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Summary. A new integral equation concerning the thin airfoil problem is proposed. In this equation,
the unknown function represents vorticity along the thin airfoil, and the right hand term of the
equation is chosen as the stream function in two-dimensional potential flow. The equation has a
logarithm kernel with a weaker singularity than the known one [1]. After solution of the integral
equation, i.e. after determination of vorticity, the lift forces and moment acting on the thin airfoil
can be calculated immediately, as it follows from the Blasius’s formulae. Several numerical examples
are given.

1 Introduction

The theory of potential two-dimensional flow (abbreviated as PTDF) has history of more
than a hundred of years. In this theory, the so called “thin airfoil problem” occuring in
theoretical aerodynamics, used to play an important role. Several approaches for solving
this problem as well as other problems in PTDF were suggested [1]—[7]. In an earlier
approach to the thin airfoil problem, after replacing the airfoil with its camber line, and
assuming the density of vorticity along the chord line as unknown function, and introducing
the normal velocity with respect to the thin airfoil in the impermeability condition, the
well-known singular integral equation could be obtained [1], [2]. For the sake of simplicity,
the following additional assumptions were usually imposed:

(1) the impermeability condition had to be satisfied on the z-axis (chord line) instead of the
camber line,

(2) the angle of attack was small, e dz

(3) the camber line z = 2(x) should satisfy the condition: arctan <%) o

The integral equation was solved successfully [1], the singularity being taken care of by
means of a suitable approximation of the vorticity function.

More recently, it was pointed out that the proper choice of a field quantity in solving
boundary value problems in mechanics is of great importance [8], [9]- Assume that ¢ is a
source point in a plane and that ¢, is an “observation” point in the same plane. If the ‘‘ob-
servation” field quantity is chosen such that the influence is directly proportional to
(¢ — o)1, then the following type of integral f u(8) (¢ — t,)~1 (an integral along a curve) is
involved in the resulting integral equation. Generally speaking, the above mentioned inte-
gral should be understood in the sense of the Cauchy integral. This is a usual difficulty
encountered in the process of solving the boundary integral equation as well as the singular
integral equation of the thin airfoil problem in PTDF.

Clearly, the character of the kernel in an integral equation depends on the choice both
of the unknown function, and the right hand term of the integral equation. In this paper,
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we still use the vortex density as the unknown function of the integral equation. Never-
theless, instead of the velocity component normal with respect to the camber line we use
the stream function in the right hand term of the integral equation. In such a manner, an
integral equation with the logarithm kernel, i.e. with ‘““weaker” singularity can be obtained.
As it is mentioned below, and as also cited in some references [8], [9], the numerical solu-
tion of the proposed integral equation is more easy and convenient to carry out.

2 Analysis

Tt is well known that, every two-dimensional incompressible potential flow is governed by
a corresponding complex potential W(z) [2], [3]

W) = ‘P(x: y) + wW(w, y), (1)

where g(z, ¥) denotes the velocity potential and ¢{x, y) the stream function. The both two
functions ¢(z, y) and ¥(z, y) are harmonic. The complex velocity of the flow is represented
by the formulae [2], [3]

W' (z) = u — 7o, (2)

where %, v denote the velocity components in the z-, or y-direction, respectively. Of course:
7 0 o o

o p_w W (3)
dr oy dy ox

In order to formulate the mentioned integral equation, the complex potential corre-
sponding to a vortex filament placed at the point z = ¢ in Fig. 1 is introduced as

W(2) = olx, y) + Wz, y) = H In (z — ¢), (4)

where H is real, and it represents the strength of the vortex filament at the point z = ¢
(Fig. 1). Let {g}, denote the contour increment of some function g for the closed path around
the point z = ¢ in Fig. 1. From (1) and (4), we have

(W}, = —2aH, or (g}, =—2aH, {§},=0. (8)

Now let us consider the thin airfoil problem shown in Fig. 2. The air-foil is placed in an
infinite continuum with the velocity components at infinity denoted by e and ve. Ob-
viously, the investigated complex potential W*(z) can be decomposed as follows:

W*(2) = ¢*(x, y) + ¥ (@, y) = Wilz) + W(2); ‘
Wi(2) = @u(, y) + (2, y); (6)

W(z) = ¢lz, y) + (=, y),

where

Wl(z) = (uoo - Z.'Uoo) z = (mucxz + YV) + 2.(’_:m)oo -+ yuoo) (7)
y

@

Fig. 1. A vortex filament placed at the point z = ¢
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represents the complex potential defined in the whole plane when the field has not been
perturbed by the thin airfoil, and W(z) represents the perturbation part of the complex
potential.

