Pseudo-differential Operators

Notation :

Let 2 < R™ be open. Let ke N U {0, 0}.

C*(2) : Complex valued functions on € that are k-times continuously differ-
entiable.

Ck(): Function s in C*(2) which vanish everywhere outside a compact sub-
set of Q. We set D(Q2) = C(Q)

We will use multi-indices to denote partial derivatives. As a reminder, a
multi-index is an an element o = (v, ..., ay,) € N” such that |o| = a; +--- +
a,, and a! = aq ---«,,. We will sometimes denote % by d,; or d;. We set

D; = —i-Z where 7 is the imaginary unit. Then we set 0% = 02 --- 9%, and
J ox; 1 n

D* = D{*--- D% . For x € R", we also set 2% = z{* - - 29",
From now on, for the sake of brevity we will assume implicitly that all defini-
titions, and anything that must be done on some domain, takes place on
Q

A differential operator on is a finite linear combination of derivatives
arbitrary orders with smooth coefficients. The order of the operator is the
highest order derivative included in the linear combination. Explicitly, a

differential operator of order n is
P = Z ao(z)D”
|a|<n

where a, € C* are the coefficients. The symbol P is the polynomial function



of £ defined on 2 x R™ by

and its principle symbol is
pa(,§) = Z aq (7)€"

where n is the order of the highest derivative.

Distributions :

A distribution is a linear functional f on D(Q2) such that for any compact
subset K < (2, there exists an integer n and a constant C' such that for all

@ € D(2) which vanish everywhere outside of K, we have

[Kf, )| < C'sup sup [0%p(z)|

2eK |al<n

where (f, ¢) is to be defined. As usual, the space of distributions on D({2)
is denoted by D'(Q). If f € L;,.(Q), the space of locally integrable functions

loc

on {2, then we set

rg) = Lf(:cxo(x) i (1)

for al ¢ € D(R2), so that L}, () = D'(Q). Motivated by integration by parts,

loc

the derivative f’ of a distribution f is defined by

ey =—f, ¢,

and this coincides with the derivative of f if f is a differentiable function, as
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can be seen by using integration by parts on on (1) and the fact that ¢ is
zero everywhere outside some subset of 2. Thus any differetiable operator P

can be extended to a linear mapping from D’ to D’ since

(Pf, oy ={f'Pp),

where 'Po Y (—1D)¥D*(ayp).

|a|<n

Convolutions :

Let f, g € D(Q). Then we represent the convolution of f and g by f = g,
defined as

(f * 9)(x) = J F)g(e —y) dy = f £ — 9)(y) dy

where the last equality just follows from a simple change of variable. Intu-
itively, if you imagine ¢ as a bump function, then the convolution of f with
g is a weighted average of f around x. That the convolution of f is smoother
than f itself is an important property of the convolution, and can be under-
stood intuitively by the fact that convoluting is a kind of averaging, and so
any bad behaviours of the function (ie. sudden changes in value) tend to be
eliminated due to this sort of averaging. The convolution has the following

algebraic properties:

L. frg=g=f (commutativity)
2.(fxg)xh=Ffx(g=h) (

3.fx(g+h)=frg+ f+g (distributivity)

4. For any a € C,a(f »g) = (af) »g = f = (ag) (associativity with scalar

associativity)

multiplication)



5. There is no identity element

It is also true that D(2) is closed under convolutions, and so D(2) with
the convolution forms a commutative algebra. Although there is no iden-
tity element, we can approximate the identity by choosing an appropriate
function (called a mollifier, see Figure 3 on page 8) such as a normalized
Gaussian (or any appropriate function that approximates the Dirac delta
function). Actually, there is a standard methodology for constructing func-

tions which approximate identities: Take an absolutely integrable function v

on R", and define

then
lim vef = f(0)

e—0F Jpn

for all smooth (actually continuous is sufficient) compactly supported func-
tions f, hence v, — § as € — 07 in D’(R"). We can define the convolution
for less restrictive spaces of functions, such as L'(€), but for our purposes
we will define it for the space of functionals on D(Q2): D'(Q2). Let u e D'(Q),
ve S’ then we set

v = U, V)

where v, (y) = v(x — y). It easily follows that 0%(u = v) = %u * v = u * 0“v,
and also supp (u * v)  supp u-+supp v.

