
Pseudo-differential Operators

Notation :

Let Ω � Rn be open. Let k P NY t0,8u.
CkpΩq : Complex valued functions on Ω that are k-times continuously differ-
entiable.
Ck

0 pΩq: Function s in CkpΩq which vanish everywhere outside a compact sub-
set of Ω. We set DpΩq � C8

0 pΩq
We will use multi-indices to denote partial derivatives. As a reminder, a
multi-index is an an element α � pα1, ..., αnq P Nn such that |α| � α1 � � � � �
αn, and α! � α1 � � �αn. We will sometimes denote B

Bxj by Bxj or Bj. We set
Dj � �i B

Bxj where i is the imaginary unit. Then we set Bα � Bα1
1 � � � Bαnn , and

Dα � Dα1
1 � � �Dαn

n . For x P Rn, we also set xα � xα1
1 � � � xαnn .

From now on, for the sake of brevity we will assume implicitly that all defini-
titions, and anything that must be done on some domain, takes place on
Ω

A differential operator on is a finite linear combination of derivatives
arbitrary orders with smooth coefficients. The order of the operator is the
highest order derivative included in the linear combination. Explicitly, a
differential operator of order n is

P �
¸
|α|¤n

aαpxqDα

where aα P C8 are the coefficients. The symbol P is the polynomial function
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of ξ defined on Ω� Rn by

ppx, ξq �
¸

|α|¤m
aαpxqξα.

and its principle symbol is

pnpx, ξq �
¸

|α|�m
aαpxqξα

where n is the order of the highest derivative.

Distributions :

A distribution is a linear functional f on DpΩq such that for any compact
subset K � Ω, there exists an integer n and a constant C such that for all
ϕ P DpΩq which vanish everywhere outside of K, we have

|xf, ϕy| ¤ C sup
xPK

sup
|α|¤n

|Bαϕpxq|

where xf, ϕy is to be defined. As usual, the space of distributions on DpΩq
is denoted by D1pΩq. If f P L1

locpΩq, the space of locally integrable functions
on Ω, then we set

xf, ϕy �
»

Ω

fpxqϕpxq dx p1q

for al ϕ P DpΩq, so that L1
locpΩq � D1pΩq. Motivated by integration by parts,

the derivative f 1 of a distribution f is defined by

xf 1, ϕy � �xf, ϕ1y,

and this coincides with the derivative of f if f is a differentiable function, as
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can be seen by using integration by parts on on (1) and the fact that ϕ is
zero everywhere outside some subset of Ω. Thus any differetiable operator P
can be extended to a linear mapping from D1 to D1 since

xPf, ϕy � xf,t Pϕy,

where tPϕ
°

|α|¤n
p�1q|α|Dαpaαϕq.

Convolutions :

Let f , g P DpΩq. Then we represent the convolution of f and g by f � g,
defined as

pf � gqpxq �
»
fpyqgpx� yq dy �

»
fpx� yqgpyq dy

where the last equality just follows from a simple change of variable. Intu-
itively, if you imagine g as a bump function, then the convolution of f with
g is a weighted average of f around x. That the convolution of f is smoother
than f itself is an important property of the convolution, and can be under-
stood intuitively by the fact that convoluting is a kind of averaging, and so
any bad behaviours of the function (ie. sudden changes in value) tend to be
eliminated due to this sort of averaging. The convolution has the following
algebraic properties:

1. f � g � g � f (commutativity)
2.(f � gq � h � f � pg � hq (associativity)
3.f � pg � hq � f � g � f � g (distributivity)
4. For any a P C, apf � gq � pafq � g � f � pagq (associativity with scalar
multiplication)
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5. There is no identity element

It is also true that DpΩq is closed under convolutions, and so DpΩq with
the convolution forms a commutative algebra. Although there is no iden-
tity element, we can approximate the identity by choosing an appropriate
function (called a mollifier, see Figure 3 on page 8) such as a normalized
Gaussian (or any appropriate function that approximates the Dirac delta
function). Actually, there is a standard methodology for constructing func-
tions which approximate identities: Take an absolutely integrable function ν
on Rn, and define

