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New integral equation in the thin airfoil problem 
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Summary. A new integral equation concerning the thin airfoil problem is proposed. In this equation, 
the unknown function represents vorticity along the thin airfoil, and the right hand term of the 
equation is chosen as the stream function in two-dimensional potential flow. The equation has a 
logarithm kernel with a weaker singularity than the known one [1]. After solution of the integral 
equation, i.e. after determination of vorticity, the lift forces and moment acting on the thin airfoil 
can be calculated immediately, as it follows from the Blasius's formulae. Several numerical examples 
are given. 

1 Introduction 

The theory of potential  two-dimensional flow (abbreviated as PTDF)  has history of more 
than  a hundred of years. In  this theory, the so called " thin airfoil problem" occuring in 
theoretical aerodynamics, used to play an important  role. Several approaches for solving 
this problem as well as other problems in P T D F  were suggested [1]--[7]. In  an earlier 

approach to the thin airfoil problem, after replacing the airfoil with its camber line, and 
assuming the density of vorticity along the chord line as unknown function, and introducing 
the normal velocity with respect to the thin airfoil in the impermeabili ty condition, the 
wel~aknown singular integral equation could be obtained [1], [2]. For the sake of simplicity, 
the following additional assumptions were usually imposed: 

(1) the impermeabil i ty condition had to be satisfied on the x-axis (chord line) instead of the 
camber line, 

(2) the angle of a t tack  was small, (dz) dz 
(3) the camber line z = z(x) should satisfy the condition: aretan ~xx ~ ~xx" 

The integral equation was solved successfully [1], the singularity being taken care of by 
means of a suitable approximation of the vorticity function. 

More recently, it was pointed out tha t  the proper choice of a field quanti ty in solving 
boundary value problems in mechanics is of great importance [8], [9]. Assume tha t  t is a 
source point in a plane and tha t  to is an "observat ion" point in the same plane. I f  the "ob- 
servat ion" field quant i ty  is chosen such tha t  the influence is directly proportional to 
(t - -  4) -1, then the following type of integral f #(s) (t - -  10) -1 (an integral along a curve) is 
involved in the resulting integral equation. Generally speaking, the above mentioned inte- 
gral should be understood in the sense of the Cauchy integral. This is a usual difficulty 
encountered in the process of solving the boundary integral equation as well as the singular 
integral equation of the thin airfoil problem in PTDF.  

Clearly, the character of the kernel in an integral equation depends on the choice both 
of the unknown function, and the right hand term of the integral equation. In  this paper, 
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we still use the  vor tex  densi ty  as the  unknown funct ion of the integral  equation.  Never-  
theless, instead of the veloci ty component  normal  with respect  to the camber  line we use 
the s t r eam funct ion in the  r ight  hand t e rm  of the integral  equat ion.  I n  such a manner ,  an  
integral  equat ion with the logar i thm kernel, i.e. with "weake r "  s ingular i ty  can be obtained.  
As it is ment ioned  below, and as also cited in some references [8], [9], the numerical  solu- 

t ion of the  proposed integral  equat ion is more  easy  and  convenient  to car ry  out.  

2 Analysis 

I t  is well known tha t ,  every  two-dimensional  incompressible potent ia l  flow is governed b y  

a corresponding complex poten t ia l  N(z) [2], [3] 

W(z) = ~(x, y) + ir y), (1) 

where ?(x, y) denotes the  veloci ty  poten t ia l  and ~b(x, y) the s t r eam function. The bo th  two 
functions 9(x, y) and $(x, y) are harmonic.  The complex veloci ty of the  flow is represented 

b y  the formulae [2], [3] 

W'(z) = u - i v ,  (2) 

where u, v denote  the veloci ty  components  in the x-, or y-direction,  respectively.  Of course : 

u . . . .  v - -  - -  (3) 
~x 0 y '  ~y ~x 

In  order to formula te  the  ment ioned  integral  equat ion,  the complex potent ia l  corre- 

sponding to a vor tex  f i lament  placed a t  the  poin t  z = t in Fig. 1 is in t roduced as 

W(z) = qs(x, y) 4- i$(x, y) = i H  In (z - -  t), (4) 

where H is real, and it represents  the s t rength  of the vor tex  f i lament  a t  the poin t  z = t 

(Fig. 1). Le t  {g}t denote the contour  increment  of some funct ion g for the closed pa th  a round 
the point  z = t in Fig. 1. F r o m  (1) and (4), we have  

{ W } t = - - 2 ~ H ,  or { ~ } t = - - 2 ~ r H ,  {~b}t=0. (5) 