Something very important is that there is a regularization procedure: Let
¢ € D(R™) be nonnegative with integral equal to 1, and let ¢ > 0. Set
Ve = @. Then for u € D'(R™), set u. = u * ¢, then for all v € D(R™), we

have that
fuev — {u,v)yas e — 0.

So we can approximate distributions by regular functions.

Finally we define the convolution of distributions. Let u € D(R"), v, ¢ €



D(R™), then
Jweopo= oo,

where 0(x) = v(—x). So we set {uxv, p) = (u, 0+ ). The differentiation and
support properties previously which were previously stated for u, v € D(R")
still hold, along with sing supp (u = v) < sing supp « + sing supp v, where
sing supp means singular support, which is the complement of the largest
open set on which a distribution is smooth function, ie. the closed set where

the distribution is not a smooth function.

Example 1 : Let § denote the Dirac delta function and let f € D(R). Then

we have that
(0" f)(@) = (6= f)(z) = f'(2),

so that differentiation is equivalent to convolution with the derivative of the

Dirac delta function.

Example 2 : Consider the function

1 2 1 (%)2

p(x) = \/—7;6733 , pela) = 77?67

sin x
-

and consider

sinx 1 2 sinx 2 2
— e dx ~ 0.923 e )" 4z ~ 0.98
JR x ﬁe v ’ JR x ﬁe *

f sinz 10 _qoa2 g0« .99 f S 2 100 1002 g,  0.99999
R T AT ROLA/T

and so on. So as € — 07, we see that the integral converges to 1, as expected

sinx

since — 1 as x — 0. Note that these functions don’t even meet the
conditions that were imposed! Evidently this works for certain more general

functions.
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Figure 1: A graph of Te , an approximation to the Dirac delta function.
Y

Example 3 : 22 is even, and the derivative of ¢(z) = \/%?6_952 is odd, so
the integral of their products is trivially 0, which we would expect from ex-

ample 1 since the derivative of % at x = 0 is 0. So lets consider something

more interesting: Consider e~(=2° /(1) = —632\%6_(%)2. Let’s take the
convolution at x = 0:
2$ z\2 2
& =) (0) = J e —
2= |, NG @+ 1)iers



and as e — 07, this goes to % Now %6’(17’”)2 |lz=0 = %, as expected (although

again, this function doesn’t meet the imposed conditions).
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Figure 2: A graph of — N , an approximation to the derivative of the Dirac delta function.
™

The intution behind how 6" works (I will use ¢ informally here, imagine it

is some very localized bump function if you like) is that for 0 < ¢ « 1,
§(x) =~ %j(i_s), so that

JR &' (z) f(z) da ~ [ oz te) —de- 6)f(:l;) PR B (O]

for a sufficiently well behaved function f.



/ "
Figure 3: On top, the mollifier; on bottom, a jagged function (red) being mollified by the mollifier on top,

and the smoothed out function (blue) after mollification (picture from http://en.wikipedia.org/wiki/Mollifier).
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Figure 4: A graph of the convolution of |z| and Tef(zoom)z (blue), superimposed with the graph of |z| (red).
T

You can’t even see the difference! However, the convoluted function is smooth at the bottom.
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Figure 5: A zoomed in graph of Figure 4. We now see that the graphs agree almost exactly except for very near 0,
1
where one is smooth. Also note that € = 200 here, which isn’t even that small. We can get a much better

approximation by making ¢ much smaller.



Fourier Analysis

We define the Schwartz space S < C® as the set of functins f € C*(R")
which satisfy

|f]| = sup 2207 f ()| < o0
zeR™

for all «, 5 € N". Note that | - | defines a seminorm. If z = (21, ..., z,) € R™,
1 2
we set x| = |lz]2 = ( D1, xf) ®. As an example, the function f(z) = e

belongs to S, as f(x) and its derivatives go to zero faster than any polynomial.
Now we define a continuous linear mapping called the Fourier transform,

TS -8,

w(§) = .7 (u(x)) = Jeiwfu(:v) dx, (1)

where z¢ is understood to be the dot product = - £. The Fourier transform
7.5 — S has the following easy to verify properties:

Dju(€) = &(€),

Tu(§) = e¥u(€) where Tyu(z) = u(x + y),

zju(§) = —Dju(§)

(e7u)(§) = na(s).