νεpxq �
νpx

ε
q

εn

then
lim
εÑ0�

»
Rn
νεf � fp0q

for all smooth (actually continuous is sufficient) compactly supported func-
tions f, hence νε Ñ δ as ε Ñ 0� in D1pRnq. We can define the convolution
for less restrictive spaces of functions, such as L1pΩq, but for our purposes
we will define it for the space of functionals on DpΩq: D1pΩq. Let u P D1pΩq,
v P S 1, then we set

u � v � xu, vxy

where vxpyq � vpx � yq. It easily follows that Bαpu � vq � Bαu � v � u � Bαv,
and also supp pu � vq � supp u+supp v.
Something very important is that there is a regularization procedure: Let
ϕ P DpRnq be nonnegative with integral equal to 1, and let ε ¡ 0. Set
ϕε � ϕpx

ε
q

εn
. Then for u P D1pRnq, set uε � u � ϕε, then for all v P DpRnq, we

have that »
uεv Ñ xu, vy as εÑ 0.

So we can approximate distributions by regular functions.
Finally we define the convolution of distributions. Let u P DpRnq, v, ϕ P
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DpRnq, then »
pu � vqϕ � xu, ṽ � ϕy,

where ṽpxq � vp�xq. So we set xu � v, ϕy � xu, ṽ �ϕy. The differentiation and
support properties previously which were previously stated for u, v P DpRnq
still hold, along with sing supp pu � vq � sing supp u + sing supp v, where
sing supp means singular support, which is the complement of the largest
open set on which a distribution is smooth function, ie. the closed set where
the distribution is not a smooth function.

Example 1 : Let δ denote the Dirac delta function and let f P DpRq. Then
we have that

pδ1 � fqpxq � pδ � f 1qpxq � f 1pxq,

so that differentiation is equivalent to convolution with the derivative of the
Dirac delta function.

Example 2 : Consider the function

ϕpxq � 1?
π
e�x

2

, ϕεpxq � 1

ε
?
π
e�p

x
ε
q2

and consider sinx
x

.»
R

sinx

x

1?
π
e�x

2

dx � 0.923,

»
R

sinx

x

2?
π
e�p2xq

2

dx � 0.98

»
R

sinx

x

10?
π
e�p10xq2 dx � 0.999,

»
R

sinx

x

100?
π
e�p100xq2 dx � 0.99999

and so on. So as εÑ 0�, we see that the integral converges to 1, as expected
since sinx

x
Ñ 1 as x Ñ 0. Note that these functions don’t even meet the

conditions that were imposed! Evidently this works for certain more general
functions.
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Figure 1: A graph of
20?
π
e�400x2

, an approximation to the Dirac delta function.

Example 3 : sin
x

is even, and the derivative of ϕpxq � 1?
π
e�x

2 is odd, so
the integral of their products is trivially 0, which we would expect from ex-
ample 1 since the derivative of sin

x
at x � 0 is 0. So lets consider something

more interesting: Consider e�p1�xq2 , ϕ1εpxq � � 2x
ε3
?
π
e�p

x
ε
q2 . Let’s take the

convolution at x � 0:

pδ1 � ϕqp0q �
»
R
�e�p1�xq2 2x

ε3
?
π
e�p

x
ε
q2 dx � 2

pε2 � 1q 3
2 e

1
1�ε2

,
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and as εÑ 0�, this goes to 2
e
. Now d

dx
e�p1�xq

2 |x�0 � 2
e
, as expected (although

again, this function doesn’t meet the imposed conditions).

Figure 2: A graph of �2000x?
π
e�100x2

, an approximation to the derivative of the Dirac delta function.

The intution behind how δ1 works (I will use δ informally here, imagine it
is some very localized bump function if you like) is that for 0   ε ! 1,
δ1pxq � δpx�εq�δpx�εq

2ε
, so that»

R
δ1pxqfpxq dx �

» ε

�ε

δpx� εq � δpx� εq
2ε

fpxq dx � fp�εq
2ε

� fpεq
2ε

� �
�
fpεq � fp�εq

2ε



� �f 1p0q

for a sufficiently well behaved function f .
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Figure 3: On top, the mollifier; on bottom, a jagged function (red) being mollified by the mollifier on top,

and the smoothed out function (blue) after mollification (picture from http://en.wikipedia.org/wiki/Mollifier).
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Figure 4: A graph of the convolution of |x| and 200?
π
e�p200xq

2

(blue), superimposed with the graph of |x| (red).

You can’t even see the difference! However, the convoluted function is smooth at the bottom.