Now let us consider the thin airfoil p rob lem shown in Fig. 2. The air-foil is placed in an  

infinite con t inuum with the veloci ty  components  a t  infini ty denoted by  u~o and voo. Ob- 
viously, the  invest igated complex poten t ia l  W*(z) can be decomposed as follows: 

W*(z)  = ~*(x,  y) + i~*(x,  y) = w l ( z )  4- W(z); 

Wl(z) = qs~(x, y) 4- i$1(x, y); (6) 

W(z) = ~(x,  y) + ir  y) ,  

where 

W~(z) = (uoo -- ivoo) z = (xuoo 4- yvo~) 4- i(--xvoo 4- yuo~) (7) 

0 

�9 
, Fig. 1. A vortex filament placed at the point z = t 

X 
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J t o Fig. 2. A curved thin airfoil in the infinite 
A __  continuum 

0 X 

represents the complex potential defined in the whole plane when the field has not been 
perturbed by the thin airfoil, and W(z)  represents the perturbation part of the complex 
potential. 

I t  is easy to see that  the normal velocity component should vanish along the thin airfoil 
(/ '  in Fig. 2). I t  leads to the following boundary condition: 

0~* 0q0i 0~0 
On = 0--n- + ~n = 0, (along F in Fig. 2). (8) 

By means of using the Cauehy-l~iemann condition, the equation (8) yields: 

0~b 0~b 1 
Os 0s (along/" in Fig. 2) (9) 

and after integration one obtains the following boundary condition for the perturbation 
field 

~P = --~bl + c =- xvoo - -  yuoo + c, (along T' in Fig. 2) (10) 

where c is an arbitrary constant. 
The perturbation field can be described by vorticity/~(s) along the thin airfoil. Thus, if 

H in (4) is replaced by/~(s) ds and integration along/~ is carried out, we obtain the follow- 
ing complex potential 

Z 

W(z) = i f  ~(s) In (z  - -  t) d s .  (11) 
o 

Let  z approach the upper or lower border of the thin airfoil, i.e. z -+ to ~ or z --> to-. In 
either case, from equation (11) we have 

L 

~b(so) = f #(s) ]n (r(t, to)) ds,  (so ~ F)  (12) 
o 

where r(t, to) represents the distance between two point z = t and z = to. Finally, from 
(10) and (12), a weaker singular integral equation with logarithm kernel is obtained as 
follows 

L 

f ~(~) In (r(t, to)) do = x0v~ --  V o ~  + * (t0 = z0 + iV0). (13) 
0 

The numerical solution of the above integral equation will be presented below. The lift 
Y, the drag X, and the moment M can be expressed by the known formulae: [2], [3] 

y+ix -  Qfictw*/~ 2 \--g-~l dz; 
C 

3 I  - -  ~ I~e  z d z  , 
2 \--~-~I 

C 

(14> 
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where C is any closed integration path around the thin airfoil, and 0 denotes the fluid 
density. 

Clearly, from (6), (7) and (11), the complex velocity of the whole field can be ex- 
pressed by 

L 

d W *  ~ ~(s) ds 
dz - -  U~o - -  i v ~  4. i ! (15) 

z - - t  
o 

Furthermore, the complex velocity at the infinity can be expressed as 

d W *  i A  i B  
dz - -  uoo - -  ivoo 4- --z  ~- z 2 4- " ' "  (16) 

where 

L L 

o 0 

After substituting (16) into (14) and using the residual theorem, one obtains 

Y 4- i X  = 2 ~ e A ( u ~  - -  iv~o), (18) 

= 2 ~  Re  ( B ( ~  - -  ivy))  = 2 ~ ( B I ~  + B~v~).  

Therefore, the thin airfoil problem in PTDF is reduced to solve the integral equation (13) 
and to evaluate the integrals (17). We introduce the formulae (14)--(18), because they will 
be used in the examples. 

3 Numerical  analysis  and examples  

As mentioned above, the main task in the present investigation is to solve the integral 
equation (13) numerically. In addition, the most important point in the numerical solution 
is to consider the following two particular features which appeared in the thin airfoil problem. 

(a) The vortex density #(s) has a s -1/2 type singularity at the leading edge point A of 
the thin airfoil in Fig. 2. Meantime, from the Joukowski hypothesis, #(s) becomes zero at 
the trailing edge point B in Fig. 2. 

(b) In (13), if t --7 to, the kernel In (r(t, to)) has a logarithm type singularity. I t  is well 
known that  the integrals containing the abovementioned singularity are integrable. 

