J.A. Nitsche’s footprints related to Navier-Stokes equations problems

The 3 footprint domains

1st footprint

L, —boundedness of the FEM Galerkin operator for parabolic problems

[INi5] J.A. Nitsche, M.F. Wheeler, L_— boundedness of the finite element method Galerkin
operator for parabolic problems, Numer. Funct. Anal. Optim, 4, 325-353 (1981/1982)

In this paper Nitsche/Wheeler leveraged on the already in [JNil] proven optimal convergence
with respect to the convergence factor o(h") but with non balanced norms (i.e. non balanced

regularity assumptions to the heat equation solution). The basic idea is to estimate the
solution of the heat equation with respect to the norm

.
Jwf, = [
0

using weight function in the form ;x t) = X~ xof +t=t,

, Whereby Jull_ () = uC.t)-

T
By estimating corresponding generalized Fourier coefficients IW,Z (t)dt of the heat equation
0

u—Au=f , u@©)=u,, ul,,=0

. t
with W (t) = eH'u, + J.e_ﬂ' =91 (r)dr
0

the problem adequate shift theorem

v, < cllw

has been proven by changing the order of integration in the following form:

T Tl t t T T T
j W2 (t)dt < j [ j eH(t-7g T}[je-*i (=) fiz(z')dz':|dt <it j fi2(7)|: j et “")dt}dr <1’ j f2(r)dz-
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We recall the following spaces of divergence-free functions

ce (@) = {ve Cr(Q), divv =0}
H = closure_of _C7_(©2)_in_L,(Q)
V =closure_of _C7_ (€2)_in_H, ()

The space V is characterized by
V ={v e H}(Q),div = 0} .
The space L, has the (Helmholtz) decomposition L,(Q)=H@®H* , where

Ht={pe L(Q).IpeH,(Q).9=W} .

Let P denote the orthogonal projection from L,(Q)onto H . Then the operator
A:D(A) > H given by A=—-PA with domain D(A)=H,(Q) NV is called the Stokes

operator. The operator is positive definite, self-adjoint and is characterized by the
relation
(Aw,v) = (Vw,Vv) VYweD(A),veV .

The operator A™ is linear continuous from Hinto D(A), and since the injection of
D(A) in H is compact, A" is a compact operator in H . As an operator in H, A™

is also self-adjoint. Therefore there exists a sequence of positive numbers
#.1 < u; and an orthogonal basis of H, {p, ()} such that A, = 4p,. Let

since A™ has range in D(A) one obtains that

Ap. =4o, ¢ €D(A)

0< 4 << 4 < Ayyy With lim 2 =0 and {p,(x)f,_ being an orthogonal basis of H.
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The functional analytical approach to the N-S-E is built on the eigen pairs of the Stokes
operator, i.e. in the linear case Hilbert scale approximation theory can be applied (e.g.
Nitsche’s lecture notes, including negative scaled Hilbert spaces); from a functional analytical
point of view the Stokes operator A has the same “perfect” properties as the Laplacian, i.e.

i) Ais self-adjoint and positive
i) A is compact.

This enables the definition of Hilbert scales with the inner products (J.A. Nitsche,
Lecture Notes)

xy), = Z& XY and  (x,Y) .y :=Ze_mxi Yi o X = (X!(P)i '

Let Adenote Stokes operator. We note the representation of the power of the
operator in the form

Nu=Y Xxp ,ueD(A) BeR.
It holds
D(A%) = D(A%) for B <p, .

An inner product resp. norm is given by
2 P 2
[, = [ Il
0

For the non-stationary Stokes problem
u+Au="f u()=u,
then it holds with the analogue arguments as above

Wif,+Il <clul +)It] for  aer

The standard “energy” inequality is given in the form

1 ‘ 1
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The non linear case

For the in-stationary Stokes solution it holds

t
u(t) = e®u, — IV eI TT(u(s) ® u(s))ds
0
It is well known, that if u, € J,(Q) then ue C([0,t),J,(€)) and

Vu©ff + [{uf + Vo + ) s < cvu,@ff .+ 0<t<T .

[JHe3] gave a counter example, that it is not possible to include the terms
Ip®)] . lut)],, on the left hand side, i.e. it doesn’t hold

O<t<T .