Figure 5: A zoomed in graph of Figure 4. We now see that the graphs agree almost exactly except for very near 0,

where one is smooth. Also note that ε � 1

200
here, which isn’t even that small. We can get a much better

approximation by making ε much smaller.
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Fourier Analysis

We define the Schwartz space S � C8 as the set of functins f P C8pRnq
which satisfy

}f} � sup
xPRn

|xαBβfpxq|   8

for all α, β P Nn. Note that } � } defines a seminorm. If x � px1, ..., xnq P Rn,

we set |x| � }x}l2 �
�°n

i�1 x
2
i

	 1
2 . As an example, the function fpxq � e�

|x|2

2

belongs to S, as f(x) and its derivatives go to zero faster than any polynomial.
Now we define a continuous linear mapping called the Fourier transform,
F : S Ñ S,

ûpξq � F pupxqq �
»
e�ixξupxq dx, p1q

where xξ is understood to be the dot product x � ξ. The Fourier transform
F : S Ñ S has the following easy to verify properties:yDjupξq � ξjûpξq,xτyupξq � eiyξûpξq where τyupxq � upx� yq,yxjupξq � �Djûpξq{pe�ixνuqpξq � τν ûpξq.

A linear operator on S which is continuous with respect to the semi-norm
is called a tempered distribution in Rn, and is denoted S 1. By defining
xu, �y : S Ñ R for u P S by

xu, vy �
»
upxqvpxq dx,

we have that S � S 1 (meaning S is isomorphic to a subset of S 1), and in fact
it is dense.
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For u, v P S, we have that

xû, vy �
»
ûpξqvpξq dξ �

» �»
eixξupxq dx



vpξq dξ �

»
upxq

�»
eixξvpξq dξ



dx

�
»
upxqv̂pxq dx � xu, v̂y,

where Fubini’s theorem was used in the third equality. So we see that xû, vy �
xu, v̂y for all u, v P S. Thus for u P S 1, v P S, we see that the formula

xû, vy � xu, v̂y

defines a mapping F : S 1 Ñ S 1 and is the unique continuous extention of
F : S Ñ S 1, and it satisfies the properties given on the previous page. Note
that if we restrict F to L1pRnq, then for u P L1pRnq, û is given by (1). Now
we will derive an inversion result:
From the property that yDjupξq � ξjûpξq, we see that

0 � ξj 1̂pξq ùñ 1̂pξq � cδpξq

from some c P C. Using this and the fact that δ̂ � 1 (easy to see from
definitions), we can see that for u P S,

ˆ̂up0q � xδ, ˆ̂uy � x1, ûy

� x1̂, uy � cûp0q,

so that we just just need to choose some u to find out the constant. It turns
out c � p2πqn. Now

ˆ̂up0q � cup0q ùñ τ�y ˆ̂up0q � τ�ycup0q � cup�yq
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and by the fourth propery this means

zeiξyûp0q � cup�yq

and by the second property this means

yyτyup0q � cup�yq

ùñ ˆ̂upyq � cup�yq

so plugging in our value for c and taking y Ñ x and rearranging, we see that

up�xq � 1

p2πqn
ˆ̂upxq.

We can rewrite this expression using the explicit formula for the Fourier
transform:

up�xq � 1

p2πqn
»
e�ixξûpξq dξ ùñ upxq � 1

p2πqn
»
eixξûpξq dξ .

This is known as the Fourier inversion theorem, it is the formula for the in-
verse Fourier transform, denoted by F �1, and it maps û to u.

Now let u, v P S. From the top of page 10 we know that xû, v̂y � xu, ˆ̂vy,
so using the inner product p�, �q associated with L2pRnq combined with the
Fourier inversion formula, we see that pû, v̂q � p2πqnpu, vq. Evidently if we
extend the domain of the Fourier transform to the square integrable func-
tions, then F : L2pRnq Ñ L2pRnq, ie. is an automorphism (since it is also an
isomorphism), and that p2πq�n2 F is unitary. This is known as Plancherel’s
theorem.
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Pseudo� differential Operators

Since P pDqupxq � 1
p2πqn

³
P pξqjeixξûpξq dξ, we can define a pseudo-differential

operator apDq P S 1pRnq by {apDqupξq � apξqûpξq ( {apDqupξq is smoothand
slowly increasing). Then we have that

apDqupxq � 1

p2πqn
»
apξqeixξûpξq dξ .

