g0 +
n∑

j=1

Rjgj , gj ∈ L∞(Rn),

where Rj are the Riesz transforms; (Rjg)ˆ(ξ) = (ξj/|ξ|)ĝ(ξ).
Another important result in [FS] involves a connection between the space BMO(Rn)

and Carleson measures on Rn+1
+ . If Q is a cube in Rn, set

(A.3.8) T (Q) = {(x, y) ∈ Rn+1
+ : x ∈ Q, 0 < y ≤ `(Q)}

where `(Q) is the length of a side of Q. Then a positive Borel measure on Rn+1
+ is

called a Carleson measure provided that, for all cubes Q ⊂ Rn,

(A.3.9) µ(T (Q)) ≤ C|Q|.
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The Carleson norm is

(A.3.10) ‖µ‖C = sup
Q
|Q|−1µ(T (Q)).

Let ψ ∈ S(Rn), ψ(0) = 0. Given f ∈ S ′(Rn), y > 0, set u(y, x) = ψ(yD)f(x). It
is shown in [FS] that, if f ∈ BMO, then |u(x, y)|2y−1 dx dy is a Carleson measure,
and

(A.3.11)
∥∥|u|2y−1 dx dy

∥∥
C ≤ C‖f‖2BMO.

We sketch a proof of this result, which will be used in Appendix D.
If Q ⊂ Rn is a cube, let 2Q denote the concentric cube with twice the diameter

of Q. Since ψ(yD) annihilates constants, we can alter f so that
∫

2Q

f(x)dx = 0.

Write f = f0 + f1 where f0 is the restriction of f to 2Q. Then

(A.3.12)

∫

T (Q)

|ψ(yD)f0(x)|2y−1 dx dy ≤
∫

Rn+1
+

|ψ(yD)f0|2y−1 dx dy

≤ C‖f0‖2L2

since one has the simple general estimate

(A.3.13)
∫ ∞

0

‖ψ(yD)v‖2L2
dy

y
≤ C‖v‖2L2 .

Now ‖f0‖2L2 is equal to

(A.3.14)
∫

2Q

|f(x)− f2Q|2 dx ≤ C‖f‖2BMO|Q|

by (A.3.4). On the other hand, using (A.3.3), it is not hard to show that

(A.3.15) |ψ(yD)f1(x)| ≤ C‖f‖BMO
y

`(Q)
, x ∈ Q,

which together with (A.3.12), (A.3.14) yields the desired estimate (A.3.11) on the
integral of |ψ(yD)f(x)|2 over T (Q).

Finally we mention complements to (A.1.24) and (A.2.4), namely

(A.3.16) ∇u ∈ Mn(Rn) =⇒ u ∈ BMO,

and

(A.3.17) Hn/p,p(Rn) ⊂ BMO, 1 < p < ∞.
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B: Sup norm estimates

§B.1. L∞ estimates on pseudodifferential operators

As is well known, an operator P ∈ OPS0
1,0 need not be bounded on L∞. We

will establish a number of results on ‖Pu‖L∞ , starting with the following, which is
essentially given in the appendix to [BKM].

Proposition B.1.A. If P ∈ OPS0
1,0, s > n/2, then

(B.1.1) ‖Pu‖L∞ ≤ C‖u‖L∞ ·
[
1 + log

‖u‖Hs

‖u‖L∞

]
.

We suppose the norms are arranged to satisfy ‖u‖L∞ ≤ ‖u‖Hs . Another way to
write the result is in the form

(B.1.2) ‖Pu‖L∞ ≤ Cεδ‖u‖Hs + C
(
log

1
ε

)
‖u‖L∞ ,

for 0 < ε ≤ 1, with C independent of ε. Then, letting εδ = ‖u‖L∞/‖u‖Hs yields
(B.1.1). The estimate (B.1.2) is valid when s > n/2 + δ. This can be proved by
writing P = P1 + P2, with P1 = PΨ1(εD), Ψ1 = ψ0 as in (1.3.1), and showing that

(B.1.3) ‖P1u‖L∞ ≤ C
(
log

1
ε

)
‖u‖L∞ , ‖P2u‖Hs ≤ Cεδ‖u‖Hs .

Rather than include the details on (B.1.3), we will derive (B.1.2) from an estimate
relating the L∞, Hs, and C0

∗ norms, which has further uses.
It suffices to prove (B.1.2) with P replaced by P +cI, where c is greater than the

L2-operator norm of P ; hence we can assume P ∈ OPS0
1,0 is elliptic and invertible,

with inverse Q ∈ OPS0
1,0. Then (B.1.2) is equivalent to

‖u‖L∞ ≤ Cεδ‖u‖Hs + C
(
log

1
ε

)
‖Qu‖L∞ .

