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Let H and M denote the Hilbert and the Mellin transform operators . For the Gaussian 
function )(xf  it holds  
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The corresponding entire Zeta function is given by ([EdH] 1.8)  
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The central idea is to replace  
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with  [])(:)( xfHxfH = , 0)0(Ĕ =Hf  and  
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Thi s enables the definition of  an alternative entire  Zeta function in the form  (§2)  
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with same zeros as )(sx . It enables a modified formula for )(xJ  ( [EdH ] 1.13 ff.).  
  

The fractional part function  
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is linked to the Zeta function by  ( [TiE ] (2.1.5), lemma 2.1)  
 

[] [ ] )1()()1()1()1( -¡-=--=- sxxMsMss rrz . 
 

The Hilbert transform of the fractional part function is given by  
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Applying the idea of above leads to  the replacement (§3 )  
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with same zeros as )1( s-z .  
 

The integral function representations of the Zeta functions above based on the Hilbert 

transforms of the Gaussian and the fractional part functions  enabl e all ñconvolutionò 

related Polya -RH criteria ([CaD]) , e.g.  the Hilbert -Polya conjecture , Polya po lynomial 

criteria ([EdH] 12.5), as the Hil bert transform is defined by  a singular (convolution) 

integral operator .  
 

The #

1-H  Hilbert space is the same as applied in [BaB] to reformulate the Beurling -

Nyman criterion. The non -vanishing constant Fourier term of the series causes same 

ñself-adjoint integral operatorò building issue than in case of the Gaussian function.  
 

The relat ed entire Riemann function enables the definition of correspondingly defined 

alternative Keiper -Li coefficients  ([LaG ]) . It is enabled by the zeros of the concerned 

Kummer functions and the related zeros of the Hilbert transformed Hermite polynomials.  
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The challenging part to verify the RH (prime number counting error function) criterion  
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is the asymptotical behavior of the exponential (integral) function ([EdH] 1.14 ff.)   
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given by  Ramanujanôs asymptotic power series ([BeB] IV)   
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The non -normalized (exponential) error function is given by ([AbM] 13.6)  
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Its relationship to the Kummer functions is given by ([AbM] 7.15)  
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The asymptotics of  the  corresponding non -normalized   -)(xerfc  function is given by 

(lemma D4, [OlF ]  chapter 3, 1.1; chapter 12 1.1 , ([AbM] 7.1.23 )  
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It further holds ([LeN] 9.13)  
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The above relationships provide  the linkage of the concerned Kummer functions with the 

RH ( -)(xli  function) convergence criterion.  

 

We further note the following properties:  
 

i)  the function represented by   
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               has the value 2/p  as 0­x , 0>x  ([BeB] IV , (10.2) )  
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implying the convergence of  the series       
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We also  note the following properties of the concerned hypergeometric functions  ([AbM ]  

p.507, [OlF ]  p. 44/67) .  
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They are re lated to  the  error function and the Dawson function by  
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The corresponding Mellin transforms (valid in the critical stripe) are given by  
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has only imaginary zeros 
nr fulfill ing ([SeA],  [SeA1] , Note O5 /38/39 )  

 
 

nanan
n

n

n

n <=<-<
-

=<- -
p

r

p

pr

2

)Im(
:

2

1

2

)Im(
:1 212

. 

 
 

Remark: Taking the logarithmic derivative of the Riemann functional equation one gets 

([IvA] (12.21))  
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Putting  
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it holds on the critical line ([IvA]  4.3 )  
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Remark :  On the critical line it holds  ([AbM] 4.1.15)  
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Remark: Let )(sL denote a Dirichlet  function , then  )(log sL  is regular for 2/1>s . 

 

Remark  ([PrK]  III §5) :  
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The analog approach based on the fractional part function  

 

There is an analog approach to the Gaussian function  above with respect to the fractional 
part function )(xr  and its relationship to the -z function  by the equality  
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It corresponds to the isomorphism of  
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We note that the function [])()( xHxH rr =  has mean value zero, i.e the norm below is defined 

and the prerequisites of the theorems in Note S36 are fulfilled.  
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This  generalized Fourier series representation of )cot( xp  is Cesà ro summable (mean of 

order one) ([ZyA] VI -3, VII -1).  It  leads to a -z function representation in  the form  
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From [NiN] §91, we recall the Mellin transforms  
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With respect to a corresponding  Dirchlet series representation we note that  ([TiE] 4.14)  
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We further note (see also Notes S32/33) that  
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For functions with vanishing constant Fourier term  (i.e. with zero mean , where the 

Hilbert transform defines a unitary mapping , see also Note S36 )  the norm of the 

corre sponding dual space is given by  
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The distributional Hilbert spaces b-

2l  ( 1,2/1,0=b ) play a key role  
 

-  in [BrK3] in order to define an alternative new ground state energy for the 

harmonic quantum oscillator  (see also Note O52 for the Weyl -berry conjecture)  
 

-  in [BrK1] providing a global, unique solution of the non -stationary, non - linear 3D -

Navier -Stokes equations  
 

-  in [BaB] (see also [BrK2]) where a functional analysis reformulation of the Nyman 

criterion is provided (see below).  

 

The Dirichlet series  (see also Notes S44/45 /47 )  on the critical line  
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From Remark 2.8 below we recall the identity  
 

2

1

)cosh(2

1
)2/1(

2

1
:)(

2

1 22
==+G=W ñññ

¤

¤-

¤

¤-

¤

¤-
t

dt
dtitdtt

p

p

ppp

 , i.e.  2/1

2

-ÍW l   .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

6 
 

Theorem  (Bagchi -Nyman criterion, [BaB]): Let                
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Alternative -)(xli functions opportunities  

 
 

We propose the Landau density function )(xJ  alternatively to the Riemann density 

function )(xJ and the von Mangoldt function )(xy . They  are related by  
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The Riemann and von Mangoldt densities are related to the Zeta function by  (see also 

notes S19/30/41, O19/20/21)    
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For 1>x  here is an explicit (infinite series) formula (2 nd  Mangoldt theorem, ([LaE ]  VII, 

Kap. 10) for  
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I t further holds  ([LaE ]  §50, [ScW ]  IV, ([PrK ]  III §3, Note S39)  
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resp. ([PrK ]  VII §4, Note S50 )  
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The Landau density function  )(xJ  is linked to the Zeta function by ( [OsH] Bd. 1, 8, [KoJ] , 

Note O51)  
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The proof of (*) applies the fundamental identity ([LaE ]  §48, [ScW ]  IV , ([PrK ]  III §6 )  
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With respect to corresponding convergent Dirchlet series representation we refer to [LaE]  

Bd. 2, theorem 51, Note S47.  
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Remark: Von Mangoldt proved the Euler conjecture , i.e.  that  ([PrK ]  III, §5)  
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The convergence of this series is a consequence of the PNT.  
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was proven by E. Landau ([LaE ]  §150). It  cannot be derived from the PNT. In this 

context we recall the  corresponding  comment  from  E. Landau concerning  his proof ([LaE] 

§15 9, see also section ñcardinal seriesò, theorem 16/17) 
 

ñé (it) goes deeper th an the prime number theorem . ..ò .  

 

The Landau theorem (**) can be represented in the following form  ([TiE ]  7.1, 7.9 )  
 

( )( ) ñää
-

¤­
-

¤¤
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-+====

w

w
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m dtitvituvuba
nn

n
n

nn

n

)2/1()2/1(
2

1
lim:,:

1
)

1
log()(

1
1 2/1

11

 

 

i.e. the  -- 2/1H  inner product  of  the related functions exists,  

i.e.  

ä
¤

=

-Í=+
1

2/1

)(
:)

2

1
(

n
s

H
n

n
itu

m    ,  
2/1

1

)/1log(
:)

2

1
( -

¤

=

Í=- ä H
n

n
itv

n
s

. 

 

 

From [PrK ]  III, §5, we recall for 1>s  
 

ä
¤

=

=
1

)(

)(

1

n
sn

n

s

m

z

    ,    ä
¤

=

=
¡

-
1

11)(

n
snns

sz  

i.e.  

ù
ú

ø
é
ê

è
Öù
ú

ø
é
ê

è
=

¡
- ää

¤

=

¤

= 11

11)(

)(

)(

n
s

n
s nnn

n

ss

s m

z

z  . 

 

 

The Riemann Hypothesis states that  
 

0)( ¸sz     for all its +=s  with  12/1 <<s , 

i.e.  

)(

)(
,

)(

1

ss

s

s z

z

z

¡   

has no poles in case of  12/1 <<s .  

 

 

 

Remark: If the RH is true, it holds ([LaE ]  LXXXI)  
 

i)  
ä
¤

=1

)(

n
sn

nm   is convergent for  ...82.0222 º->s  

 

ii)  
ä -==

pn

nsp
n

ssZ
,

1
)(log)( z

 is regular for .0,2/1 >> ts  
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Remark: The relative error in )()( xLix -p  goes to zero faster than e-- 2/1x  as ¤­x   is 

equivalent to the RH ( [EdH]  5.1).  

 

 

Remark: In [ViJ]  a quick distributional way to the Prime Number Theorem (PNT) is 

provided. In this context  we note that the regularity of the applied Dirac function is given 

by  (see also Notes S37/38)  
 

[] edd --Í 2/1, HH         

where  

[ ] )(glo
1

)(
n

x

x
xH ¡==dp  

and  (in a distributional sense)  
 

ä
¢

-L=¡
xn

nxnx )()()( dy
   ,   []ä

¢

-L=¡
xn

nxHnx )()()( dJ . 

 

 
For the relationship to the -)cot( xp  function we refer to  [EsR]  example 78, and to 

the appendix section ñCardinal seriesò.  
 

From the PNT  one gets  
 

1
)(
º

x

xy      resp.      
xcx

x

xc

x

xc

xx

cx

x

log

)(

/1

)(

/1

/)()(

-
º

-

¡
º

-
=

-

JJyy   

where  

)1(
)2(

12
)

1
1log(

2

1
log)( 2

222
g

r
J

r

r

+-
-

+-+--= -ä ä n

n

x
n

n

x

x
xcxx

  .   