For instance, letting apξq � iξ, we get that apDq is just the usual differen-
tiation operator. However letting apξq � i

?
ξ, we get that apDq is a half-

differentiation operator.
We have the basic property that a(D)b(D)=(ab)(D).

Consider the Laplacian operator ∆ � B2
1 � � � � � B2

n. Its symbol is

apξq � �|ξ|2.

Let ω P S (ω is called a parametrix), δ be the dirac delta at 0, then we can
solve the distribution equation

∆E � δ � ω

by using Fourier transforms: Let Êpξq � �1�χpξq
|ξ|2 , then

y∆Epξq � �|ξ|2Êpξq � 1� χpξq,

and this distribution is smooth away from 0. Now if f P S 1

∆pE � fq � f � ω � f,
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and so the distribution v � E � f is an approximate solution to the equation

∆v � f.

Also, sing supp v= sing supp f, since ∆v � f � ω � f , where ω � f P C8,
so f is smooth where v is, and if f is smooth near some point x0, then
v � E � f � E � pχfq � E � p1 � χqf, (χ is equal to 1 near x0, and χf is
smooth there). So E � χf P C8, and

pE � p1� χqfqpxq �
»
Epx� yqp1� χpyqqfpyq dy

only has x � y away from 0 if x is sufficiently close to x0. Thus upxq P C8

for x sufficiently close to x0. As a matter of fact, we can conclude that any
solution of ∆v � f has the property that sing supp v=sing supp f . If f is
smooth near x0, and χ is smooth and equals 1 near x0, then ∆χv � f near
x0, and so is smooth near x0. So since χv and ∆χv are in S 1, we see that

E �∆pχvq � χv � ω � χv � χv � something in C8,

and so from before we see that χv P C8 near x0.

Non�Constant Coefficient Operators :

For P � °
aαD

α
x , aα P S, we have the formula

Pupxq � p2πq�n
»
eixξppx, ξqûpξq dξ

ppx, ξq �
¸

aαpxqξα.
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Symbols

Definition : Let m P R. Let Sm � SmpRn � Rnq be the set of all a P
C8pRn � Rnq with the property that for all α, β,

|BαxBβξ apx, ξq| ¤ Cα,βp1� |ξ|qm�|β|.

We denote S�8 � �
m Sm. Elements of Sm are called symbols of order m.

Example 1 : The funcion apx, ξq � eixξ is not a symbol.

Example 2 : For f P S, fpξq is a symbol of order �8.

Propertes :

1) a P Sm ùñ BαxBβξ a P Sm�|β|,
2) a P Sm and b P Sk ùñ ab P Sm�k,
3) a P Sm ùñ a P S 1pR2nq.
Lemma 1 : If a1, ..., ak P S0, and F P C8pCkq, then F pa1, ...akq P S0.

Proof. We may assume without loss of generality that ai are real and that
F P C8pRkq since the real and imaginary parts of ai are in S0. Now

B
BxjF paq �

BF
Bai

Bai
Bxj p1q

B
BξjF paq �

BF
Bai

Bai
Bξj p2q

we Einstein summation notation is been emplored. We proceed by induction.
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If |α| � |β| � 0, it is clear that the estimate holds. Now suppose it is true
for |α| � |β| ¤ 0, 1, ....p, and consider the case |α| � |β| ¤ p � 1. By an
application of the Leibniz differentiation formula to (1) and (2), and the
induction hypothesis applied to the derivatives of BF

Bai paq, we get the desired
result.

Semi� norm:
We define the semi-norm on Sm by

|a|mα,β � sup
px,ξqPRn�Rn

 p1� |ξ|q�pm�|β|q|BαxBβξ apx, ξq|
(
.

Convergence an Ñ a means that for all α, β, |an�a|mα,β Ñ 0 as nÑ 8. With
this semi-norm, we have a complete space (a Frechet space).

Approximation Lemma: Let a P S0pRn � Rnq and set aεpx, ξq � apx, εξq.
Then aε is bounded in S0, and aε Ñ a0 as εÑ 0 in Sm for all m ¡ 0.

Proof. Let 0 ¤ ε,m ¤ 1, and α, β be abritrary. For β � 0,

Bαx paε � a0q �
» 1

0

BtBαxapx, tεξq dt �
» εξ

0

BsBαxapx, sq ds,

with s � εξt. Thus

|Bαx paε � a0q| ¤
» εξ

0

|BsBαxapx, sq| ds ¤
» εξ

0

C
ds

1� |s| � C logp1� ε|ξ|q.