Now since Q : C0
∗ → C0

∗ , with inverse P, and the C0
∗ -norm is weaker than the

L∞-norm, this estimate is a consequence of the following result.

Proposition B.1.B. If s > n/2 + δ, then

(B.1.4) ‖u‖L∞ ≤ Cεδ‖u‖Hs + C
(
log

1
ε

)
‖u‖C0∗ .

Proof. Recall from (A.1.2) that ‖u‖C0∗ = supj≥0 ‖ψj(D)u‖L∞ . Now, with Ψj =∑
`≤j ψ`, write u = Ψj(D)u + (1−Ψj(D))u; let ε = 2−j . Clearly

(B.1.5) ‖Ψj(D)u‖L∞ ≤ j‖u‖C0∗ .
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Meanwhile, using the Sobolev imbedding theorem, since n/2 < s− δ,

(B.1.6)
‖(1−Ψj(D))u‖L∞ ≤ C‖(1−Ψj(D))u‖Hs−δ

≤ C 2−jδ‖(1−Ψj(D))u‖Hs ,

the last estimate holding since

(B.1.7) {2jδΛ−δ(1−Ψj(D)) : j ∈ Z+} is bounded in OPS0
1,0.

The same reasoning shows that, if 1 < p < ∞,

(B.1.8) ‖u‖L∞ ≤ Cεδ‖u‖Hs,p + C
(
log

1
ε

)
‖u‖C0∗ if s >

n

p
+ δ.

Note also that the arguments involving P in the proof of Proposition B.1.A work
for P ∈ OPS0

1,δ, 0 ≤ δ < 1. Hence Proposition B.1.A can be generalized and
sharpened to:

Proposition B.1.C. If P ∈ OPS0
1,δ, 0 ≤ δ < 1, and if 1 < p < ∞, s > n/p, then

(B.1.9) ‖Pu‖L∞ ≤ C‖u‖C0∗ ·
[
1 + log

‖u‖Hs,p

‖u‖C0∗

]
.

The estimates (B.1.8)–(B.1.9) complement estimates of Brezis-Gallouet-Wainger
[BrG], [BrW], which can be stated in the form

(B.1.10) ‖u‖L∞ ≤ Cεδ‖u‖Hs,p + C
(
log

1
ε

)1−1/q

‖u‖Hn/q,q

given

(B.1.11) s >
n

p
+ δ, q ∈ [2,∞),

and a similar estimate for q ∈ (1, 2], using
(
log 1/ε

)1/q
. This has a proof similar to

that of (B.1.4) and (B.1.8). One uses instead of (B.1.5) the estimate

(B.1.12) ‖Ψj(D)u‖L∞ ≤ Cj1−1/q‖Λn/qu‖Lq ,

in case 2 ≤ q < ∞, and the analogous estimate for 1 < q ≤ 2.
The estimate (B.1.10) for p = q = 2 was used in [BrG] to produce a global

existence result for a “nonlinear Schrödinger equation.” Its role was to provide an
energy estimate for which Gronwall’s inequality would provide global bounds, in a
fashion similar to [BKM] and to (5.3.18).
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§B.2. The spaces Cr
# = Br

∞,1

As in (4.1.23)–(4.1.25), we set

(B.2.1) Cr
# = Br

∞,1 =
{

u ∈ S ′(Rn) :
∑

j≥0

2jr‖ψj(D)u‖L∞ < ∞
}

.

It is elementary that

(B.2.2) B0
∞,1 ⊂ C0 ⊂ L∞.

Techniques similar to those in §2.1 yield

(B.2.3) P : Bs+m
∞,1 −→ Bs

∞,1

whenever P ∈ OPBSm
1,1, s ∈ R, and whenever 0 < s < r and P ∈ OPCrSm

1,1.
Details can be found in Chapter I, §12 of [[T2]]. Our purpose here is to establish a
result including (5.3.17), which is the r = 1 case of the estimate

(B.2.4) ‖u‖Br
∞,1

≤ C‖u‖Cr∗

(
1 + log

‖u‖Hσ+r

‖u‖Cr∗

)
, σ >

n

2
.

We will establish this and some related estimates. First note that by (B.2.3) and
parallel results for Cr

∗ and Hσ+r, it suffices to establish the case r = 0 of (B.2.4).
In turn, given Hσ ⊂ Cs for σ = n/2 + s, s ∈ (0, 1), it suffices to show that

(B.2.5) ‖u‖B0
∞,1

≤ C‖u‖C0∗

(
1 + log

‖u‖Cs

‖u‖C0∗

)
, s > 0.

This in turn is a consequence of:

Proposition B.2.A. If s > 0, then

(B.2.6) ‖u‖B0
∞,1

≤ Cεs‖u‖Cs + C
(
log

1
ε

)
‖u‖C0∗ .

