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Let Hand M denote the Hilbert and the Mellin transform operators . For the Gaussian
function f(x) it holds

_1 on Sy, o _S a2y Syl .52 Sy .
M[tke) =Zp ") ML il =2p ) =2 P 1)
The corresponding entire Zeta function is given by ([EdH] 1.8)
X(9) = 2 GO Dpr2(9 = @ 9 @(OML Hi(0)(9) =x@- 9)°

The central idea is to replace
M i(9)(s) - M[f, (0)(s)

with £, (9:=H[f]e9. F(@=0 and
M[1, 009 = 20 B GCR A - p)Ts) =p el -

This enables the definition of an alternative  entire Zeta function in the form (82)
X (s):=(1- s)p-TG(S)tangs)CZ(s) :
with same zeros as  x(S) . It enables a modified ~ formula for J(x) ([EdH] 1.13 ff.).

The fractional part function

r(d={x:=x- [x]=1_

5 sm2p R
(o)
on L5(0D)

is linked to the Zeta function by ([TIE] (2.1.5), lemma 2.1)
z(1- 9 =(s- DM[r](s- ) =M[- x7i(X)](s- D) -
The Hilbert transform  of the fractional part function is given by
()= 50052'”" Liogasingi oy * B©=0 + ril H-
pn p
Applying the idea of above leads to the replacement (83)

M- xri()s- ) =z@-9 - M[- ry(0)s- D

ME rlis- D =MER s 1 =200 96 () ety
with same zeros as  z(1- s).

The integral function representations of the Zeta functions above based on the Hilbert

transforms of the Gaussian and the fractional part functions enable al | Aconvol utiono
related Polya -RH criteria ([(CaD]) ,e.g. the Hilbert -Polya conjecture , Polya po lynomial

criteria ([EdH] 12.5), as the Hil bert transform is defined by a singular (convolution)

integral operator

The HZ Hilbert space is the same as applied in [BaB] to reformulate the Beurling -
Nyman criterion. The non  -vanishing constant Fourier term of the series causes same
Afseddjoint integral oper at orcasedithe Gaubsian fynctios.sue t han i n

The relat ed entire Riemann function enables the definition of correspondingly defined
alternative Keiper -Li coefficients ([LaG ]) . Itis enabled by the zeros of the concerned
Kummer functions and the related zeros of the Hilbert transformed Hermite polynomials.
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The challenging part to verify the RH (prime number counting error function)

1
P(X)- li(X) =O(/xlogx) =O(x2 )
is the asymptotical behavior of the exponential (integral) function ([EdH] 1.14 ff.)

o o X At
Ei(x) = - f "dlogy = - ﬁa‘yd—;,: fﬁ;dt

given by Ramanuj anés asymptotic power

k!

2k+1

Ei(e)e &4 ()
X

k=0

The non-normalized (exponential) error function is given by ([AbM] 13.6)

_ L 2 _.u. (_ 1)k X2k+1 .
erf(x) .—pa dt —ka}o 0 kel

Its relationship to the Kummer functions is given by ([AbM] 7.15)

13 3 .
erf(x) =x1F1(§,§,— X?) = xe 1F1(1.§,x2)

criterion

series

The asymptotics of  the corresponding non -normalized  erfc(x) - function is given by

(lemma D4, [OIF ] chapter 3, 1.1; chapter 12 1.1 , [AbM] 7.1.23)
130..2k-1)

k+1,,2k+1
27X

erfo(x) =1- erf(x) © & a &)

k=0

It further holds ([LeN] 9.13)

erfc(x)=%e’XZY(lg,x2)=%e' x2\((%,%,#) Lowper. 2&15(1;,%)’?’

2 & v
i.e.
_.‘/;; ;X2 3 2 _.‘/2; _ 13 g2y .
erfc(x)—T- Jxe Fl(li,x )—7 &1F1(5,5, x%)

The above relationships  provide the linkage of the concerned Kummer functions with the

RH (li(X)- function) convergence criterion.

We further note the following properties:
i) the function represented by

.? (- ])k s :>]_
& 2k BT g

has the value p/2 as x- 0, x>0 ([BeB] IV ,(10.2) )
i) Hle” |=20pF (0 + =887 0 ,F(X) . 18, 2130k Do, ([GaW] )

&t T Ix o x€ & (@9

P
i) LY A S'”(ES)),l for Re@>1 ([BeB] 5, Corollary 4)
a 2y :

p

implying the convergence of the series

4 psin p)-
’ 2

([ BeB]



We also note the following properties of

the concerned hypergeometric functions ([AbM ]
p.507, [OIF ] p.44/67) .

13 (-9"x" and 3 .
1F1(51 ) na'oZn+1n| 1F1(1v21 X)

They are related to the error function and the Dawson

function by
.. (- :l.)n X2n+1 and _ _xzitz _ \/E
erf(x) = \Fn02n+l pr F(x)=e” § dt=

M2 e X erf(ix) -
o 2i ()

The corresponding Mellin transforms (valid in the critical stripe) are given by

s/2 —.- = —_— a— '
r?< 1F( 2 X 1- qu)

1% . 3 X i '

SACERES -9 2= a9sinG s

The function

13
15(?5

r fulfill ing ([SeA], [SeAl]

,2)
has only imaginary zeros

, Note O5 /38/39 )

SETLL0 RVBN AL 2

Remark: Taking the logarithmic derivative of the Riemann functional equation one gets
([IvA] (12.21))

€Gi(s) z.(s) z.(l s)z p
log(2p) - eiG(s) 29 z(l 9u -Pranfs

2 2
Putting
. (Zp)s S 051 i p l
c(g)=——————=2°p% sin(=9) =
2G(s)cos€s) 2 cd- 9
it holds on the critical line (IvA] 4.3)
Ci(£+it) .
log(2p) - =logt + O(t™?)
c(E +it)

Remark : On the critical line it holds ([AbM] 4.1.15)

. i .
tangs) =tan£(1+it)) ) cosh%t) +|smh(%t) _ cos%t) +sm(5t) costlogi) +sin(tlogi)
2 22

€ - isinhf= i _cos(Iogi)-sin(tIogi)
coshi:t) |smh(';t) cos%t) sm(zt)
resp.

p |og.(tan(5 9)= m = G(% + it)(;(% -ty

Remark: Let  L(s)denote a Dirichlet ~ function , then logL(s) isregularfor s >1/2.
Remark ([PrK] III 85) :

a6 1
1 | t. 0
I|m nn " = lim i >
an() Moz +10) 1'2(10+|t) t=0



The analog approach based on the fractional part function

There is an analog approach to the Gaussian function above with respecttothe  fractional
part function r(x) and its relationship  tothe Zz - function by the equality

M[- 7i9]a- s) = z(s) = c(899z(@- 9)-
It corresponds to the isomorphism of

H, (- mm)° 1]

We note that the function r.()=H[r]x) has mean value zero, i.e the norm below is defined
and the prerequisites of the theorems in Note S36 are fulfilled.

The function rj (x) has a convergent Fourier series representation in a weak H”(01)-
sense, which is equivalent to the cot(px) - function, i.e.

cot(ox) = 2a sino r) =-ri,(x) H*(01)"

This generalized Fourier series representation of cot(px) is Cesaro summable (mean of
order one) ([ZyA] VI -3,VIl -1). It leadstoa - function representation in the form

M[- ri (x)](l- s) = M[cot(m)](l- s) =(2p)*'z(1- 9E1- s)cos%s) = c(s)cot('(—zys)z(s)'

From [NiN] 891, we recall the Mellin transforms

® » 0<Re() <2
L = r’*?(s-l Iog(1+ i)dx (S)
Yy X
xsin(=x) ©
2
a » O<Re(g) <1
p__ - > *arccot(x)dx ®
xcos@x) 0
2
With respectto  a corresponding Dirchlet series representation we note that ([TIE] 4.14)
L 110 dz .
a5 o nz1 (- peot(m)~

We further note (see also Notes S32/33) that
S(u,v) = ﬁJC'nlg:-i'é nuv,
Sl -o
defines an inner product on 132 =(1;%%)" ([NaS] ), i.e. the generalized Fourier coefficients
{\/Hun} are square summable.



For functions with vanishing constant Fourier term (i.e. with zero mean , where the
Hilbert transform defines a unitary mapping , See also Note S36 ) the norm of the
corre sponding dual space is given by

2 _ a1l 2.
HUH-UZ - al~ H‘un‘
The Hilbert space  |,"? is partof t he Hilbert scale 17 whereb vy it holds

uv), ¢ Hqu-llzw‘bﬂ/Z-
Especially one gets for ui I;*, vi I2 =1,

uv) 4, ¢ HuH.lqM‘o )

The distributional Hilbert spaces I,° ( b=01/21) play a key role
- in [BrK3] in order to define an alternative new ground state energy for the
harmonic quantum  oscillator (see also Note O52 for the Weyl -berry conjecture)
- in [BrK1] providing a global, unique solution of the non -stationary, non -linear 3D -

Navier - Stokes equations

- in [BaB] (see also [BrK2]) where a functional analysis reformulation of the Nyman
criterion is provided (see below).

The Dirichlet series  (see also Notes S44/45 /47 ) on the critical line
f(s)=8 a,e " g(s):=4 b,e "
1 1
are linked tothe Hilbert space H¥,, @,"? by ([LaE] §227, Satz 40):
(F.9)).1,, = lIm -~ B @/ 2+it) g/ 2- it)dt =34 ~ap,
a2 = °2W_|;I 1
As it holds ([EdH] 9.8)
i FX@[ dt° logw

one gets (see also Notes S32/33)

17 2 21 , 21 p> _ogx . &% mn)g’
X2 = lim — ) dt=3 ==2(1) = ! =3 —= =£ = =z N
X7, = lim 2T»ﬁix( ) & =zm=o P, 8 5=2@ == o Ty

From Remark 2.8 below we recall the identity

1° 2 1° 2 17 pdt 1, 0.e. wij e
— WMD) dt == — {e/2+it)|"dt = — == 2
op ANOI U= o) RS2+ ION A= o) R chen 2



Theorem (Bagchi -Nyman criterion, [BaB]): Let

.= rOn =123 for k=123..

i y
and G be the closed linear span of g, . Then the Nyman criterion states that the
following statements are equivalent:

The Riemann Hypothesis is true U gi G(

Alternatively to the double infinite matrix g, above we propose the analog defined double
infinite matrix

q ::{rH(n/k)\n=l2,3,---} for k=123,....

Forany wui I;* vi I =1, ,as itholds

uv),, ¢ HuH.lqM‘o '

the inner product  (u,v) ,,, is defined.
Putting

a=xayl ;"
V:=- log(2sin(A) =dF I L,

this leads to the representation

(99112 @K, 7)1y, = (XOF ).y, @X, 7)o = (X, Sr D) = (SX] )

As |;Y?is densein |;'with respect to the I,*- norm, g belongs to the closed linear span of

LTS
W,

-1/2
2

gl 13t =1

which fulfills the Bagchi criterion.



Alternative  li (X) - functions opportunities

We propose the Landau density function J(xX) alternatively to the Riemann density
function J(x)and the von Mangoldt function  y (x). They are related by

d[XJi] =dy =logxdJ.
With respect to the scope of [KoJ 1, [ViJ ] we note the asymptotics
lim Ji(/x) = 7ea L(n)|og(/x)fu6_ hmyE/X) 1
X

The Riemann and von Mangoldt densities are related to the Zeta function by (see also
notes S19/30/41, 019/20/21)

o

logz(s) = s:’?(‘ =13 () dx= i *dI(x)

0

- logiz(s) = sﬁ< Yy (X)dx= sﬁ< sg/( )gx ﬁ(sdy(x) ﬁ( *(logx)dJ(x) = sﬁ( *dJ(x)

For x>1 here is an explicit (infinite series) formula (2 "d Mangoldt theorem, ([LaE ] VII,
Kap. 10) for
y(x)=aL®
nex
We recall the identity (where P denotes the set of tribial zeros of the Zeta function)
Sx*_1 1.1 x-1_,.x , x*>1
el-Zn_Elog(l xz)_2Iog X _é P
Putting
v e Zi0) _
¥ o(®) —f[v(x+0) y(x-0]=4 L(x- 7L<x) c+x- a— flog(l- —) =g ~ )
and
Y (% _Iey(x) for x>1 xI N
Vo(x) for x>1 xi N
the formula is given by
X L x resp. dy () =1- § x* v OX
X

r P w=r P

It further holds ([LaE] 850, [ScW ] IV, ([PrK] Il 83, Note S39)

i*'“é Zi(s) g s ds.

J(x)-ri/idt =4 L (ool ) =y (logx- aL(n)log(n)—

20.0€ o s
resp. ([PrK] VII 84, Note S50 )
J(x) = x- cQogx- ,— E}(Zn) -(+9)
J(¥) = x- clogx- ai+ logl1- )+ 'aZ” Len g -

@

The Landau density function J(X) is linked to the Zeta function by ( [OsH] Bd. 1, 8, [KoJ]
Note O51)

QO 'Ogisz © - ;'((‘Z)) = sfi " U0dx= fiCdI(0) =/ OT(0) = fcdT(ogy) @ S=S*it » §>0.



The proof of (*) applies the fundamental identity ([LaE ] 848,[ScW ] IV, ([PrK ] 11 86 )

12+'°y ds_¢logy 1¢y
2p|2|,,ss :'0 O<yc¢l

With respect to corresponding convergent Dirchlet series representation we refer to [LaE]
Bd. 2, theorem 51, Note S47.

Remark: The asymptotics of the Riemann, the von Mangoldt and the Landau functions
are given by

10=8 e X1y (=H LM x I =8 LMIog)° x -
nex |Og n IOg X nex néx

The asymptotics ) (x) © x leads to the PNT, whereby the convergence of t he summand

r

o X
a—

T

requires special attention ([EdH ] 4.1, [LaE ] 889), i.e.

y(xe° x iff l 1"&:[ "L’| Xy=o -
im 8% =im & % log()

Remark ([OsH]Bd.| , 88, Note O51 ). As T(x)=J(e*) is monotone increasing,

f(S) = |Og|Z(S) — r? sxd-l-(x) _ ﬁ( SdT(lOgX) y S:.S' +|t y S > 0

is convergent and

m Zis) __zi0) _

lim | [sf(9)] =- e 20 log(2p)
exists, this holds also for
T(¥)

m _

X- B X
and both limits are identical, i.e.

lim [sf(9)] = fim - T(X) = im 10999 _ iy YO _ j550)

x = logx x = log X

Remark: We note that for

T(logx) = H|og( ) v X271

nex
the inverse mapping is given by ([ScW ] lemma 3.3)

s =T *(logx) = & ”‘”)|og()

With v
log(™) + (log L) = log(%) +log(Y)
n n n n
it follows
J(xy) +& L(n)logn=J(x)+J(y)

s(xy)+1=s5(¥)+5(y)-



Remark: Von Mangoldt proved the Euler conjecture ,i.e. that ([PrK] I, 85)

an.m 1 1 }4—}____:0
=1 N "2 35 6

The convergence of this series is a consequence of the PNT.