[Vu®]+[p®l, +]

It holds

+J' u(s)[+[vo(s)|

HF’(")HL2 W, ot ™|V, )] -
Remark: The Oseen operator is the Fourier multiplier by the matrix

Q) = A (VOV)e" = (I - P)e™ = 57,0, )i<jien

In [NLe] the convolution with the matrix (F,(t,x)) of the Oseen matrix operator

Q(t)is given.
The variational representation of the Navier-Stokes equations

(u,u)+ (Au,u)+(Bu,u)=0 , u(x,0)=u,

whereby b(u, v, w) := (uV-v,w) with b(u,v,v) = (Bu,v) =0 in case divu=0, leads
to

S+ A =0 TesP ol + 2f 4 e)ae = fuf -
0



The functional analytical representation of the Navier-Stokes solution of
U—Au+Vp = f,+div[F —u®u]
is given by

t t
u(t) = eu, + Ie‘(“S)APfods + J' A 2em=9A N 2pdiv[F — uulds
0 0

In [HSo02] the Banach space
X = (0,1) > L2 (Q)(A2u),, (AVu) € L, (0,T; L, (), A2u(0) = 0}

equipped with the norm

2 2

July =l [, + A

24T 24T

has been defined to consider a fixed point problem for the strong solution.
We further recall, that the space X is continuously embedded into

X c L8 ((OiT)1 L4 (Q))
and it holds

2

Jull =l ar =AW, =[FZ, -

48T 28T

for f =divF F=uuel,((0,T);L,(Q)).

We note that f eW,* & F e, i.e. c||u||WZ_1 < ||F||L2 < c||f||W2_1 .

Concerning the relation to Hilbert scales we note:

Lemma (J.A. Nitsche, lecture notes) Let 0<a < <y and uew; then for fixed p it holds

Jull < clulle ull,

with
_r=B, _pB-B
e M



IDEE: appropriate Hilbert scale definition depending from non-linear problem, i.e. in case of
n = 3 for the solution of the N-S-E problems this might be -->p=4 ?

»Saddle point problems and non linear minimization problems on convex manifolds”.
From [WVe] we recall the minimization problem in the form:

(*) Ju):a(u,u)-F@u)—>min, u-u,eU.

Let a(-+):V xV — R a symmetric bilinear form with energy norm HUHZ =a(u,u) . Let further
u, eV and F():vV — R a functional with the following properties:

i) F(-):V — R is convex on the linear manifold u, +U ,

i.e. forevery u,veu,+U itholds F(1-tju+tv)<@-t)F(u)+tF(v) forevery te[o]]
ii) F(u)>« forevery ueu,+U

ii) F(-):V — R is Gateaux differentiable, i.e. it exits a functional F,(-):vV — R with

Iim—F(UHvt)_ FV _ k-

t—=>0
Then the minimum problem (*) is equivalent to the variational equation
a(u,p)+F,(p)=0 forevery peu

and admit only an unique solution. In case the sub space U and therefore also the manifold
u, +U is closed with respect to the energy norm and the functional F(.):v — R is continuous

with respect to convergence in the energy norm, then there exists a solution.

We note that the energy functional is even strongly convex in whole v .



From [YGi3] we recall the result of Calderén [ACa] for 0<a < <y

A
HAﬂUH < c|A“u HNu
LD LP

u
LD

whereby 1+ u=1, ad+u=p -

We denote the norms

Il - = [J o dtJ“”

The (scaled) Serrin’s values are defined by
2
S(@.p) =+ =
q p

The condition S(qg, p) <1 ensures convergent integrals, i.e. bounded norms H\MHMT <o .

Uniqueness and regularity of N-S-E solutions are ensured, if
S(a,p)=n/2

In case of n=3 ([HSo], if a weak solution of the full linear case fulfills the Serrin condition

v 1/8
w[f] <o
0

then u is uniquely determined by the data f and u,.

In case of n=23 there is gap of 1/2 of the scale of Serrin’s values, i.e.

S(q,p):=g+%=%+§=l
fulfills S(q, p) <1, i.e. one knows, that for q=4 and p =8 the norm H|W|Hqu is bounded. On
the other side, what is required from the N-S-E energy inequality, is

1<5(.0)< 5=

If n=23, the energy equality holds even in the middle of the gap, namely H\MH <o is
q.p.

satisfied with  1<S(4,4)<1+1/4 .



From [YGil] we note [Vu®, < ct™ug, |A ey < ot #ug|,_,

H p=2

From [YGi3] we recall

A“e“Aqu <ot™[ug|, for aeRr*t>0.