Proof. With Ψj(D) as in the proof of Proposition B.1.B, we have

(B.2.7)
‖(I −Ψj(D))u‖B0

∞,1
≤ C

∑

`≥j−2

‖ψ`(D)u‖L∞

≤ C 2−sj‖u‖Cs ,

and

(B.2.8)
‖Ψj(D)u‖B0

∞,1
≤ C

∑

`≤j+2

‖ψ`(D)u‖L∞

≤ C(j + 2)‖u‖C0∗ .

Taking j such that 2−j ≈ ε gives (B.2.6).
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C: DeGiorgi-Nash-Moser estimates

In this appendix we establish regularity for a class of PDE Lu = f, for second
order operators of the form (using the summation convention)

(C.0.1) Lu = b−1∂ja
jkb ∂ku

where (ajk(x)) is a positive definite bounded matrix and 0 < b0 ≤ b(x) ≤ b1, b
scalar, and ajk, b are merely measurable. We will present Moser’s derivation of
interior bounds and Hölder continuity of solutions to Lu = 0, from [Mo2], in §C.1-
§3.2, and then Morrey’s analysis of the inhomogeneous equation Lu = f and proof
of boundary regularity, in §C.3–§C.4, from [Mor]. Other proofs can be found in
[GT] and [KS].

We make a few preliminary remarks on (C.0.1). We will use ajk to define an
inner product of vectors:

(C.0.2) 〈V,W 〉 = Vja
jkWk,

and use b dx = dV as the volume element. In case gjk(x) is a metric tensor, one
can take ajk = gjk and b = g1/2; then (C.0.1) defines the Laplace operator. For
compactly supported w,

(C.0.3) (Lu,w) = −
∫
〈∇u,∇w〉 dV.

The behavior of L on a nonlinear function of u, v = f(u), plays an important
role in estimates; we have

(C.0.4) v = f(u) =⇒ Lv = f ′(u)Lu + f ′′(u)|∇u|2,

where we set |V |2 = 〈V, V 〉. Also, taking w = ψ2u in (C.0.3) gives the following
important identity. If Lu = g on an open set Ω and ψ ∈ C1

0 (Ω), then

(C.0.5)
∫

ψ2|∇u|2 dV = −2
∫
〈ψ∇u, u∇ψ〉 dV −

∫
ψ2gu dV.

Compare (2.2.67). Applying Cauchy’s inequality to the first term on the right yields
the useful estimate

(C.0.6)
1
2

∫
ψ2|∇u|2 dV ≤ 2

∫
|u|2|∇ψ|2 dV −

∫
ψ2gu dV.

Given these preliminaries, we are ready to present Moser’s analysis.
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§C.1. Moser iteration and L∞ estimates

Consider a nested sequence of open sets with smooth boundary

(C.1.1) Ω0 ⊃ · · · ⊃ Ωj ⊃ Ωj+1 ⊃ · · ·

with intersection O. We will make the geometrical hypothesis that the distance of
any point on ∂Ωj+1 to ∂Ωj is ∼ Cj−2. We want to estimate the sup norm of a
function v on O in terms of its L2-norm on Ω0, assuming

(C.1.2) v > 0 is a subsolution of L, i.e., Lv ≥ 0.

In view of (C.0.4), an example is

(C.1.3) v = (1 + u2)1/2, Lu = 0.

We will obtain such an estimate in terms of the Sobolev constants γ(Ωj) and Cj ,
defined below. Ingredients for the analysis include the following two lemmas, the
first being a standard Sobolev inequality.

Lemma C.1.A. For v ∈ H1(Ωj), κ ≤ n/(n− 2),

(C.1.4) ‖vκ‖2L2(Ωj)
≤ γ(Ωj)

[‖∇v‖2κ
L2(Ωj)

+ ‖v‖2κ
L2(Ωj)

]
.

The next lemma follows from (C.0.6), if we take ψ = 1 on Ωj+1, tending roughly
linearly to 0 on ∂Ωj .

Lemma C.1.B. If v > 0 is a subsolution of L, then, with Cj = C(Ωj , Ωj+1),

(C.1.5) ‖∇v‖L2(Ωj+1) ≤ Cj‖v‖L2(Ωj).

Under the geometrical conditions indicated above on Ωj , we can assume

(C.1.6) γ(Ωj) ≤ γ0, Cj ≤ C(j2 + 1).

Putting together the two lemmas, we see that, when v satisfies (C.1.2),

(C.1.7)

‖vκ‖2L2(Ωj+1)
≤ γ(Ωj+1)

[
C2κ

j ‖v‖2κ
L2(Ωj)

+ ‖v‖2κ
L2(Ωj+1)

]

≤ γ0(C2κ
j + 1)‖v‖2κ

L2(Ωj)
.