 

 

Remark : T he above  provides alternatives  in the form  
 

            
xcx

x

cx

x

x

x

x

x
x

log

)()()(log
)(

-
º

-
ºº

Jyy
p

         ­            

cx

x
x

x

x
xcx

x

+

-
+

=

-+-
1

2

2
1

log

)(

)
1

1log(
2

1
log

)( JJ
 . 

resp.                       
x

x

x

x

x

x
x

log

)(

log

)(
)(

yy
p ºº

       ­              

                                                                      

x

x

x

x

x

xx

x

x
xlix

+
Öº

+

-
Ö+

ºº
1log

)(

)
)2log(1

1log
(

log

1
1

1

log

)(
)((

2

* J

p

J
p

 

 

We note the following equivalent critera for the RH:  
 

i) )log()()( xxOxLix +=p    
 

ii) )()()( 2/1 ep ++= xOxLix   , 0>e      ,    (
ee +-- = 2/1

*

2/1( HH ) 
 

iii) )log()( 2 xxOxx +=y     
 

iv) The series     
s

n

nn -
¤

=

ä
1

)(m  

is convergent for   2/1)Re( >s  and  

ä
¤

=

=
1

)(

)(

1

n
sn

n

s

m

z

 . 
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Remarks:  iv) states that  

)(

1

sz

 

 

is holomorph ic for 2/1)Re( >s ;  from ii) one can derive that   
 

ss

s

-
-

¡
-

1

1

)(

)(

z

z  

 

is holomorph ic for 2/1)Re( >s .  

 
 
 

The proof that iii) is valid in case the RH is true, is based on the estimate  
 

ä
¢

+-=
T T

xx
O

x
xx

rr

r

r
y

,

2

)
log

()(
 for xT¢¢2 .  

 

Putting xT=  with 4²x  this leads to  
 

ä
¢

++=
x T

xx
OxOxx

rr r
y

,

2

)
log

()
1

()(
 .  

 

Because of  

)(log)1()
log

(
1 2

,,

xOO
n

n
O

xx

=+= ää
¢¢ rrrr r

 

 

and ([GrI ]  0.131, 0.133)  
 

ä ä
=

¤

= -++
-++=

n

k k

k

knnn

A

n
n

k1 2 )1)...(1(2

1
log

1
g

  (note ä
¤

=

=
-2

2 4

3

1

1

k k

).  

one gets  

)log()( 2 xxOxx +=y  .  
 

 

With respect to the below we note  
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=
-

+
¢

+

xxx rrrrrr rr

r

r
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2

,

2
1

1

1

11  .  

 

Combining von Mangoldtôs formula with the Landau function leads to  
 

)1(
)2(

12)1(
)log1(2)()( 2
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r
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+
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-
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1
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12)1(
)
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1log(log)()( 2

220

   

where  

)2log(1 gpg eec=++   .  
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Proposal:  We propose an alternative Li - function in the form  

 

x

x
x

log

)(
)(
y

p º
    ­  

x
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x

log2

)()(

)()(
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2
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    .  

 

For the Zeta function and  

ä
¤

=

=
1
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)(

1

n
sn

n

s

m

z

    ,    
ä
¤

=

=
¡

-
1

11)(

n
snns

sz  

 

we capture  some  related  (mean value)  -bH norm estimates on the critical line  2/1=s : 
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÷

õ

æ
æ

ç

å

öö
÷

õ
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1
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Remark: A related --12l  identity is given by ( [ ApT] 3.12)   
 

)
log

()(log
6log)()(

2
1

22 x

x
Ox

n

nn

n

n

nxn

+++=+ää
¤

=¢

g
p
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Remark: From the Euler sum formula one gets for 1²x , 1¢q  ( [ScW ]  p. 197)  
 

i)  

x
x

nxn

1
)log(

1
¢+-ä

¢

g
 

ii)  xxn
xn

Ö+=ä
¢

q2

2

1    ,   
2

2 11

xx
n

xn

Ö+=ä
²

- q
 

iii)  
)log1(loglog xxxxn

xn

+Ö+-=ä
²

q
   ,   

)log1(2)log( xx
x

n

xn

+Ö+=ä
²

q
 .  

Remark: In the critical strip the Zeta function is a function of fin ite order in the sense of 

the theory of Dirchlet series ( [ TiE] V). In particular it holds  
 

î
í

î
ì

ë

=+

+

)164/27

4/1

4/1

(

)log(

)(

)
2

1
(
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)
)log(log

log
(

)1(

1
),1(glo),1(

t

t
O
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+
+¡+
z

zz  . 

 

For the auxiliary function  )(sc it holds ( [ TiE] 4.12 , [ IvA] 4.3 ).  
 

ý
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ì
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+= +-+ )

1
(1)

2
()( )4/(2/1
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   ,  
)(

)2/)1((

)2/( 2/1-
=

-G

G s
tO

s

s  

 

)
2

(glo
2

1
)

2

1
(glo

2

1
log)(glo

ss
s G¡-

-
G¡-=¡ pc   ,  )(log)2log()

2

1
(glo 2-++-=+¡- tOtit pc   . 

 

 

 

Remark  [LuB ] :  

)(log)(glo tOs =¡¡   for  ds +² 2/1 , 0>d   . 
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Remark: The following identities are valid  (Note S41)  
 

i) 
s

np n

ns

p
s nn

n
p

np
s

1

log

)(1
)

1
1log()(log 1 Ö

L
==-=- ääää --z

  ([PrK] III §3 )  

ii) 
äää -=

-
=

¡
-

p n

ns

p
s

pp
p

p

s

s
)(log

1

log

)(

)(

z

z   ([PrK] III §3 )  

iii) 
ä ä -

+
+

-
-

-
=

¡
=
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r rrz

zz
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c

nsnssss

s

s

s

)2(2

1

)(

1

1
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)()(glo   ([PrK] VII §2, [EdH] 10.6)  
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                and therefore  
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Remark :  
 

i)  ä=L
nd d

n
dn log)()( m   ,   äL=

nd

nn )(log   ,  )()( xon
xn

=ä
¢

m   ([PrK ]  III §6)  

ii)  ä
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n
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ñ
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  ([PrK ]  VII §2 )  

iii)  ä
<

L=
xn

nx )()(y   ,  
ñ
¤+

¤-

ù
ú

ø
é
ê

è ¡
-=

ia

ia

s

s

ds
x

s

s
x

)(

)(
)(

z

z
y

 

iv)  
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p
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2
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2    ,  

 

where   
ä
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1  is divergent , 
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r
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1  is convergent  
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  ( [EdH ]  4.1 )  
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 ([LaE] Bd.1, XII, §51 )  

 

vii)  
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With respect to the below we recall from ([GaD] §3 , see also §5 , Notes S44/45/48/49 ):  

 

For 10 ¢¢r , ( )py 2,0Í , yirez=  the function  
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fulfills the properties:  
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It further holds  
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Remark: The functions of the Hardy space )(GH
$

 of  -2L  functions on the unit disk circle Gwith an 

analytical continuation inside the unit disk D can be parametrized by a point of DzÍ  by  
 

1

1
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where the functions )(jze  define a linear, continuous mapping according to  
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which is an isometry of the spaces )(GH
$

 and )(DH
$

.  

 
Remark: The dual space of 

22/1

*

2/1 LHH Ë=-
 is isometric to the classical Hardy space H 2 of 

analytical functions in the unit disc with norm  
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)(
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.  

It holds  

i)  If Íf  H 2,  then there exists boundary values  ),()(lim)( 2
1
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i  with  
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ii)  If  
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j ,  

then its Dirichlet extension into the disc is given by ( jirez= )  
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Additive  number theory , the circle method  and the Goldbach conjecture  

 

 

The topic of additive number theory is about calculating the probability of certain 

representations of all integers ñnò as a sum of a given series of integers, e.g. the series 

of primes or the series of prime powers. The Goldbach conjecture is about the existence 

of such a representation (even integers represented a a sum of two primes). The 

corresponding probability ( i.e. the number of such representations of n divided by n) 

leads to the concept of ñpositive (Snirelmann) densityò of a given series of integers.  
 

As a consequence of the PNT the number of primes has a ñzero-densityò. However, there 

is a distributional density representation based on the Dirac function, which is an element 
of the -- 2/1H Hilbert space ([ViJ ] ) .  
 

The Goldbach conjecture would be proven if the related (Snirelmann) density (which is 

concerned with Fourier coefficients of continuous, periodic bounded variation functions) is 

positive and greater or equal than ½.  
 

The uniform distribution of numbers mod 1 has been analyzed in ( [ScI ] , ([WeH ] ) . We 

claim that a  Snirelman density of order 1/2 with respect  to  its related bounded variation 

distribution function corresponds to a Snirelman density of order one with respect to  its 
related uniform ( -- 2/1H distributional) distribution "functions".  
 

In other words, a dditive number theory is the stud y of sums of h - fold hA of a set A  of 

integers for  2²h .  
 

Instead of analyzing the arithmetic nature of corresponding sets/sequences of integers 

one considers metric structures of corresponding sums of sets of integers. The 

Schnirelmann -Goldbach theorem states that every integer greater than 1 can be 

represented as a sum of a  finite number of primes ([NaM ] ) , i.e. the set of primes builds a 

basis of finite order h of the set of integer numbers. The Schnirelman  number is the 

number of primes which one needs maximal to build this representation.  
 

The natural density of a set  
{ }NnA n Í<<<<= ...,...: 21 aaa  

 

is defined by                                   

n
n

n
Ad

a¤­
=lim)(

 

 

if the limit exits. Obviously the density of the set of integers is 1. As 
 

0
log

lim =
¤­ n

n

n

 

 

the ñasymptotic densityò of the set of prime numbers is 0 . Any natural number 1>n  

either is a prime number or a unique (up to permutation of factors) product  
 

kn

k

nn
pppn ...21

21=  
 

which is called the canonical repr esentation of n . Thus the prime  numbers form a 

multiplicative basis for the set of natural numbers.  
 

The binary Goldbach problem states that every even integer greater 2 can be 

repres ented as the sum of two primes. The tertiary Goldbach conjecture is about a 

Schnirelman number 3. The theorem from Ramaré gives a proof for a Schnirelman 

number 7 . 
 