Tt is easy to see that the normal velocity component should vanish along the thin airfoil
(" in Fig. 2). It leads to the following boundary condition:
o _op | Op

e i 0, (along I'in Fig. 2). (8)

By means of using the Cauchy-Riemann condition, the egnation (8) yields:

o oy P
T 7 (along I'in Fig. 2) 9

and after integration one obtains the following boundary condition for the perturbation
field

Y= —P; + ¢ = 2V — Yo + C, (along I"in Fig. 2) (10)

where ¢ is an arbitrary constant.
The perturbation field can be described by vorticity u(s) along the thin airfoil. Thus, if
H in (4) is replaced by u(s) ds and integration along I' is carried out, we obtain the follow-
ing complex potential
L
W(z) =i [ p(s)In (z — 1) ds. (11)
0

Let z approach the upper or lower border of the thin airfoil, i.e. 2 = #,* or z =#,". In
either case, from equation (11) we have
L

Do) = f‘u(s) In (r(t, to)) ds, (sp€ 1) (12)
0

where r(t, #,) represents the distance between two point z = ¢ and z = 4. Finally, from
(10) and (12), a weaker singular integral equation with logarithm kernel is obtained as
follows

L

f,u(s) In (r(t, t(,)) ds = ToVsy — Yol + € (te = g + 7¥,). (13)
0

The numerical solution of the above integral equation will be presented below. The lift
Y, the drag X, and the moment M can be expressed by the known formulae: [2], [3]

. 0 dW*\2
Y —_2 ,
rire ot [
c

dW*\2
M:—%Re‘[(d )zdz,
2
c

(14)
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where C is any closed integration path around the thin airfoil, and p denotes the fluid
density.

Clearly, frem (6), (7) and (11), the complex velocity of the whole field can be ex-
pressed by

L
AW* , _[M@@

A :uco—woo-f—zt et (15)
0
Furthermore, the complex velocity at the infinity can be expressed as
dw* o - 74 B n (16
= U — W — T s
dz Y 2 22 )
where
L L
A= [us)ds, B=B,+ 1B, — [tuls)ds. (17)
0 0
After substituting (16) into (14) and using the residual theorem, one obtains
Y + 42X = 2004t — 10s),
(18)

M = 259 Re (B(uOo — z'vm)) = 27mp(Biu e + Bivw).

Therefore, the thin airfoil problem in PTDF is reduced to solve the integral equation (13)
and to evaluate the integrals (17). We introduce the formulae (14)—(18), because they will
be used in the examples.

3 Numerical analysis and examples

As mentioned above, the main task in the present investigation is to solve the integral
equation (13) numerically. In addition, the most important point in the numerical solution
is to consider the following two particular features which appeared in the thin airfoil problem.

() The vortex density u(s) has a s~Y2

type singularity at the leading edge point 4 of
the thin airfoil in Fig. 2. Meantime, from the Joukowski hypothesis, u(s) becomes zero at
the trailing edge point B in Tig. 2.

(b) In (13), if ¢ — 4, the kernel In (r(t, to)) has a logarithm type singularity. It is well
known that the integrals containing the abovementioned singularity are integrable.

The integral (12) will be rewritten again for the sake of convenience:

L

I:fM$mMMM%. (19)

In the numerical approach to its evaluation, the thin airfoil will be approximated by a
polygon consisting of & line segments P,P,, P,P,, ..., PyPy., in Fig. 3.
In result of the above-mentioned approximation, the integral in (19) can be rewritten as

N N Pin
I=X1;=3 [ b)puls) ds. (20)
j=1 j=1 P;

The interpolation formulae for u(s) are of three kinds. For the first segment (P, P, in
Fig. 3), the following interpolation formula in the local coordinate s, has been found to be
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Fig. 8. A polygon approximating the thin airfoil

suitable [8]

2d,
p(81) = pa (l/ ) + s (18] < dy). (21)

d1—|—6’1

The above interpolation formula reflects the nature of u(s) at the leading edge of the thin
airfoil and satisfies the following condition

w(81) g, ma, = Ha- (22)

In the intermediate segments (from P,P, to Py_,Py in Fig. 3), the following interpola-
tion formula for u(s), for example along P, P,, is assumed

1
uls) = ) (ﬂs — 83/ds) + pa(1 + 55/dy) ) (Is3] < dy). (23)

Finally, at the last segment (PyPy,, in Fig. 3), the following interpolation formula is
suggested

1
wu(sy) = 5 pux(l — sy/dy) (lsx] < dy). (24)