Fix κ ∈ (1, n/(n− 2)]. Now, if v satisfies (C.1.2), so does

(C.1.8) vj = vκj

,
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by (C.0.4). Note that vj+1 = vκ
j . Now let

(C.1.9) Nj = ‖v‖L2κj
(Ωj)

= ‖vj‖1/κj

L2(Ωj)
,

so

(C.1.10) ‖v‖L∞(O) = lim sup
j→∞

Nj .

If we apply (C.1.7) to vj , we have

(C.1.11) ‖vj+1‖2L2(Ωj+1)
≤ γ0(C2κ

j + 1)‖vj‖2κ
L2(Ωj)

.

Note that the left side is equal to N2κj+1

j+1 and the norm on the right is equal to
N2κj+1

j . Thus (C.1.11) is equivalent to

(C.1.12) N2
j+1 ≤

[
γ0(C2κ

j + 1)
]1/κj+1

N2
j .

By (C.1.6), C2κ
j + 1 ≤ C0(j4κ + 1), so

(C.1.13)

lim sup
j→∞

N2
j ≤

∞∏

j=0

[
γ0C0(j4κ + 1)

]1/κj+1

N2
0

≤ (γ0C0)1/(κ−1)
[
exp

∞∑

j=0

κ−j−1 log(j4κ + 1)
]
N2

0

≤ K2N2
0 ,

for finite K. This gives Moser’s sup norm estimate:

Theorem C.1.C. If v > 0 is a subsolution of L, then

(C.1.14) ‖v‖L∞(O) ≤ K‖v‖L2(Ω0)

where K = K(γ0, C0, n).

§C.2. Hölder continuity

Hölder continuity of a solution to Lu = 0 is obtained as a consequence of the
following Harnack inequality. Let Bρ = {x : |x| < ρ}.
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Proposition C.2.A. Let u ≥ 0 be a solution of Lu = 0 in B2r. Suppose

(C.2.1) meas {x ∈ Br : u(x) > 1} > c−1
0 rn.

Then there is a constant c > 0 such that

(C.2.2) u(x) > c−1 in Br/2.

This will be established by examining v = f(u) with

(C.2.3) f(u) = max{− log(u + ε), 0},

where ε is chosen in (0, 1). Note that f is convex, so v is a subsolution. Our first
goal will be to estimate the L2(Br)-norm of ∇v. Once this is done, Theorem C.1.C
will be applied to estimate v from above (hence u from below) on Br/2.

We begin with a variant of (C.0.5), obtained by taking w = ψ2f ′(u) in (C.0.3).
The identity is

(C.2.4)
∫

ψ2f ′′|∇u|2 dV + 2
∫
〈ψf ′∇u,∇ψ〉 dV = −(Lu, ψ2f ′).

This vanishes if Lu = 0. Note that f ′∇u = ∇v and f ′2|∇u|2 = |∇v|2, if v = f(u).
Applying Cauchy’s inequality to the second integral, we obtain

(C.2.5)
∫

ψ2
[ f ′′

f ′2
− δ2

]
|∇v|2 dV ≤ 1

δ2

∫
|∇ψ|2 dV.

Now the function f(u) in (C.2.3) has the property that

(C.2.6) h = −e−f is a convex function;

indeed, in this case h(u) = max {−(u + ε),−1}. Thus

(C.2.7) f ′′ − f ′2 = efh′′ ≥ 0.

Hence (C.2.5) yields (with δ2 = 1/2)

(C.2.8)
∫

ψ2|∇v|2 dV ≤ 4
∫
|∇ψ|2 dV,

after one overcomes the minor problem that f ′ has a jump discontinuity. If we pick
ψ to = 1 on Br and go linearly to 0 on ∂B2r, we obtain the estimate

(C.2.9)
∫

Br

|∇v|2 dV ≤ Crn−2
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for v = f(u), given that Lu = 0 and that (C.2.6) holds.
Now the hypothesis (C.2.1) implies that v vanishes on a subset of Br of measure

> c−1
0 rn. Hence there is an elementary estimate of the form

(C.2.10) r−n

∫

Br

v2 dV ≤ Cr2−n

∫

Br

|∇v|2 dV,

which is bounded from above by (C.2.9). Now Theorem C.1.C, together with a
simple scaling argument, gives

(C.2.11) v(x)2 ≤ Cr−n

∫

Br

v2 dV ≤ C2
1 , x ∈ Br/2,

so

(C.2.12) u + ε ≥ e−C1 for x ∈ Br/2,

for all ε ∈ (0, 1). Taking ε → 0, we have the proof of Proposition C.2.A.
We remark that Moser obtained a stronger Harnack inequality in [Mo3], by a

more elaborate argument.
To deduce Hölder continuity of a solution to Lu = 0 given Proposition C.2.A is

fairly simple. Following [Mo2], who followed DeGiorgi, we have from §C.1 a bound

(C.2.13) |u(x)| ≤ K

on any compact subset O of Ω0, given u ∈ H1(Ω0), Lu = 0. Fix x0 ∈ O, such that
Bρ(x0) ⊂ O, and, for r ≤ ρ, let

(C.2.14) ω(r) = sup
Br

u(x)− inf
Br

u(x),

where Br = Br(x0). Clearly ω(ρ) ≤ 2K. Adding a constant to u, we can assume

(C.2.15) sup
Bρ

u(x) = − inf
Bρ

u(x) =
1
2
ω(ρ) = M.