The metric in a Hilbert space is defined by its norm.  The negative result of [DiG ]  

concerning asymptotic basis of second order in case of -0C  metric indicates an 

alternative metric in form of a  -b2l norm with 0¢b .   
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Let  { },...,...,: 21 knnnA =  denote a set of integers and x  denote the variable of t he gen erating 

function  )(xF  of a number the oretical function ).(nf  Then  
 

i)  
sex -=  is a one - to -one mapping to (in case of AÎ0 , generalized) Dirichlet 

sums and therefore a one - to -one mapping to the Hilbert scale 
bH  

ii)  
isex p2=  is a one - to -one mapping to Weyl sums and therefore a one - to -one 

mapping to the Hilbert scale 
b

b Hl @2
.  

 

The circle method is applied to additive number theory questions (e.g.  [ErP1] [LaE] [LuB] 

[PrK]). It deals with complex numbers of the open unit disk, while the (number 

theoretical) probability calculation requires corresponding ñdensities on the unit circleò. 

Instead of walking along the x -axis to calculate existing relevant representations we 

propose to run around the unit circle. As there is an isomorphism between both domains 

just  the ma pping would not add any kind of  value.  We propose to measure the windin g 

numbers while walking through the circles not per the zeros of the ixe  function, but per 

the  zeros of an appropriate hy pergeometric confluent function . At the same time the 

ñHadamard gapò challenge of trigonometric gap series (ñlacunary seriesò) is addressed by 

an appropriately chosen Hilbert space 
2/1H on the circle. This Hilbert space also appears in 

harmonic analysis in the context o f boundary values of real harmonic functions of finite 

Dirichlet energy in the unit disk. There is also a ñnaturalò relationship to periodical Hilbert 

transform, conformal mapping and the ñDirichlet spaceò of harmonic functions ([NaS]).   

 

The ñHadamard gapò challenge of trigonometric gap series is about the convergence of 

certain trigonometric series; the proposed generalized Fourier coefficient concpet  in the 

framework  of (distributional) fractional Hilbert scales addresses the divergence problem 
of (pure ly) -2L based defined Fourier coefficients, whereby the Hilbert transform plays a 

key role enabling  a distributional trigonometric series  representation of the -)cot( xpp  

function. For the relationships to  the Hardamard gap condition, the Schnirelmann 

density, the Littlewood -Paley function and corresponding Fourier series ([ZyA]  XV) we 

refer to the Notes O5 -7, O22 -27,O33 -35, S36 -S38.  
 

The cardinal series theory applies Fourier -Stieltjes series and integrals to Littlewood's 

converse of Abel's theorem. The cardinal series representations of  the Claussen integral 

function is related to the Hilbert transform of the fractional part function.  

 

The advantage of the circle method (and the central concept why it has been established) 

is the fact that the convergence of all to be considered power series is always ensured, 

as the circle method operates in the open unit disk. The central  conceptual element is the 

definition of the partition number function based on prime number generation  power 

series in combination with the Cauchy integral formula (e.g. ([PrK ]  VI, ([OsH ]  Bd. 1, 

1.7).  
 

The challenge is that depending from even/odd and positive -pairwise/negative -pairwise 

different even/odd summands ([OsH ]  Bd. 1, 1.7), i.e. depending from t he to be 

investigated additive problem there is a different definition of the partition number 

function.  
 

Hardy -Littlewood [HaG 2] resp. Vinogradov [ViI] applied the Farey arcs resp. major and 

minor arcs ([HeH]) to derive estimates for corresponding Weyl sums ([WaA]) supporting 

attempts to prove the 2 -primes resp. 3 -primes Goldbach conjectures. All those attempts 

require estimates f or purely trigonometric sums ([ViI]), as there is no information 

existing about the distribution of the primes, which jeopardizes all attempts to prove both 

conjectures.  
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Mathematical speaking, t he circle method is about Fourier analysis over Z , which acts on 

the circle ZR/ . The analyzed functions are complex -valued power series  
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fulfilling according to the Cauchy integral theorem  
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The key principle of the circle method is the fact, that for N  being an integer it holds  
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which can be reformulated in the form  ([ViI]  chapter I, lemma 4 )  
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We propose an alternative framework to leverage on the idea of the circle method to 

prove both Goldbach conjectures: th e concept is about an replacement of the discrete 
Fourier transformation applied for power functions )(xf  by continuous Hilbert -  ( H ), 

Riesz-  ( A ) resp. Calderon -Zygmund - transformations ( S ) (which are Pseudo Differential 

Operators of order 0 , 1-  and 1) with distributional, periodical Hilbert space domains 

)1,0(#

aH .  The analogue fundamental principle is  
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The Dirichlet series theory is an extension of the concept of power series replacing  
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The relationship between the Dirichlet series (see also Remark 3.6, Notes S44/45)  
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The cardinal series theory is an extension of the Dirichlet series theory.  

 

Remark ([LaE] §152/155):  
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The two Goldbach conjectures  

 
Let  

nG  denote the number of representations of an even integer by two primes  
 

),(: 21 qpnPppNGn +=Í= .  

 

Then for appropriate constants 
21,cc  it holds ([PrK] V)  
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The binary Goldbach conjecture states that 1²nG   for all even 4>n .  

 
Let )(nN  denote the number of representations of an odd integer by three primes. Then 

)(nN  can be represented in the form  
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i.e. for  n  large is 0)( >nN .  Vinogradov proved an appropriate estimate for both,  the 

major and minor arcs , in the form  
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For the major arcs of the binary problem Hardy -Littlewood ([HaG]) showed an 

appropriate estimat e in the form  
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An analogue estimate of the minor arcs (Weyl sums estimates) in the same way as for 

the ternary problem leads to a not sufficient estimate in the form  
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2
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n
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c
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In other words, an  analog Vinogradov approach (which is anyway only proving the 

tertiary Goldbach problem for 43000

0 104.3 Öº>nn ) for the binary Goldbach problem is not 

possible due to purely Weyl sums convergence behavior, i.e. due to a disadvantage of 

the framework being applied, and not due to a delta between tertiary and binary  

problem . 
 

In summary, the Goldbach conjecture is true with probability 1 (100%);  the more easier 

to be solved problem, the tertinary Goldbach conjecture, is proven to be true for 
43000

0 104.3 Öº>nn  only, based on the Vinogradov approach; the same approach can not be 

applied to the binary Goldbach conjecture, which is  not due to conceptual differences 

between  the tertiary and the binary problem, but just due to  the fact of  insuff icient Weyl 

sums estimates. In other words , the method is most likely not appropriate to solve the 

Goldbach conjecture.   
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The number of representations as a sum of two primes for an  even n  for which xqp ¢+ , 

is given by ([LaE1], Note O30)  
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Stªckelôs related approximation formula for)(xH  (with ñimprovementò term from E. 

Landau) is given by ([LaE1 ] )  
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It is built on the sum ([LaE1 ] )  
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and on the identity  
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This estimate provides no information regarding the error being made when applying the 

Stäckel approximation formula, as in this sum positive and negative summation terms 

cancel each other out.  
 

We propose a five  pillar concept to solve the binary (and therefore also the tertiary) 

Goldbach conjecture. The five  pillars are  
 

1.  The advanced circle method from the above in the corresponding H ilbert space 

framework  (with generalized Fourier transforms) , building on the z eros of the  

Kummer function (see also Notes S44 -S47, Notes O5 -O7, O22)  
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2.  a representation of an even integer as a sum of uniform distributed irrational 

numbers ( [WeH]) , building on the zeros of this Kummer function,  in the form  
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3.  the building concept of asymptotic distribution function s considering related 

Fourier transforms ( [JeB], [ScI])  
 

 

4.  The Stäckel approximation formula ([LaE1]) building on the Euler function )(nj  
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5.  a generalized Schnirelmann density concept  in the form  
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The obje ctive is to define for an  arithmetic function  )(nh a corresponding distribution 

function, i.e. a function )(xv  fulfilling  
 

i)  for every x  the density of integers satisfying xnh <)(  exists  
 

ii)  1)()( =¤=-¤ vv  
 
 

Remark ([ApT ] )  2.13, 3.7) : it holds  
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with  the sum of the ath powers of the divisors of  n  
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Remark  ([ApT ]  theorems 3.5/36):  
 

i)  if 1,0,1 ¸>² aax , we have  
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From this it especially follows  
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Remark ([ApT ]  13.10, 13.11):  
 

i)  
2log

log

loglog)(log
suplim =
¤­ n

nnd

n

   ,   )()( dnond =   for every 0>d  

 
ii)  

c
n

nn

n
=

¤­ log

loglog)(
inflim
j  .  

 

Remark ([ApT ]  14.11):  
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Remark ([LaE] §58 ) : The distribution of the primes x2¢  into the two half intervals  

)2,(),,1( xxx : as it holds  
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The key principle of the circle method is the fact, that for n  being an integer it holds  
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With respect to 1. we refer to Lemma 2.4, Notes S44 -S47, Notes O5/6/22/27: The 

proposed  advanced circle method builds on the zeros of the hypergeometric function  
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)(zF  is related to the Fresnel integrals ([AbM ]  7.3.25, Note O38) by  
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The zeros  
nz  of )(zF  are  simple, complex -valued and lie in the horizontal stripe  
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We propose to apply the  zeros of )(zF  to define generalized Fourier transforms by  
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i.e. replacing  
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which are  related to the  -- 2/1H  Hilbert space.  
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The binary Goldbach problem state s that each element of the set of even integers can be 

represented as a sum of two element s of the set of primes. O. Ramaré showed that 

Schnirelmannôs constant is at most 7.  
 

A finite Schnirelmann constant is ensured, if one knows, that all sufficiently la rge even 

integers can be representated as a sum of two primes.  
 

A set with a positive Schnirelmann density needs to contain the integer 1.  At a first 

glance  this sounds like a strange requirement . The probably most strange example for 

this is the density of the integers excluded the integer 1, as t he set which results from the 

integers excluding the single integer n  has the density   
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At the same time the density of a set A fulfills  1=a  iff  A=N.  In [LaE2 ]  the essential 

Schnirelmann lemma is proven  going along with a more precise definition of a positive 
density avoiding the requirement that AÍ1  to ensure that 0>a .  The density can be 

calculated as follows:  putting  
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With respect to the above we note that for the two series  
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Remark ([WeH ]  theorem 2): Let x be an irrational number  (we note that the zeros of a 

hypergeometric function are transcendental) , then  
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is uniform dense distributed.  
 