The convergence of ([PrK ] I, 85)

() §otlogn__, ie. § gl

n=1 n n=1

was proven by E. Landau ([LaE ] 8150). It cannot be derived from the PNT. In this
context we recall the corresponding comment from E. Landau concerning his proof ([LaE]
8159, see also section Acardi nal serieso, theorem 16/ 1

fi é(it) goes deeperth an the prime number theorem . .. 0

The Landau theorem (**) can be represented in the following form (Tie] 7.1,7.9 )

1= a n(n)log( ) a a"b = ((uv). 4, = lim i ;;11(1/2+it)v(1/2- it)dt

1

i.e.the H_,,- innerproduct of the related functions exists,

i.e.
U( +it) = ”(n)l Hyz (2 it) = : Iog(l/n)l Hopo’
n=: 1 —1
From [PrK ] 1lI, 85, we recall for s>1
1 _gamny o, 2 _511
z(s) e N° S e N N°

_Zi(s) _ e n(n)racga 1 1@

SZ(S) en1 n® uenlnnu

The Riemann Hypothesis states that

z(s), 0 forall s=s+it with 1/2<s <1,

1 zi9
z(9) " sz(s)

has no poles in case of 1/2<s <1

Remark: If the RHis  true, it holds ([LaE ] LXXXI)

i) a mn) is convergent for s >2J2-2° 0.82..

S
n=1 N

ii) 2(s) = logz(s) = a%p.ns is regular for s >1/2t>0.
n.p



Remark: The relative error in p(X) - Li(x) goes to zero faster than xY%eas x- @ is

equivalenttothe RH ( [EdH] 5.1).

Remark: In[ViJ] a quick distributional way to the Prime Number Theorem (PNT) is
provided. In this context we note that the regularity of the applied Dirac function is  given
by (see also Notes S37/38)

dH[di H,, .
where

1
pH[a(x)] =~ =logiC)
X n
and (in a distributional sense)

yi=3aLmax-n * Jix) =4 LmH[dx- n)-

nex nex

For the relationship to the cot(px) - function we referto  [EsR] example 78, and to
the appendix section iCar di nal. seri eso

From the PNT one gets

Yo, resp. Y _yXix, Ji¥ , JX)
X Xx-¢ 1l-c/x 1-c/x x-clogx
where
X1 1, ,.2n-1 ,,
J(X) = x- clogx- 3,.?*'5'09(1' F)+enl (2n)2x . 1+g)
Remark : T he above provides alternatives  in the form
log x X X J(X -
B8 o0, S0 o o
1 1 2 _
X- cIogx+EIog(1- 7) X+|09J;+C 1
resp. D(X) ,:/(x) o y(x)z -
ogx logx X
- J(X) 1 J(X) = X
o | o Z“\'/ o Z“\'/
p(x°li"(x) Iogxl+ 1 qlog [-1 logx 1+x

xlogx "1+ log(2p)

We note the following equivalent critera for the RH:

i) 2(x) = Li(X) + O(/xlog x)
i) p(x)=Li+0(x'>*) , €>0 . ( (H'y, . =H,s.,)
i) ¥ (X) = x+0(/xog? X)
iv) The series
A myn®

n=1

is convergent for  Re(s)>1/2 and
1 _ 25 nfn) .

z(9 &
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Remarks: iv) states that
z(s)

is holomorph ic for Re(s) >1/2; fromii) one can derive that

_zZi(s) 1
z(s) 1-s
is holomorph ic for Re(s)>1/2.
The proof that iii) is valid in case the RH is true, is based on the estimate

. X xlog2x, for 2¢T¢x.
y=x- a4 -+o(2%
I.‘I‘¢Tr T

Putting T =+/x with x2 4 this leads to

2
y(=x+0Wx & —)+oddX) -
r‘\r\tt\/;‘r‘ T
Because of
a4 L=o(a “9.om=0dogx
r,\/\tts/;‘r‘ r|rlevx
and ([Grl ] 0.131, 0.133)
21 14 A (note 5 1 _3).
Ay =orlognt o - a k- D) aiz 17,
one gets
¥ (%) = x+0(/xlog’x) -
With respect to the below we note
1+|r| 1+|r| _ L. 1

a ¢ a

2 =a
rlrledx \f\ /,mw}\f

2. 1_,1‘,‘%/;‘/"- 1

Combi ning von Mangol dt dandau fumctionleadstovi t h t he

. (1+r)L’+.. 2n-1 _,,

Vo(X) +J(X) =2x+c(1- logx) - P a2’ a+9)

@ rnNx . Zn-lx'2”+1+g+c
roor o 5(2n?

1 L
V(%) - J(x) = clogx- log(l- ?) +3

where
1+ g+c =log(20ee)
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Proposal: We propose an alternative Li  -function in the form

yx - CYo(X)+J(X) 5 ¥o(X)+JI(X)
X (o] X 0o _—. o
PO P 2y,()-J(X) 2logx
For the Zeta function and
A _igmmy 29 _ S 11
z(9) nal n® S nea N N°
we capture some related (meanvalue) H, - norm estimates on the critical line s =1/2:
2 _ a1l _ , = q
bl =8 3=20=0  jfch lee=5 100 <
n=1 N n=1 N €= N° U

@41 0 _somn_ o, 81 @ n(n) L v @1 zi9® _zomn_ -
Q%(s)’l_sﬁm_ﬂl no %%'V(s@ ATt Byt s 8 A @

Remark: Arelated  |;*- identity is givenby ( [ApT] 3.12)

éj rgn) a ”(n)logn (IOQX+g)++O(|°gX)
nex
Remark: From the Euler sum formula one gets for x2 1, |g|¢1 ([ScW] p. 197)
i)
a; log(x + g) ¢f
||) énzlxz+q("3( , an‘zzl.}.q(j%
nex 2 n2 x X
i) A logn=xlogx- x+g@l+logx) ' & log(— ) =x+2g{l+logx) °
Remark: In the critical strip the Zeta function is a function of finite order in the sense of

the theory of Dirchlet series ([TIE] V). In particular it holds

e O(t1l4+e)
z( +it) = O(t**logt)

: O(tz7/164

2O, =0l

For the auxiliary function c(s)it holds([TIE] 4.12 |, [IVA] 4.3 ).

_ %SHLUZ it+p /4 € 1 a , M: s-1/2
CO=CoTE %1+o(b“ aa-9m )

Iogic(s)zlogp-%IogiG(l_zs)-%logiG(g) - Iogic(%ﬂt):-Iog(2p)+|ogt+0(t’2) :

Remark [LuB]:
logi(s) =O(logt) for s2 12+d, d>0 .

12



Remark: The following identities are valid (Note S41)
1) ) ~ 4 log(l- L) L L) gL (PrKIIIE3 )
logz(s) aplog(l IOS) aa IO =a—— 4 15gn n
ii) Zi(s) _ i logp _ . s s ([PrKI11I83 )
- = = lo
29 @ e-p-adalogpp
iii) logiz(s) _ zi(s) _ 1 _ 3 1 ‘3 1 ¢ ([Prk] VIl 82, [EdH] 10.6)
s sz(s) s-1 S r(s-r) L 2n(s+2n) s
V) i <1800 - A Linoammie L s 1A 1
agis) %g(s) a (nltogrin -2 (s ry Aiseany
and therefore
. logiz(s) _ .. ) o121 o opr o1,
s TmeeE A a g, Ty a s
Remark :
) L) =8 mdlogs * logn=A L * &mm=o(g (PrCIINEO)
d|n d|n nex
ii) =3 L(n) | _‘”'“ s ([PrK] VIl 82 )
J(X¥) = ,leogn J(X) a||‘3|092(S)X s
|||) y(x)=aL(n) f y(x)— é Z|(S)ﬂ dS
n<x gz
iv) _yom XX ,
y(¥)=x a-ao log(2p)
where ai is divergent , 1 is convergent
B ‘f‘ ‘ ‘1+d
V) ot X X Zi(0) ([EdH] 4.1)
J(X) ?(t)t X a,_ ; an_ (2n)2 20 )Iogx+constant
VI) a L(n)log( )—i ~§ @ﬂ dS X+O(Xe—logﬁ><) ([LaE] Bdl, X”, §51
vii) a—~> L(n) log(n) = Iogzx+O(Iogx) :
With respect to the below we recall from ([GaD] 83 , see also 85 , Notes S44/45/48/49
For o¢re1, y i (020), z=re” the function
6@)=G, (1= 2z _a cosd<y)rk +|é sin(ky') «.
k=1 k k=1 k=1
fulfills the properties:
) G, (0=0
) GO :5. elky =- Iog(2s,in%)+iL '2"/
iii i v
R Ca
v) Iog(Zsin‘%) -5 %‘9’) =ReG()
k=1
Vo EY g S )
k=1
Vi) ey 1 _ 22 for zi D.
G(z)—logl_ —— a

13



It further holds

2 ] U : [af”
9(2 ::a0 a .zl L,(D) HgHLZ(D) :pa(; ol <o
R@=8az L0 lo- F’nHLZ(ngnfﬂl;uO
Remark: The functions of the Hardy space H(e of L,- functions on the unit disk circle
analytical continuation inside the unit disk D can be parametrized by a point of zl D by
1
&0): zé -1

where the functions  e,(/) define a linear, continuous mapping according to

1 ~f(/)'eijd/' =i f(/) ]

(f'ez)zi-|l i 1~I ay
2,0 GZ- e’ 2p cZ-Y
which is an isometry of the spaces ﬁ(G) and ﬁ(D).
Remark: The dual space of H',,=H,, EL, is isometric to the classical Hardy space

analytical functions in the unit disc with norm

trel) = Atee )y
freel, = ey

It holds
i) If f1 H,, then there exists boundary values f(e’) :|rim1 f(re’ )i L,(-p,p) With
Il =lf e,
ii) If

fe/)=au,e”’i Hy,
then its Dirichlet extension into the disc is given by ( z=re")

F@=aure” =& u,z)+@u,z")
-a 1 1
with

BFl; =& plu | =115,

14

Gwith an

H, of



Additive number theory , the circle method  and the Goldbach conjecture

The topic of additive number theory is about calculating the probability of certain

representations of all integers fAindo as a sum of a giyv
of primes or the series of prime powers. The Goldbach conjecture is about the existence

of such a representation (even integers represented a a sum of two primes). The

corresponding probability ( i.e. the number of such representations of n divided by n)

|l eads to the concept of HApositive (Snirelmann) densi't

As a consequence ofthe PNT the number of primdenbkbasya.rfithheeive v e
is a distributional density representation based on the Dirac function, which is an element
ofthe H ,,, - Hilbert space ([ViJ]).

-1/2

The Goldbach conjecture would be proven if the related (Snirelmann) density (which is
concerned with  Fourier coefficients of continuous, periodic bounded variation functions) is
positive and greater or equal than %.

The uniform distribution of numbers mod 1 has been analyzed in ( [Scl ], (]weH 1). We
claimthata Snirelman density of order 1/2 with respect to its related bounded variation
distribution function corresponds to a Snirelman density of order one with respect to its
related uniform ( H_,,, - distributional) distribution "functions".

In other words, a  dditive number theory is the stud y of sums of h -fold hA ofaset A of
integers for h2 2.

Instead of analyzing the arithmetic nature of corresponding sets/sequences of integers

one considers metric structures of corresponding sums of sets of integers. The
Schnirelmann -Goldbach theorem states that every integer greater than 1 can be

represented as asum ofa finite number of primes ([NaM 1), i.e. the set of primes builds a
basis of finite order h of the set of integer numbers. The Schnirelman number is the
number of primes which one needs maximal to build this representation.

The natural density of a set
A={a,<a,<..<a,<..ni N}

is defined by A =|ni—”1a1

if the limit exits. Obviously the density of the set of integers is 1. As
lim —— =0
= logn

the Aasymptotic densityodo of tOhanysawtal narber p mi>he number s
either is a prime number or a unique (up to permutation of factors) product

N

n=p"py..p

which is called the canonical repr esentation of N. Thus the prime  numbers form a
multiplicative basis for the set of natural numbers.

The binary Goldbach problem states that every even integer greater 2 can be

repres ented as the sum of two primes. The tertiary Goldbach conjecture is about a
Schnirelman number 3. The theorem from Ramaré gives a proof for a Schnirelman

number 7 .

The metric in a Hilbert space is defined by its norm. The negative result of [DIG ]
concerning asymptotic basis of second order in case of C° - metric indicates an
alternative metric in form of a Izb - normwith 5 ¢ 0.
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Let A:={n,n,,.n,.} denote a set of integers and x denote the variable  of t he gen erating
function F(x) of a numberthe oretical function f(n). Then

i) X =¢€° is aone -to-one mapping to (in case of 0l A, generalized) Dirichlet
sums and therefore a one  -to-one mapping to the Hilbert scale H,
ii) x=e?* is a one -to-one mapping to Weyl sums and therefore a one -to-one
mapping to the Hilbert scale 12@H,-
The circle method is applied to additive number theory questions (e.g. [ErP1] [LaE] [LuB]
[PrK]). It deals with complex numbers of the open unit disk, while the (number
theoretical) probability calculation requires corresp
Instead of walking along the x -axis to calculate existing relevant representations we
propose to run around the unit circle. As there is an isomorphism between both domains
just the ma pping would not add any kind of value. We propose to measure the windin g
numbers while walking through the circles not per the zeros of the e* function, but per
the zeros of an appropriate hy pergeometric confluent function . At the same time the
AHadamard gapo challenge of trigonometric gap series
an appropriately chosen Hilbert space H,,,on the circle. ~This Hilbert space also appears in
harmonic analysis in the context o f boundary values of real harmonic functions of finite
Dirichlet energy in the unit disk. There is also a #fn
transf or m, confor mal mapping and the ADirichlet space
The AHadanpadr dc hgaa | enge of trigonometric gap series is
certain trigonometric series; the proposed generalized Fourier coefficient concpet in the

framework of (distributional) fractional Hilbert scales addresses the divergence problem
of (pure ly) L,- based defined Fourier coefficients, whereby the Hilbert transform plays a

key role enabling  a distributional trigonometric series representation of the  p cot(ox) -

function. For the relationships to the Hardamard gap condition, the Schnirelmann
density, the Littlewood  -Paley function and corresponding Fourier series ([ZyA] XV) we
refer to the Notes O5 -7, 022 -27,033 -35, S36 -S38.

The cardinal series theory applies Fourier -Stieltjes series and integrals to Littlewood's
converse of Abel's theorem. The cardinal series representations of the Claussen integral
function is related to the Hilbert transform of the fractional part function.

The advantage of the circle method (and the central concept why it has been established)
is the fact that the convergence of all to be considered power series is always ensured,

as the circle method operates in the open unit disk. The central conceptual element is the
definition of the partition number function based on prime number generation power
series in combination with the Cauchy integral formula (e.g. ([PrK ] VI, ([OsH ] Bd. 1,

1.7).

The challenge is that  depending from even/odd and positive - pairwise/negative - pairwise

different even/odd summands ([OsH ] Bd. 1, 1.7), i.e. depending from t he to be
investigated additive problem there is a different definition of the partition number
function.