The integral (12) will be rewritten again for the sake of convenience: 
L 

I = f #(s) In (r(t, to)) d~'. (19) 
o 

In the numerical approach to its evaluation, the thin airfoil will be approximated by a 
polygon consisting of ~V line segments P1P2, P2P3 . . . .  , P~P~+I  in Fig. 3. 

In result of the above-mentioned approximation, the integral in (19) can be rewritten as 
N N Pj+I  

• = 2 - -  2 f in (r(t, to)) (2o) 
j-1 ~'-1 Pj 

The interpolation formulae for/~(s) are of three kinds. For the first segment (PIP2 in 
Fig. 3), the following interpolation formula in the local coordinate s~ has been found to be 
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to,1 
Pl 

~ ~ p ~ N  y to'2 t0, 3 to'4 t0,N t0,N+ 1 

+I 

Fig. 8. A polygon approximating the thin airfoil 

~ X  

suitable [8] 

) /*(sl) --= #1 \[/ ~/i T sl 1 + 1.2 (Is1] < d l ) .  (21) 

The above interpolation formula reflects the nature of/*(8) at. the leading edge of the thin 
airfoil and satisfies the following condition 

/ * ( S l ) l s l = d t  = /~'2" (22) 

In the intermediate segments (from P2Pa to Plc-~P~ in Fig. 3), the following interpola- 
tion formula for/~(s), for example along PaP~, is assumed 

1 
#(sa) = ~- (#a(1 -- sa/da) + tq(1 4- sa/da)) (Isal < da). (23) 

Finally, at the last segment (P:r in Fig. 3), the following interpolation formula is 
suggested 

1 
/*(s~) - - f f /*~(1 - s~v/d~v) (Isxl < d~0. (24) 

The above representation reflects the nature of #(s) at the trailing edge (P~v+l in Fig. 3). 
If the above interpolation formulae for #(s) are used, the integration indicated in (20) 

can be separated into the following types 

2d 

J1 = f ((2d/r) 1/~ - 1 ) i n  ,. e~ = 2~( ln  (2e) - -  3),  
0 

2d S ~  

J~ = f In r dr  = 2~(ln ( 2 <  - -  1), 
0 

2d 

J~ = f ((2d/r) 1~ --  1) In (2d - -  r) dr = 2e(ln (2d) - -  a + ~ in (2d)), 
0 

2g 

J~ - f (~ - r/2~) in r ~ d(ln (2~) - -  ~.5), 
0 

2d 

Jo -_ f (r/2d) In r ~r = e(ln (2~) --  O.5), 
0 

g 

& = f g(s)/( d2 --  8~)~/2 & ,  
--d 

d 

J ,  = f h(s) d8. 
- d  

(25.1 --7) 
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The first  five integrals have been integrated in a closed form. I n  addit ion,  the integrals 

(25.1) and  (25.2) can be in tegrated b y  the use of the following Chebyshev integrat ion rule 

d 

~(8)/(d 2 - -  82) 1/2 d8 = --~ X ~(Sm), 
m = l  

--d 

2 m -  1 ) 
8 m = d c o s \  2M ~z , m - - 1 , 2 , . . . M .  

(26) 

Assuming t h a t  the  integral  equat ion (13) has to be satisfied a t  X + 1 discrete points  
Pi  (or to,i) i - -  1, 2, .. . ,  N + 1, the  following sys tem of algebraic equations for 27 + 1 un- 

knowns u0a, #o,2, ...,/~0,s and c can be derived:  

N Pj+I 

s f In (r(t, to,,) ) if(s) ds - -  c = Xo,iVoo - -  yo,iUoo, i - -  1, 2 , . . . ,  27 @ 1. (27) 
]=1 pj 

With  no loss of generali ty,  the leading edge (point PI  in Fig. 3) can be assumed as coincid- 
ing with the  origin of the  coordinate system. Thus,  toa = xoa + iyo, , = 0. B y  subt rac t ing  
the first  equat ion in (27) (i = 1) f rom the remaining ones (i = 2, 3, . . . ,  27 + 1), an  alter- 

na t ive  form of the  sys tem of algebraic equat ions for the  27 unknowns  fr0,i, #0,2, ' . . ,  ff0,~ is 
obta ined:  

N Pj+~ 

S f {ln (f(t, to,i) ) - -  In (r(t, 0))} #(s) ds --  Xo,iVo~ - -  yo,iUo~, i = 2, 3 , . . . ,  27 + 1. (28) 
j=1Pj 

The same interpolat ion formulae can be appl ied to evaluat ion of the  integrals in (17). 
Four  numerical  examples  will be presented in order to demons t ra te  the  flexibil i ty and 
accuracy  of the proposed approach.  