Remark ([WeH ]  theorem 4 ): For two number 
21,xx  without any integer linear 

relationship, i.e. there is not any relationship in the form  
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We note the following inequalities ( 91.0)1.1(3log: 111 ºº= ---c ):  
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The idea is, to apply the second set as a model component to define modified density 
function s as given in the remarks of the next section. Obviously the value 1=x  in a to -

be-built dist ribution function is essential.for this we recall the  (distributional) Hilbert 

space framework with inner product  on *2/1
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2 )( -=ll  and its linkage to the Fourier -Stieltjes 

integral concept ([NaS]) given by  (see also Note S37)  
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The Landau theorem can be represented in the following form ([TiE ]  7.1, 7.9)  
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i.e. the  -- 2/1H  inner product  of the related functions exists,  
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From [PrK ]  III, §5, we recall for 1>s  
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We consider the following (generalized) Dirichlet series related to the above Stäckel 

formula:  
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fulfilling the following equation  (see also Note S21 , appendix: cardinal series ) :  
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If the RH is true, one has  
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i.e. the Zeta function on the critical line has the same re gularity as the Dirac function. 

From this it would follow that  
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As 
 

2/1-ÎHz  , 
dz --Í 2/1H  

it follows that  
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Remark:  We note for the Dirac function 

dd --Í 2/1H and, according to the Sobolev 

embedding theorem , that the dual space of 
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and the inverse mapping is given by ([ScW ]  lemma 3.3 , Note S29 )  
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With  respect to the  ath power of t he divisor function of n  
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we mention the distribution  ([ApT ]  theorem 3.6):   
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Remark: If )(nf  is multiplicative and the related Dirichlet series  
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Remark ( [ScW ]  lemma 3.2) : The product of the Dirichlet series  
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With respect to 4 . we note that the relative frequency of the occurrence of primes is 
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represent ations as a sum of two primes. Stäckel approximation is about the additional 

factor ([ApT ]  chapter 2)  
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We recall the main properties of the Euler function  
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In Note S56  we capture  further a rithmetic & related distribution functions . 

The proposed changes above is about  a generalized circle method on the circle in a --

#

bH  

framework. It is based on generalized Fourier series representations leveraging the 

method into two directions  
 

-  move from the open unit disk domain to  the unit circle domain  

-  move from complex -value power series representations to generalized Fourier 

series representations with unit circle domain (resp. cardinal series with domain 

R) (e.g. [LiI ] ).  

 

It  provides an appropriate  
 

-  convergence and asymptotic analysis in a (distributional) Hilbert space framework  

with inner product on *2/1

2

2/1

2 )( -=ll  and appropriate linkage to the Fourier -Stieltjes 

integral concept ([NaS])  
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-  a generalized Schnirelmann density concept  in the form  
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It enables   
 

-  the full power of spectral theory  and  of conformal mapping theory  

-  to probability theory ([BiP ]) and its linkage to Linnikôs dispersion (variance) 

method ( [LiJ] )  

-  a convergent series representation of the (not fixed, not unique, non -measurable) 

ground state energy of the Hamiltonian operator of a free string ( [BrK3] )  

-  Hardy and BMO (bounded mean oscillation) spaces ( Ą dispersion method)  

-  an alternative ñDirac functionò functionality with slightly (but critical) better 

regularity requirements than (see also Note O52)  
 

e
p

pp
d --Í== ññ

2/1

2

2

0

2

0

)cos(
1

2

1
)( ldkkxdkex ikx

 

 

-  the Teichmüller theory ( [NaS ] )  

-  Ramanujanôs (main) master theorem ([BeB ] , lemma A10)  

-  the inverse formula of Stieltjes for BMO density functions (Note S33)  

-  the concept of  of logarithmic capacity of sets and convergence of Fourier series to 

functions fulfilling ( [ Zy A] V -11)  
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-  harmonic analysis by  ( [StE ] )  
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and the related energy of the harmonic continuation )(jE=h  to the boundary  

-  Jacobians of the Riemann surfaces ([BiI ]), ñmuteò winding numbers ([BoJe ] ), 

topological degree (H. Brezis), electric field integral equation theory  
-  a global unique weak -- 2/1H solution of the generalized 3D Navie r-Stokes initial 

value problem with not vanishing (generalized) non - linear energy term                 

www.navier -stokes -equations.com  (Note O55)  
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-  a convergent ground state energy model for the harmonic quantum oscillator , 

based on a -- 2/1H  (physical state) Hilbert space framwework  ([ BrK3 ] )  
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Snirelmann's "positive density" concept  

 
 

The binary Goldbach problem states that every even integer greater 2 can be 
represented as the sum of two primes. Every integer n  can be represented in the form 

21 nnn +=  in 1-n  different ways.  
 

The current state of verification of the Goldbach conjecture is, that it is true for nearly all 
even integers, i.e. ([LaE] V), let )(nh  denote the number of the first n  even positive 

integers, which can not represented as a sum of two primes, then there exists a constant 

1<J  that  
 

0
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leading to Schnirelmannôs ñdensityò concept ([ScL] ). The corresponding Zeta function 

identities are  

¤=ä
r r

1     ,    
¤<ä

r
a
r

1   for 1>a   .  

 

The result above states that for at most %0  of all even positive integers the Goldbach 

conjecture is not true.  
 

The complementary set of all even integers which cannot be represented as a sum of two 

primes has the natural (Schnirelmann) density zero, i.e. ( [OsH]  Bd. 2, 21)  
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   0>"a  .  

Snirelmann's "positive density" concept  is about:  
 

-  The set of primes build a finite basis of the set of all integers.  

-  The set of all sums of two primes unified with the numbers "0" and "1" has positive 

Schnirelman density.  

-  A subset A of the set of all integers unified with "0" and finite Schnirelman density > 0 

has a basis of finite order.  
 

The Schnirelmann -Goldbach theorem states that every integer greater than 1 can be 

represented as a sum of a finite number of primes ([NaM ] .  
 

The Schnirelman  number is the number of primes which one needs maximal to build this 

representation. In other words, the set of primes builds a basis of finite order h of the set 

of integer numbers.  
 

The tertiary Goldbach conjecture is about a S chnirelman number 3. The theorem from 

Ramaré gives a proof for a Schnirelman number 7 . 
 

If  the Snirelmann density of the concerned series can be proven greater or equal than 

1/2 then the Goldbach conjecture would be confirmed.  

 

Remark: A Schnirelmann densi ty corresponds to the probability to pick an element 

AnkÍ  out of the total numbers of integers. The concept builds on the simplest function 

of period 1 ( [WeH] )  
ixnenxe p)2()( =  for all integers n .  

 

For any sequence 
nana =)(  and any integer m it holds  
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then the numbers 1modna  build a  uniform dense distribution  on the unit circle.  

Vinogradovôs solution concept it built on the Weyl sums. The root cause of current 

handicaps to prove appropriate estimates in this framework are due to corresponding 

estimates of the Weyl sums and not due to Goldbach problem specific challenges.  

 

We propose to apply an analog Weyl sums based concept replacing the exponential 

function by corresponding Kummer functions and its related zeros (see also Notes 

O13/16 resp. Notes O6/O7/O27).  

 

 

From [P rK ]  II, §4, we recall the theorem of Brun, i.e.  
 

If p¡ goes through all twin s prime pairs, then the following series  is 

convergent       

ä
¡ ¡p p

1  

 

 

Remark: We note that the binary Goldbach problem is inaccessible to the dispersion 

(variance) method as given in [LiJ] X.2.  The main difficulty is the calculation of a term 

which is asymptotically equal to the number of solutions of the equation  
 

)()( 2211 pnpn -=- nn  , 
21 nn¸ , where 

2121 ,,, ppnn  are primes.  
 

 

Remark: The dispersion method in binary additive problems is about the concepts of 

dispersion, covariance, and the Chebysev inequality ([LiJ ] ).The central concept is that of 

the independence of events relating to different primes. The dispersion method simply 

takes for use a finite field of elementary events. Its application to concrete binary 

additive problems involves a great deal of rather c umbersome computations (the 

calculation of the dispersion of the number of solutions). The construction of the 

fundamental inequality for the dispersion closely resembled Vinogradovôs method for the 

estimation of double trigonometric sums. The latter one s omehow corresponds to the 

double integral representation of the Hilbert - transformed Gaussian function above.  

 
We propose to define generalized variances with respect to the appropriate -b2l  

distributional Hilbert space framework applying  corresponding asymptotic analysis for the 

corresponding generalized (distributional) Fourier series representations ([EsR ] , [VlV ] ).  
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The fractional part function and the reciprocity of the Dedekind sums  

 

This section refers to ([RaH ]  68 ff.) and to ([TiE ]  2.1 with  the Zeta function 

representations  
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The function )(xf   is periodic  with period  1 and odd, i.e.  
 

)()1( xfxf =+    ,   )()( xfxf -=-   .  

 
Now let kh,   be two copri me integers. Then the ñDedekind sumò is defined by 
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which is in v irtue of t he periodic 1 of )(xf  does not depend on the representatives of t he 

residue system modulo k  chosen. One sees at once  
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Moreover, let 
1h  be an integer such that )(mod11 khh ¹Ö .  Then m1h  runs through a full 

residue system modulo k  as m does, so that  
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we have also, for 0>k   ,  
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The reciprocity formula for Dedekind sums is given by  
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The Dedekind sum satisfy the relation  
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Some extracts fro m the theory of Bessel function  

 

This section is recalling some Bessel function properties from ([WaG ] ), which are related 

to the above. Especially the Lommel polynomials seem to provide appropriate alternative 

polynomial orthogonal systems to the Hermite polynomials. Its relationship as phase 

functions to the Kummer equation is provided in ([ViB ] ).  

 

As a kind of baseline reference we note that  ([AbM ]  9.6.7/8/9)  
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The Bessel functions are related to the hypergeometric functions by ([AbM ]  9.1.69, 

9.6.47)  
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The modified Bessel function are linked to the Zeta function theory by a RH criteron from 

Polya ([EdH ]  12.5, [PoG3 ] , [TiE ]  X):  

 
If f is a polynomial which has all its roots on the imaginary axis, or if f  is an entire 

function which can be written in a suitable way as a limit of such polynomials, then , if  
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In the light of the above this is about a representation of the Zeta function on the critical 

line in the form  (see also lemma 3 below)  
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For the following we also refer to  the concept of sums of squares to prove that certain 

entire f unctions have only real zeros ( [GaG ] ).  