Hardy - Littlewood [HaG 2] resp. Vinogradov [Vil] applied the Farey arcs resp. major and
minor arcs ([HeH]) to derive estimates for corresponding Weyl sums ([WaA]) supporting
attempts to prove the 2 -primes resp. 3 -primes Goldbach conjectures. All those attempts
require estimates f or purely trigonometric sums ([Vil]), as there is no information
existing about the distribution of the primes, which jeopardizes all attempts to prove both
conjectures.
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Mathematical speaking,t he circle method is about Fourier analysis over Z , which acts on

the circle R/Z. The analyzed functions are complex -valued power series
f=aaz & @<L
0
With respect to the Goldbach conjecture d epending from the number n =23 of summands

for O<r <1 it's about an analysis of

R,(N) = _5 fAiF (@z" @ rez‘”g e NdJ

12=r oGel P

fulfilling according to the Cauchy integral theorem

F"(2)= & R(N)2"

NI'N
The key principle of the circle method is the fact, that for N being an integer it holds
1 - f —
o 2iNa o — el if N=0
EP da :'0 otherwise
which can be reformulated in the form ([Vil] chapter I, lemma4 )

1
rnan — ﬁf (rez,uit)e- 2pintdt , O<r<1.
0

We propose an alternative framework to leverage on the idea of the circle method to
prove both Goldbach conjectures: the concept is about an replacement of the discrete
Fourier transformation applied for power functions f(x) by continuous Hilbert - (H),

Riesz- ( A) resp. Calderon -Zygmund -transformations (  S) (which are Pseudo Differential
Operators of order 0, -1 and 1) with distributional, periodical Hilbert space domains
Hj(o,l). The analogue fundamental principle is

f.(y) _ N
-nf,(x) == > nmdy-- [an](x) —[A fn](x)

for f.(y) := &,cos2my+b, sin2y -

The Dirichlet series theory is an extension of the concept of power series replacing
é ane—xn _ é ane—xlogn .
1 1
The relationship between the Dirichlet series (see also Remark 3.6, Notes S44/45)
f(s)=8Q a,e**" g(s):=§ b,e """
1 1
and the Hilbert space H*,, @,"?on the critical line is given by ([LaE] 8227, Satz 40):
(.0, = lim -2 Ff /2+i)g@2- it)dt =8 ~ab,"
’ -1/2 W 2W-W '
The cardinal series theory is an extension of the Dirichlet series theory.

Remark ([LaE] §152/155):

_Zi(s) _ : a s L(n) _ mn) @5 Iogno
20 29 7O 4=y Za o Nt s
_zis) - 1 . zi(® a _ & mn)logn _a:z mn)@.: L(n)d

ER R U a §%n %E.f?
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The two Goldbach conjectures
Let G, denote the number of representations of an even integer by two primes

G,=N(p,p,l Pn=p+aq).
Then for appropriate constants C,,C, it holds ([PrK] V)

<2 foo

Nag ¢ x| ——<G
gl ‘ log® x=

Iog X

n

The binary Goldbach conjecture states that G,21 foralleven n>4.

Let N(n) denote the number of representations of an odd integer by three primes. Then
N(n) can be represented in the form

_ n’ Aa 9 8 a v /(M- 0
RO=N0)= o D D 0 e/
i.e. for n large is N(n)>0. Vinogradov proved an appropriate estimate for both, the
major and minor arcs , in the form
Rs(n) .. o M
log®n M?;_lp,im log®n
P+ P2 +P3=n
For the major arcs of the binary problem Hardy -Littlewood ([HaG]) showed an
appropriate estimat e in the form
o o n o @
Re(m g?n %() Iogzn logn
with
A 1
m=0@a+ ) @+
= 9 p-1 9 (p- 1)
An analogue estimate of the minor arcs (Weyl sums estimates) in the same way as for

the ternary problem leads to a not sufficient estimate in the form

n 40
R2 n)< <——n
™ log®n

In other words, an analog Vinogradov approach (which is anyway only proving the
tertiary Goldbach problem for n>n,° 34Q0%) for the binary Goldbach problem is not

possible due to purely Weyl sums convergence behavior, i.e. due to a disadvantage of
the framework  being applied, and not due to a delta between tertiary and binary
problem .

In summary, the Goldbach conjecture is true with probability 1 (100%); the more easier
to be solved problem, the tertinary Goldbach conjecture, is proven to be true for
n>n, ° 3.4Q0% only, based on the Vinogradov approach; the same approach can not be

applied to the binary Goldbach conjecture, which is not due to conceptual differences
between the tertiary and the binary problem, but just due to the fact of insuff icient Weyl
sums estimates. In other words , the method is most likely not appropriate to solve the

Goldbach conjecture.
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The number of representations as a sum of two primes for an even n forwhich p+q¢x,
is given by ([LaE1], Note O30)

.. 52 at . x2 x-t dt /1 X
HX)=a6G,= X-P)°nN X-1)—°n —0 =
® na:'l " pa.txp( n°R A )Iogt n log(x- t) logt 2 log®x

St2ckel 6s related appr ¢g) (maittiho ni ifnoprmouvd eemefrotro t erm fro
Landau) is given by ([LaE1 1)

4

o Pt N gn _ p 1. Lyic A P -
e 1057(3) log’n / (n) 105z(3) log® nCO( ) 1052(3 c(p)p-l
where
P , 1020 645
1052(3) 20"
It is built on the sum ([LaEl D
o o n’
4= 4. g
and on the identity
1 ,31%(3 o 9 | 5 .
Y=ao ”%9 w00-8 080 Y= & o D ogxe g0

Jn) n= ( ) '
From this it follows
é{ (G, - Gy) =o.148..c">k§X
This estimate provides no information regarding the error being made when applying the

Stackel approximation formula, as in this sum positive and negative summation terms
cancel each other out.

We propose a five pillar concept to solve the binary (and therefore also the tertiary)
Goldbach conjecture. The  five pillars are

1. The advanced circle method from the above in the corresponding H ilbert space
framework (with generalized Fourier transforms) , building on the z eros of the
Kummer function  (see also Notes S44 -S47, Notes O5 -07, 022)

13
FI(E’E’Z)
2. arepresentation of an even integer as a sum of uniform distributed irrational
numbers ( [WeH]) , building on the zeros of this Kummer function, in the form
ew,, , +w,
2n = 2n-1 2n —_ +
372 B p+q

3. the building concept of asymptotic distribution function s considering related
Fourier transforms  ([JeB], [Scl])

4. The Stackel approximation formula ([LaE1]) building on the Euler function / (n)
resp. the sum of divisors of S,(n) (multiplicative) arithmetical function

(n-l)e} 16 p n .n , p' s
Yogny  1057(3) log®n / (n) 1057(3) log®n

5. ageneralized Schnirelmann density concept in the form

_ a(n i ve.
Yap oy, T=lmn
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The obje ctive is to define for  an arithmetic function ~ h(n) a corresponding distribution
function, i.e. a function v (x) fulfilling

i) for every X the density of integers satisfying h(n) < x exists
ii) v(- 9=v(a)=1

Remark ([ApT ]) 2.13, 3.7) :itholds

s _ s n 2(2)5(")
n n /()
with the sum of the & th powers of the divisors of n
s,(m=&d’
dln
For @ =01 we note
So(n)=d(n) Ea dn°logx ' s:im=j n(d)n(g)
néx d|n
C o lasmef 0 stm= a dntd) )
dln

51(n)=é"ld
djn

Xnex

Remark ([ApT ] theorems 3.5/36):

i) if x21,2>0,a, 1, we have
,gxs ()_z(a 11)X £ where b:ma){l.a}
i) it b2 0,d=ma{01- &}, thenif xz1 have
. pz(b+Dx+O(x%) if b, 1
nacxs"’(x)_{ z(2x+0(logx)  b=1

From this it especially follows

2as5.00=2@+0% 0 las,m=2:0 0000

nex Xnex

Remark ([ApT ] 13.10, 13.11):

) lim su d(n)=o(n”) forevery d>0

logd(n)loglogn _ og2
pi =
lo

i) lim inf . (n)loglogn —c
n- o logn

Remark ([ApT ] 14.11):

i) jm_ 1 s,(n)  for s>2
z(s- ) =2z(s) Qa__1 T ?_1 s
i) 2(9 & (s- a) = és (0 for s >mafil+Re@)}
Remark ([LaE] 858 ): The distribution of the primes ¢ 2x into the two half intervals
@ x),(x,2X) : as it holds
P29 - p() - p(X) = (P(2X) - 20(X)) = - IZIOQZ x+0( Xz )
0g° X log” x

from a certain number X, theinterval (1, x,) contains more primes than the interval
(%0:2%,) -
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The key principle of the circle method is the fact, that for n being an integer it holds

el if n=0
%0 otherwise

1 1 1
e, 9 dx =N dx:=fF*"dx =
0 0 0

With respect to 1. we refer to Lemma 2.4, Notes S44 -S47, Notes 05/6/22/27: The
proposed advanced circle method builds on the zeros of the hypergeometric function

13 1%, dt
F(2=F(E,=,0==fF"—
(2 1(22 ) 2!;?\&

F(2) isrelated to the Fresnel integrals ([AbM ] 7.3.25, Note O38) by
J (9= =2 e +is(24%)] = F(20%) = e) G (- 20%) *
2./x
The zeros z, of F(z) are simple, complex -valued and lie in the horizontal stripe

2n- 3 < w, , = TP
p

<2n—1<yy2n:=w<2n
P

2n-1<wg, =, +l<2n<wmg, =4, +1<2n+1 -

Remark: From

_ | 779% W, ~ 1 W, , + W, 1
W | = |5, +1 1 ﬂ’ﬁ| N _ T = Yon1 2n -
[ ] [ ] on-1"2n 2n 2</2n — <2n+2
one gets
2n=[/2n]= p+q with - i)</ﬁ<(1+i)
4"  2n 4n
We propose to apply  the zeros of F(z) to define generalized Fourier transforms by
u, = Fp(x)/ , (x)dx
i.e. replacing
&) - /.(x) =/ (mX) -
This leads to Fourier series representation s in the form

oA es gy . 2 .
u(x) = na:_lun/ 2(X) —glm C(2w,x) + |S(2,/an)E

which are related to the H_,,- Hilbert space.
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The binary Goldbach problem state s that each element of the set of even integers can be
represented as a sum of two element s of the set of primes. O. Ramaré showed that
Schnirel mannoisatmasin/ist ant

A finite Schnirelmann constant is ensured, if one knows, that all sufficiently la rge even
integers can be representated as a sum of two primes.

A set with a positive  Schnirelmann  density needs to contain the integer 1. Atafirst
glance this sounds like a strange requirement . The probably most strange example for

this is the density of the integers excluded the integer 1, as t he set which results from the
integers excluding the  single integer n has the density

N
n
At the same time the density of a set A fulfills g =1 iff A=N. In [LaE2] the essential
Schnirelmann lemma is proven  going along with a more precise definition of a positive
density avoiding the requirement that 1i Atoensurethat g >0. The density can be

calculated as follows:  putting
eAD) A2 AMG

a, =mnj—=,——=,...,
" |l 1 2 ny

it holds

!ipl a,=a
With respect to the above we note that for the two series
1 An)=2n=[2n]  while ai & (n):=[(ng, , +1) + (ws, +D)] -

Remark ([WeH ] theorem 2): Let  x be an irrational number (we note that the zeros of a
hypergeometric function are transcendental) , then

(n&),; , ModL
is uniform dense distributed.

Remark ([WeH ] theorem 4 ): For two number X,, X, Without any integer linear
relationship, i.e. there is not any relationship in the form

&+, ¢, =1 with | 1,1 integers,

the series
(n&;,n&,) modL
is uniform dense distributed.

With respect to

1
logi(%) ==
a X

We note the following inequalities ( c':=log*3° (L) *° 0.91):

2
0 < cog(-1) < cAoga) < cAogM ) ¢ o <1 for nz2.
w, w, n-1

n

The idea is, to apply the second setasa model componentto define modified density
function s as given in the remarks of the next section. Obviously the value x=1linato -
be-built dist ribution function is essential.for this we recall the (distributional) Hilbert

space framework with  inner product on 132 =(1;¥?)" and its linkage to the Fourier - Stieltjes

integral concept ([NaS]) given by (see also Note S37)

S = Hiv=-id nuy, ()= lm Lz iovw2- a4 tap,

st
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The Landau theorem can be represented in the following form ([TIiE ] 7.1,7.9)

1= a n(n)log( ) a a"b = ((uv). 4, = lim i ;%1(1/2+it)v(1/2- it)dt

nl

i.e.the H_,- innerproduct of the related functions exists,
i.e.
u( +it) =8 "(")l Ho, ' vC-iy=3 200y
n=1 2 n=1 n®

From [PrK ] 1lI, 85, we recall for s>1

L g, Lz 511

z(s) o1 N° S e N N°

Zi(s) :é“ mnee: 11g,

sz(s) &= N Henlnnsu

We consider the following (generalized) Dirichlet series related to the above Stackel
formula:

U = & ) log) O X =ANT 1 s=rei

n=1 n=1

fulfilling the following equation (see also Note S21 , appendix: cardinal series  ):

2

(T)). gz = (X, dD)), = ”‘”’Iog( )-aa ntryn*8G8 L (nn 8

=1 - Cn=1

If the RH is true, one has

XT H,,, 0 XI Hyby

i.e. the Zeta function on the critical line has the same re gularity as the Dirac function.
From this it  would follow that
ul Hoypy -
Putting ([PrK] 111 85 )
n 1
wo=altd o
.‘: 1 nmn) 21 /||

Zl(x) - _1\/7 n1l2+|x <@ ZZ(X) = glﬁ n1/2+ix <g
one gets (see also Remark 3.2)

(z2.,,=8 ,ﬁ(n) ¢ a e. lei H-1/2 )

nex nex

Forall n with 77¢n) , O, it follows

z*(x)'—éiil B
. n:l\/ﬁ ‘n(n)‘ n1/2+ix -1/2
(2Z).4,<2

o
(242 =B ZAtl0gn<E T (29).,2 = aﬂw
n=1
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As

zi Hyo zi Hizu
it follows that

uvl H o0 -

Remark: We note for the Dirac function di H_,, ,and, according to the

embedding theorem , that the dual space of di H_,, ,With respect to the

embedding into the continuous functions
H.p g =Hypg ECO
For
) X
=8 ——log(—
$09:=8 = Flog(.)
it holds
s(xy)+1=s(X)+s(y) -
si(x) = Eé_ mn)
nex n

and the inverse mapping is given by ([ScW ] lemma 3.3 , Note S29 )

s =4 tlog) * X" 1

nex

Remark ([PrK] lemma6.1 ,p.93 ):let F(x) defined for x21 and

G®=3H§WX'

nex

Then it holds

F(Qlogx+& L(n)F(%) =4 ,,(m)G(%) g M)

nex mex mex

With respectto the ath power ofthe divisor function of n

s,(m=ad”

dn

we mention the distribution ([ApT ] theorem 3.6):

/mm=§as4m

nex

wher eby
8 5.,09=2(2+ 0%
Xnex - X
Remark: If ~ f(n) is multiplicative  and the related Dirichlet series
2 f(n)
?:1 n®

is absolute convergent, then

24
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H,norm is

8 M 602Xy = 2logx+O(1)
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Remark ( [ScW ] lemma 3.2) : The product of the Dirichlet series
= 2 b
u9=Aa ' w9=a -
n=1 n n=1 n
is given by

u9aE =8~ "t _ 5 5a 0,
k=1 k nén=k
For the functions
f(X)‘faa ’ g(X)—fab

X nex X nex

with domain  (0,=) the convolution product is given by

IOgXa N - fa r,logk

k<x k<x

(F*9)9 = ff (x- Hg(t)dt =

With respectto 4 . we note that the relative frequency of the occurrence of primes is
log™* n. Therefore, an even  2n has about

(2n )e 1 g
eIog(2n)LJ
represent ations as a sum of two primes. Stackel approximation is about the additional
factor ([ApT] chapter 2)
R [ AT Rt

A ()BT R MY (¢))

We recall the main properties of the Euler function

i) 0 1 , Jj(n)isevenfor n23 , j(p)=p-1
P P
- J() o (M)
) /(nOn)_T"’(? | am- fo_fp n=t
On _T gl 1o n>1
d
ii) a/(n)+an(n)logn 32 (,ng+g)++o(logx) ([ApT]3.12 )
iv) ai:o(x) ' ai—O(Iogx) ’ a@ ¢1 (ApT] 3.12 )
nwx/ (n) r\wx ( ) nex
V) a( )2 <5.7X ’ Xi R+ ([LUB])
nl/( )

Remark: the range of

. g0 if m¥|n forsoman>1
mE md) P g may=0 T -min :

&2 | i 1 otherW|se

is {03}

25



In Note S56 we capture further a rithmetic & related distribution functions
The proposed changes above is about a generalized circle method on the circle in a H”, -

framework. It is based on generalized Fourier series representations leveraging the
method into two directions

- move from the open unit disk domain to the unit circle domain
- move from complex -value power series representations to generalized Fourier
series representations with unit circle domain (resp. cardinal series with domain

R) (e.g. [Lil ]).