Then u+ = 1 + u/M and u− = 1− u/M are also annihilated by L. They are both
≥ 0 and at least one of them satisfies the hypothesis (C.2.1), with r = ρ/2. If for
example u+ does, then Proposition C.2.A implies

(C.2.16) u+(x) > c−1 in Bρ/4,

so

(C.2.17) −M
(
1− 1

c

)
≤ u(x) ≤ M in Bρ/4.

Hence

(C.2.18) ω(ρ/4) ≤
(
1− 1

2c

)
ω(ρ),

which gives Hölder continuity:

(C.2.19) ω(r) ≤ ω(ρ)
( r

ρ

)α

, α = − log4

(
1− 1

2c

)
.

We state the result formally.
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Theorem C.2.B. If u ∈ H1(Ω0) solves Lu = 0 then for every compact O in Ω0,
there is an estimate

(C.2.20) ‖u‖Cα(O) ≤ C‖u‖L2(Ω0).

In fact, we can show that ∇u|O belongs to the Morrey space Mp
2 , with p =

n/(1 − r), which is stronger than (C.2.20), by Theorem A.2.A. To see this, if BR

is a ball of radius R centered at y, B2R ⊂ Ω, then let c = u(y) and replace u by
u(x)− c in (C.0.6), to get

(C.2.21)
1
2

∫
ψ2|∇u|2 dV ≤ 2

∫
|u(x)− c|2|∇ψ|2 dV.

Taking ψ = 1 on BR, going linearly to 0 on ∂B2R, gives

(C.2.22)
∫

BR

|∇u|2 dV ≤ C Rn−2+2r,

as asserted. Compare (8.3.31).

§C.3. Inhomogeneous equations

We take L as in (C.0.1), with ajk measurable, satisfying

(C.3.1) 0 < λ0|ξ|2 ≤
∑

ajk(x)ξjξk ≤ λ1|ξ|2

while for simplicity we assume b, b−1 ∈ Lip(Ω). We consider a PDE

(C.3.2) Lu = f.

It is clear that, for u ∈ H1
0 (Ω),

(C.3.3) (Lu, u) ≥ C
∑

‖∂ju‖2L2 ,

so we have an isomorphism

(C.3.4) L : H1
0 (Ω) ≈−→ H−1(Ω).

Thus, for any f ∈ H−1(Ω), (C.3.2) has a unique solution u ∈ H1
0 (Ω). One can write

such f as

(C.3.5) f =
∑

∂jgj , gj ∈ L2(Ω).
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The solution u ∈ H1
0 (Ω) then satisfies

(C.3.6) ‖u‖2H1(Ω) ≤ C
∑

‖gj‖2L2 .

Here C depends on Ω, λ0, λ1, and b ∈ Lip(Ω).
One can also consider the boundary problem

(C.3.7) Lv = 0 on Ω, v = w on ∂Ω,

given w ∈ H1(Ω), where the latter condition means v−w ∈ H1
0 (Ω). Indeed, setting

v = u + w, the equation for u is Lu = −Lw, u ∈ H1
0 (Ω). Thus (C.3.7) is uniquely

solvable, with an estimate

(C.3.8) ‖∇v‖L2(Ω) ≤ C‖∇w‖L2(Ω)

where C has a dependence as in (C.3.6).
The main goal of this section is to give Morrey’s proof of the following local

regularity result.

Theorem C.3.A. Suppose u ∈ H1(Ω) solves (C.3.2), with f =
∑

∂jgj ,
gj ∈ Mq

2 (Ω), q > n, i.e.,

(C.3.9)
∫

Br

|gj |2 dV ≤ K2
1

( r

R

)n−2+2µ

, 0 < µ < 1.

Then, for any O ⊂⊂ Ω, u ∈ Cµ(O). In fact

(C.3.10)
∫

Br

|∇u|2 dV ≤ K2
2

( r

R

)n−2+2µ

.