 

In lemma 7  below we provide the Mellin transform of the second kind Bessel function, 

which havenôt been found in literature. 

 

Lemma 1 ([WaG ]  13 -21, 13 -24):  
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We note the iden t ities for t he critical lin e:  
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Lemma 2 ([GrI ] 3.512):  
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Lemma 3 ([GrI] 3.541):  
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Lemma 4  ([WaG] 13 -3):  
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Lemma 5  ([GrI] 8.335):  
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Lemma 6  ([WaG ]  13 -72, 13 -75):  
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Proof: With lemma 1 one gets  for 0)2Re( >°nm    
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Putting  s=m2  and 2/)1(2 s-=n  one gets from lemma 2   
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Putting  
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Lemma 8 ([BeE]):  
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the modified Bessel -Hankel functions [ ])(/)(arctan:)( xJxYx nnn =Y  and  
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are linked by the relation  
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with a -)log(x singularity at zero ( [WaG] 7.2, 7.35, 13.75, 13.8, 15.52, 15.53 ).  
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Because of  
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for  0>x  and 120 <<n  the function )(2 xx nj  is increasing with   
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i.e. )(2 xx nj  defines a distribution function for 1)2Re(0 << n .  
 

For the special case 2/12 =n  we refer to lemma D4.  
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Eulerôs investigation of the zeros of )2(0 xJ  resp. )2(0 xJ  are given in ( [WaG] 15.5). U sing 

the abreviation
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Based on this formula Euler obtained a system of equations, which allow to calculate the 

ks and from that to deduce the smallest values of ka , i.e. Euler calculated  
 

11=s , 2/12 =s , 3/13 =s , 48/114 =s , 120/195 =s , 4320/4736 =s , é. 
 

to deduce e.g.  
 

..445795.11=a  ..6658.72=a  
...72.183=a  
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is the only integer value for the 
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With respect to the Mellin inverse formula ([NiN ]  §90) we note ([WaG ]  17 -3, 17 -6, 19 -

41 , see also 19 -51 for the associated function )  
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With respect to the relationship to the Dawson function we note ([WaG ] )  
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In [DoG]  the relationship s between elliptic Theta functions, corresponding  Mellin resp. 

Lap lace transforms and the functional equation of the Zeta function are given. Its enables 

series representation of the Bessel functions in the form ( see also [WaG]    )  
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The underlying ellliptic Theta function representation and ist related periodic (with period 

1) Laplace transfo rm are given by  
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The special case 0=n  is t he well known Zeta  functional equation with the corresponding 

Laplace transform  
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From [WaG ]  19 -41) we recall for x  positive and integer n  such that  
 

pp )12()12( +<<- nxn  
 

the series representation  
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The sum of a function, its related Mellinôs inverse problem and the cardinal series  

 

This section refers to ([NiN ]  §89 ff)  and [WhJ] . For the later one we refer to the last 

section of this paper  and the theorems 3 & 4 (§5/6) and the corresponding theorem of 

Polya (§7) .  
 

If two function s are connected by the relation  
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)(zf  is called the difference of )(zg  and )(zg  the sum of )(zf .  The sum is analogous to the 

integral, but whereas the integral is indeterminante  only to the extent of an arbitrary 

constant, any function of period unity can be added to the sum. The Bernoulli  polynomial 

(where the indertermination can be removed by assuming that the polynomials vanish at 

the original) are the given by the relation  
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Mellinôs related inverse problem is concerned with the application of binomial coefficient 
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whereby )(xJ  is an arbitrary periodic function with period  1. Putting  
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Based on Mellinôs inverse formula ([NiN ]  §86 (10))  
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it follows the   
 

Theorem  1 (Lindelöf) : the function )(xf  is analytical in the stripe  2/1)Re( <x ; the function 

)(xg  is analytical in the stripe  2/1)Re( ->x  
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fulfills the conditions of §86 (1) (to ensure convergence in the considered stripe for 

¤­)Im(z ) and (for the corresponding Bessel function properties we refer to [WaG ] )  
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Given that )(zW  has a representation in the form  
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there is a representation in the form  
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The Claussen integral  
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is the natural candidate with resp ect to the above, absolutely convergent cardinal series 

and series in the form ([AbM ]  27.8, Note O28)  
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From ([GrI ]  4.322 we recall ( 0)Re( >m ) 
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Now we consider  
 

ññ ñ ñññ
---- -=Ö-==

2/1

0 0

2/1

0

2/1

11

2/1

0

1

1

0

1 )))(sin(2log(2))sin(2log(2)2(2)(

t

zzzzzzz ddttdtdtdtttdttt
t

tpttptJJ  

 

ññ
+- =-Ö-=

2/1

0

1

2/1

0

))sin(2log()2(
2

1
)2(

1
))sin(2log(2

t

t
pttttpt

d

z
d

z

zzzz  . 

 
Thi s leads to  the  
 

Lemma:  
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The irrationality of the Euler constant g 

 

The objective of t his section is to provide a framework  to prove the irrationality of the 

Euler constant , while leveraging on several conceptual elements of this paper.  

 
For the approximation near 1=s  for the Zeta function one have ([BeB] (17.16))  
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where g denotes  the Euler constant.  In [BrT]  a characterization is given with respect to 

the modified Bessel functions (see also Notes S22,23).  From [BrR ]  we recall  
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The formulas above can be also deduced from the  

 

Integral theorem of Sonin ([NiN ]  Bd. 2, §28): let )(tf  be a function with the following 

properties  
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Nivenôs proof that p is irrational, builds on the fact that p is the smallest zero of the sine 

function. The function  
 

xixez ix sincos +==  
 

fulfilling the identities  
 

1sincos -=+= ppp iei    resp. ie )1(-=p  .  
 

We note that { }Nnnx Ípsin  converge (only) weakly to zero in )1,0(2L .  
 

Schnirelmann density concept also builds on this simplest function of period 1 ( [WeH] )  
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Hadamardôs representation provides a link between those three constants (see also S23)  
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One concept ional idea is , to leverage on Nivenôs proof, buildin g on the zeros nw  of the 

hypergeometric function  
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All zeros 
nz  of )(zG  are simple, complex -valued, lie in the horizontal stripe  and satisfy the 

asymptotic formula ([ SeA] )  
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 It especially holds  
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the corresponding eigen - functions are given by  
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We note the following properties  ([AbM ] , [LeN ] ) p. 29 ) :  
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With respect to the Dawson function we note Rybickyôs exponentially accurate 

approximation ( [RyG] )  
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For the transcendence and algebraic independence of the values of Hypergeometric E -

functions we refer to ([ShA ] , ([SiC ] ).   
 
 

We claim that the smallest zero of )(zG  and the Euler constant fulfill the prerequisite of 

the theorem 4 in ([WeH ] ), i.e.  the two numbers 
121 :,: wxgx ==  are  without any integer 

linear relationship, i.e. there is not any relationship in the form  
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  integers .  

 
As a consequence then  the series  
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is uniform dense distributed.  
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Because of its beauty  (in case the appropriate function has been built) , but also to 

emphasis the challenge to construct this  appropriate auxiliary function , we recall the 

Niven ôs proof:  
 

Assuming that p is rational, i.e. there is a representation in the form  
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the appropriate function is given by ([ToF ] )  
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On the other side the integral of 
nI  is given by  
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With respect to the hypergeometric function )(xG  and )(xF  we note (K2, D1, [McJ ] )  
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The numbers p,e  are obviously related to the exponential and the Gaussian functions. 

The proofs to show the irrationality of p,e  are based on those frameworks. All attempts 

to prove the irrationality of the the Euler constant based on same framework failed so 

far. The idea is the leverage on the Kummer function based Zeta function to overcome 

this challenge. Of course, this requires corresponding representations of the Euler 

constant in this framework. As an intermediate step to go there we propose the Bessel 

function framework and its relationship to this constant ([ BrR] ).  
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A Kummer function based Zeta function theory 

to prove the Riemann Hypothesis 
 

Dr. Klaus Braun 
August 10, 2015 

 

The Riemann Hypothesis states that the non - trivial zeros of the Zeta function all have real 

part one -half. The Hilbert -Polya conjecture  states that the imaginary parts of the zeros of 

the Zeta function correspond to e igenvalues of an unbounded self -adjoint operator.  The 
function  ( ))1(/)(2 -sssx  is only formally the transform of the operator  ([EdH] 10.3)  
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Thi s operator has no transform at all  as the integral s do not converge, due to the not 

vanishing constant Fourier term of the Poisson summation formula. A similar situation is 

valid, if the duality equation is built on the fractional part function  )(xr  ([TiE] 2.1) , S20 -

S27 ) . We provide  quasi -asymptotics ([VlV] I.3 , S26 ) of the (distributional)  density 

function  (the theory of periodic distributions and Fouri er series is e.g. given in [PeB ] , see 

also note S20 )  
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Replacing the Gaussian function )(xf and the fractional part function by its Hilbert 

transform s enables an alternative Zeta function theory. The Hilbert transform  of the 
Gaussian function  is given by the  Dawson function )(xF (lemma S17) , i.e.  
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with (lemma D1, S1 , [AbM] 6.1.12 ,[EdH ]  12.5 )  
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The key differentiator is about the constant Fourier terms , i.e. )0(Ĕ01)0(Ĕ Hff =¸=  enabling dual 

Poisson equations  ( [DuR]). The corresponding Mellin transform of )(xfH
 suggests a  related  

ñHilbert transformedò Gamma function )(sHG given by  (lemma A8, S4)  
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enabling a corresponding  alternative Zeta function definition for 1)Re( >s  in the form  
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The relation to  the Riemann duality equation (and the corresponding relation to  the  
Riemann error formula ( [EdH ]  1.13 ff . with respect to the term )2/(sP ) is given by  
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(lemma 2.4, A6,  S7, S20 , O29) enabling a n alternative  (error) power series function  

( [EdH ]  1.8 , 1.13 ff. ) with appreciated convergenc e behavior and an alternative  

---= )log,1;1()( 11 xFxxli function  given by       
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A corresponding alternative theory based on the fractional part function is given . The 

appendix provides  notes  to enable proofs of the Goldbach conjecture  and the 

transcendence of the Euler constant.  