It provides an appropriate
- convergence and asymptotic analysis in a (distributional) Hilbert space framework
with inner producton 132 =(I;%?)" and appropriate linkage to the Fourier - Stieltjes
integral concept ([NaS])

S(uv) = fp@v=-ig nuy, ' ((uv)).,,=lim i P/ 2+it)v(1/ 2- it)dt =3 %anbn
st -o w-a 1

- ageneralized Schnirelmann density concept in the form

| S <
- a1 ) = . 12,
im A0 4 g poye, o A=k

1

It enables

- the full power of spectral theory and of conformal mapping theory

- to probability theory ([BiP ) and its Ilinkage to Linnikés disper
method ( [LiJ] )

- aconvergent series representation of the (not fixed, not unique, non -measurable)
ground state energy of the Hamiltonian operator of a free string ( [BrK3] )

- Hardy and BMO (bounded mean oscillation) spaces ( A dispersion method)

- an alternativenf@Difuactfiwmati oy with slightly (but

regularity requirements than (see also Note O52)

a(x) =i2|%afk*dk=1 :’poskx)dkl' | vze
205 P ’

- the Teichmdller theory ([NasS 1)
- Ramanujanés (main) (BeBi, emmatAbO or e m
- theinverse formula of Stieltjes for BMO density functions (Note S33)
the concept of  of logarithmic capacity of sets and convergence of Fourier series to
functions fulfilling ([ZyA] V -11)
én[a"2+bn2]<n
- harmonic analysis by  ([StE])

) W @)

P z+z_1~ 2 —i <o
VT =28 b)) =3 Alda) dxdy= 7ol L
and the related energy of the harmonic continuation h=E( ) to the boundary
- Jacobians of the Riemann surfaces (Bil']), Amuteo windiBode]humber s

topological degree (H. Brezis), electric field integral equation theory
- aglobal unique weak  H_,,,- solution of the generalized 3D Navie r- Stokes initial

value problem with not vanishing (generalized) non -linear energy term
www.navier -stokes -equations.com (Note O55)
1d

EaHUHZM + HquIZ ¢ ‘(Bu'u)-uz‘ ¢ Cq*‘IH-UzHqu

- aconvergent ground state energy model for the harmonic quantum oscillator ,

basedona H,,- (physical state) Hilbert space framwework ([ Brk31)
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Snirelmann's "positive density" concept

The binary Goldbach problem states that every even integer greater 2 can be
represented as the sum of two primes. Every integer N can be represented in the form
n=n+n, in n-1 different ways.

The current state of verification of the Goldbach conjecture is, that it is true for nearly all
even integers, i.e. ([LaE] V), let h(n) denote the number of the first n even positive

integers, which can not represented as a sum of two primes, then there exists a constant
J <1 that
h(n) h(n) _

im W —g . le ) _g

n- o n‘] n-o n

l eading to Schnirel mannos ])iThe oosréspogding Zeta fucopt ([ Sc L
identities are

3l-n o 3 1 o for a>1 .
ay al
The result above states that for at most 0% of all even positive integers the Goldbach

conjecture is not true.

The complementary set of all even integers which cannot be represented as a sum of two

primes has the natural (Schnirelmann) density zero, i.e. ( [OsH] Bd. 2, 21)
sW=o 470
og” x
Snirelmann's "positive density" concept is about:

- The set of primes build a finite basis of the set of all integers.

- The set of all sums of two primes unified with the numbers "0" and "1" has positive
Schnirelman density.

- A subset A of the set of all integers unified with "0" and finite Schnirelman density > 0
has a basis of finite order.

The Schnirelmann -Goldbach theorem states that every integer greater than 1 can be
represented as a sum of a finite number of primes (INaM 1.

The Schnirelman number is the number of primes which one needs maximal to build this
representation. In other words, the set of primes builds a basis of finite order h of the set
of integer numbers.

The tertiary Goldbach conjecture is about a S chnirelman number 3. The theorem from
Ramaré gives a proof for a Schnirelman number 7

If the Snirelmann density of the concerned series can be proven greater or equal than
1/2 then the Goldbach conjecture would be confirmed.

Remark: A Schnirelmann densi ty corresponds to the probability to pick an element
N, | A out of the total numbers of integers. The concept builds on the simplest function

of period 1 ( [WeH] )
e(nx) = e for all integers  n.

For any sequence a(n) =a, and any integer Mit holds
1.0 .
lim =& e(m@,) = fp(mydx=0"
"N 0
It also holds the following inverse : Iffor anyinteger Mit holds

& e(m,) = o(n)

k=1
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then the numbers a, modl build a uniform dense distribution on the unit circle.

Vinogradovds solution concept it buildt
handicaps to prove appropriate estimates in this framework are due to corresponding

estimates of the Weyl sums and not due to Goldbach problem specific challenges.

We propose to apply an analog Weyl sums based concept replacing the exponential
function by corresponding Kummer functions and its related zeros (see also Notes
013/16 resp. Notes 06/07/027).

From [P rK] II, 84, we recall the theorem of Brun, i.e.

If pi goes through all twin s prime pairs, then the  following series is

convergent

41
pi Pi

Remark: We note that the binary Goldbach problem is inaccessible to the dispersion
(variance) method as given in [LiJ] X.2.
which is asymptotically equal to the number of solutions of the equation

nl(n' pl) :nz(n' pz) v M, 1 where M, P P, are primes.

Remark: The dispersion method in binary additive problems is about the concepts of
dispersion, covariance, and the Chebysev inequality ([LiJ
the independence of events relating to different primes. The dispersion method simply
takes for use a finite field of elementary events. Its application to concrete binary

additive problems involves a great deal of rather ¢
calculation of the dispersion of the number of solutions). The construction of the

umbersome computations (the

The main difficulty is the calculation of a term

fundament al i nequality for the dispersion

estimation of double trigonometric sums. The latter one s

omehow corresponds to the

double integral representation of the Hilbert -transformed Gaussian function above.

We propose to define generalized variances with respect to the appropriate

distributional Hilbert space framework applying
corresponding generalized (distributional) Fourier series representations ([EsR
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The fractional part function and the reciprocity of the Dedekind sums

This section refersto ([RaH ] 68 ff)andto ([TIE ] 2.1 with the Zeta function
representations

z(s)=-s:7?('sr(x)% » O<Re@)<1
Z(S)zs}?(s]c(x)g » - 1<Re@)<0

for

A m

f(X)':((X))':lé[X]- x+7:'n' sin@my) _ Sr()+ +1 for x not_integer .
' ' % 2 0 2 for x integer

The function  f(x) is periodic with period 1 and odd, i.e.
fx+D)=f(x) -+ f(-x=-f(x
Now let h,k betwocopri meintegers. Then the fADedekind sumo i s

(k)= adkf(fﬁc'ﬁ(h—k"ﬁ

whichisinv irtue ofthe periodic 1 of f(x) does notdepend on the representatives of t he
residue system modulo k chosen. One sees at once

s(-hk)=-sh,k) , s(h-k)=s(hk)

Moreover, let h be an integer such that h@®, * Amodk). Then h,m runs through a full
residue system modulo k as m does, so that

= a R0 Y= 4 1B =snk

mmodk mmodk
Finally, since
4 1()=0

mmodk

we have also, for k>0 |,

st =2 &0 28 ("= 7r (™
m:lQ m:lk
The reciprocity formula for Dedekind sums is given by

h k.1
hk)+s(kh) + == —— + —+——
s()s()412<121121k

The Dedekind sum satisfy the relation
ah

1K G K) =k +1- 280 8mod@)"
e
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Some extracts fro m the theory of Bessel function

This section is recalling some Bessel function properties from ([WaG 1), which are related
to the above. Especially the Lommel polynomials seem to provide appropriate alternative
polynomial orthogonal systems to the Hermite polynomials. Its relationship as phase
functions to the Kummer equation is provided in ([ViB .

As a kind of baseline reference we note that ([AbM ] 9.6.7/8/9)

K00 = (P8 K00 -logx + 27K,(22°Gn) G+, (29° 7
2 X

The Bessel functions are related to the hypergeometric functions by ([AbM ] 9.1.69,
9.6.47)
_ 7 oy _Ze™ 1 ,
J,(22) _mﬂn +1-2%) _7G(" +1)1F1(n + 2,2/1 +14iz)

2z
ze F1n+%,2n +142)

_ 7 2y
1,(22) ‘moﬁ(’“’lz ) _G(n+1)1

The modified Bessel function are linked to the Zeta function theory by a RH criteron from
Polya ([EdH ] 12.5, [PoG3 ], [TIE] X):

If f is a polynomial which has all its roots on the imaginary axis, or if f is an entire
function which can be written in a suitable way as a limit of such polynomials, then , if

o

ey o 0%
i HK S

0

has all its zeros on the critical line, so does

o

i< SH(x)f (log x)d—xX

0

In the light of the above this is about a representation of the Zeta function on the critical
line in the form  (see also lemma 3 below)

X ()= sz“xe'xH(e'zx)lFl(%,g,- 24dx
For the following we also refer to the concept of sums of squares to prove that certain

entire f unctions have only real zeros ( [GaG]).

Inlemma 7 below we provide the Mellin transform of the second kind Bessel function,

which havenot been found in |iterature.

Lemmal ((WaG ] 13-21, 13 -24):

I) hzm\]n(zt)ﬁzé G(I?) ' 0< Re(2n)<Re@+§)
B "t 2Gn- m+l) 2
ii , 3
) (= et s rip) - [Reb]<Reem )<
ii) “yeme (op At QU 1) Gmren)
AT @7 =77 2

0

It especially holds

nﬁs\lo(zﬁ)g_ qs) )

0 Cary | AwebTeee R o 2

1 1
G(§+S) G(E‘ s)
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We note the iden tities fort he critical lin e:

‘G(iﬂt) =

; 4 gt )‘ v QA+it) =it Git) -

coshfx) smh(t»()

Lemma 2 ([Grl ]3.512):

“Nsinhx _1 (m+1/7 ns Re(m>-1 ., Re(m n)<0
0 osH’x

“coshem() 4”’18( an_@) » Re(m®2n)>0 , a>0
, coshf™(ax ) a a a

Lemma 3 ([Grl] 3.541):

}ﬁ'”sinrf’(bx)dx- Logmonoy Re@)>-1 , Re(m>Re(b § » Re)>0
f 2% 2b 2

Lemma4 ([WaG]1l3 -3):

I7+IIS
'hmj ae?" dt_72p (/7+m oy Re(m+n) >0
o t 2p"Gn+)) h 4p?

Lemma5 ([Grl] 8.335):
225

G2s-1) = Wy

Q(s- f)G(S)
Lemma6 ([WaG] 13-72,13 -75):

) K, (0K, (x) = 2h<”+m(2xcosh) cosh((m- nt)dt= 2}](", {2xcosht) cosh((r+ n)t)dt

i) % M2A(x) = % [J,f(x) + Ynz(x)] = %:ﬁ(o(ZXSinht) coshgt)dt

i.e. especially
K2 (X) = 2/, (2xcostt))dt = 2K, (2xcosht) cosh(en)t)dt

Kg(x)=2:71(0(2xcosh)dt ’ %[Jj(x)+Y02(x)]=%h<0(2xsinht)dt'

From the above it follows
Lemma 7 :

s
X, dx G(E

1
£ K2 == R 'R =
ﬁ< KiQ) ) “ e 3% €e)>7

Proof: With lemma 1 one gets  for Re(m* 27)>0

ﬁ(z’"K (x)—-Z;;ﬁ(Z’"K (2xcosh)cosh(en)t)dt? 2;';’?<2”’K (2xcosrt)cosh(en)t)—dt

0 00

—2my2"'K @ )C‘(’:Sh(rgz)t) d;/dt 2G (7 p2m2 g s 20, - 2m)

- 2m cosh(@nt) dy o _ 2 3 poms QU2 G(m- 21) .
2my Ko (2y) oy ydt G(m2 a2
Putting 2m=sand 27 =(1- s)/2 one gets from lemma 2

G(f)G( ) ) 1.
X %_ s 7_ 2 3 P2 ' Refg>=
ﬁ( Kls( S =2 ﬁ( Kls(x) 262 )2 ) > o &2 es)>-

*(s)
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Putting

ci(ax) =- :r:f‘zi‘dt ' si(ax)=- :fxf?dt
it holds
Lemma 8 ([BeE]):
i) Hlci(a9)] = - sgnxGi(ax)
i) H[sin@x)J, (bX)] =cos@x)J, (bX) , 0<a<b , n=0,12,..

Remark ([ViB] ): M, (2) (seelemma6i) isnon -oscillatory . For the corresponding phase
function a,(2) the parameter n=°1/2 plays a specific role (as m=4n%=1), i.e. it holds

a,(2)° z-% ' a(2°1

J,(2) = \/gsmz" M,,(2)sinz Yy2(2) © - My, ,(2) cosz

whereby aj(z) and 1/aj(z) show same asymptotics.

Putting ([WaG] 7.2, 7.35, 13.75, 13.8, 15.52, 15.53)

1
@7 - BY@? - F)..@ - 2n-13) 1 XN
2% no 1 . n

G(n+§- n)

(n,n):=

S o A C/ L VP

n2n T 2n

the modified Bessel -Hankel functions v, (x):= arctarﬁ\@(x)/J,,(x)] and

(X = p[J (X)+Y2 x)] 2cosp /ﬁp 2xsintteostt coshen Ydrdt © Iwa 130.2n- 1) gz 2
n=0
resp.
1
2@2"(2()07 : 180 (2n-2) 5" 1
P n=o 4 G(n+1- n) nxt
2
are linked by the relation
X/ 5, (X)dY,, = dx
with a log(x) - singularity at zero ( [WaG] 7.2, 7.35, 13.75, 13.8, 15.52, 15.53 ).

For Re(s° 27)>0 itholds

rf<72n<x)— ﬁ<“ Selfm(x)/m( RIS
whereby
1, 1. 2
;/ 2n(;) = ao P2, X
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Because of
gagmuﬂ=£bg&mmmnmnmy@mqmmm>o
for x>0 and 0<27<1 the function  x/ , (X) is increasing with
0-% ,,(x)-1
i.e. %, (x) defines a distribution function for 0<Re@n) <1.