Morrey established this by using (C.3.6), (C.3.8), and an elegant dilation argu-
ment, in concert with the results of §C.2. For this, suppose BR = BR(y) ⊂ Ω for
each y ∈ O. We can write u = U + H on BR where

(C.3.11)
LU =

∑
∂jgj on BR, U ∈ H1

0 (BR),

LH = 0 on BR, H − u ∈ H1
0 (BR),

and we have

(C.3.12) ‖∇U‖L2(BR) ≤ C1‖g‖L2(BR), ‖∇H‖L2(BR) ≤ C2‖∇u‖L2(BR),

where ‖g‖2L2 =
∑ ‖gj‖2L2 . Let us set

(C.3.13) ‖F‖r = ‖F‖L2(Br).
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Also let κ(gj , R) be the best constant K1 for which (C.3.9) is valid for 0 < r ≤ R.
If gτ (x) = g(τx), note that

κ(gτ , τ−1S) = τn/2κ(g, S).

Now define

(C.3.14)
ϕ(r) = sup

{‖∇U‖rS : U ∈ H1
0 (BS), LU =

∑
∂jgj , on BS ,

κ(gj , S) ≤ 1, 0 < S ≤ R
}
.

Let us denote by ϕS(r) the sup in (C.3.14) with S fixed, in (0, R]. Then ϕS(r)
coincides with ϕR(r), with L replaced by the dilated operator, coming from the
dilation taking BS to BR. More precisely, the dilated operator is

LS = bS ∂j ajk
S b−1

S ∂k,

with
ajk

S (x) = ajk(R−1Sx), bS(x) = b(R−1Sx),

assuming 0 has been arranged to be the center of BR. To see this, note that, if
τ = S/R, Uτ (x) = τ−1U(τx), and gjτ (x) = gj(τx), then

LU =
∑

∂jgj ⇐⇒ LSUτ =
∑

∂jgjτ .

Also, ∇Uτ (x) = (∇U)(τx), so ‖∇Uτ‖S/τ = τn/2‖∇U‖S .

Now for this family LS , one has a uniform bound on C in (C.3.6); hence ϕ(r)
is finite for r ∈ (0, 1]. We also note that the bounds in (C.2.20) and (C.2.22) are
uniformly valid for this family of operators. Theorem C.3.A will be proved when
we show that

(C.3.15) ϕ(r) ≤ A rn/2−1+µ.

In fact, this will give the estimate (C.3.10) with u replaced by U ; meanwhile such an
estimate with u replaced by H is a consequence of (C.2.22). Let H satisfy (C.2.22)
with r = µ0. We take µ < µ0.

Pick S ∈ (0, R] and pick gj satisfying (C.3.9), with R replaced by S and K1 by
K. Write the U of (C.3.11) as U = US + HS on BS , where US ∈ H1

0 (BS), LUS =
LU =

∑
∂jgj on BS . Clearly (C.3.9) implies

(C.3.16)
∫

Br

|gj |2 dV ≤ K2
( S

R

)n−2+2µ( r

S

)n−2+2µ

.
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Thus, as in (C.3.12) (and recalling the definition of ϕ), we have

‖∇US‖S ≤ A1K
( S

R

)n/2−1+µ

,

(C.3.17)

‖∇HS‖S ≤ A2‖∇U‖S ≤ A2Kϕ
( S

R

)
.

Now, suppose 0 < r < S < R. Then, applying (C.2.22) to HS , we have

(C.3.18)
‖∇U‖r ≤ ‖∇US‖r + ‖∇HS‖r

≤ K
( S

R

)n/2−1+µ

ϕ
( r

S

)
+ A3Kϕ

( S

R

)( r

S

)n/2−1+µ0

.

Therefore, setting s = r/R, t = S/R, we have the inequality

(C.3.19) ϕ(s) ≤ tn/2−1+µϕ
(s

t

)
+ A3ϕ(t)

(s

t

)n/2−1+µ0

,

valid for 0 < s < t ≤ 1. Since it is clear that ϕ(r) is monotone and finite on (0, 1],
it is an elementary exercise to deduce from (C.3.19) that ϕ(r) satisfies an estimate
of the form (C.3.15), as long as µ < µ0. This proves Theorem C.3.A.

§C.4. Boundary regularity

Now that we have interior regularity estimates for the inhomogeneous problem,
we will be able to use a few simple tricks to establish regularity up to the boundary
for solutions to the Dirichlet problem

(C.4.1) Lu =
∑

∂jgj , u = f on ∂Ω,

where L has the form (C.0.1), Ω is compact with smooth boundary, f ∈ Lip(∂Ω), gj ∈
Lq(Ω), q > n. First, extend f to f ∈ Lip(Ω). Then u = v + f where v solves

(C.4.2) Lv =
∑

∂jhj , v = 0 on ∂Ω,

where
(C.4.3) ∂jhj = ∂jgj − b−1∂ja

jkb ∂kf.