The above representation reflects the nature of u(s) at the trailing edge (Py., in Fig. 3).
1f the above interpclation formulae for u(s) are used, the integration indicated in (20)
can be separated into the following types

od

= [ (2d/r*® — 1) Inrdr = 2d(In (2d) — 3),
0

2d e
4fln¢"dr = 2d(In (2d) — 1),

0

o
l

2d
Ty = [ (@d/n"* — 1) In (2d — r) dr = 2d(In (2d) — 3 + 4 In (2d)),
0

2d
f (1 — 7/2d) In r dr = d(In (2d) — 1.5), (25.1—17)

o~
I

2d
J; = f (r/2d) In 7 dr = d(n (2d) — 0.5),

0

d
Jo = [ gls)/(d® — s ds,
4

I=h

J, :fh(s) ds.
d
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The first five integrals have been integrated in a closed form. In addition, the integrals
(25.1) and (25.2) can be integrated by the use of the following Chebyshev integration rule

d

fg(S)/(Ol2 — )P ds — % é{g(sm), Sm = d cos (

-a

2m — 1

n)7 m==1,2,... 4.

(26)

Assuming that the integral equation (13) has to be satisfied at N 4 1 discrete points
P;ort)i=1,2,..., N 4 1, the following system of algebraic equations for N - 1 un-
knowns 1, g, - -5 fo,y @0d ¢ can be derived:

N P

X [In(r(t, &) pls) ds — ¢ = %000 — Yoo, T =1,2,.., N 4 1. (27)
j=1 P
With no loss of generality, the leading edge (point P, in Fig. 3) can be assumed as coincid-
ing with the origin of the coordinate system. Thus, #,, = z,; + #y,, = 0. By subtracting
the first equation in (27) (¢ = 1) from the remaining ones ( =2, 3, ..., N + 1), an alter-
native form of the system of algebraic equations for the N unknowns g, tg; - -, gy 18
obtained:

N P

¥ f{ln (¢ £)) — In(r tO)}M 8) ds = 2y Voo — Yo toos 1=2,3,..,NF+1. (28)
j=1 P

The same interpolation formulae can be applied to evaluation of the integrals in (17).
Four numerical examples will be presented in order to demonstrate the flexibility and
accuracy of the proposed approach.

3.1 An wnclined plate tn flow uniform at infinity (Fig. 4)

A plate of the length 24 is placed in the flow uniform at infinity, and possessing the velocity
Ug (Vo = 0). With respect to the assumed coordinate system, the plate is inclined at the
angle «. The problem can be solved in closed form, i.e. the formulae (18) reduce in this case
to the following solution:

X =0,
Y = 2mpan?, sin «, (29)
M, = —mpa®u?, sin o cos .

We take N == 10 and N = 20 in (20), M = 13 in (26). The results are expressed as

Y = fi(&) 2moanl,, X =0, (30)
M, = —fx(x) moaul,
‘y

u,
*° —~M

Y™ ¢ bk

a L’X x
22

Fig. 4. An inclined plate in potential flow
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Table 1. Calculated f,(x) and f,(x) values (see (29) and. (30)).

o 0° 5° 10° 15° 20° 25° 30° 35° 40°

fi (N = 10) 0.000 0.086 0.172 0.256 0.338 0.417 0.494 0.567 0.635
fL (N = 20) 0.000 0.087 0.172 0.257 0.340 0.420 0.497 0.570 0.638
f1 (exact) 0.000 0.087 0.174 0.259 0.342 0.423 0.500 0.574 0.643
fo (N = 10) 0.000 0.087 0.171 0.250 0.321 0.383 0.433 0.470 0.492
fo (N = 20) 0.000 0.087 0.171 0.250 0.321 0.383 0.433 0.470 0.492
f» (exact) 0.000 0.087 0.171 0.250 0.321 0.383 0.433 0.470 0.492

o 45° 50° 55° 60° 65° 70° 75° 80° 85°

fi (N = 10) 0.698 0.757 0.809 0.855 0.895 0.928 0.954 0.973 0.984
fi (¥ = 20) 0.702 0.761 0.813 0.860 0.900 0.933 0.959 0.978 0.990
f1 (exact) 0.707 0.766 0.819 0.866 0.906 0.940 0.966 0.985 0.996
12 (N = 10) 0.500 0.492 0.470 0.433 0.383 0.321 0.250 0.171 0.087
fo (N = 20) 0.500 0.492 0.469 0.433 0.383 0.321 0.250 0.171 0.087
f» (exact) 0.500 0.492 0.470 0.433 0.383 0.321 0.250 0.171 0.087

The calculated values f,(«) and f,(«) and the ones obtained from the exact solution are
listed in Table 1. As we see, the difference between numerical solution and exact solution
is very small.