For the special case 27 =1/2 we refer to lemma D4.

Putting
an - X212 1 X
f,,(X)=x"€e 1F1(§- 2n,;2n+];3)

one gets from ([Grl]] (7.643), lemma D3)

B (9SINGY)dX = \/gfm(y) for Re(n)>-1/2.

For the special case  27=-1/4 one gets

Foaa(¥)=x 22 Fy(

N[

_ 1,
R

alw

Nlw

Eul erds investigatixpa resp. jiRHg are gverois (PMaG] 15.5). U  sing
the abreviation j_k =- jk to write the zeros of Jo(%) in the form {jk}ki 200 the zeros of
J,(2/x) aretakingtobe  a,,a,,a;,....i.€. {a} -
For {ak = jk2/4}kiN it holds

3,2%) = JO(Z\@Q a2

n

In order to determinate the smallest zeros of 30(2&) Euler differentiated logarithmically
to conclude
d S Soa m
- &Iog JO(Z\/;) = na:_1 anl- ™ = %n%oiatm*l
provided that M <a,, and the last series is absolute convergent.
Puttting
a2
sm+1 Ca al. a m+L

and change the order of summations results into

o d _d@Vx) _ M "
dXJo(Z&) = Jo(2%) 85

resp.

N Kk
5 S oa lexo-

=1+8s5.X"=1+3 4 —é-u
m=1 n=1k=1 Jn @ln

3@

d -
- &[IogJo(Zx/;)]— 2
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Based on this formula Euler obtained a system of equations, which allow to calculate the
S and from that to deduce the smallest values of a,., i.e. Euler calculated

s,=1, s,=1/2, s,=1/3, s,=1148,s,=19/120, 5,=473/4320, ¢ .
to deduce e.g.

a, =1.445795. a,=7.6658. a,=1872..

We note that

slzéj—:l
is the only integer value for the s,
With respect to the Mellin inverse formula (INiN ] 890) we note ((WaG ] 17-3,17 -6, 19 -
41, see also 19 -51 for the associated function )
) 1+ 23_ Ja(nX) =1
n=1 1- x
ii) 5 _ 1 S g -
1+29 Jn(nx)—ﬁ 1+28 (-D"J,(nx) =0
i) L2h = L éjz(nx):ﬁ(4+xz)
n=1 " J1- X n=1 " 16 1- )(2
) e Rt e,

3,(23.,(2)

sinz) zn+n

and therefore

pl2 1
fido(2zcost)dt=3 =3(2)

ROEAA- D=5 = 3 -

With respect to the relationship to the Dawson function we note ([WaG D

(¥ =0(x ")

In [DoG] the relationship s between elliptic Theta functions, corresponding  Mellin resp.
Laplace transforms and  the functional equation of the Zeta function are given. Its enables
series representation of  the Bessel functions in the form (seealso [WaG] )

12 1 2 1.0 1 2 p 2 e 1 19 X .
—ad(Mm=-+q (M ==-+28 ——— ' 28 K (W==+2pq é———=- ———utg+log_ - log(2p)
25 0 2 0 X m=1 X - 4m2p2 n=1 0 X m=1 G Ix% + 4m2p2 anpu 2

The underlying ellliptic Theta function representation and ist related periodic (with period
1) Laplace transfo  rm are given by

o (v)’

1 -u- 21242 1 . 2
J(v,t?)==+3 €™ cospmv)=—=Fe !
B > % N;a

n=- o

2\ — 2 Sjarcy 2vs 2(n+ 2(n-
f3(V,S). + a 2 2 2 -'-a.e(nv)s+a.e(n\1)S
m=1 S 14 S nrel nrel

The special case n=0isthe well known Zeta functional equation with the corresponding
Laplace transform
_coths

f,(0,s%) s
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From [WaG ] 19-41) we recall for X positive and integer N such that
@n-DYp <x<(2n+Dp

the series representation
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The sum of a function, its related Mel I i nds i nv eandstle cgdinal belies m

This section refersto (NIN ] 889 ff) and [WhJ] . For the later one we refer to the last
section of this paper  and the theorems 3 & 4 (85/6) and the corresponding theorem of
Polya (87) .

If two function s are connected by the relation
Dy(2) =9(z+D)- 9(9 = f(29)

f(2) is called the difference of  g(z) and g(z) the sumof f(z. The sum is analogous to the

integral, but whereas the integral is indeterminante only to the extent of an arbitrary
constant, any function of period unity can be added to the sum. The Bernoulli polynomial
(where the indertermination can be removed by assuming that the polynomials vanish at

the original) are the given by the relation

B,(z+)- B,(9=nzZ" .

Mel I in6s r el at ed idconeeenedswih the applizdtien of binomial coefficient
series ([NiN ] 849) in the form
w=dag "
n=0 G n=x
Because of
axo _ ax- 1o ax- 19
88, 080
it holds
_& . &1y s AX-1§
D\N(x)—go%é@n 8 D]W(X)‘Eoe‘"?]ﬂ@”()‘)
whereby J(x) is an arbitrary periodic function with period 1. Putting

f0=58 )'DWOK ' g=4 () DWn+yoe * K<t

n=0

then it holds for X\<1, Re()<1/2

=L gXy o RS
F09=1-,9C) 9(x) = 9(1+ D
Based on MeIIinﬁs([Nim}/?gB@(ioa) formul a
F9=— “d o7 (B)x'dt
(Z) 270 0 § aﬁ: )X
it follows the
Theorem 1 (Lindeldf) : the function  f(x) is analytical in the stripe Re(x) <1/2; the function

g(x) is analytical in the stripe Re(x) >-1/2
Theorem 2: If for Re(x) >0
4 ax- 1§
W =4 OWQZE g
=0 ¢ n =z

fulfills the conditions of §86 (1) (to ensure convergence in the considered stripe for

Im(z) - =) and (for the corresponding Bessel function properties we refer to [WaG 1)
lim —— W(n)
-z n
then
f(—)
IS SO S PR
1+x _ng(x) 2,a'a'r|]sin(pz) i
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Given that W(z) has a representation in the form

W(2) = f§ (t)t* 'dt

Oan

then, putting

xS AU)

f(x).-o_(mdt ! g(x)-nl—dt

there is a representation in the form

LW(z) =V,(1- 2) +V,(2)

sin(oz)
with
1
1 1 Sl
V@=pporid T V@ =ttt
0 o 1+t

The Claussen integral

51 Sln(%X) 0¢x¢1

<g b

J(2x) ‘*W(ZD() = ﬁOQ(ZSln(ﬂ))Olt a

is the natural candidate with resp  ect to the above, absolutely convergent cardinal series
and series in the form ([AbM ] 27.8, Note O28)

1
5390 o Hog(2sin(et)dt =0
n=1 n 0

It provides the appropriate properties

%J(Zx)z.](x)- J@-x -

From ([Grl ] 4.322 we recall ( Re(n)>0)

o dx_ 1409 s Z(2n) o
Floozsintox" % éogz A
resp.

1/2 1 = o ﬂﬂ
ﬁog 2sin(920" & 6'092 m & s 2n)}

Now we consider

r}l(t)tZ ldt =27 I'}I(Zt)tZ dt= ZZHF][ﬂog(Zsmw ) @*'drdt=-2° ﬁog(ZSln(o 2))(]%Z ldt)de

=- ZZﬂﬁOg(ZSin(p D)GE(Z'Z - t%)dt =%U|%21‘)“1 log(2sin(p D)(j‘—[ :

This leads to the

Lemma:

! 1Y . df 1 1 ¢ 1 2 z@n) o
W(2) = (Ot dt=— f{2r)" log(2sin(p §)—=——-dog2- —+§ 5+
) [‘J() 22? Y log(2snie 3) t 2z z+1§ 9 4 (z+2n+1){]
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The irrationality of the Euler constant g

The objective of t his section is to provide a framework to prove the irrationality of the
Euler constant , while leveraging on several conceptual elements of this paper.

For the approximation near s=1 for the Zeta function one have ([BeB] (17.16))
Ilmgz(s) —||mgs 1 - 31- s)Ij

where g denotes the Euler constant.  In [BrT] a characterization is given with respect to
the modified Bessel functions (see also Notes S22,23). From [BrR ] we recall

; dx
X (29— =0
(I;'{e ol X)] X
Following same arguments one gets

e - 9] % =g

The formulas above can be also deduced from the

Integral theorem of Sonin ([NiN ] Bd. 2, §28): let f(t) be a function with the following
properties

) lim  (t) logt =0
ii) f(0)=a
i) fif i(t) log tdt = A
0
Then
° dt_° aqde
Afw- acos(at)]T = f{f(t)- ae ]T =afg+loga)- A
0 0
Ni vends prisifrational,duilds on the fact that p is the smallest zero of the sine

function. The function
z=¢€* =cosx+isinx

fulfilling the identities

é” =cogp+isinp=-1 resp. € =(-1) .
We note that  {sinpgnx};,, converge (only) weakly to zero in L,(0]).
Schnirelmann density concept also builds on this simplest function of period 1 ( [WeH] )

g(nx) = €27 for all integers  n.

Hadamarddéds representation provides a | (sep&lsoB28t ween t ho

(2o Iog(‘w)z A

x(2)=-e 2 O @- —)e
z(r)=0
One concept ionalideais ,t o | ever age on , blildingrow the zproso & of the
hypergeometric function
13 1% ,dt
G(9)=F (E E'Z)_ZO ﬁ
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All zeros z, of G(z) are simple, complex -valued, lie in the horizontal stripe and satisfy the
asymptotic formula ([ SeA])

logln, » n- °«

)

15 L

. 1lé Pg
= —J | —_J1
z, =2pn + 2§og@p\n\)+ e O -

It especially holds

Putting
J 0= = [e@) +is(2d0)] = 6anm0 = etz G- 200
the corresponding eigen  -functions are given by

Ja09=/ () -

We note the following properties  (JAbM ], [LeN ]) p. 29 ):

i) C o1, 1 o1, SiNCEY 1 g =12T o 1. COS@X)
RS2 ,5 " C@ =5 e jar ST T S@ =S L0t S0 =

i) 2Jxf (%) = [0(2&) + iS(zﬁ)] = G(2pix) = L;erf x@- i)
i) 2% (%) =[c@vx) +is@Vx)]° 1;;+ xez‘“é’iil@o"gz”' Y 2;X)n+1 (OIF] 3.1,4.2)

\Y) erf (Vo) = 20xG(- ) erf (Jox(L- 1) = 24x(1- D)G(- px(1- 1))

V) / = i i = i ) = - -
/09 = S lo@d0 vis@] = S-e(@ = o pa- i)
D e 52(2&)=1ﬁs—di”2(§”‘§2@2) -
With respect to the Dawson function we note Ry b i c kxpanentially accurate

approximation ( [RyG] )

zx 2 1 . . 1 '(X’E)2
FX)=e“fgdt=—Ilm § =e " °
[P \/,E”' ®k_oddN

For the transcendence and algebraic independence of the values of Hypergeometric E -
functions we refer to ([ShA 1, ([SiC D).

We claim that the smallest zero of G(2) and the Euler constant fulfill the prerequisite of
the theorem 4 in ((WeH  ]),i.e. thetwo numbers X, :=g,x, :=w; are without any integer
linear relationship, i.e. there is not any relationship in the form

L& +1,0, =1 with | || integers.

As a consequence then  the series
(n&;,n&,) modL

is uniform dense distributed.
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Because of its beauty  (in case the appropriate function has been built) , but also to
emphasis the challenge  to construct this  appropriate auxiliary function , we recall the
Nivends pr oof

Assuming that  p is rational, i.e. there is a representation in the form
p=>
q
the appropriate  function is given by ([ToF  ])
l n n
fa(x):==x"(p- a¥)
n
Putting
P
I, = Af. () sin(x)dx
0
F9:= £,00- 2+ 10 - 0.+ (11
the following properties are valid:
i) p

-P_P
Y 29 2

) £,09= (2= %)
q

i treiz 0=y 0
iv) F)=f (- f@+f@- O +(-)"f@ is a polynomial of degree 2n

V) f9©=0 for k>2n.

It follows from i) that |nT N for n2 n,, because of

2
By o
n4q° n-=

.. p _

0<l, ¢p0n(7q)—

On the other side the integral of |, is given by
l,=F@)+FOT N

With respect to the hypergeometric function G(x) and F(X) we note (K2, D1, [McJ ])

Gi(¥) +xG(X) =€ , kG*P(x)+xG¥(x)=€ , k21

Fi(xX) +2xF(x) =1 , F&Yx)+2xFO(x)+2F*9(x)=0 , k2 1.

The numbers €, are obviously related to the exponential and the Gaussian functions.

The proofs to show the irrationality of €, are based on those frameworks. All attempts
to prove the irrationality of the the Euler constant based on same framework failed so
far. The idea is the leverage on the Kummer function based Zeta function to overcome
this challenge. Of course, this requires corresponding representations of the Euler

constant in this framework. As an intermediate step to go there we propose the Bessel

function framework and its relationship to this constant ([ BrR]).
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A Kummer function based Zeta function theory
to prove the Riemann Hypothesis

Dr. Klaus Braun
August 10, 2015

The Riemann Hypothesis states that the non -trivial zeros of the Zeta function all have real
part one -half. The Hilbert -Polya conjecture states that the imaginary parts of the zeros of
the Zeta function correspond to e igenvalues of an unbounded self -adjoint operator.  The

function  2x(s) /(s(s- 1)) is only formally the transform of the operator ([EdH] 10.3)

22 @

xS - ﬁ( ea f(nx)lpx- ﬁ(sG(x)dx ﬁ( b+ )]dx—ﬁ( eae"” o’

This operator has no transform at all astheintegral s do not converge, due to the not
vanishing constant Fourier term of the Poisson summation formula. A similar situation is

valid, if the duality equation is built on the fractional part function r(x) ([Tig]2.1) , S20-
S27). We provide quasi-asymptotics ([VIV] .3 , S26) of the (distributional) density
function (the theory of periodic distributions and Fouri er series is e.g. given in [PeB ], see
also note S20 )
XPO) = (o9 ot = - xlogi(-—~ ) =2 Frd wipe =2 pd - e ot
4S|n ) 272 2, 2

Replacing the Gaussian function f (x) and the fractional part function by its Hilbert

transform s enables an alternative Zeta function theory. The Hilbert transform of the
Gaussian function is given by the Dawson function F(x)(lemma S17) , i.e.

e e 2 13 ,
fu (9 = H[e”‘ ](X) = 2{?”’ Sln(2.w<y)dy=TpF(Xf) ZXQFl(lf -pé) =267 XG0 500)
with (lemma D1, S1 , [AbM]6.1.12 ,[EdH] 12.5)
S5 2 i (x< and d - o-
PG = b 01co 2k +1) TEOG(k+3/2) dx[&F(&)]x- .°
The key differentiator is about the constant Fourier terms .i.e. fo)=1, 0= £ (o) enabling dual

Poisson equations  ([DuR]). The corresponding Mellin transform  of f,(x) suggests a related
fiHi | bert transfor med g (s@aembya (lemma A8, iSé)n

G/(9 :=%p AR A - x)dx—— ﬁ< F0 =G tangm) =G tanpd- )
enabling a corresponding alternative Zeta function definition for Re(s) >1 in the form
29 [F (L) = e S Fmof
o €1 ux