We will assume b ∈ Lip(Ω); then hj can be chosen in Lq also.
The class of equations (C.4.2) is invariant under smooth changes of variables

(indeed, invariant under Lipschitz homeomorphisms with Lipschitz inverses, having
the further property of preserving volume up to a factor in Lip(Ω)). Thus make a
change of variables to flatten out the boundary (locally), so we consider a solution
v ∈ H1 to (C.4.2) in xn > 0, |x| ≤ R. We can even arrange that b = 1. Now
extend v to negative xn, to be odd under the reflection xn 7→ −xn. Also extend
ajk(x) to be even when j, k < n or j = k = m, and odd when j or k = n (but not
both). Extend hj to be odd for j < n and even for j = n. With these extensions,
we continue to have (C.4.2) holding, this time in the ball |x| ≤ R. Thus interior
regularity applies to this extension of v, yielding Hölder continuity. The following
is hence proved.
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Theorem C.4.A. For L of the form (C.0.1), elliptic, with b ∈ Lip(Ω) and ajk ∈
L∞(Ω), a solution u ∈ H1(Ω) to (C.4.1), with gj ∈ Lq(Ω), q > n, f ∈ Lip(∂Ω),
has a Hölder estimate

(C.4.4) ‖u‖Cµ(Ω) ≤ C
[∑

‖gj‖Lq(Ω) + ‖f‖Lip(∂Ω)

]
.
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D: Paraproduct estimates

In §3.5 a paraproduct estimate of Coifman and Meyer, stated as Theorem 3.5.A,
played an important role. We prove some related results here. For the sake of
brevity, we establish a result which is a bit simpler than Theorem 3.5.A, but which
nevertheless suffices for all the applications in §3.5. To begin, let ϕ,ψ, ρ ∈ S(Rn),
and set

(D.1.1) Pt = ϕ(tD), Qt = ψ(tD), Rt = ρ(tD).

Proposition D.1.A. If ϕ,ψ, ρ ∈ S(Rn) and ψ(0) = ρ(0) = 0, then

(D.1.2) τ(a, f) =
∫ ∞

0

Rt

(
(Qta) · (Ptf)

)
t−1 dt

satisfies an estimate

(D.1.3) ‖τ(a, f)‖L2 ≤ C‖a‖BMO‖f‖L2 .

Theorem 3.5.A dealt with a variant of (D.1.2), without the Rt.
To begin the proof of Proposition D.1.A, pick g ∈ L2(Rn) and write

(D.1.4)

(
τ(a, f), g

)

=
∫ ∞

0

∫
(R∗t g)(Qta)(Ptf) t−1 dx dt

≤
(∫ ∞

0

∫
|R∗t g(x)|2t−1 dx dt

)1/2

·
(∫ ∞

0

∫
|Qta|2|Ptf |2t−1 dx dt

)1/2

.

Given that ρ(0) = 0, it is easy to see that

(D.1.5)
∫ ∞

0

‖R∗t g‖2L2 t−1 dt ≤ C‖g‖2L2

so we bound the square of (D.1.4) by

(D.1.6) C‖g‖2L2

∫∫
|Ptf(x)|2 dµ(t, x).

where

(D.1.7) dµ(t, x) = |Qta(x)|2t−1 dx dt.

Now, if a ∈ BMO(Rn), µ is a Carleson measure, i.e., for any cube Q ⊂ Rn, of
length `(Q), if we set T (Q) = {(t, x) : x ∈ Q, 0 < t ≤ `(Q)}, then

(D.1.8) µ(T (Q)) ≤ K vol(Q).

A proof of this is sketched in §A.3, where it is stated as (A.3.11). The best constant
K = ‖µ‖C in (D.1.8) satisfies

(D.1.9) ‖µ‖C ≤ C‖a‖2BMO.

To proceed, we have the following result of Carleson.
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Lemma D.1.B. If µ is a Carleson measure on Rn+1
+ , then

(D.1.10)
∫∫

|Ptf(x)|2 dµ(x, t) ≤ C‖µ‖C
∫

Rn

|Mf(x)|2 dx,

where Mf is the Hardy-Littlewood maximal function.

The proof of the Lemma is essentially elementary. Using a Vitali covering argu-
ment one shows that, for all λ > 0,

(D.1.11) µ{(x, t) : |Ptf(x)| > λ} ≤ C ′ meas
{

x ∈ Rn : Mf(x) >
λ

C

}
.

It is classical that ‖Mf‖2L2 ≤ C‖f‖2L2 , so with (D.1.10) in concert with (D.1.6),
one has a bound

(D.1.12) |(τ(a, f), g)| ≤ C‖a‖BMO‖f‖L2‖g‖L2 ,

establishing (D.1.3).
The following result will suffice to establish the estimate (3.5.18) on R(a, f).

Proposition D.1.C. Let ϕ,ψ ∈ C∞0 (Rn) be supported on 0 < K ≤ |ξ| ≤ L. Then,
with Pt and Qt as in (D.1.1),

(D.1.13) τ(a, f) =
∫ ∞

0

(Qta) · (Ptf) t−1 dt

satisfies the estimate (D.1.3).