  

42 
 

§ 1 Introduction and Notations 

 

The Gauss-Weierstrass function 
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in combination with its Mellin transform 
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and its related Theta function 
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provides the foundation to derive the Riemann duality equation. Putting ([EdH] 1.3, 1.7) 
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resp. ([TiE] (2.1.10), (2.13), see also Note S20) 
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the Riemann duality equation is given by 
 

 
)1()()1(:)( ssss -=-W= xzx  

 
resp. 

 

)()1()( sss zcz -=   . 

 
Writing ([TiE] (2.1.13)) 
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one obtains 
 

)()( zz -X=X  . 
 
The functional equation is therefore equivalent to the statement that )(zX  is an even function 

of z .  
 
 
 



  

43 
 

The approximation near 1=s  can be carried a stage further; one have ([BeB] (17.16)) 
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where g is the Euler constant. We emphasis that  
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is only defined for 1)Re( >s . This is caused by the non-vanishing constant Fourier term of 

the Theta function representation, which is derived from the Poisson summation formula: 
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Remark 1.1 ([EdH] 10.2, 12.5): In a special way the functional equation 

)1()( ss -=xx  seems to be saying that some operator is self-adjoint. A special case 

is given by 
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Formally this gives the identity  
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which indicates that the function ( ))1(/)(2 -sssx  is formally the transform of the 
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But this operator has no transform all, as the integral does not converge (for any s), 
due to the not vanishing constant Fourier term of the Poisson summation formula. 

The integral would converge at ¤ if the constant term  1)0(Ĕ)0( ==ff  is absent. If one 
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converge (in the critical stripe), then the underlying integral operator on the critical line would 

be self-adjoint, which would answer the Hilbert-Polya conjecture. 



  

44 
 

Riemann approached this issue by the auxiliary function ([EdH] 10.3) 
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The Theta function has a pole at 1=s and the series representation (Poisson summation 

formula) has a constant, not vanishing Fourier term. Riemann derived a sophisticated Fourier 

series representation of )(zX using the technical split [EdH] 1.7) 
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From this formula he obtains (([EdH] 1.8, [TiE] 10.1) 
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This leads to the corresponding power series representation of )(zX  
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from which he concluded his famous statement 
 
éDiese Function ist für alle endlichen Werthe von t endlich, und lässt sich nach Potenzen 
von tt in eine sehr schnell convergirende Reihe entwickeln. ..ñ 
 

This series representation of )(sx as an even function of 2/1-s  ñconverges very rapidlyò.  

Remark 1.2 (([CaD], [EdH] 12.5, [TiE] 10.1): By considering the main term resulting 

from the Fourier integral representation of )2/1( it+x Polya approximated )(sx with a 

ñfakeò Zeta function: 
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where )(azK  is the -K Bessel function defined by 
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He proved that )2(2/ pitK  has only real zeros and that therefore the sum of Bessel 

functions has zeros only when t  is real. 
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Lemma 1.1 (lemma A11): If in the critical stripe there is a representation of convergent 
(Mellin transform) integrals in the form  
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A Hilbert transformed function does always have a vanishing constant Fourier term (lemma 
H2). As the Hilbert transform is an isomorphism with respect to the -2L  Hilbert space the 

original and transformed function are identical in a weak -2L sense.  

The Dawson function )(xF and its relationship to the Kummer function ),,(11 xcaF -  is given by 

(lemma D1): 
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Remark 1.3: The structure of the Dawson function relates to the concept of entire functions 
of genus >1 (lemma A7), which plays a key role in [PoG] ([CaD]):  
 

The Laguerre-Polya class LP  of functions consists of entire functions having only 
real zeros with a Weierstrass factorization of the form 
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consists of all elements of LP  of order <2: 
 

Can the function )2/1()( itt +=X x  be realized as a convolution ))(
~

()( tFdGt *=X , 

where *)( LPtG Í  ? This would prove the RH. 

 
 
Definition 1.1 (Hilbert transform): 
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Corollary 1.1: The Hilbert transform of the Gaussian function is given by 
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Remark 1.4: In [BuD] itôs shown that all zeros of the Mellin transforms of the weighted 

Hermite polynomials lie on the critical line. 
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the counterpart with respect to the Kummer functions in the critical stripe is given by (lemma 
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Lemma: The Dawson function )(xF and its relationship to )(xf H
 and the Kummer function are 

given by: 
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Proof: For 0>a , 1)Re(0 << s  resp. 1)Re(0 << s  it holds 
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The function  
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can be continued through the whole s-plane as an entire function ([RaH] VI, 41). 
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The Nyman criterion ([BaB]) is based on an alternative Zeta function representation in the 
critical stripe ([TiE] (2.1.5) in the form 
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whereby )(xr  is the fractional part function defined by ([TiE] 2.1) 

 

{} [] ä
¤

-=-==
1

2sin

2

1
::)(

pn

pn
r

x
xxxx

   

 . 

Again the non-vanishing constant Fourier term of the Fourier series causes same ñself-
adjoint integral operatorò building issue to prove the Hilbert-Polya conjecture. The Hilbert 

transform [])(:)( xHxH rr =  of the fractional part function )(xr is given by ([BeB] (17.13), 

lemma H3) 
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whereby it holds (lemma 2.5) 
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The (distributional) Fourier series representation of the )cot( xp function ([HaH]) is given by 
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leading to the above divergent (Ramanujan) series ([BeB] (17.12)) . 

 

The 
#

1-H  Hilbert space is the same as applied in [BaB] to reformulate the Beurling-Nyman 

criterion.  
 
The essential properties of the Hilbert transform are stated in the appendix (lemma H1-H3). 
The corresponding properties of the Hilbert transformed Gaussian and fractional part 
functions are summaries in 
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As a consequence all Fourier series properties of the Gaussian and the fractional part 
functions (e.g. the Poisson summation formula, which guarantees the Theta function 
property) are also valid in a weak -= 02 HL sense for its Hilbert transform.  

 

The corresponding Poisson summation formula Hq  is given by 
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whereby q, Hq , q, Hq   are norm equivalent with respect to the -¤-¤ ),(2L norm, i.e. it holds 
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Definition 1.2 (Distribution valued holomorphic functions, [PeB] chapter 1, §15): 
 

Let  
zgz­  be a function defined on a open subset CU Ë  with values in the distribution 

space.  Then 
zg  is called a holomorphic in CU Ë (or 
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CU Ë   in the distribution sense), if for each  ¤Í cCj  the function   ),( jsgz­  is holomorphic 
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With respect to the Riemann duality equation one gets the equalities 
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The resulting distribution valued holomorphic function in the critical stripe is the transform of 
the self-adjoint operator 
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The corresponding series representation on the critical line is given by 
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whereby the first term of the -)( 2xHy series predominates for x large (lemma A1, [GrI] 3.952, 

4.424). 
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Lemma 1.4 ([GrI] 8.334): It holds 
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§ 2 Special Kummer and the )cot(x functions: central properties 

 
 
The key functions of concern of this paragraph related to the Gausian function 
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are two Kummer function, the Dawson function and the error functions  
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which are related to each other by ([LeN] (2.1.5), (9.13)), lemma A5): 
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With repsect to the asymptotics of exponential integral function we note the corresponding 
(more appreciated) asymptotics of the error function ([OlF] 4.2, Remark 2.3) 
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In this and the following section we present the central properties of the Hilbert transforms of 
the Gaussian and the fractional part function. Both tranforms provide Zeta function 
representations in the form 
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The Mellin transforms of both transforms are proposed alternatively to define an alternative 
entire Zeta function with same zeros. As the Hilbert transform is a convolution integral this 
enables corresponding RH criteria.  
 
Related to the Gaussian function we propose the following replacement: 
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We note that lemma 1.2, [AbM] 7.1.15, it holds 
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where )(n

kx  and )(n

kH  are the zeros and eight factors of the Hermite polynomials. In lemma 

A17 we provide corresponding Lommel polynomials properties. Lemma A6 and Note S25 
provides related li(x)-function information. In lemma K1/K2 and D1-D5 we provide related 
Dawson function data. 
 
We aslo note the Mellin transform properties 
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The above addresses the second element of our ñTriple HHH solution conceptò (Hilbert scale, 
Hilbert transform, Hilbert-Polya conjecture) replacing  
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Due to the asymptotics of the Dawson function the approach also provides an alternative 

--- )(* xEi  definition enabling, e.g. the RH criterion 
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one gets (see also lemma 2.8 below) 
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The ñtriple Hò concept can also be applied to existing challenges in theoretical physics 
models, e.g. Bose-Einstein statistics and the related Planck black body radiation law, 
Boltzman statistics/equation,Yukawan potential theory, magnetized Bose plasma, Landau 
damping, non-local transport theory (Notes O52 ff).  
 

With respect to the ñradiation transportò topic we note the current state of the art: 
In thermodynamic equilibrium the emission spectrum should be a Plabnckian and the matter 
will also follow a thermal Mexwellian with temperature T. In many cases one finds that the 
Maximilian describes the particles well, but the radiation field is not a Planckian at the same 
temperature.  
 

The authorôs position to that ñinconsistencyò is, that this is due to the imbalance of the 
Planckian and Maxwellian at temperature T, which can be overvome by the ñtriple Hò 
concept, i.e. replacing the Gaussian by its Hilbert transform. 
 
 
Remark 2.1: The Fourier-Hermite expansion is given by 
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Remark 2.2: ([GaG]): The Laguerre polynomials 
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From [[AbM] 13.6.9/17/18 we recall that ),1;(11 zbnF +-  is a polynomial of order n  related to the 

Laguerre polynomials in the form 

)(
)1(

!
),1;( )(

11 xL
b

n
zbnF b

n

n+
=+-

. 

The relationship to the Hermite polynomials is given by 
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The relationship between the orthogonal Lommel polynomials the Hurwitz theorem, the zeros 

of the Bessel function of first kind with the Bernoulli numbers and the function )/1tan( x  is 

given in ([[DiD]).  
 
The relationship between the Lommel polynomials and )(* sG  is provided in Lemma S14. 