So we get that
|Bαx paε � a0q| ¤ C logp1� ε|ξ|q,

and since logp1�xq|x�0 ¤ p1�xqm|x�0, and 1
1�x ¤ Cmmp1�xqm�1 for .x ¥ 0,

we see that logp1� xq ¤ Cmp1� xqm, and this gives the desired result.
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Now for β � 0, BαxBβξ a0 � 0, and

|BαxBβξ aε| ¤ Cα,βε
|β|p1� ε|ξ|q|β|

then since
Cα,βε

|β|p1� ε|ξ|q|β| ¤ Cα,βp1� |ξ|q|β|,

we have the result.

Asymptotic Sums:
Let aj P Smj for a decreasing sequence mj Ñ �8. Generally

°N
j�0 aj does

not converge as N Ñ 8, but we can still give meaning to the series. We will
write

a �
¸

aj

if for all N ¥ 0,

a�
Ņ

j�0

P SmN�1 .

Borel Lemma: Let pbjq be a sequence of complex numbers. There exists a
function f P C8pRq such that for all j, f pjqp0q � bj, so that fpxq � °

j bj
xj

j!

when xÑ 0.

Proof. Let χ be a C8 function equal to 1 for |x| ¤ 1 and 0 for |x| ¥ 2. Let
pλjq be a sequence of positive numbers tending to 8. We will show that pick
pλjq so that the function defined by

fpxq �
¸
j

bj
xj

j!
χpλjxq

has the desired properties. First off, the series converges pointwise. Let
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N P N. If j ¥ N , then the N th derivative of the jth term is equal to

fNj pxq �
¸

0¤i¤N

�
N

i



bj

xj�i

pj � iq!x
N�ipλjxqλN�ij .

Now remember that the support of χ is contained in |x|   2, so that λjx is
bounded in the supports of χ and its derivatives. Thus there is a constant
CN such that

|f pNqj pxq| ¤ CN |bj|λN�jj

pj �Nq! .

Thus if we pick λj ¤ 1 � |bj|, then the series
°
j |f pjNqpxq| is uniformly

convergent for x P R, so that f P C8, and that its derivatives are obtained
from term by term differentiation, and that

fNp0q � bN .

Proposition: There exists an a P Sm0 such that a � °
j aj, and

supp a � �
jsupp aj (proof omitted, see reference (1)).

Definition : A symbol a P Sm is said to be classical if a � °
j aj, where

aj are homogeneous functions of degree m � j for |ξ| ¥ 1, ie. ajpx, λξq �
λm�jajpx, ξq for |ξ|, λ ¥ 1.

Pseudo� differential Operators in Schwartz Space

Proposition : If a P Sm and u P S, then the formula

Oppaqupxq � 1

p2πqn
»
eixξapx, ξqûpξq dξ

defines a function on S, and the mapping pa, uq ÑOppaqu is continuous. This

18



operator Op from Sm to the linear operators on S is injective and satisfies
the comutation relations

rOppaq, Djs � iOppBxj , aq,

rOppaq, xjs � �iOppBxj , aq.

Proof. First off, since û P S and a P Sm, we have that

|Oppaqupxq| ¤ 1

p2πqn
»
|apx, ξq||ûpξq| dξ�� � 1

p2πqn
»
|apx, ξq|p1�|ξ|q�mp1�|ξ|qm|ûpξq| dξ

¤ 1

p2πqn sup
ξ
t|apx, ξq|p1� |ξ|q�mu

»
p1� |ξ|qm|ûpξq| dξ,

and so Oppaqu is bounded..

Now for the commutation relations:

OppaqDjupxq � 1

p2πqn
»
eixξapx, ξqyDjupξq dξ

� 1

p2πqn
»
eixξapx, ξqξjûpξq dξ,

where in the second equality we have used a property of Fourier transforms
earlier discussed. Now

DjpOppaqqpxq � �i 1

p2πqn
»
eixξiξjapx, ξqûpξq dξ � iOppBxjaqupxq,

and so from the these last two formulas we see the first commutation relation.
For the second commutation relation,

Oppaqxjupxq � 1

p2πqn
»
eixξapx, ξqyxjupξq dξ � 1

p2πqn
»
�eixξapx, ξqDξj ûpξq dξ

where in the second equality we have again used a property of the Fourier
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transform discussed earlier. Now

xjpOppaquqpxq � xj
1

p2πqn
»
eixξapx, ξqûpξq dξ

� 1

p2πqn
»
pDξje

ixξqapx, ξqûpξq dξ

� 1

p2πqn
� »

Dξjpeixξapx, ξqûpξqq dξ�
»
eixξDξjapx, ξqûpξq dξ�

»
eixξapx, ξqDξj ûpξq dξ

	
.