Proof. Pick ρ ∈ C∞0 (Rn), equal to 1 on |ξ| ≤ 2L. With Rt = ρ(tD), we have

(D.1.14) (Qta) · (Ptf) = Rt

(
(Qta) · (Ptf)

)
.

Thus (D.1.13) actually has the form (D.1.2). However, here we do not have ρ(0) = 0.
But, looking at the first integral expression in (D.1.4) for (τ(a, f), g), we see that
we can interchange the roles of f and g, and then the arguments leading to the
estimate (D.1.12) go through.

Similarly, the following result will suffice to establish the estimate (3.5.19) on
Tfa.

Proposition D.1.D. Let ϕ ∈ C∞0 (Rn) be supported in |ξ| < K. Suppose ψ ∈
C∞0 (Rn) vanishes for |ξ| ≤ K. Then again (D.1.13) satisfies the estimate (D.1.3).

Proof. Under these hypotheses, there exists ρ ∈ C∞0 (Rn), such that ρ(0) = 0 and
such that (D.1.14) holds, so again (D.1.13) actually has the form (D.1.3). This time
all the hypotheses of Proposition D.1.A are satisfied, so the desired estimate holds.

We can put together Propositions D.1.C and D.1.D to get the following common
extension:
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Proposition D.1.E. Take ϕ, ψ ∈ C∞0 (Rn), and assume ψ(ξ) = 0 on a neighbor-
hood of the origin. Then (D.1.13) satisfies the estimate (D.1.3).

Proof. For some K, L ∈ (0,∞), we can write

(D.1.15) ψ(ξ) = 0 on {ξ : |ξ| ≤ K},

and

(D.1.16) ϕ = ϕ1 + ϕ2, supp ϕ1 ⊂ {ξ : |ξ| < K}, suppϕ2 ⊂
{K

2
≤ |ξ| ≤ L

}
.

Apply Proposition D.1.C with ϕ replaced by ϕ2 and apply Proposition D.1.D with
ϕ replaced by ϕ1, to obtain the result.

Remark. Proposition D.1.C extends without effort to the case

(D.1.17) ϕ,ψ ∈ C∞0 (Rn), ϕ(0) = ψ(0) = 0,

but is is not clear how this could lead to an easy improvement of Proposition D.1.E.

Further arguments leading to the full proof of Theorem 3.5.A can be found in
Chapter 6 of [CM].
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Index of notation

We use pseudodifferential operators, associated to symbols via (1.1.12), for sym-
bols p(x, ξ) belonging to a number of symbol spaces. We list these symbol spaces
here and record where their definitions can be found. We also use a number of
linear spaces of functions and distributions, similarly listed below.

We mention another notational usage. We use ∂mu to stand for the collection
of ∂αu = ∂αu/∂xα, for |α| = m, and we use Dmu to stand for the collection ∂αu
for |α| ≤ m. Another common notation for the latter collection is Jmu, called the
m-jet of u, but I could not bring myself to join the jet set.

symbol where defined
Sm

ρ,δ (0.1.4)
XSm

1,0 (1.1.2)
XSm

cl (1.1.11)
Cs
∗S

m
1,δ (1.3.16)-(1.3.17)

CsSm
1,δ (1.3.18)

ArSm
1,δ (3.1.28)

Ar
0S

m
1,δ (3.1.31)

rSm
1,δ (3.1.32)

S̃m
1,1 (3.3.34)
BrSm

1,1 (3.4.1)
Σm

r (3.4.32)

space where defined
Cs (1.1.6), (A.1.1)
Cs
∗ (1.1.10), (A.1.2)

Hs,p (1.1.7), (A.1.7)
Hs,p

mcl (3.1.51)
BMO (3.6.30), (A.3.2)
C0

# (4.1.18), (B.2.1)
Cr

# (4.1.21)
B0
∞,1 (4.1.23)

Mp (A.2.2)
Mp

q (A.2.10)
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We also include references to some miscellaneous notation of frequent use in the
paper.

notation where defined
〈ξ〉 (0.1.4)
p#(x, ξ) (1.3.2)
pb(x, ξ) (1.3.5)
Jε (1.3.3), (5.1.4)
M(u;x,D) (3.1.15), (3.3.6)
π(a, f) (3.2.0), (3.2.15)
Taf (3.2.4)
R(f, g) (3.5.3)
τ(a, f) (3.5.15)
TR

g f (3.6.16)
Λs (3.6.19)
{c, a}(x, ξ) (6.1.21)
Ha (6.1.21)
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[H2] L. Hörmander, Pseudo-differential operators of type 1,1.
Comm. PDE 13 (1988), 1085–1111.
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