A linear operator on S which is continuous with respect to the semi-norm
is called a tempered distribution in R™, and is denoted S’. By defining
{u,-y: 8 — RforuesS by

{u,v)y = fu(x)v(x) dx,

we have that S < S’ (meaning S is isomorphic to a subset of S'), and in fact

it is dense.
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For u,v € S, we have that

= Js i) o[ o)

_ f w(z)i(z) dz = (u, o),

where Fubini’s theorem was used in the third equality. So we see that (i, v) =

{u, vy for all u,v € S. Thus for u e S', v e S, we see that the formula

(U, vy = {u, vy

defines a mapping .7: S’ — S’ and is the unique continuous extention of
7.8 — S’ and it satisfies the properties given on the previous page. Note
that if we restrict .7 to L*(R"), then for u € L'(R"), 4 is given by (1). Now
we will derive an inversion result:

From the property that Ej\u(f) = §u(€), we see that

~

0=¢&1(¢) = 1(¢) = c5(¢)

from some ¢ € C. Using this and the fact that 6 = 1 (easy to see from

definitions), we can see that for u € S,
a(0) = (8, 1y = (1, @)
= {d,uy = ca(0),

so that we just just need to choose some u to find out the constant. It turns
out ¢ = (2m)". Now

>

(0) = cu(0) = 7 ,a(0) = 7 ,cu(0) = cu(—y)
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and by the fourth propery this means

e—

e 0(0) = cu(—y)

and by the second property this means

e~

7u(0) = cu(—y)

— u(y) = cu(—y)

so plugging in our value for ¢ and taking y — z and rearranging, we see that

u(—z) = u(x).

We can rewrite this expression using the explicit formula for the Fourier

transform:

1
(2m)"

. 1 .
(=) = Je—wfa(g) d — u(z) - —fewfa(g) s
(2m)"
This is known as the Fourier inversion theorem, it is the formula for the in-

verse Fourier transform, denoted by .% !, and it maps @ to u.

Now let u,v € S. From the top of page 10 we know that {u,0) = <u,f2>,
so using the inner product (-,-) associated with L?(R") combined with the
Fourier inversion formula, we see that (u,0) = (27)"(u,v). Evidently if we
extend the domain of the Fourier transform to the square integrable func-
tions, then .77 L?(R") — L*(R"), ie. is an automorphism (since it is also an
isomorphism), and that (27)= .5 is unitary. This is known as Plancherel’s

theorem.
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Pseudo — differential Operators

Since P(D)u(x) = ﬁ { P(&),e™™ () d¢, we can define a pseudo-differential
operator a(D) € S'(R™) by a(ﬁ)u\(f) = a(§)u(§) (a(ﬁ)u\(f) is smoothand

slowly increasing). Then we have that

_ ! a(€)e™q
(D)ua) = G [ al©)eale) de.

For instance, letting a(§) = i€, we get that a(D) is just the usual differen-
tiation operator. However letting a(§) = i1/€, we get that a(D) is a half-
differentiation operator.

We have the basic property that a(D)b(D)=(ab)(D).

Consider the Laplacian operator A = 02 + - -- + @2. Its symbol is

a(§) = -l

Let w € S (w is called a parametrix), 0 be the dirac delta at 0, then we can

solve the distribution equation
AE =6+ w

by using Fourier transforms: Let E &) =— 1_@55), then

AE(§) = —[§PE(€) =1 - x(©).
and this distribution is smooth away from 0. Now if f € .S’

AE=f)=[f+w=],

13



and so the distribution v = E = f is an approximate solution to the equation
Av = f.

Also, sing supp v= sing supp f, since Av = f + w =+ f, where w =+ f € C%,

so f is smooth where v is, and if f is smooth near some point xj, then

v=FE=xf=F=x(xf)+ E=(1—x)f, (xis equal to 1 near zg, and xf is
smooth there). So E = xf € C®, and

(B (1—)f)(x) = fEu (- X)) () dy

only has x — y away from 0 if z is sufficiently close to z5. Thus u(z) € C®
for x sufficiently close to xy. As a matter of fact, we can conclude that any
solution of Av = f has the property that sing supp v=sing supp f. If f is
smooth near xg, and x is smooth and equals 1 near xg, then Ayv = f near

Zg, and so is smooth near zy. So since yv and Axv are in S’, we see that
E « A(xv) = xv + w = xv = xv + something in C*,

and so from before we see that yv € C'® near x.
Non — Constant Coefficient Operators :

For P = > a,DS, a, € S, we have the formula
Pula) = (2n) " [ (o, )a(e) dg

p(x,€) = ) aa(x)E".
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Symbols

Definition : Let m € R. Let S™ = S™(R" x R") be the set of all a €
C*(R"™ x R™) with the property that for all «, 3,

0207 a(, )| < Cap(l + €)™,

We denote S™ = (1), S”. Elements of S™ are called symbols of order m.
Example 1 : The funcion a(z, £) = ¢™*¢ is not a symbol.
Example 2 : For f € S, f(§) is a symbol of order —oo.