The relationto  the Riemann duality equation (and the corresponding relation to the
Riemann error formula ([EdH] 1.13 ff . with respect to the term P(s/2)) is given by

Xx(S)
(s-1

=P P QO =0t MIFIOfE 9 G 9o

(lemma 2.4, A6, S7,S20, O29) enabling a n alternative (error) power series function
([EdH] 1.8, 1.13 ff. ) with appreciated convergenc e behaviorand an alternative
li(x) = - x,F,(L1- logx) - function given by

li°(x) = Ei" (log %) 1F( |ng)oi whereby b(slepl(%,g,- x)df;‘LGf’:) :
A corresponding alternative theory based on the fractional part function is given . The

appendix provides notes to enable proofs of the Goldbach conjecture and the
transcendence of the Euler constant.
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8 1 Introduction and Notations

The Gauss-Weierstrass function
f(x)=e”
in combination with its Mellin transform
_: S 2(: -s/2, E .
M[f](s) =T =070
and its related Theta function
g0 =4 e =1+28 &7 =142 ) =2 e ¥ =1g(2) =q07)
o 1 X o X X
provides the foundation to derive the Riemann duality equation. Putting ([EdH] 1.3, 1.7)
Q) = Sl iz~ S
W1- s): 2(5 Dp G(z)

= M[OF i()il(9) = @- IM]X IS = (- 9@- IM[F](9)
resp. ([TiE] (2.1.10), (2.13), see also Note S20)

-s S

pz G5
s 1-s
2

p? G

s-1/2
)

c@- s):= =tsps sin(% (1- 9)Xs) = O(f]

)

the Riemann duality equation is given by

X(9) =W1- 9)z(s) = x(1- 5)
resp.
z(s)=c(1- 92(s) -
Writing ([TiE] (2.1.13))
X(2):= x(% +iz)
one obtains
X@)=X(-2) |

The functional equation is therefore equivalent to the statement that X(z) is an even function
of z.
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The approximation near s=1 can be carried a stage further; one have ([BeB] (17.16))

Ii_ml‘ie.z(s) -
1
where g is the Euler constant. We emphasis that
296 )p 7 = fy (9 &
2 o X

is only defined for Re(s) >1. This is caused by the non-vanishing constant Fourier term of
the Theta function representation, which is derived from the Poisson summation formula:

o o n?

s e _ 1.7 PlE

dem="ge .
-0 X o

Remark 1.1 ([EdH] 10.2, 12.5): In a special way the functional equation
x(s) =x(1- s) seems to be saying that some operator is self-adjoint. A special case

is given by

dX %ty (0 i C.
2x(1- s):ﬁst(X)?X:ﬁX H(X)7x forall sl C

o) 0

Formally this gives the identity
s dx
2x(1- s) = s(1- 9K q(x)?’

which indicates that the function 2x(s) /(s(s- 1)) is formally the transform of the
operator

() xs- }‘?(‘Sq(x)dX'

0

But this operator has no transform all, as the integral does not converge (for any s),
due to the not vanishing constant Fourier term of the Poisson summation formula.

The integral would converge at @ if the constant term f (0) = E(O) =1 is absent. If one
would find a representation in the form

2X(8) _was p g AX
s(s-1) - p(l 7 X
whereby all integrals of
sy (0 X smesg () X = ALEEL - 1yadx
E?( q (¥ ” g?( q (¥ < On%gxg 67 (X)H ”

converge (in the critical stripe), then the underlying integral operator on the critical line would
be self-adjoint, which would answer the Hilbert-Polya conjecture.
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Riemann approached this issue by the auxiliary function ([EdH] 10.3)
H(x) = Zé (2p%n*x* - 3n*x¥)e ™™ >0,
1

which is calculated from g(x) by

_deé.d  o_de.d _1°.
H09 = 5 @ T09g= o & dx["(x) 1]%,1

The Theta function has a pole at s=1and the series representation (Poisson summation
formula) has a constant, not vanishing Fourier term. Riemann derived a sophisticated Fourier
series representation of X(Zz) using the technical split [EdH] 1.7)

X(S) — ﬁ/ (X)[XS/Z + X(l— s)/Z]Q(_ 1
X
1

s(1- s) .
From this formula he obtains (([EdH] 1.8, [TIiE] 10.1)

d

X(2) =X(- 2) =4 V" ix

[x3’ 5% i(x)]cos% log x)dx-

This leads to the corresponding power series representation of X(z)
1 .. 2 1,
f— t) = J—
X(2+I) gOaZn(S 2)

with

1
a ~log x)*"
/4(2 g x)

a,, =4 i[x3’2y i(x)]dx’
1

(2n)!  dx
from which he concluded his famous statement

é Diese Function ist fir alle endlichen Werthe von t endlich, und lasst sich nach Potenzen
von tt in eine sehr schnell convergirende Reihe entwickeln. . . i

This series representation of x(s)as an even function of s-1/2 ftonverges very rapidlya

Remark 1.2 (([CaD], [EdH] 12.5, [TiE] 10.1): By considering the main term resulting
from the Fourier integral representation of x(1/2+it) Polya approximated x(s) with a

fi f a ket tuncon:
XU 2+1) =X (U 2+1) =40[Ky1112(20) + Koy 12(20)]

where K, (&) is the K - Bessel function defined by

o

K, (@)= f§ <" coshew)dw -

0

He proved that K,,,(2p0) has only real zeros and that therefore the sum of Bessel
functions has zeros only when t is real.
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Lemma 1.1 (lemma Al11): If in the critical stripe there is a representation of convergent
(Mellin transform) integrals in the form

o

g@zﬁ%m%¥ﬁ“mn%

0 0

then there is a power series representation of g(s)

1 .= 1o,
Q(E'Ht):a ay,(s- 5)2

n=0
with

2, = 76

0

(logx)*" dx
@2n)!  x

A Hilbert transformed function does always have a vanishing constant Fourier term (lemma
H2). As the Hilbert transform is an isomorphism with respect to the L, - Hilbert space the

original and transformed function are identical in a weak L, - sense.

The Dawson function F(x)and its relationship to the Kummer functionF,(a,c,- X) is given by

(lemma D1):
— _Xzi‘z —_ 3 2\ — - x? 1 3 2 _u~-t2 H
F(X) =€ f§ dt=xFRL-,-x) =xe" R(Z,=,X) =f§ sin@xt)dt -
o 2 2'2 5
Putting
ét?e' O<t<m
w(t) =i
i O teo
the integrals
o t? o
~ W(t)
[ (X):= pwv. dt ., | = dt »a>-1
X=p n(ix 2(X) an[_ix

are given by

Lemma 1.2 ([Gaw]): It holds

i) lo(X) =- e *Ei(X)
”) =. F(\/;) — p -1/2L‘ :1 “,.,e"z
I1,,(X) 2\/77 & p-V-Oﬁ I th ™ p.V._pﬁ dt

i) 1 (x)=-2JpF(X)

45



Remark 1.3: The structure of the Dawson function relates to the concept of entire functions
of genus >1 (lemma A7), which plays a key role in [PoG] ([CaD])):

The Laguerre-Polya class LP of functions consists of entire functions having only
real zeros with a Weierstrass factorization of the form

azle®™ bz? (A) (1_ i)ezla"
a

n

where a,a, b arereal, b2 0, ( is a nonnegative integer, and the a are nonzero

real numbers such that a a;? <o .The subset LP’ of the Laguerre-Polya class
1

consists of all elements of LP of order <2:
Can the function X(t) =x(1/ 2 +it) be realized as a convolution X(t) = (G* dF)(t),

where G(t)i LP" ? This would prove the RH.

Definition 1.1 (Hilbert transform):

1 ou(y) 1°.u(y)
(Hu)(x) :=lim = —=Ldy== nx—dy
9°P\X.E\LX' y P Xy

Corollary 1.1: The Hilbert transform of the Gaussian function is given by

H [e- . ](Y) = 2\//77F(y) :ylFl(l'gl_ yz) '

Remark 1.4:In[BuD]i t 6s shown that all zeros of the
Hermite polynomials lie on the critical line.

Remark 1.5 ([TiE] 2.7): The self-reciprocal property for the sine transforms of

00 = - r f Fo(y)sin(a)dy

is applied for the fourth method to prove the Riemann duality equation. Putting

. 11+s X
X)=x"t R (s- =, —— - —
/(¥ 1Fi( > 2 2)

the counterpart with respect to the Kummer functions in the critical stripe is given by (lemma
D4).

i) 5 (y)sinby)dy = \E/ , Re@) >1/2

0

) hls(y)sin(w)dy:\/@'ls(x)  Re(e)<1/2 .
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Lemma: The Dawson function F(x)and its relationship to f, (x) and the Kummer function are
given by:

fH(x)=He'”*’](x)=zpr(JEx> zfpe*"ﬁa‘dt prlF(Lf pe) =207 F<~px) anf(t>S|n(2m>dt

from which it follows

A 1. (nx)’i.’“'—X i(zw) 9 s 929+ Re® 1

o ©Enm

Proof: For a>o0, 0<|Re@)| <1 €SP 0<Re@ <1 it holds

G(S)

G(S) (,0),~

0

S)

n( sm(ax)

The function
z(s) cos% s)=z(1- s) sin(% S)

can be continued through the whole s-plane as an entire function ([RaH] VI, 41).

n< & (= 20ACA G sm(sznodtu— 2p(20) & R ser?< sm(x)o'—xfi’g

n=1 0 nle;) n=1 0

s . % B o Ot
= (20)" G(s)sm(%s)ze?n Hne“tl T+ o<Reg| <1
=1 b

1-

TSG(S)G(l_izS)Sin(%s)z(s) y Re(s) >1-

S-
2

s
i v,z d
21:(4[0)

=(2p)" SG(S)SIH( s)Z (S)p y

The Nyman criterion ([BaB]) is based on an alternative Zeta function representation in the
critical stripe ([TIE] (2.1.5) in the form

z(s)=- sﬁ(sr(x)d—xx =- sM[r](- s)

whereby r(X) is the fractional part function defined by ([TiE] 2.1)

ey =1 5 Sin2p R
r(x):={x}:=x [x] : 6}7;3/7
Againthenon-vani shing constant Fourier term-of the Fo
adjoint integral operedheHilbait-Polya cohjectiure.gheiHitbesrtu e t o pr o
transform r,,(x):=H[r](x) of the fractional part function 7 (x)is given by ([BeB] (17.13),
lemma H3)

_ .5 COS2p R
fH(X)—ell o0

=- %Iongin(p()i L (0D

whereby it holds (lemma 2.5)

1 - —
I =l =5 and £ ©@=0.
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The (distributional) Fourier series representation of the cot(px) function ([HaH]) is given by
25 . 1
s =—Q sin@p B =—cotph
P P

which can be formally established by differentiating the equality

5P R_ L gosingi L0
Topn p

leading to the above divergent (Ramanujan) series ([BeB] (17.12)) .

The H_#1 Hilbert space is the same as applied in [BaB] to reformulate the Beurling-Nyman
criterion.

The essential properties of the Hilbert transform are stated in the appendix (lemma H1-H3).
The corresponding properties of the Hilbert transformed Gaussian and fractional part
functions are summaries in

Lemma 1.3:

1. The functions f,(x), f(x)i L,(- ge) are norm-equivalent with respect to the Hilbert
space L,(- go),i.e.

(f’c)Lz(' ga ) :(fH ! C)Lz(' ga) " Ci LZ(- QD) ! Ie HfHLZ(- qo) :HfHHLZ(- ga)

and itholds £ (0)=0 .
2. The functions r, (x), 7 (X)I L%(0) are norm-equivalent with respect to the Hilbert
space L}(0)), i.e.

_ " 1 # H
(7€) o = (s ©) oy " €1 L2(0D) €. |r

=|ry

5(0) 1500

and it holds £, (0)=0 .

As a consequence all Fourier series properties of the Gaussian and the fractional part
functions (e.g. the Poisson summation formula, which guarantees the Theta function
property) are also valid in a weak L, =H, - sense for its Hilbert transform.

The corresponding Poisson summation formula g, is given by
4y (x*):= afu(m)=23 f,(m =2, (x®)
-a 1
whereby g, q,, q, C7H are norm equivalent with respect to the L,(- g=)- norm, i.e. it holds

lal=law 1=l =a.] -

48



Definition 1.2 (Distribution valued holomorphic functions, [PeB] chapter 1, §15):

Let z- g, be afunction defined on a open subset U E c with values in the distribution
space. Then g, is called a holomorphic in u & c(or g(z) := g, is called holomorphic in

U E C inthe distribution sense), if for each ; i c? the function z- (g.,/) is holomorphic
in U E C inthe usual sense.

We recall the identities

_ 1 a2Sy uf s _S sz Sy_1 sop Sy, _1 55 S .
mltke =2pa) + ML xile =2p e =2p PO Mt N9 = 2o e anls)

With respect to the Riemann duality equation one gets the equalities

1
2s(1- s)

M[19z(9 =MIfla- 9za- 9= o) + x5

ML 1929 = MIfJa- 92@- 9 = a0+ -
The resulting distribution valued holomorphic function in the critical stripe is the transform of
the self-adjoint operator

a o

- YW (9dX= fKE Y ()dx

0 0

S

X

The corresponding series representation on the critical line is given by
I 1
Xq (E'Ht) - I.Iaz.oazn (S' 5)2

with

a2n = F?(l/zy H (X)

0

(logx)*" dx |

2n)!  x

whereby the first term of the y  (x*) - series predominates for x large (lemma Al, [Grl] 3.952,
4.424).

It holds
RS-
resp.
i,aM[fH](%”t) dt:iﬁfﬁ(X)dX'
[EdH] 9.8:

2
dt° logw *

= dz(}+it)
2w, 2

Lemma 1.4 ([Grl] 8.334): It holds

X X_ p
GG ) =— —
N sin(%x)
1+x, .,1- X p
G )G = —
2 2 cosgx)
GXG1- %)

1 1 =cot(px)
G(E + X)G(E -
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§ 2 Special Kummer and the cot(X) functions: central properties

The key functions of concern of this paragraph related to the Gausian function
f(x)=e”
are two Kummer function, the Dawson function and the error functions

13 x e 3
) =€ RS

1F1(E,E,X

F():=e* pg dt’

[¢]

erf(x):= fF'dt
0

which are related to each other by ([LeN] (2.1.5), (9.13)), lemma A5):

» 13 2 (-1 k 2k+1
o0 =X G 5 =B 5 Gy
k=0 .

FOO = xRS ) =8 (D
P 20 130.(2k +1)

With repsect to the asymptotics of exponential integral function we note the corresponding
(more appreciated) asymptotics of the error function ([OIF] 4.2, Remark 2.3)

1BOL(K- 1) .

IL 2 e x* o
erfc(x) = fg " dt° Eka:o(- 1 (250

In this and the following section we present the central properties of the Hilbert transforms of
the Gaussian and the fractional part function. Both tranforms provide Zeta function
representations in the form

X = 96 P ) @ (9= 1 9@ OM[ X0l =xA- 9)

z(-9)= sM[r](s) =M [— Xr i(x)](s) .

The Mellin transforms of both transforms are proposed alternatively to define an alternative
entire Zeta function with same zeros. As the Hilbert transform is a convolution integral this
enables corresponding RH criteria.