3.1 A n  inclined plate i n / l o w  uni /orm at in / in i ty  (Fig. 4) 

A plate of the length 2a is placed in the  flow uniform at  infinity, and possessing the veloci ty 
uoo (voo - -  0). Wi th  respect  to the  assumed coordinate system, the pla te  is inclined a t  the 
angle c~. The problem can be solved in closed form, i.e. the formulae (18) reduce in this ease 
to the following solution: 

X = 0 ,  

Y = 2 ~ a u ~  sin ~, (29) 

Mc = - - ~ a 2 u ~  sin ~ cos ~. 

We take  27 - -  10 and  27 = 20 in (20), M = 13 in (26). The results are expressed as 

Y =/1(c~) 2rc~au~, X --  O, 

Mc = --12(c~) ~ a 2 u L .  (30) 

Lloo t 
Y 

Fig. 4. An inclined plate in potential flow 
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Table 1. Calculated ]l(a) and ]~(a) values (see (29) and (30)). 

129 

0 ~ 5 ~ 10 ~ 15 ~ 20 ~ 25 ~ 30 ~ 35 ~ 40 ~ 

/I (iV = 10) 0.000 0.086 0.172 0.256 0.338 0.417 0.494 0.567 0.635 
/t (N = 20) 0.000 0.087 0.172 0.257 0.340 0.420 0.497 0.570 0.638 
/~ (exact) 0.000 0.087 0.174 0.259 0.342 0.423 0.500 0.574 0.643 
[~ (iV = 10) 0.000 0.087 0.171 0.250 0.321 0.383 0.433 0.470 0.492 
/2 (N = 20) 0.000 0.087 0.171 0.250 0.321 0.383 0.433 0.470 0.492 
/2 (exact) 0.000 0.087 0.171 0.250 0.321 0.383 0.433 0.470 0.492 

45 ~ 50 ~ 55 ~ 60 ~ 65 ~ 70 ~ 75 ~ 80 ~ 85 ~ 

/1 (iV = 10) 0.698 0.757 0.809 0.855 0.895 0.928 0.954 0.973 0.984 
/1 (iV = 20) 0.702 0.761 0.813 0.860 0.900 0.933 0.959 0.978 0.990 
/1 (exact) 0.707 0.766 0.819 0.866 0.906 0.940 0.966 0.985 0.996 
/2 (iV = 10) 0.500 0.492 0.470 0.433 0.383 0.321 0.250 0.17t 0.087 
/2 (iV - -  20) 0.500 0.492 0.469 0.433 0.383 0.321 0.250 0.171 0.087 
[2 (exact) 0.500 0.492 0.470 0.433 0.383 0.321 0.250 0.171 0.087 

T h e  ca l cu l a t ed  v a l u e s / ~ ( a )  a n d  i2(~) a n d  t h e  ones  o b t a i n e d  f r o m  t h e  e x a c t  so lu t ion  a re  

l i s t ed  in T a b l e  1. As we see, t h e  d i f fe rence  b e t w e e n  n u m e r i c a l  so lu t ion  a n d  e x a c t  so lu t ion  

is v e r y  smal l .  

3.2 A parabolic arc in ~low uni]orm at in/inity (Fig. 5) 

I l l  t h e  second  e x a m p l e ,  t h e  t h i n  air foi l  is a p p r o x i m a t e d  b y  a s e g m e n t  of a pa rabo la .  I n  t h e  

xl o Yl c o o r d i n a t e  s y s t e m ,  t h e  p a r a b o l a  can  be  expressed  as 

Yl = e(2ax~ - -  x12)/a. (31) 

T h e  t h i n  a i r foi l  has  an  i nc l i na t i on  ang le  ~ w i t h  r e spec t  to  t h e  x-axis  (Fig.  5). I t  is a s s u m e d  

that, ,  t h e  v e l o c i t y  a t  i n f i n i t y  is u ~  (vo, - -  0). As  before ,  we t a k e / g  = 20 in (20) a n d  M = 13 

in (26). T h e  ca l cu l a t ed  resu l t s  a re  expres sed  b y :  

Y = 27~@au~g~(~, s),  X = 0 ,  
(32) 

Mo = --zea2u~g2(~, ~). 

I n  t h e  a b o v e  e q u a t i o n ,  t h e  l i f t  Y a n d  m o m e n t  Mc a re  app l i ed  a t  t h e  p o i n t  w i t h  t h e  coor-  

d ina t e s  (a cos c~, - - a  sin a).  T h e  ca l cu l a t ed  g~(a, e) a n d  g2(c~, e) va lues  a re  p l o t t e d  in F ig .  6 

a n d  Fig .  7, r e spec t i ve ly .  