Propertes :

1)aeS™ = 020ae SV,

2)aeS™ and be S* = abe S™F,

3) aeS™ = ae S (R™).

Lemma 1: If ay, ...,a; € S°, and F € C®(C*), then F(ay,...a;,) € S°.

Proof. We may assume without loss of generality that a; are real and that

F € C*(RF) since the real and imaginary parts of a; are in S°. Now

8xj (a) - (9ai ﬁxj

0 7 oF da; (1)

a_ng(“): 30: 7%, (2)

we Einstein summation notation is been emplored. We proceed by induction.
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If |a| + |B] = 0, it is clear that the estimate holds. Now suppose it is true
for |a| + |8] < 0,1,....p, and consider the case |a] + |3] < p+ 1. By an
application of the Leibniz differentiation formula to (1) and (2), and the
induction hypothesis applied to the derivatives of %(a), we get the desired
result. ]

Semi — norm:

We define the semi-norm on S™ by
lalats = e {1+ 1&)~mPa30  alx, €)[}.

Convergence a,, — a means that for all a, 3, |a, —al[(} 3 — 0 as n — oo. With

this semi-norm, we have a complete space (a Frechet space).

Approximation Lemma: Let a € S°(R" x R") and set a.(z,§) = a(z, €€).

Then a. is bounded in S°, and a. — ay as € — 0 in S™ for all m > 0.

Proof. Let 0 <e,m < 1, and «, § be abritrary. For g = 0,

1 €
05 (ac —ap) = f o0 a(x, te€) dt = J 0s05a(x, s)ds,
0 0

with s = e£t. Thus

€€ ds

1+ s

€€
10°(a, — ag)| < f 10.0%(x, )| ds < f C _ Clog(1 + €l¢]).
0

0

So we get that
|02 (ae — ao)| < C'log(1 + €[¢]),

and since log(1+2)]—0 < (142)™[s—0, and 1= < Crym(1+2)™ ! for .z = 0,
we see that log(1 + z) < C,,(1 + )™, and this gives the desired result.
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Now for 5 # 0, 5;‘8?&0 =0, and
[070¢ac] < Capd® (1 + €l¢])?

then since
Coyae (1 + €l < Cop(1 + €)1,

we have the result. O

Asymptotic Sums:
Let a; € S™ for a decreasing sequence m; — —o0. Generally Z;'\I:o a; does

not converge as N — oo, but we can still give meaning to the series. We will

(I’VZG/J‘

write

if for all N > 0,

N
a— Z € SN+t
=0

Borel Lemma: Let (b;) be a sequence of complex numbers. There exists a
function f € C*(R) such that for all j, fU)(0) = b;, so that f(z) ~ h b

J gt
when z — 0.

Proof. Let x be a C* function equal to 1 for |z| < 1 and 0 for |z| > 2. Let
(A;) be a sequence of positive numbers tending to co. We will show that pick
(A;) so that the function defined by

@) = X ()

has the desired properties. First off, the series converges pointwise. Let

17



N e N. If j = N, then the N** derivative of the j* term is equal to

N I - -
N _ N—i N—i
0<i<N
Now remember that the support of x is contained in |z| < 2, so that A,z is
bounded in the supports of x and its derivatives. Thus there is a constant
C'y such that
N
(G —N)!

Thus if we pick A\; < 1+ |bj], then the series }; |fJ(N)(x)| is uniformly

convergent for x € R, so that f € C'°, and that its derivatives are obtained

V()] <

from term by term differentiation, and that

F7(0) = by.

Proposition: There exists an a € S™ such that a ~ »_; a;, and

supp a C Ujsupp a; (proof omitted, see reference (1)).