3.2 A parabolic arc in flow uniform ai infinity (Fig. 5)

In the second example, the thin airfoil is approximated by a segment of a parabola. In the
x; 0 y, coordinate system, the parabola can be expressed as

¥ = &(20w; — z,%)/a. (31)

The thin airfoil has an inclination angle « with respect to the x-axis (Fig. 5). It is assumed
that, the velocity at infinity is 44 (v, == 0). As before, we take ¥ = 20 in (20) and i/ = 13
in (26). The calculated results are expressed by:
Y = 2mpav’ g:(«, &), X =0,

0 1 ) (32)
M, = —mpaul g, (x, £).
In the above equation, the lift ¥ and moment M, are applied at the point with the coor-
dinates (a cos &, —a sin «). The calculated g;(x, ) and g.(«, €) values are plotted in Fig. 6
and Fig. 7, respectively.

y
— Vi
Ueo
> &a T X
M, \>X *
<9 Fig. 5. A thin airfoil with parabola configuration

Xy in the potential flow
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Fig. 6. ¢,(x, ¢) values in Eq. (32) (see Fig. 5)

0 01 02 03 04 05¢

Fig. 7. g,(x, ¢) values in Eq. (32) (see Fig. 5)

0 01 02 03 04 05s

3.3 A thin airfoil with a flap in the flow uniform at infinsty (Fig. 8)
In the third example, a thin airfoil with kinked configuration is placed in the uniform flow
with the velocity uy (v = 0). The results are expressed by
Y = 2apau® hy(«, ), X =0,

Y (e, ) (33)
M, = —mpa*uZ hy(c, B).

The calculated k,(x, ) and %,{x, ) values are plotted in Fig. 9 and Fig. 10, respectively.
Clearly, the relation between « and g8 for zero lift force (¥ = 0) can be found from (33)
and takes the form

Pa(ox, B) = 0. (34)
From Fig. 8 we see that
ha(os ﬂ)!m:O“,ﬂ:O“ =0, and Iy« ﬁ)’a=10°,52—26° =0. (35)

VYI

Fig. 8. A thin airfoil with kinked configuration
in the potential flow
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Fig. 9. 7y(«, B) values in Eq. (33) (see Fig. 8)
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r 0°
0.0 AN

-30° =20° -10° o0° 10° 20° 30° 8
Fig. 16. hy(e, f) values in Eq. (33) (see Iig. 8)
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This is to say, in the vicinity of « = 0°, 8 = 0°, we have the following zero lift force con-

dition

Ax

2 10.0/26.0 = —0.385.
oy /26 0.385

(36)

In the same condition, the ratio Ax//f reported previously takes the value —0.39 {2, p. 136

Fig. 18, when £ = 0.1].

3.4 A thin airfoil with sine configuration tn the uniform flow (Fig. 11)

In the fourth example, the sine configuration is expressed by

y1 = ea sin (w2, /a).
The calculated results are expressed by
Y = 2moarl ky(x,¢), X =0,

M, = —mpa?ul ky(x, ¢) .

(38)

The calculated &,(«, ¢) and k,(«, ¢) values are plotted in Fig. 12 and Fig. 13 respectively.
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y v
— ea Y
Ueo M,
I X
X o
23 X Fig. 11. A thin airfoil with sine configuration
in the potential flow
0.6 |- 40 °

i Fig. 12. (e, €) values in Eq. (38)
-0.4 . R R — (see Fig. 11)

0.4

02

a=0"° Fig. 13. ky(«x, &) values in Eq. (38)
(see Fig. 11)

0.0

0 01 02 03 04 05¢
As before, from Fig. 11 we see that
kl(o" 8)'0{:0,5:0 = O’ kl(“? 6)104:71/18,5:0,214 = O (39)
Therefore, in the vicinity of x = 0 and & = 0, the following zero lift condition is obtain-
able

Ao 7

e~ 021418 0.816. (40)

4 Conclusions

The following conclusions can be drawn:

(1) Regularization of the singular integral equation is an important aspect in applied
mathematics as well as in mechanics. This tendency can be found from in more recently
published papers [8]—[10]. The investigation presented in this paper is another example of
regularising the singular integral equation arising in the thin airfoil problem.
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(2) Numerical integration of a non-singular integral can be done without any difficulty,
therefore it is convenient to deal with the solution of a weaker singular integral equation.

Tt is proved that very accurate results were obtained in the thin airfoil problem by the use
of the proposed approach.
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