- t ' / y ,  

Fig. 5. A thin airfoil with parabola configuration 
in the potential flow 
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Fig'. 6. gl(a, e) values in Eq. (32) (see Fig. 5) 

Fig. 7. g2(c~, e) values in Eq. (32) (see Fig. 5) 

3.3 A thin air/oil with a/ lap in the/low uni/orm at in/inity (Fig. 8) 

I n  the third example, a thin airfoil with kinked configuration is placed in the uniform flow 

with the velocity uoo (voo = 0). The results are expressed by  

Y =: 2~au~h~(~, 8), X -- O, 
(33) 

The calculated h~(~, 8) and h2(c~, 8) values are plot ted in Fig. 9 and Fig. 10, respectively. 
Clearly, the relation between c~ and 8 for zero lift force ( Y = 0) can be found from (33) 

and takes the form 

hl(~, fl) = 0.  

F rom Fig. 8 we see tha t  

hl(c~, fl)[~=0o~=0 o = 0, and h i ( 0 / ,  8 ) ! a = 1 0 o , ~ = _ 2 6  o = 0 .  

(34) 

(35) 

L I , ~ ,  M~ ] x 

�9 ~ -  xl Fig. 8. A thin airfoil with kinked configuration 
in the potential flow 
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Fig. 9. hi(a, fl) values in Eq. (33) (see Fig. 8) 

0.6 a =  40 ~ \ 

30 ~ 
0.4 ~ "- 20 o \ 

10 ~ 
0.2 \ 

0 ~ 
o.o ~ \ - -  

-3,  ~ - 2 0  ~ - I 0  ~ 0 ~  10~ 

Fig. 1@. h2(a,/3) values in Eq. (33) (see Fig. 8) 

I I 

20 o 3 0  

This is to  say,  in the  v ic in i ty  of c~ = 0 ~ fl = 0 ~ we have the  following zero l if t  force con- 

d i t ion  

A~ 
- -  10.0/26.0 = - -0 .385 .  (36) 

Aft 

I n  the  same condi t ion,  the  ra t io  Aoc/Afi r epor ted  prev ious ly  t akes  the  value  - -0 .39 [2, p. 136 

Fig.  18, when E = 0.1]. 

3.4 A thin air]oil with sine con/iguration in the uni/orm /low (Fig. 11) 

I n  the  four th  example ,  the  sine conf igura t ion  is expressed b y  

yl = ea s in  (~xl/a). 

The ca lcu la ted  resul ts  are  expressed b y  

Y = 2=gau~k~(c~, e), X = 0, 

Mc = --~9a232]c2(o;, r 

The ca lcu la ted  kl(~, e) and  k2(a, e) values  are  p lo t t ed  in Fig.  12 and  Fig.  13 respect ive ly .  

(37) 

(38) 
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- - - 4 a -  

U~ 

Y Yl ~ 
_~a Y Me 

Xl 
Fig. 11. A thin airfoil with sine configuration 
in the potentiaI flow 
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Fig. 12. /el(a, e) values in Eq. (38) 
(see Fig. 11) 

0.4 

0.2 

0.0 
0 0.1 0.2 0.3 0.4 0.5 e 

Fig. 13. k2(a, e) values in Eq. (38) 
(see Fig. 11) 

As before, from Fig. 11 we see tha t  

kl(ec, e)l,=0,~=0 = 0, kl(ec, e)1~_~/18,~=0.~14 = 0. (39) 

Therefore, in the vicinity of ~ = 0 and e - 0 ,  the following zero lift condition is obtain- 

able 

dec 
o.s16. (40) 

Ae 0 . 2 1 4 . 1 8  

4 Conclusions 

The following conclusions can be drawn:  

(1) Regularizat ion of the singular integral equat ion is an impor tan t  aspect in applied 
mathemat ics  as well as in mechanics. This tendency  can be found from in more recently 
published papers [8]--[10]. The investigation presented in this paper  is another  example of 

regularising the singular integral equation arising in the  thin airfoil problem. 
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(2) Numer ica]  in tegra t ion  of a non-s ingular  in tegra l  can be done wi thou t  a n y  diff icul ty,  

therefore  i t  is convenien t  to  dea l  wi th  the  solut ion of a weaker  s ingular  in tegra l  equat ion.  

I t  is p roved  t h a t  ve ry  accura te  resul ts  were ob ta ined  in the  th in  airfoil  p rob lem b y  the  use 

of the  p roposed  approach .  
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