Related to the Gaussian function we propose the following replacement:
0l =- __SyengSy - oM SE 2 - 6 =0 2 &S
MDX i9ks) = - sM[f (0ke) = - Zp7'*6() MIT 0kS) =20 O @GR (L - pAY9) = G(Z)tan(%s>

leading to

X (9) = (1- s)p-7G(§)tan€s) &(9)
where
x(s)x(1- s) .

X (s)x (1- s)=4p si- 9

The Mellin transform m|[f,, (x)](s) follows from lemma 1.4, K1, A2 because of

o sa ge(“s)e(l;zs) for - 1<Re(@)<1.

° q Bee 4 d d -
PACKFES -0 =200 T py 2 RS Yyt 2 2
o X 2 o 2 y 2 G(l-E)
2
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We note that lemma 1.2, [AbM] 7.1.15, it holds

1 I S PP S 1 e F(Hx),
ZfH[ ] Feo= Jﬁ"max X" 2x EXYTT X

where x(" and H" are the zeros and eight factors of the Hermite polynomials. In lemma

A17 we provide corresponding Lommel polynomials properties. Lemma A6 and Note S25
provides related li(x)-function information. In lemma K1/K2 and D1-D5 we provide related
Dawson function data.

We aslo note the Mellin transform properties

Lemma 2.1:
i) M[hil(s) = @- sM[h](s- 1)
i) M[- xhil(s) = sM[h](s)
ii) M[(xh)il(s) = @- sM[h(s)
V) Mihile)=(s- 9(s- 2M[nls- 2 -

The above addresses the second element of our fiTriple H™ solution conceptd(Hilbert scale,
Hilbert transform, Hilbert-Polya conjecture) replacing

e - H[e‘XZJ

€' 1 ,.8ete FOX _1-Fih)_ d 1, FiVx)-
X Jx gﬁﬂ X 2x¥? dx Jx©  2x?

Due to the asymptotics of the Dawson function the approach also provides an alternative
- Ei" (- x)- definition enabling, e.g. the RH criterion

p)-li ’ x) = O(& logx) = O(x%+e)

whereby ([LeN] (9.13))
li () =- %, F, (11- logX) -

Putting
)= ? =0
a 1F1(1-§~‘ t)

n(x) = rf(ﬁ)? = ﬁthdt
one gets (see also lemma 2.8 below)

&s) = ficdm- G (9) = fidn = Gls) G- peotis) = &) Ao ;as)

)
with

G(9@& (- 9) =p* G5 AH1- 9) -
For s=1/2+it, ti R, it holds ([Grl] 8.332, see also lemma A18)

‘G(%Ht)z
i)’

G(9=- ipG(%Ht)tanh@t) =%c“;a(% +it)
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The Atriple HO concept can also be applied to ex
models, e.g. Bose-Einstein statistics and the related Planck black body radiation law,

Boltzman statistics/equation,Yukawan potential theory, magnetized Bose plasma, Landau

damping, non-local transport theory (Notes O52 ff).

With respect to the fAradiation tofttearsport o topic
In thermodynamic equilibrium the emission spectrum should be a Plabnckian and the matter

will also follow a thermal Mexwellian with temperature T. In many cases one finds that the

Maximilian describes the particles well, but the radiation field is not a Planckian at the same

temperature.

The author® positont o t hat A i is,chatihss is due o the ignlialance of the
Planckian and Maxwellian at temperature T, which canbeovervo me by t he Atri pl e I
concept, i.e. replacing the Gaussian by its Hilbert transform.

Remark 2.1: The Fourier-Hermite expansion is given by

f X a |aka V Cevlz
( ) ‘\/7&?. nb?.n ﬁ ( )
where
2 d 2
H,(\=(-D)"e ’z(al)”e 2

and %2'0 E|:f‘-]—|n(v)Hm(v)e"’2’2dv: d.n

Remark 2.2: ([GaG]): The Laguerre polynomials

La() (a )n F(na"'l,x)
satisfy the orthogonality relation (a >-1)
h—i(X)Lﬁq(X)Xae_de:Mdnm y nm=012,... -
n '

0
From [[AbM] 13.6.9/17/18 we recall that , F,(- n;b+1, 2) is a polynomial of order n related to the

Laguerre polynomials in the form
n (b)
F(-nb+l2)= o). (x)°
The relationship to the Hermite polynomials is given by

" 3 X2 ..
2n+11 1( )O-I2n+1(x) :X1F1(' n:a:;)o'lzn(x) '

The relationship between the orthogonal Lommel polynomials the Hurwitz theorem, the zeros
of the Bessel function of first kind with the Bernoulli numbers and the function tan(l/ x) is
given in ([[DiD]).

The relationship between the Lommel polynomials and G (s) is provided in Lemma S14.
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We summaries a few properties in the context of the li (X) - function (lemma 2.5, lemma A3-
6, lemma K2) in

Lemma 2.2 It holds

|) G(g)ZH(S/Zdﬂ’I:e'ggl'x)C)e%l(l*'%)'l
ii) e* and 1,:1(1.3)() are the two independensolutionsof the related Kumme©ODE
i) Ei(x)oel résp. |i(x) = Ei(log x) = - x,F, (L1- logx) © ;(x for x- =
iv) 13 ,,.1 € resp. e for x- o
F1(2121X) Cl\/;+c2 F(l' x) C.l +C2\/7
) All zeros of F/23/2,2) lie in the horizontal strips(2n- 1)p <|Im(2)| < 2
Vi) WASYlIYyyQa QNJ\LENJ Fdzy OliA2Y

a\de1

W Diogt z@ i act+ )fcds

Remark 2.3: From [OIF] chapter 3, we recall

The identical asymptotics
Ei*(x) ::21’:1(%;21)()0 EI(X) :_nﬁet;dt fOI’ X- O,

enables an alternative definition in the form (see also lemma K2)
kg _ 13 o X
li"(X):= Ei" (logx) —21F1(2,2,Iogx) oax

Lemma 2.3 ([HaH]): The Riemann duality equation is equivalent to the partial fraction
expansion

. o 1 2x .5 1
icotiox)=1+23 e =—+22 .
(D() 21 D( p ka:-l XZ + k2

Lemma 2.4 (lemma A4): For the zeros of ¢ 1 8y and g3 ) itholds:
1'1 2’2' 1'1 2’
1. all zeros of both functions lie in the horizontal strips
(2n- Yp <[Im(z)| < 2m .
2. g2, has only imaginary zeros, while for the zeros of 1|:1(]1§ 2) it holds
B APY 2’

Re@@) <-1/2 -

Lemma 2.5: (lemma A17): it holds

)

) rpm(zmna)——m G

1
2

i) ﬁsin(2,o<t) f (t)dt = xlFl(l'E;-mz) :
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Remark 2.4: For corresponding CF representations of the Kummer functions see lemma
CF1-3.

Remark 2.5: From [BeB1] Example 8, p. 64 we note:

B X 30 X A (K™
1':1(]“2’2)@1]"2’ 2) ao (2k +1)(4k +1)!

Lemma 2.6 (Appendix lemma D1): Let i_ :=x ., denote the inflection point of F(x) and
F (x) :=+/xF(x) . Then it holds
i) ir =15019752682. , Fi(X)+2xF(X)=1 , Fi(x)=Fx[/2x- 2x]+/x

i) F () is monotone increasing in the interval [O,iF[, and monotone decreasing in
the interval [iF , u[ With  jim 2xF(x) =1-

Lemma 2.7 (The Duffin-Weinberger Dual Poisson theorem, [DuR]): With

=1edy gm=trdy=L
F=FQ) 2 g0 =FO) =~ F()

the function 7(x) satisfies the condition
@+ i L,©8)-
X
Therefore the series
Foo=a 2D fod  6e=4 ta)- ppodt
'_al X X !;f ' 6} X7 X EV(

converge almost everywhere and also in the L, (0,2)- norm on finite intervals. The functions
F(x),G(x) are a pair of cosine transforms in the sense that

— - d "_sin@oxt) = , = :E",,sin(Z/M) —
almost everywhere.

Proof: From the definition it follows

W+ D=+ ) = FQI=(r DR

By changing the variable x =1/ it follows with lemma 2.4

1,dx _ 1 dy .
1+ )f(x)dx Vx +—)F( ) T+ () <o
rf n( n( y y
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Remark 2.6: In quantum statistics the function
1 5
X)=——=9 €
S e}o

plays a key role Bose-Einstein statistic, which is about bosons, liquid Helium and Bose-
Einstein condensate. For large energy E (whereby x = p(E- 7)) the distribution converge to

the Boltzmann statistics. The Zeta function representation in the form
PR dx
Z(9)E(s) = [ M/(X)?
0

builds the relationship to the Planck black body radition law (whereby the total radiation and
its spectral density is identical). Putting

1.3 o
709:=- %R and ;o= & £
n=0
leads to an alternative distribution in the form
s s ey OX L
mZ(S)G(S) = EP( W(X)?
For s=1 both representations lead to divergent integrals, but the later one is proposed

alternative and better fit into the above Hilbert space framework. At the same time it is more
appropriate to the quantum theory, as this is all about Hilbert space theory.
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§ 3 The fractional part & the cot(x) functions: central properties

The key functions of concern of this paragraph is the cot(px) - function and its related
(Ramanujan) divergent Fourier series representations ([BeB])

cot(pA = 2a sinQo B

which can be formally established by differentiating the equality
. COS2p R

- lIongin(m) =5 — -
Y 1 pn

The following is about z - function defining equalities based on the fractional part r(x) and
the cot(x) functions in the context of appropriate Hilbert scale framework and its relationship
to the Riemann duality equation and the Bagchi formulation of the Nyman criterion.

The Hilbert scale framework and corresponding appropriate self-adjoint integral operators
are defined as follows:

Definition (H1-H3): Let H =L(§ with G=S'(R?), i.e. Gis the boundary of the unit disk. Let
u(s) being a 2p - periodic function and §j denotes the integral from 0 to 2p in the Cauchy-

sense. Then for ul H:=L,(G with G:=S'(R?) and for real b Fourier coefficients and norms
are defined by

1. ;i y — ¥ .
Uy =5, 000 o, =& Jau, |

Then the Fourier coefficients of the convolution operator

(Au)(X) = - flog Zsinx'—zyu(y)dy = fk(x- yu(y)dy + D(A=L.(G

are given by (Au), =k u _1

2"

The operator A (convolution integral) is linked to the Hilbert transform operator (convolution
integral) by

(AU)(¥) = - fiog 25in% du(y) = ﬁ:otx'—zyu(y)dy: (HU)() -

It enables characterization of the Hilbert spaces H_;,, and H_; in the form

oo =y, =(Ay w)o <af s Ho =l v = (A Av)o <)

where
V), =(Ay, AV), , (WV)_ 4, = (AU V), 5 (Ui Vi), = (Aui, Avi), = (HU, Hv), -

The classical derivative can be replaced by a corresponding Calderon-Zygmund singular
integral operator (see Note 023/32, lemma 2.10 below) in the form

uW)ydJs

ol
slul)== A 7
2

0- 2p 4sin
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From [Grl] 3.761, 6.246), we recall related Mellin transforms
Lemma 3.1 For a>0 it holds

G(S)

HIgn@gy v O<[Red) <1

1.9 sm(ax) s) i?“y(ssi(x)% =-
0 0

, 0<Re(e<1

i< cos@x?) c:(x =

o]

czf) > s) ' l:f}xsci(x)dfxX =- %cos% s)

and therefore

- _ Q) ) , _ Qs PR
M[sm](s)—e(l_ S)M[coﬂ(l s) M[coﬂ(s) - S)M[sm](l S)

The Bagchi-Nyman criterion ([BaB]) is based on the Zeta function representation in the
critical stripe ([TiE] (2.1.5) in the form

Z(S)z_s}?(.s,(x)%z_sm[,](_ g  2-9=(s- YM[r)s- D =M[ xri(0]s- D

dx) .

(note:  zi(s) _
(9 |11xy(><)

In the classical sense, formally only, by partial integration one gets
2@ =1 9 =g bl oS = neo S =l 9°

whereby r(x)i L(02), rix)i H* (01 (lemma H4, Note S21) is the fractional part function
defined by ([TiE] 2.1)

i 1500

r(9:={x=x- [ =% 2 5'np2p R

1

The H_#1 Hilbert space is the same as applied in [BaB] to reformulate the Beurling-Nyman

criterion. Thenon-vani shing constant Fourier t edjomtof the s
integr al operator o building issue than in case o

For the Hilbert transform r,(x):= H[r](x) of the fractional part function 7 (X)it holds ([BeB]
(17.13), lemma H3, Note 024)
= COS2D R R_

ra(¥)= a— - ;IogZSin(@()i L(01) K, (0)=0.

Its formal derivative leads to the (distributional) Fourier (divergent (Ramanujan), [BeB]
(17.12)) series representation of the cot(ox) function ([HaH]) in the form

—a sin@o B = —cot(pA)I H* (0D -
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Note: Putting

s

G(L

I

N

)
= 2(2p)* sm( 9G1- ) =2(2p)" cos@s)G(l s)tan@s)_ (1 5
)

c(s) = p
p

Nl

NI »|N

c'(s)=c(s) cot('% s)
it holds
z(s)=c(9)z(L- 9)

whereby
c'(s)c’(1- )= c(s)c(- s) =1

Lemma 3.2 For 0<Re(s- 1) <1 it holds

Is 1-s

. o G( =)
M[- r,(0)s- D)= Mea'cosz'””” a9 ozﬁ w—2 o::(s)oZE
;G- 9 ) ° )
Proof: With lemma 3.1. one gets
ML )s- = Meéc°52p s 2 1“@(5)(15'”(35»2(5)
(2/7) 2
and therefore
Ls 1-s
= G( )
M- 7, 0ks- D = 2p a9 ﬁ 20—2- Oc(s)oZE
Y gy ad)

2

Remark 3.1:
From [IVA] (A.26) we recall

Let g(x) be a function of real variable X with bounded first derivative on [a, b]. Then
the Fourier expansion _ % sin@p R
Bls](x) = af Ton

fulfills the equality
fBls 1) gi(x)dx = 2;';1 fp(x) cos@p rdx’

From [LaG] we recall the quote from D. Hilbert
Aan (unbounded) normal operator D of an Hilbert space H is self-adjoint if and

only if its spectrum Spec(D), which is a closed subset of the complex plane, is
includedinther eal Afiared with this, Siros), we
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Lemma 3.3: The Mellin transform of the (convolution) distribution
- S(X) =-rj(x) = cot(px) = 2'5_ sin@o ®) i H*,(0)
1

defines a corresponding distribution valued Zeta function in a weak H* (01)- sense (in the
critical stripe) given by
M[- ri (x)](l- s) = cot(%s) c(8)z(1- 8)=c'(9)z(- 9)
resp.
M[- r,L(x)](s) = tan%s) c(l- 9)z(s) = ¢"(1- 9)z(9)

Proof: With Lemma A8, 023/32, [Grl] 3.761, one gets

M- rila- 9 = 2K Z4 sinzp 100X = 2(20) 14 ,711.:r”msf‘siny“'—yy = 2(2p)* G- 9c0sE 9201 9
0 e u 1 o]
whereby
c(s)cot(%s) :2(2p)$'1cos(% 9Gl-9
Putting
2,9 =M[- ri()a-9-
one gets

z,(9&,1- 9=2(9C(1- 9
and therefore

Corollary 3.1: z(s) and z,(s) have the same zeros.