Definition : A symbol a € S™ is said to be classical if a ~ . a;, where
a; are homogeneous functions of degree m — j for [£| > 1, ie. a;(z,X{) =

N=ay(, ) for [€], A = 1.
Pseudo — differential Operators in Schwartz Space

Proposition : If a € S™ and u € S, then the formula

zﬁ;fW%moma&

defines a function on S, and the mapping (a, u) —Op(a)u is continuous. This

Op(a)u(r) =

18



operator Op from S™ to the linear operators on S is injective and satisfies

the comutation relations
[Op(@), D]] = ZOp(ax]7 (I),

[Op(a)u xj] = _iop(aijv a)‘
Proof. First off, since & € S and a € S, we have that

1

) 1
Op(a)u(o)] < g [ late )ad6)] de] -

(2m

= [l ol+leh e i de

< Gy ounlla(e, 91 -+16h ™) [+ )" la(e) de

and so Op(a)u is bounded..

Now for the commutation relations:

Op(a) Dyulx) = f ea (e, €) Du(€) de

1
(2m)"

| e fale 960 de

where in the second equality we have used a property of Fourier transforms

earlier discussed. Now

D;(0p(a))(z) = —i fe“fzfja@, £)i(€) dé — iOp(2y, a)ulz),

1
(2m)™
and so from the these last two formulas we see the first commutation relation.

For the second commutation relation,

1
(27)"

where in the second equality we have again used a property of the Fourier

1
(2m)"

Op(a)z;u(z) = f e a(x, €)TT(E) dE = f e a(a, €) D, i(€) de

19



transform discussed earlier. Now

1 T ~
2,Op(@))(a) = 257y [ eale ile) de
- 7 | e ate. i) e

- ﬁ ( f De, (e a(x, §)i(s)) d§— f ¢ De,a(w, £)i(€) d§— f ¢*Sa(x, §) De,i(€) dg).

Now with the fundamental theorem of calculus, we see that in the above
expression, the integral on the left is 0 since @ € L*(R") (since u € S < L?,
and the Fourier transform sends L? funtions to L? functions, and so 4(€) goes
to 0 at infinity. Remember that the integrals are over R™), so that we are
left with

5(Op(@u)(a) =~ [ ¢ Deale. Ol de— 51 [ e ale. D) .
- 10p(2n 0)ule) ~ g [ (e, €D (e e

and so we can see the second commutation relation. The commutation rela-

tions imply that 2 D?(Op(a)u) is a linear combination of the terms
Op(ag/afl)(l‘anDﬁ”U),WithO/ —+ O[” = q, ﬁ/ + B// — B

Thus 2*D?(Op(a)u) is bounded by the product of a semi-norm of u € S and
by a semi-norm of a € S™, hence is continuous. All that’s left is to prove

injectivity. Suppose that for all © € S and for all x € R", we have

| etata,yite) d = 0.
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Fix x. then the function b defined as

afz,§)

b€ =
O Tepr

is in L?(R™) and is orthogonal to all functions of the form

Tl

p(€) = e (1 + [¢]) EHETEa(E),

and if u is in S then so is ¢, and so b = 0 by the density of S in L% O

Kernel: Let a € S™. Then for u € S, we have

Op(a)u(r) = gy [ e ate ile) de

gy s o

- G | )y [ ate ) ae

where we have used Fubini’s theorem in the third equality. So we see that
the kernel K of Op(a) is

1 1

K(QJ, y) = (271')” fez(x v ('T f) 5 (271')” (%a) (.CC, Y- 37),

where .% means the Fourier transform with respect to &.
Adjoints

For an arbitrary operator A : S — S, we want an operator A* : § — §
such that for allu,v € .S,

(Au,v) = (u, A*v).

21



By a density argument if A* exists then it is unique, and it is called the
adjoint of A. Should A* exist, then we can define A : S — S’ by the formula

(Au,v) = (u, A*v)

for all u e S’, v e S, where (u,v) = (u,v). This means that we can rewrite
the definition of A as
(Au, vy = {u, A*D).

Example 1 : Let P = > a,(x)D* be a differential operator with slowly

laj<m
increasing smooth coefficients. Then

(Dju,v) = JDjuv = —ifﬁjuv

= ifuﬁj@ = JuD_jv = (u, D;v),

where we have used integration by parts in the third equality, and the fact
that u, v € S to conclude that the boundry term is zero. Since the coefficients

are slowly increasing, we conclude that P*v = > D%(a,v). The fact that
|| <m
(Dju,v) = (u, Djv) is extremely important in quantum mechanics, where

all observables (quantities that can be measured) are represented by hermi-
tian operators O (and hence satisfy O = O*), and where hDj represents the
momentum operator for the j** coordinate, and A is the reduced Planck’s

constant.