Regarding the lowest possible initial value space requires an analysis of the condition in the
form ([RFa])

e‘t’*uoH4 <c

I
0
It holds

UeLOTLEO  Hff flety] <o -
0

It further holds

0

_ 8 8 1/8
.[He IAUOH:; s CHAUSUOHZ it to € DA™
0

In [RFa] the estimate is derived
e u,)|, < ct™"Jus|

This simple means the integrability of the (continuous) function

t = lle™%u near t=0.
H OHA

This and the below might indicate, that the norm H\MH . is not adequate to handle the
q.p.

N-S-E properly.

W], r = Ut’” HM\: dt] with g = f(n)



2nd footprint
Non-linear parabolic equation (free boundary problem, 1D Stefan and 2D Stokes’ flow)

[JNi2] J.A. Nitsche, Finite Element Approximation to the One dimensional Stefan Problem,
Proceedings on Recent Advances in Numerical analysis (C. de Boor and G. Golub, eds.)
Academic Press, New York, 1978, pp. 119-142

[INi3] J.A. Nitsche, A Finite Element Method For Parabolic Free Boundary Problems,
Intensive seminar on free boundary problems, Pavia, Italy, September 4-21, 1979

[UNi6] J.A. Nitsche, Free boundary problems for the Stokes’ flows and finite element
methods, in J. Vosmansky and M. Zlamal: Equadiff 6, Proceedings of the International
Conference on differential Equations and Their Applications held in Brno, Czechoslovakia,
1985, pp. 327-332

J.A. Nitsche, Stokes equations and mixed FE approximations with piecewise constant FE
spaces SJ'c L, , lecture notes

Then the free boundary Stefan problem with its solution U (Y, 7) can be transformed into the
non-linear parabolic equation looking for a solution u(x,t) =U(y,7) fulfilling

u (y,7)—u, (x,t)=—xu Lty in Q
with the boundary conditions
(*)  u,1t)=0 for t>0
(*) u@Lt)=0 fort>0
u(x,0)= f(x) for xe(0,) .
Let

H, ={wwe H,(0,1),> 0, w(0) = 0}= {(Ww’ € L, (0,1),> 0, w(0) = 0}

Then v:=u, belongs to H, and, for any v e H, the function defined by
1
u(x,t) = —Iv(z,t)dz

satisfies the boundary condition (*). Multiplying the differential equation above with w,

(we Hl) and integration gives the variational equation
1 1
J'uxxwX +Uu,wdx = ux(l,t)_[ Xu, W, dx -
0 0

In [INi2] the non optimal FE error estimate of order h*/+/t with 0 < « <1has been proven in
case of non regular initial value function.



A proof of optimal FE approximation convergence of order h/+/t with non-regular initial value
function seems to be still missing.

The non-optimal convergence order h*/+/t has been proven built on the inequalities
2 ( 2 2 2 ( 2
2 +[lzFde<2lgf -+t +[el2fdr<c=c(gl)
0 0
And the following a priori estimates

2 2 2k+1
dr} <Cy sup{t
0<t<T

The proof applies Young inequality and uses the Gronwall lemma for inequalities of the form

Al

t
2
sup{tZkal‘vh + I % Hafv;
0

t
2
2k+1
+[z
0<t<T 0

2
o™V, | dr} <c2,,

t t
A=) <o +c[ Aoz v A= a) <k +k, [ (@) -
0 0

The learning from point 1 is, that applying the lemma of Gronwall leads to an unbalance (with
respect to the norms) inequality. “Optimal” convergence order could be proven by using a
parabolic (heat) equation duality “Ansatz” in combination with cut-off function with respect to
the time variable (as has been successfully applied for linear parabolic equations with non
regular initial value function, J.A. Nitsche, Lecture Notes).

In general parabolic Holder norms define the appropriate function spaces in case of non-
linear parabolic problems; the paper of K. Hollig gives a modified heat integral kernel to
estimate non-linear parabolic equation with singular coefficient function (in the same order,
than the initial singular initial value function of the Stefan problem (t™/2).

Remark (Holder spaces): In [JNi6] appropriate Holder spaces for the 2D case are defined.
Remark (Gronwall lemma): Putting
12,2
0= |44

In the context of the inequality

L9 e+ < 21l + s

leadsto  y'(t)<cy®(t). From this it follows, that every positive solution
blows up, i.e. there is no global boundedness.