Now with the fundamental theorem of calculus, we see that in the above
expression, the integral on the left is 0 since û P L2pRnq (since u P S � L2,
and the Fourier transform sends L2 funtions to L2 functions, and so ûpξq goes
to 0 at infinity. Remember that the integrals are over Rn), so that we are
left with

xjpOppaquqpxq � � 1

p2πqn
»
eixξDξjapx, ξqûpξq dξ�

1

p2πqn
»
eixξapx, ξqDξj ûpξq dξ,

� iOppBxjaqupxq �
1

p2πqn
»
eixξapx, ξqDξj ûpξq dξ,

and so we can see the second commutation relation. The commutation rela-
tions imply that xαDβpOppaquq is a linear combination of the terms

OppBα1ξ Bβ
1

x qpxα2Dβ2uq,withα1 � α2 � α, β1 � β2 � β.

Thus xαDβpOppaquq is bounded by the product of a semi-norm of u P S and
by a semi-norm of a P Sm, hence is continuous. All that’s left is to prove
injectivity. Suppose that for all u P S and for all x P Rn, we have»

eixξapx, ξqûpξq dξ � 0.
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Fix x. then the function b defined as

bpξq � apx, ξq
p1� |ξ|2qm2 �n

4
� 1

2

is in L2pRnq and is orthogonal to all functions of the form

ϕpξq � e�ixξp1� |ξ|2qm2 �n
4
� 1

2 ûpξq,

and if u is in S then so is ϕ, and so b � 0 by the density of S in L2.

Kernel: Let a P S�8. Then for u P S, we have

Oppaqupxq � 1

p2πqn
»
eixξapx, ξqûpξq dξ

� 1

p2πqn
»
eixξapx, ξq dξ

»
e�iyξupyq dy

� 1

p2πqn
»
upyq dy

»
eipx�yqξapx, ξq dξ

where we have used Fubini’s theorem in the third equality. So we see that
the kernel K of Oppaq is

Kpx, yq � 1

p2πqn
»
eipx�yqξapx, ξq dξ � 1

p2πqn pFξ aqpx, y � xq,

where Fξ means the Fourier transform with respect to ξ.

Adjoints

For an arbitrary operator A : S Ñ S, we want an operator A� : S Ñ S

such that for allu, v P S,

pAu, vq � pu,A�vq.
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By a density argument if A� exists then it is unique, and it is called the
adjoint of A. Should A� exist, then we can define A : S 1 Ñ S 1 by the formula

pAu, vq � pu,A�vq

for all u P S 1, v P S, where pu, vq � xu, v̄y. This means that we can rewrite
the definition of A as

xAu, vy � xu,A�v̄y.

Example 1 : Let P � °
|α|¤m

aαpxqDα be a differential operator with slowly

increasing smooth coefficients. Then

pDju, vq �
»
Dju v̄ � �i

»
Bju v̄

� i

»
uBj v̄ �

»
uDjv � pu,Djvq,

where we have used integration by parts in the third equality, and the fact
that u, v P S to conclude that the boundry term is zero. Since the coefficients
are slowly increasing, we conclude that P �v � °

|α|¤m
Dαpāαvq. The fact that

pDju, vq � pu,Djvq is extremely important in quantum mechanics, where
all observables (quantities that can be measured) are represented by hermi-
tian operators O (and hence satisfy O � O�), and where ~Dj represents the
momentum operator for the jth coordinate, and ~ is the reduced Planck’s
constant.

Example 2 : Let apDq be a pseudo-differential operator with constant coef-
ficients. Then for u, v P S, we have

papDqu, vq � 1

p2πqn paû, v̂q �
1

p2πqn pû, āv̂q � pu, āpDqvq,
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so that apDq� � āpDq.

Now let’s show that if A� exists, we can wrtie K� using the kernel K of
A:

xKpx, yq, upyqvpxqy � xAu, vy � xu,A�v̄q

xū, A�v̄y � xK�py, xq, v̄pxqūpyqy

ùñ K�py, xq � Kpx, yq .