 
 
 
 
 
 
 
 



  

53 
 

We summaries a few properties in the context of the -)(xli function (lemma 2.5, lemma A3-

6, lemma K2) in 
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Remark 2.3: From [OlF] chapter 3, we recall 
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The identical asymptotics  
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enables an alternative definition in the form (see also lemma K2) 
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Lemma 2.3 ([HaH]): The Riemann duality equation is equivalent to the partial fraction 
expansion 
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Lemma 2.4 (lemma A4): For the zeros of ),
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Lemma 2.5: (lemma A17):  it holds 
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Remark 2.4: For corresponding CF representations of the Kummer functions see lemma 
CF1-3. 
 
Remark 2.5: From [BeB1] Example 8, p. 64 we note: 
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Lemma 2.6 (Appendix lemma D1): Let 
lF xi inf:=  denote the inflection point of )(xF  and 

)(:)( xFxx =F . Then it holds 
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Lemma 2.7 (The Duffin-Weinberger Dual Poisson theorem, [DuR]): With 
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converge almost everywhere and also in the -¤),0(1L  norm on finite intervals. The functions 
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Proof:  From the definition it follows 
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By changing the variable yx /1=  it follows with lemma 2.4 
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Remark 2.6: In quantum statistics the function 
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plays a key role Bose-Einstein statistic, which is about bosons, liquid Helium and Bose-
Einstein condensate. For large energy E  (whereby )( mb -= Ex ) the distribution converge to 

the Boltzmann statistics. The Zeta function representation in the form 
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builds the relationship to the Planck black body radition law (whereby the total radiation and 
its spectral density is identical). Putting 
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leads to an alternative distribution in the form 
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For 1=s  both representations lead to divergent integrals, but the later one is proposed 

alternative and better fit into the above Hilbert space framework. At the same time it is more 

appropriate to the quantum theory, as this is all about Hilbert space theory. 
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§ 3 The fractional part & the )cot(x functions: central properties 

 

The key functions of concern of this paragraph is the -)cot( xp function and its related 

(Ramanujan) divergent Fourier series representations ([BeB])  
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The following is about -z function defining equalities based on the fractional part )(xr  and 

the )cot(x functions in the context of appropriate Hilbert scale framework and its relationship 

to the Riemann duality equation and the Bagchi formulation of the Nyman criterion.  
 

The Hilbert scale framework and corresponding appropriate self-adjoint integral operators 
are defined as follows: 
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The operator A  (convolution integral) is linked to the Hilbert transform operator (convolution 
integral) by 
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It enables characterization of the Hilbert spaces 2/1-H  and 1-H  in the form 
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The classical derivative can be replaced by a corresponding Calderon-Zygmund singular 
integral operator (see Note O23/32, lemma 2.10 below) in the form  
 

[] ñ
­

-
=

p
Jj

JJ

p
j

20 2

2
sin4

)(1
:)(

du
uS

 . 

 
 



  

57 
 

From [GrI] 3.761, 6.246), we recall related Mellin transforms 
 

Lemma 3.1 For 0>a  it holds 
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The Bagchi-Nyman criterion ([BaB]) is based on the Zeta function representation in the 
critical stripe ([TiE] (2.1.5) in the form 
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In the classical sense, formally only, by partial integration one gets 
 

[ ] []ñññ
¤

-

¤

-

¤

- -¡-=¡-==-=
0

1

00

)1()()()()()( sM
x

dx
xx

x

dx
xx

dx

d
x

x

dx
xxss sss rrrrz

, 

 
 

whereby )1,0()( #

2Lx Ír , )1,0()( #

1-Í¡ Hxr  (lemma H4, Note S21) is the fractional part function 

defined by ([TiE] 2.1) 
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The 
#

1-H  Hilbert space is the same as applied in [BaB] to reformulate the Beurling-Nyman 

criterion. The non-vanishing constant Fourier term of the series causes same ñself-adjoint 
integral operatorò building issue than in case of the Gaussian function.  
 

For the Hilbert transform [])(:)( xHxH rr =  of the fractional part function )(xr it holds ([BeB] 
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Its formal derivative leads to the (distributional) Fourier (divergent (Ramanujan), [BeB] 

(17.12)) series representation of the )cot( xp function ([HaH]) in the form 
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Note: Putting 
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Proof: With lemma 3.1. one gets 
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Remark 3.1:  
From [IvA] (A.26) we recall 
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fulfills the equality 
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From [LaG] we recall the quote from D. Hilbert  
 

Ăan (unbounded) normal operator D of an Hilbert space H is self-adjoint if and 
only if its spectrum Spec(D), which is a closed subset of the complex plane, is 
included in the real lineò (Ą ñand with this, Sirs, we shall prove the RHò). 
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Lemma 3.3: The Mellin transform of the (convolution) distribution  
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Proof: With Lemma A8, O23/32, [GrI] 3.761, one gets  
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Putting 

[ ] )1()(:)( sxMs HH -¡-= rz . 
 

one gets 
)1()()1()( ssss HH -Ö=-Ö zzzz  

 

and therefore 
 
Corollary 3.1: )(sz  and )(sHz  have the same zeros. 
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uniformly for  00 >²ss , Cxt /2p< , when C  is a given constant greater than 1 . The proof of 

this theorem is built on the identity (see also [McC], [BeB] 5) 
 
 

ñä
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ix
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s

xn
s z

dz
zz

in
)cot((

2

11 1 pp
p

 .  

 
The function )cot( xpp  is holomorphic except the pole 1=z . 

 

The distributional Hilbert space #

1-H  plays a key role in [BaB], where the Nyman criterion is 

reformulated within a purely functional analysis weighted -2l Hilbert space framework. 

 

Remark 3.3: The considered Hilbert space in [BaB] is about of all sequences { }Nnaa n Í=  of 

complex numbers such that 

¤<ä
¤

=1

2

n

nn aw     with    
2

2

2

1

n

c

n

c
n ¢¢w   

 

 which is isomorph to the Hilbert space 1

21

-

-@lH . 
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Remark 3.4: Let                
 

{ },......1,1,11:=g      

then it holds 
 

6

1 2

1
2

2

1

p
g ==ä

¤

- n

   i.e. 1

2

-Ílg . 

 

With respect to the concept of summability of Fourier series and related double infinite 
regular matrix in the form 

kg we refer to [ZyA] III. 
 

Theorem  (Bagchi-Nyman criterion, [BaB]): Let                
 

ý
ü
û

í
ì
ë

== ,....3,2,1)(: n
k

n
k rg

     for  ,...3,2,1=k  

and  
kGbe the closed linear span of kg . Then the Nyman criterion states that the 

following statements are equivalent: 
 
 

i) The Riemann Hypothesis is true 
 

ii)   
kGÍg . 

 
 
 

Remark 3.5: With respect to the concept of summability of Fourier series and related double 
infinite regular matrix in the form 

kg we refer to [ZyA] III. 

 
Alternatively to the double infinite matrix 

kg above, we propose the analog defined double 

infinite matrix 

{ },....3,2,1)/(: == nknH

H

k rg      for  ,...3,2,1=k . 
 

As it holds 

012/1),( vuvu Ö¢
--

 , 
 

the inner product 
2/1),( -vu   is defined for any  1

2

-Ílu , 
2

0

2 llv =Í .  
 

Putting (see also Claussen integral function, cardinal series) 
 

1

2: -Í@X= lu g     ,    
2))sin(2log(: Ldv ÍF=-= Ap  

 

leads to a weak --

#

2/1H  representation of the -+=X )2/1(:)( itt z function on the critical line in the 

form 

[ ] [] ),(),(),(),(),(),(),( 002/12/12/1 HHHHH

H

k SSd rrrrrgg X=X=¡X=¡X@FX=X@ ---
  . 

 
 As 2/1

2

-l is dense in 1

2

-l with respect to the --12l norm, g belongs to the closed linear span of 

{ }
Nk

H

k Í
g , i.e. 

1

2/1

2

1

2

-----
-- =Í

A

llg    

 
which fulfills the Bagchi criterion. 
 
 
For a corresponding Ritz-Galerkin approximation method (which contains spectral, 
collocation and linear interpolation approximation methods) with corresponding ñoptimalò 
approximation behavior we refer to [BrK]. 
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Remark 3.6: Assuming that 
(*)   ( )ä

¤

=

- ¤<+
1

1

n

nn aa
n

 

 

then there are continuous functions )(),( tt YF  such that (appendix, ([WhJ]) 
 

ñF=

1

0

0 )(tda
 ,  
( ) ñ F=+ -

1

0

)()cos(2 tdntaa nn p
 ,  ( ) ñ Y=- -

1

0

)()sin(2 tdntaa nn p
 

i.e.                                        { }ñ Y+F=

1

0

)()sin()()cos( tdnttdntan pp  . 

 

A cardinal series in the form  

ù
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ø
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-

1

0 )1(
2
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nnn
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a
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represents an entire function (appendix). Given a function )(xf  in the form 
 

{ }ñ Y+F=

1

0

)()sin()()cos()( tdxttdxtxf pp  

the series 
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ø
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)()(
)1(

)0()sin(

n

n
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x

fx

p
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is (C,1)-summable and its sum is )(xf . If (*) is satisfied, the cardinal series 
 

ù
ú

ø
é
ê

è

ý
ü
û

í
ì
ë

+
+

-
-+ä

¤

=

-

1

0 )1(
)sin(

n

nnn

nx

a

nx

a

x

ax

p

p  

 

is absolutely convergent. As a prominent example we mention the series representation 
 

)
11

(
1

)cot(
1 nxnxx

x
n -

+
+

+= ä
¤

=

pp
 . 

 

We consider the Fourier-Stieltjes coefficients for the Claussen integral function (Notes O28, 
O35), i.e. we put 
 

ä
¤

=

=-==F
1

)2cos(
))sin(2log(

1
)(:)(

k

H
k

kx
dxxxxd

p

p
p

p
r   0:)( =Y xd . 

It holds ([GrI] 4.384) 

0

0

2

1
0

)2cos()sin(2log

1

0
>

=

îí

î
ì

ë
=-ñ n

n

n

dxxnx pp
   

 

0))12cos(()sin(log)2sin()sin(log

1

0

1

0

ñ ñ =+= dxxnxdxxnx pppp

 
resp.                                       00=a   ,  

n
aa nn

2

1
== -

 . 