Bem: --> applying Lemma von Gronwall lauft immer auf sowas hinaus (oder
zwingt zu Formen wie Gronwall version 4 (see appendix), i.e. y'(t) < cy’(t)

0<o<1.
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In the framework of Hilbert scales (see appendix) there are also “negative” norm.
(X Y), = D AXY, and XYy =2,e7%Y,
Because of
A <52 4D
It holds
X7, < &%+ I, -
From this one e.g. can conclude for every a >0

2
=, ¢l

t—0

I, <t +elx,

Remark: (R. Rannacher, lecture notes): For the purposes of numerical analysis
one needs regularity of the solution uniformly down to t =0 , which turns out to be
a delicate requirement. To illustrate this, assuming that the solution is uniformly
smooth as t = 0. Then, applying the divergence operator to the Navier-Stokes
equations and letting t =0 one obtains an over determined Neumann problem for
the initial pressure including a compatibility condition (tangent direction along 6Q).

We define the following two singular integral operators (see appendix)

(A (Nu)(x) = ~flog Zsinx;zyu(y)dy = fk(x-yu(y)dy and D(N)=H=L.(I)

(H) (Hu)(x) = u]x) = ifcot%u(y)dt = —!m;_[[u(x+ y) —u(x— y)]cot%dy

11



Idee: first solve the open problem of the not proven quais-optimal convergence for the Stefan
problem with non regular ( v, e L, in case of putting v:=u, e H, ) initial value function

(Helsinki paper, J.A. Nitsche)

The following ideas might be helpful:
1. instead of putting v:=u, e H, put

vi=Nu,=-Hu resp. u=Hv ,see also ([JNi8)]
It would require less regularity assumption on the weak solution u e H, than currently ue H,
At the same time the variational equation

(U, W) + (U, W) =u, (L t)(xu,, w,)
would be transformed into
(Nu,, w,)+ (Nu,,w) = N(uX(L t))(N(qu),wX) .

We note
i) (N(xu),w,) = ((Nx=xN)u,,w,)+ (xNu,,w,) = (Hu,, w, )+ (xHu, w,)
ii) u Lt) =t

i) |Au| = Nul, = Hu| = [u]

A‘luH ~ | Nu]

An analogue projection operator from
H, > H = {We H,|divw = O}
could project onto

— {WG H,|w, = 0} or(? — {WE H,|xw, = 0}

Remark: concerning an appropriate projection space: a condition like (xu,), =0

would mean, that xu, =const i.e. u=clog(x) !

Der Ansatz v:= Nu, =—Hu entspricht in etwas (?) der reduzierten Regularitat der externen
Kréfte beim ,unusual proof of the,Nitsche-Stokes-flow” shift theorem.

Evtl. ware dies auch ein Hilfsschritt, um in ,negative® Hilbert scales ,runterzufahren” (fiir
p = 2), die dann in geeigneterem Zusammenhang stehen mit Hilbert scales bzgl. p=47?

Zusammenhang Uber t-Potenz unter dem Integral?

12



2. u@=u@t)~t"* behandeln“ mit Héllig-approach (Holder spaces) with kernel function

[x+2(\/f—\/§)]2
D)

1 1
Var \Jt=s

1 —AZ(x,t,5)

1
== e
Nar AJt=5

e

k(xt,s) =

X2

fuffiling the refation  k —k, —2s%,=0 and e <ce

Eigentlich wirde ich lieber das Modellproblem

2X
ut—uxx—fuX =0

in gleicher Weise behandelt wissen, wie das K. Hollig-Problem

3. cut-off functions bzgl. T-Variable fir den Dualitdtsansatz

k-2

. _ t
4. the estimates z‘e™ <ce™ and Jls_klz(t— 5)2e75ds < ce@ /2 -
0

13



3rd footprint

Stokes Operator shift theorem and Cauchy-Riemann differential equations

[INi7] J.A. Nitsche, Direct Proofs of Some Unusual Shift-Theorems, Anal. Math. Appl.,
Gauthier-Villars, Montrouge, 1988, pp. 383-400

C-R differential equation being used to de-couple Stokes equations In a potential and a bi-
potential PDE; corresponding boundary conditions transformation is no issue, due to
appropriate rotation properties of C-R-differential equations; shift theorem uses negative
scale Hilbert space and appropriate Hoélder spaces; Hilbert transform and 2D Newton
potential integral operator being analyzed to enable transform into negative scaled Hilbert
spaces; n>1 counterpart of Hilbert transform are Riesz transformations, Conjugate harmonic
functions, ([ESt2], S. 120), which are the n> 2 extensions of the C-R-PDE and
characterization von Hardy spaces und BMO ([ESt1] llI, [HAD]).