Example 2 : Let a(D) be a pseudo-differential operator with constant coef-

ficients. Then for u,v € S, we have
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so that a(D)* = a(D).

Now let’s show that if A* exists, we can wrtie K* using the kernel K of
A:
(K (2, y), u(y)v(@)) = (Au,v) = (u, A*D)

(@, A*v) = (K*(y, z), v(x)uly))

= K*(y,7) = K(v,y).

Now in general we would like to find the adjoint of pseudo-differential opera-
tors. To do this it is enough to check if K is the kernal of the symbol a, then
the operator with kernel K* sends Shwartz functions to Schwartz functions.
Now we will assume that the symbol a (thus a* as well) is in S(R**) and
then extend it to S’(R*") by continuity. We have

1
(27)"

K*(x,y) = K(y,z) = je“””‘y)ga(y, §) dg

and

a*(z,€) = JK*(@", r—y)e Y dy = Jeiy(”f)a(x —y,v) dydv

(2m)"

1
(27)"

Jeiy”@(x —y,§ —v)dydv,

so we have found our formula for a*.

The following two theorems are fundamental to symbolic calculus, and will

be stated without proof (see reference (1)).
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Theorem 1 : If a,e S™, then a* € S™ and
0 (2,6) ~ Y~ 22 D3a(, €)
’ ol TRV

Particularly, if A = Op(a) is a pseudo-differential operator of order m, then
A* = Op(a*) is a pseudo-differential operator of order m, and thus A extends
to an operator from S'(R") to S'(R™).

Theorem 2 : If a; € S™, ay € S™2, then Op(a;)Op(az) = Op(b) where

1
(2m)"

b €) = e | € a (av)aa(y. ) dyd

and we write b = aj;#ay € S"™ T2 (# is just notation representing the

symbol that results from multipliying two operators, ie. a(z, D)b(x, D) =
(a#b)(x, D)), and b~ >, iégang‘ag.

Fun with Pseudo — differential Operators

For the sake of brevity, the functions in this section will be assumed to

be sufficiently nice for whatever is written to make sense.

Example 1: Consider the Laplacian, and some function u. We have that

Au(g) = —[¢[a(e),

so we can define the square root of the Laplacian by the property that it

satisfies

VAu(E) = ilefae). (1)
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Taking inverse Fourier transforms, we have that

VAule) = o i de. (@)

We would hope that by defining v/A this way, that v/AvVA=A (otherwise
what is the point?), let’s double check: looking at (2), we see that

VAWV (@) = o [ il Aule) de
and using (1), we get that
VAVAUe) =~ [ e

which is the correct equation for Auwu.
In fact we can define derivatives of arbitrary order this way, consider the
differential operator in one dimension ji—nn for n e N:

%“ = % f fei(”_y)f(iﬁ)%(y) dy dg,

so that for s € C, we can define the fractional differential operator dd; by

d -
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2
Figure 6: A graph of f(x) = z (blue), its first derivative (red), and its half-derivative (—\/5 - in purple)

NLS

(picture from http://en.wikipedia.org/wiki/Fractional calculus)).

Pseudo-differential operators are very important in relativistic quantum me-
chanics, where Dirac found his equation (Dirac equation) describing relativis-
tic quantum mechanics by factoring the Laplacian: for massless particles,
E? = p*c?, where E is energy, p is momentum, and c is the speed of light (if
you don’t know quantum mechanics, just take this at face value). Writing

these as operators, p = —ihV, so that £? = —c?h?A, and so

E = hev-A.
In R?, the Dirac operator D, is defined by

D = —i0,0, —i0,0,,
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where
_ (01 _ (0 —i
Uw—(lO)? Uy_(z‘ 0)

are known as the Pauli matrices. All of these operator act on wavefunctions,

Y R? - C?
- (10)
’ o(r,y))

which describe the spin of electrons (top row is the probability amplitude that
an electron will be found to be spin up when measured, and the bottom row
is the probability amplitude that the electron will be found to be spin down
when measured). Using the matrix form it is easy to verify that D% = —Aa),
so that

D =+-A.

27



References

(1) Alinhac, Serge. Gerard, Patrick. Pseudo-differential Operators and the
Nash-Moser Theorem. AMS.

(2) Friedrich, Thomas (2000), Dirac Operators in Riemannian Geometry,
American Mathematical Society, ISBN 978-0-8218-2055-1

(3) http://www.quora.com/Quantum-Field-Theory /How-and-when-do-physicists-

use-the-Dirac-equation

28