 

The corresponding (absolute convergent) cardinal series (see also lemma A10) is given by 
 

ä
¤

= -

Ö-=
1 2)(1

12
)1(

)sin(1

n

n

x

nnx

x

x p

p  . 

 

The related orthogonal (ñdiscontinuous integralsò) equations for the -xsin2log and the 

-G )(log x functions are given by ([NiN] Bd. 1, §87, 89, Bd. 2, §21) 
 
 

n
dxxsixn

2

1
)()cos(

0

=-ñ
¤

pp
  . 

The modified Lommel polynomials provide a corresponding orthogonality polynomials system 
([DiD], [ChT] 7, II). 
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Remark 3.7: Assuming that 

( )ä
¤

=

- ¤<+
2

log

n

nn aa
n

n  

 
there is an analog cardinal series representation (appendix, ([WhJ]). 
 
We note the relationship to the Ramanujan formula ([EdH] 10.10, lemma A10), e.g. 
 

ñ ä
¤ ¤

=

-

ý
ü
û

í
ì
ë

-+++=
0 1

))(1(log
)sin(

)( dxxnxx
s

s
s

n

ns zg
p

p
z

 . 

 
For the relationship to the Mellin inverse theory we refer to [NiN] Bd. 2, §21. 

From the theory of Fourier series we recall that for a bounded variation function )(xg with 

domain [ ]ba,  it holds (see also Notes S33, S36-38, S47) 
 

äñä
¤

-¤=¢¢

=
++-

k

b

abna

dykyyg
ngng

)2cos()(
2

)0()0(, p

 . 
 
For the Claussen integral ([AbM] 27.8) 
 

äñ
¤

=

=-=
1

2

0

)2sin(
)sin(2log(2:)2(

n

x

n

nx
dxxxw

p
ppp

  , 10 ¢¢x  

 
it holds a related (additive) equality to ([BrT]) 
 

)
2

cot(
2

1
)

2
cot(

2

1
cot

xx
x

-
-=

p  

in the form 

))1(()()2(
2

1
xwxwxw --= ppp . 

 
 
Remark 3.8: We note that with respect to the -)1,0(#

2L inner product the adjoint (in a 

distributional --

#

2/1H sense) Fourier series representation of the (distributional) Fourier series 

representation of  

)cot(
1

)2sin(
2

1

AA p
p

pn
p

s == ä
¤      

is given by 

)(sin

1
)2sin(4

2
1

*

A
A

p
pnns -==ä

¤ . 

 
 
 
Remark 3.9: Let                                       

0
)(sin4

1
:)(

2
>=

x
xg

p

  . 

then it holds 

))(log(
2

1
))(sin4log(

2

1
)sin(2log( 2 xgxx =-=- pp . 
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The relationship to the concept of quasi-asymtotics of distributions ([VlV] p. 56/57 [PoG3], 
[SeA1] is given in 
 

Lemma 3.4: It holds 

1)cot(
)(

)(

2

1
-­-=

¡

¤­x
xx

xg

xg
x pp

 .  

 

Therefore )(xg  is auto-model (or regular varying) of order 1- , i.e. 
 

axg

axg

x

1

)(

)(
lim =
¤­

 . 

 
 

With respect to the Tauberian theorems this results into the asymptotic 
 

2loglog
1

2log))sin(2log()sin(2(glo)cot(
2/12/12/1

+=@+-=¡-= ñññ xdt
t

xdttdtt

xxx

pppp  

 

i.e.                                                      xx log))sin(2log( @- p  

 
which is equivalent to ([EdH] 12.7, Tauberian theorems) 
 

[ ]ññ
¤

-

¤

- =-
2/1
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2/1

1 ))sin(2log( dxxxdx p
 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

64 
 

§ 5 #

2/1H  & Hardy space isometry and Dirchlet series 

 

Dirichlet series of type nl are of the form 
 

ä
¤

-
=

1

)(
s

n
neasd
l  

 

where { }
Nnn Í

l  is a sequence of real increasing numbers whose limit is infinity, and its +=s   

is a complex variable whose real and imaginary part are s and t . 
 

Local properties of certain Hilbert spaces of Dirichlet series and the properties of the )cot( xp  

function resp. the related )(xG function (lemma S3) to Dirichlet series are given in [OlJ] and 

[BaB1], 4.8 lemma.  
 
 

The relationship between the Dirichlet series theory ([HaG)] and the distributional Hilbert 

space --

#

2/1H  norm is given by [LaE] §227, Satz 40): 
 

Theorem 40: The Dirichlet series 
 

ä
¤

-=
1

log:)( ns
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1

log:)( ns

nebsg  

 

are convergent for e->s ( 0>e ). Then on the critical line it holds 
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whereby for nybnyayh nnn pp 2sin2cos:)( +=  it holds 
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yx

yh

n
xh n

n ñ -
-=

1

0

2 ))((sin4

)(2
)(

p

  . 

                                        . 
Putting 

)
2

1
(:)( itt +=X z  

 

we recall from [EdH] 9.2, 9.8: 
 
 

t

it

log

)( +sz   is bounded for 2,1 ²² ts , 

)()( 4/1tOt =X   and  
ñ
-

ºX

w

w

w
w

log)(
2

1 2
dtt . 

 

In the context of the above Dirichlet series this then leads to the identities 
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6
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p
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 , 

 
enabling corresponding convolution representation of corresponding singular integral 

operator ([CaD]). 
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The dual space of 
2

2/1

22/1

*

2/1 LlHH Ë@=-
 is isometric to the classical Hardy space H2 (see 

also note S48) of analytical functions in the unit disc with norm 
 

ñ
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=

p

p

jj js
p

s drere i

H

i
2

** )(
2

1
:)(

2

. 

 

It holds  
 

i) If Í*s  H2  then there exists boundary values  ),()(lim)( 2

*

1

* ppss jj -Í=
­

Lree i
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i  with 
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H
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ii) If 
2/1

* )( Heue ii Í=ä
¤
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nj
n

js , then its Dirichlet extension into the disc is given by ( jirez= ) 
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äää +== zuzueruzU i   

 

with                                                  2

2/1

*22

0
sn n ==Ð ä

¤

¤-

uU
  . 

 

The dual spaces 
2

* LH Ë-b
 ( 2/1=b , 1=b ) are proposed as appropriate framework for 

Schnirelmann densities to apply probability methods to analyzing additive number theory 
problems ([KaM]). 
 
 
Remark 4.1: From [ZyA] XVIII, 11 we recall (see also Notes 37/38): 
 

-  If  
 
 
then the set of points of diverngence of the trigonometric series is of outer 
logarithmic capacity 0 .  

 

-  Let O   be an open set, and md  a mass distribution concentrated in O . If 

i) 
ñ ¢--

p

m
p

2

0
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2

1
sin(2log(

2

1
Mydyx

 for all  x , 

ii) [ ]ä
¤
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+
1

22

n

nn ban , 

iii) )(xn  is any Borel measurable function taking only non-negative 

integral values, 
 

then the partial sums )(xsn
 of   
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+
1
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n
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where A  is an absolute constant. 
 
 
Remark 4.2: In harmonic analysis by 
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the energy of the harmonic continuation )(jE=h  to the boundary is given. 
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Remark 4.3: There is a generalizing Hilbert scale definition to the -b  norms (definition H1), 

which can be applied to the generalized Dirichlet series theory for corresponding 
distributional representations. It is defined by the inner product resp. norm ( 0>t ) 
 

),)(,(:),( )( ii

t

t yxeyx i jj
l

ä
-

=  

resp. 

)(

2

)(
),(: tt

xxx =  . 

 
 

Obviously it holds  
a

a xtcx
t

Ö¢ ),(
)(

. On the other side any negative norm, i.e.  
a

x  with

0<a  , is bounded by the -0 norm and the new  -)(t norm, i.e. it holds 

 
 
Lemma 4.1:  i) Let  0>a be fixed. The  -- )( a norm of any 

0HxÍ   is bounded by 
 

2
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0

22

t

t xexx da

a
d +¢

-
 

 

with  0>d  being arbitrary. Let 0, >dt  be fixed. To any 
0HxÍ   there is an 

1HyÍ   

according to 
 

xyx ¢-  ,  xy 1
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and therefore 
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x
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From the above it follows with 2/1;0 =>= adt  

 
 

Corollary 4.1:  i) To any 
0HxÍ   there is an 

1HyÍ   according to 
 

i) xyxyx
t
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)(0
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2

2/1 t
xextx +Ö¢

-
 

 
Remark 4.4: Polynomials orthogonal on the unit circle ([SzG] 11) are given in Note S49. 
 

Remark 4.5: Let 
ng be the ordinates of swith 0)Im( >s and let 0>A  be according to  

 

{ } )(log#:)( TOTTATTN nn +ÖÖ=¢= gg  

 
 then ([LaE] VII, 11, §4/5, Notes S44/45): 
 

6. the series 
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          is regular for 0>z . 
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Appendix 

Lemma A1 ([GrI] 3.952, 4.352, 4.424): 
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Lemma A2 ([GrI] 7.612):           
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Lemma A3 ([LeN] 9):   
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Lemma A4 ([SeA]): For the zeros of degenerate hypergeometric functions ),;(11 zcaF  it holds 

1. Suppose that 11 +¢<¢ aca  and 2̧c  if 1=a . Then all zeros of ),;(11 zcaF  lie in the 

half-plane                                 [ ]2)(11)Re( acaz --+--<  

2. Suppose that 10 ¢<a ,  ac +²1  , moreover 2̧c  if 1=a . Then all zeros of ),;(11 zcaF  

lie in the half-plane                 [ ]211)Re( aacz -+-->  

3. Suppose that 10 ¢<a ,  aca +¢< 1  , moreover 2̧c  if 1=a . Then all zeros of 

),;(11 zcaF  lie in the horizontal strips nzn pp 2)Im()12( <<-  . 
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Lemma A5 ([LeN] 3, 9.13): 
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Lemma A6 ([EdH] 1.14): For the -)(1 xli function and the remaining term of the famous 

Riemann function it holds 
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Lemma A7 ([[BuH] p. 184): Let 
na  denote the infinite set of zeros of ),;(11 zbaF . Then it 

holds 
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Lemma A8 ([GrI] 3.761, 6.246): For 0>a  it holds 
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