Remark 3.2 ([TiE] 4.14): It holds

. 1 Xt
z(9=84 —-
© % n® 1-s

+0O(x*)

uniformly for s2 s >0, t\ <2px/C, when C is a given constant greater than 1 . The proof of
this theorem is built on the identity (see also [McC], [BeB] 5)

L 119" dz
—="— AZ°(-pcotz)— -
na;xns 25 N (- p cot(pz) .

The function p cot(x) is holomorphic except the pole z=1.

The distributional Hilbert space H’ plays a key role in [BaB], where the Nyman criterion is
reformulated within a purely functional analysis weighted | # - Hilbert space framework.

Remark 3.3: The considered Hilbert space in [BaB] is about of all sequences a={a |ni N} of

complex numbers such that

with %(twncn%

A " <
n=1
which is isomorph to the Hilbert space H_, @,
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Remark 3.4: Let

then it holds

21 _p?oie. gl 12t
Wl—qu—z gt b

With respect to the concept of summability of Fourier series and related double infinite
regular matrix in the form g, we refer to [ZyA] IlI.

Theorem (Bagchi-Nyman criterion, [BaB]): Let

g=frh=ia.f 07 k=123..

ik y
and G be the closed linear span of g, . Then the Nyman criterion states that the
following statements are equivalent:

i) The Riemann Hypothesis is true

i) g1 G.

Remark 3.5: With respect to the concept of summability of Fourier series and related double
infinite regular matrix in the form g, we refer to [ZyA] IlI.

Alternatively to the double infinite matrix g, above, we propose the analog defined double

infinite matrix
q ::{rH(n/k)\n :lZ&---} for k=123,....

As it holds
(UVv).y, ¢ HqucM

the inner product (u,v) ,,, is defined for any ui I;*, vi I =1,.

o l

Putting (see also Claussen integral function, cardinal series)
u=X@gl I,* , v=-log2sinEA)=dFi L,
leads to a weak H* - representation of the X(t):=z(1/2+it)- function on the critical line in the

-1/2
form
(9. G").12 @X, )12 = K AF). 1, @K, Fiy)o = Ko i) =X Sy ) = (SX] ) -

As |;"'?is dense in |;*with respect to the |;*- norm, g belongs to the closed linear span of

AT

e
_|-1/2
— 12

gl 1y

which fulfills the Bagchi criterion.

For a corresponding Ritz-Galerkin approximation method (which contains spectral,
collocatonand! i near i nterpolation approxi mati on
approximation behavior we refer to [BrK].
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Remark 3.6: Assuming that
(*)

a1 (al +[a))<
1

then there are continuous functions F (t),y (t) such that (appendix, (WhJ])
a = fjF(t) ’ (an+a,n)=21r~pos(mt)dp @ (& - a,)=2finEntdy (t)
i.e. a, = fjcosnt)dF (t) +sin(ntdy ()} -
0

A cardinal series in the form

sin(uz) eaﬂ € a, a, (o
A DT+ —0y
p e2 n= 1 fz-n z+nyy

represents an entire function (appendix). Given a function f(x) in the form

f(x) = Hcos(m)dF (t) +sin(oxt)dY (t)}

the series
sm(p()ef(O) g (yfim, fe )uﬂ

V% _1 |X n X+nyu

is (C,1)-summable and its sum is f(x). If (*) is satisfied, the cardinal series

sin(x) €a, | € a _ a,ie
— & A DUy
P EX = 1 x- n x+nyg

is absolutely convergent. As a prominent example we mention the series representation

/o cot(ox) —f+a (—+—)
n=1 X+n
We consider the Fourier-Stieltjes coefficients for the Claussen integral function (Notes 028,
035), i.e. we put

dF (X) = 7,y (X) = - %Iog(Zsin(px))dx - 5 SOS@AY gy (x) = 0.

K
It holds ([Grl] 4.384)
€0 n=o0
ﬁongm(p()cosQn,m)dx il 0>
fon

1 1

flogsin(ox) sin(2npx)dx = ﬁog sin(ex) cos(@n + D)px)dx =0

resp. 8, =0 a, _i-
%= 2n

The corresponding (absolute convergent) cardinal series (see also lemma A10) is given by

1 sm(@()a() 1 :
X PX o n= 1()

The related orthogonal (Adi scolg2simxuandtete i nt egr al s

logX(x) - functions are given by ([NiN] Bd. 1, §87, 89, Bd. 2, §21)
- po osfiox)si(px)dx = 1
EF 'O( 2n

The modified Lommel polynomials provide a corresponding orthogonality polynomials system
([DiD], [ChT] 7, 1I).
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Remark 3.7: Assuming that

i
4= " (a) +fa,))<
n=2

there is an analog cardinal series representation (appendix, ([WhJ]).

We note the relationship to the Ramanujan formula ([EdH] 10.10, lemma A10), e.g.

z(s) =

sin(s) i Si.ellogx+g+ a z(n+1)(- x)”ﬂdx ’
s i y

0 n=1

For the relationship to the Mellin inverse theory we refer to [NiN] Bd. 2, §21.
From the theory of Fourier series we recall that for a bounded variation function 909 with
domain [a’ b] it holds (see also Notes S33, S36-38, S47)

g 9n-0*e00*0) _ 4 fp(y) cos@oky)dy

a¢ntb 2 k=- Bg

For the Claussen integral ([AbM] 27.8)

W20 = 20 ffog(2sin()dx =4 w , 0¢x¢1

it holds a related (additive) equality to ([BrT])

cotxz%cot(g) - %cot(p_zx)
in the form
“w2p) =w(p) - wp(- )

Remark 3.8: We note that with respect to the L%(0,1) - inner product the adjoint (in a
distributional H* , - sense) Fourier series representation of the (distributional) Fourier series
representation of

s = Eé sino i) = 1cot(uﬁ)
P P

is given by
A _ 1
s —4511nsm(2pm§— 75"12('0'6)
Remark 3.9: Let g0)=—L >0
4sin®(px)
then it holds

- log(2sin(x) = - %Iog(4sin2(,a<)) - %Iog(g(x)) :
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The relationship to the concept of quasi-asymtotics of distributions ([VIV] p. 56/57 [PoG3],
[SeAl] is given in

Lemma 3.4: It holds
1 gi(x)
—X
2 g

Therefore g(x) is auto-model (or regular varying) of order - 1, i.e.

=-p<cot(t»<)t -1

i 9@9 1
“e gk a

With respect to the Tauberian theorems this results into the asymptotic

P ffott)dt = - flogi(2sin(at)dt = - log(2sin(x)) +log2 @ ﬁ%dt =logx+log2

1/2 1/2 1/2
ie. - log(2sin(px)) @ogx

which is equivalent to ([EdH] 12.7, Tauberian theorems)

- h(ld[log(zsin(p())]: :?’y('ldx :

12 2
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§ 5 H/, & Hardy space isometry and Dirchlet series
Dirichlet series of type /, are of the form

d9=4 ae’"
1
where {/n}m, « Is a sequence of real increasing numbers whose limit is infinity, and s=s +it
is a complex variable whose real and imaginary partare S and t.

Local properties of certain Hilbert spaces of Dirichlet series and the properties of the COt(oX)

function resp. the related G(X) function (lemma S3) to Dirichlet series are given in [OlJ] and
[BaB1], 4.8 lemma.

The relationship between the Dirichlet series theory ([HaG)] and the distributional Hilbert
space H’,,, - norm is given by [LaE] §227, Satz 40):

Theorem 40: The Dirichlet series
f(9=Aae™ gO=abe ™"
1 1
are convergent for s>- e(e>0). Then on the critical line it holds
o 1% . . a1
(f,9).0,, = lim 2W-Qf(l/2+|t)g(1/2 it)dt al_ naﬁbn
whereby for h, (y) := a,cos2my+b, sin2my it holds

_ 2. h(y E
0= N, 4sin*(p(x- y)) y

Putting
X(t) = z(% +it)

we recall from [EdH] 9.2, 9.8:

|2(s +1t)| is bounded for s 2 1,t 2 2,
logt

X@)| =04 and %/ ﬁx(t)\zdto logw*

In the context of the above Dirichlet series this then leads to the identities
1 21
1|'I.nl EﬁX(t)‘zdt = HXH-lez = glﬁ = Z(l) o
and
1 _p,

2 -
X[, = a 7= 2@Q="

enabling corresponding convolution representation of corresponding singular integral
operator ([CaD]).
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*

The dual space of H',=H,,, @}? E L, is isometric to the classical Hardy space H, (see
also note S48) of analytical functions in the unit disc with norm

“(re) 17 “( ”)Zd .

s (re” = re’ /

570, =, A ey

It holds

i) If s" 1 H, then there exists boundary values s (e”)=lims"(re” )i L,(-p,p) With
r- 1

|s°

W ElsEn

L

i) If 5* ()= a u,e”/i H,, then its Dirichlet extension into the disc is given by (z=re” )

U@ =4 urle” =(E uz)+@ u,z"

with

2 5 2 |2 .
pulp=aplul =|sl,,

The dual spaces H', E L, (» =12, »=1) are proposed as appropriate framework for

Schnirelmann densities to apply probability methods to analyzing additive number theory
problems ([KaM]).

Remark 4.1: From [ZyA] XVIII, 11 we recall (see also Notes 37/38):
- f
a an[a2 +an] <o
n=1
then the set of points of diverngence of the trigonometric series is of outer
logarithmic capacity 0.

- Let O be an open set, and dm a mass distribution concentrated in O. If

i) 1 1 forall x,
2 Pog(Zsln(z(X y))dny) ¢ M

D 4o eti]
n=1

i) n(x) is any Borel measurable function taking only non-negative
integral values,

then the partial sums s (x) of

a a, cosix) + b, sin(nx)

n=1

. 2p
satisfy % Pro (0dLy) € M + A

where A is an absolute constant.

Remark 4.2: In harmonic analysis by

1 2 a1, 2 1 Jw-/@f
T = Zanta +b) = Al b=y W07 agpaz <o

we  |W- Z|

the energy of the harmonic continuation h=g(/) to the boundary is given.
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Remark 4.3: There is a generalizing Hilbert scale definition to the /- norms (definition H1),

which can be applied to the generalized Dirichlet series theory for corresponding
distributional representations. It is defined by the inner product resp. norm (t > 0)

XV =a e (xj )/ )
resp.
HXH(Zt) =X -

Obviously it holds x| = ¢ c(a,t)dx|, - On the other side any negative norm, i.e. x| with

a <0, is bounded by the 0- norm and the new (t)- norm, i.e. it holds

Lemma4.1: i) Let a >Obe fixed. The (-a)- normofany xi H, is bounded by

ML @ a5 +e ",

with o >0 being arbitrary. Let t,d >0 be fixed. To any xi H, thereisan yi H,
according to

x- v ¢4

NV

- Y, €& -

and therefore

E (9 :=infle " |x- x, +]x- A, ¢ 46> |¥| -
From the above it follows with t =d>0;a =1/2

Corollary 4.1: i) To any xI H, thereisan yi H, according to

i) X= Yoo [x- ¥y €M+ Il et
”) M‘-zl/z ¢t CQ’XH(Z) +qw(2t)

Remark 4.4: Polynomials orthogonal on the unit circle ([SzG] 11) are given in Note S49.

Remark 4.5: Let g, be the ordinates of swith Im(s)>0and let A> 0 be according to

N(T) =#{g|g, ¢ T} = AG dogT +O(T)

then ([LaE] VII, 11, 84/5, Notes S44/45):

6. the series
S(Z) = é. Sln(gnz) e-gnz
n=1 n

is absolute convergent for z>Qwith

. S(2) _ , asinu
Izln"gj—1 = Aq“-s]u—e du>0
log= 0
z
7. the function
f(2=4 ie'gnZ

n=1 gn

is regular for z>0.
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Appendix

Lemma Al ([Grl] 3.952, 4.352, 4.424):

gz

i , Re(b) >0, R -1
) ﬁ<’”1 - sin(gQ)dx = WG(M-HS - ’E";g;f:b) eb) e(m >

° 2b 2
i) e G 2
||) ﬁ(mle-bx2 cos@x)dx = 2ml 1(27;1;_ i) , a>0, Re(b) >0, Re(m) >0

0 > 22 4b

2b?

) Hf'le"”lnde—ﬁ mly @)-nnm Re@) >0, Re(m) >0 [Grl] 4.352
V) [Grl] 4.424

:ﬁln X)?sin@x})x™ *dx = %sin%@ i(m+y 2(m+ mxnjctg%c
-2y (mna- plnactg%p+(lna)2- ng’ a>0, 0<Re(m<1

and therefore especially

™" f{in x)2 sin(2u) x ' %dxdx =

0 0

L@dx

\Fsmp i %e X g/( )+y = )+2y( )ctg -2y (= )In(2x) pln(2x)ctg +2In(2x) - p H—<n

Lemma A2 ([Grl] 7.612):

“ﬁb.l F.(a.c- tydt = Qo) GbGEa-b) | 0<Rep)<Ref) -
o Ga) G- b

Lemma A3 ([LeN] 9):

_ G0 caa8R ((D(®)(+a- - -n1,0
F(acz e¥z K+ 0(z

@079 718 k' (2

90 gea, wals (DA a)(C- A, . ey

oM 1 T Z o4

Lemma A4 ([SeA]): For the zeros of degenerate hypergeometric functions , F,(a;c, z) it holds

1. Supposethat 1¢a<cc¢a+land c, 2 if a=1. Then all zeros of | F (a;c, 2) lie in the

half-plane Re(@) <-[\/a- 1+\/1-(<:7-a)]2

2. Suppose that O<a¢1, c21+a, moreoverc, 2 if a=1. Then all zeros of | F (a;c, 2)

2
lie in the half-plane Re@ >[Ve- a-1+1-a|

3. Suppose that 0<at¢l, a<c¢l+a, moreoverc, 2 if a=1. Then all zeros of
.F.(a;c, 2) lie in the horizontal strips (2n- 1)p <|Im(2)|<2m .
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Lemma A5 ([LeN] 3, 9.13):

i) Fi(aax)=¢*
ii 13 , 3
) erf(x) =X1F1(5151‘X ) F(¥ :X1F1(l:§,' x?)
i) li (x) = - x,F,(L1- logX) = Ei(logX)® —— resp. Ei(x° & for x- =
log x X
iv) F( —x) c17+c e’ resp. for x- o ,lemma A3
X X

V) 3 o 13 for x- o .

RS0 O VRGE)

Lemma A6 ([EdH] 1.14): For the li,(X) - function and the remaining term of the famous
Riemann function it holds

Fedt L dt _ 1 1 T2 délog(s- Vg
li, (X ——Il X+i0+li (x-i0 —I|m *ds
19 =50 (x-10) r"Iogt 1E:Iogt 20 Iogxar,] ds&€ s

1 *e g elogG(1+ )USOI .
—ei S
“i 2 1)Iog 2pl|ogx dse s 3(

Lemma A7 ([[BuH] p. 184): Let a, denote the infinite set of zeros of | F,(a;b,z). Then it
holds

Lemma A8 ([Grl] 3.761, 6.246): For a>0 it holds

fesn@) X =S snl  Hegp o gy o O<IRel|<1
r?< Cos(ax)dx G(S)cos(ﬁs) ,ﬁxu(xi__ Ss)cos(%s) , O<Re(®<1

and therefore

M [sin](s) = G(G(S) M[cod(1- s) M[cos}(s):e((i(_s)s)M[sin](l- SK
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