Now in general we would like to find the adjoint of pseudo-differential opera-
tors. To do this it is enough to check if K is the kernal of the symbol a, then
the operator with kernel K� sends Shwartz functions to Schwartz functions.
Now we will assume that the symbol a (thus a� as well) is in SpR2nq and
then extend it to S 1pR2nq by continuity. We have

K�px, yq � Kpy, xq � 1

p2πqn
»
eipx�yqξapy, ξq dξ

and

a�px, ξq �
»
K�px, x� yqe�iyξ dy � 1

p2πqn
»
eiypν�ξqāpx� y, νq dydν

� 1

p2πqn
»
e�iyν āpx� y, ξ � νq dydν,

so we have found our formula for a�.

The following two theorems are fundamental to symbolic calculus, and will
be stated without proof (see reference (1)).
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Theorem 1 : If a, P Sm, then a� P Sm and

a�px, ξq �
¸
α

1

α!
BαξDα

x āpx, ξq .

Particularly, if A � Oppaq is a pseudo-differential operator of order m, then
A� � Oppa�q is a pseudo-differential operator of order m, and thus A extends
to an operator from S 1pRnq to S 1pRnq.

Theorem 2 : If a1 P Sm1 , a2 P Sm2 , then Oppa1qOppa2q � Oppbq where

bpx, ξq � 1

p2πqn
»
e�ipx�yqpξ�νaxpxνqa2py, ξq dydν ,

and we write b � a1#a2 P Sm1�m2 (# is just notation representing the
symbol that results from multipliying two operators, ie. apx,Dqbpx,Dq �
pa#bqpx,Dqq, and b � °

α
1
α!
Bαξ a1D

α
xa2.

Fun with Pseudo� differential Operators

For the sake of brevity, the functions in this section will be assumed to
be sufficiently nice for whatever is written to make sense.

Example 1: Consider the Laplacian, and some function u. We have that

x∆upξq � �|ξ|2ûpξq,

so we can define the square root of the Laplacian by the property that it
satisfies z?

∆upξq � i|ξ|ûpξq. p1q
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Taking inverse Fourier transforms, we have that

?
∆upxq � 1

p2πqn
»
eixξi|ξ|ûpξq dξ. p2q

We would hope that by defining
?

∆ this way, that
?

∆
?

∆=∆ (otherwise
what is the point?), let’s double check: looking at (2), we see that

?
∆p
?

∆uqpxq � 1

p2πqn
»
eixξi|ξ|z?∆upξq dξ,

and using (1), we get that

?
∆
?

∆upxq � � 1

p2πqn
»
eixξ|ξ|2 dξ,

which is the correct equation for ∆u.
In fact we can define derivatives of arbitrary order this way, consider the
differential operator in one dimension dn

dxn
for n P N:

dn

dxn
u � 1

p2πq
» »

eipx�yqξpiξqnupyq dy dξ,

so that for s P C, we can define the fractional differential operator ds

dxs
by

ds

dxs
u � 1

p2πq
» »

eipx�yqξpiξqsupyq dy dξ .
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Figure 6: A graph of fpxq � x (blue), its first derivative (red), and its half-derivative
� 2?

π

?
x - in purple

�
(picture from http://en.wikipedia.org/wiki/Fractional_calculus)).

Pseudo-differential operators are very important in relativistic quantum me-
chanics, where Dirac found his equation (Dirac equation) describing relativis-
tic quantum mechanics by factoring the Laplacian: for massless particles,
E2 � p2c2, where E is energy, p is momentum, and c is the speed of light (if
you don’t know quantum mechanics, just take this at face value). Writing
these as operators, p � �i~∇, so that E2 � �c2~2∆, and so

E � ~c
?
�∆ .

In R2, the Dirac operator D, is defined by

D � �iσxBx � iσyBy,
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where
σx � p 0 1

1 0

�
, σy � p 0 �i

i 0

�
are known as the Pauli matrices. All of these operator act on wavefunctions,
ψ : R2 Ñ C2,

ψpx, yq �
�
χpx, yq
ϕpx, yq

�
,

which describe the spin of electrons (top row is the probability amplitude that
an electron will be found to be spin up when measured, and the bottom row
is the probability amplitude that the electron will be found to be spin down
when measured). Using the matrix form it is easy to verify thatD2ψ � �∆ψ,
so that

D �
?
�∆ .
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