Sowohl die Cauchy-Riemann Dgl. als auch die verallgemeinerten C-R-Dgl. sind
rotationsinvariant, bzw. die Riesz transforms sind rotationsinvariant [ESt2], S58):

Pij_lf = ijkRk f
k
From [JKa] we recall:

If u, e L(R") the non-linear Navier-Stokes equations admits a unique
time-local (regular) solution u with

p= ZRi ReU;uy

i,.k=1,n

14



Theorem ([HAb] p.117):
i) The dual space of the Hardy space is BMO:

(HY" = BMO

<]

ii) Let R, f = F—l[i‘fi f(ée)} be the Riesz operators. Then

fen' iff fel and Rfel foral j=12.n

feBMO iff therearesome g, eL, for j=012..n

suchthat § = 9 +ZRjgj
1

Lemma ([JKa]):Let 1<i,jk<n and R:f:=80k *f with related
fundamental solution k(x) of the Laplacian —A.

i) for f e L, we have im(R} f.¢) = (RR; f.9) forallpe s Withj(p=o.

Moreover, we have |im R9,f =9,RR,f in §'
>0

ii) for f €S’ with divf =0 and0< ¢ <1/4 we have zn:RiJffj =0ing
j=1

iii) for f e BMO we have Ilmz:Rfa f=—pf iINY

i~

15



Die Verallgemeinerung der C-R-Differentialgleichungen auf drei Dimensionen
([CRu]) ist gegeben durch

V.v=0, Vxv=0
Diese Verallgemeinerung lasst nicht nur Potentialstromungen zu, sondern auch
Wirbel. Dabei verlangt sie von den Wirbellinien, dass wxv=0, d.h. dass die
Richtung der Wirbelline der Richtrung der Geschwindigkeit gleich oder
entgegengesetzt ist. Die Wirbellinien missen daher mit den Stromlinien
zusammenfallen und jedes Wirbelelement muss in Richtung seiner Achse oder der
entgegengesetzten Richtung der Stromlinie entlang fliessen.
Die Bedingung ist mit den Eulerschen Gleichungen einer inkompressiblen
stationaren Stromung vereinbar, wegen

(va)xv:(v-V)v—%V(v-v)
Damit ergibt sich aus (*):

V-v=0, (V-V)V=%V(V-V)
Was nichts anderes ist, als die Eulerschen Gleichungen fir das stationare
Stromung einer inkompressiblen Flussigkeit unter der Voraussetzung, dass die
aeusseren Krafte, falls vorhanden, ein Potential haben und der folgenden zweiten

Voraussetzung:
In der Bernoullischen Gleichung

g(v-v)=—p—Q+C
hat die Grosse C auf den verschiedenen Stromlinien denselben Wert. In this case

gibt es eine skalare Funktion , so dass an irgend einer Stelle der Flissigkeit die
auf das Volumenteilchen ausgetbte Kraft gleich

ist, womit die Eulerschen Gleichungen der stationdren inkompressiblen Stromung
lauten:

Die linke Seite der zweiten Gleichungen ist gleich o -mal der Beschleunigung der

Flissigkeit an der betrachteten Stelle. Durch Multiplikation mit v und Integration
nach der Zeit erhdlt man die bekannte Bernoullische Gleichung

g(v-v)z—p—Q+C .

16



The Stokes equations and the Heywood counter example

The Stokes equations are the simplest model to describe a flow. In this case it
describes an extreme viscous flow (like honey), which does not allow small scaled
rotations. Therefore it should provide no problems, to rotate the external forces,
without any effect to the Stokes solution??

Even in this simplest version of a viscous flow there arise numerical difficulties,
especially in the context of the Babuska-Brizzi (inf-sup-) condition. This is a
general problem in the context of saddle point problem on finite-dimensional
approximation spaces.

Heywood-Rannacher [JHe2] gave certain FE convergence estimates, which
requires a singular term t™'? in the pressure error estimate. In [JHe3] a counter
example is given, that

Based on the function space decomposition
L (@) =J(Q®G(Q)
it follows from the Navier-Stokes equations the representation
[Au—u-vuf = uf + |Vl

which is in line with (*). Based on the function space decomposition

W, () = J,(Q) ® R(A)
it follows from the Navier-Stokes equations the representation

Ju—u-vulf, =[Vuf* +|vAp|
whereby ||VAp||2 ~|| p||2 . This means that there is ||’ and | p|* on the opposite

sides of this equation. So it appears that both could be large, even when ||Vu||2 is

small. According to the theorem in [JHe3] that actual happens. One of the overall
propositions is the assumption of an initial value for the pressure, when the initial
velocity belongs to

3 (Q)OW, () -

The pressure is uniguely (possible up to a constant) determined by the velocity
field. There holds the stability estimate (“inf-sup” stability)

nf sup CIALD)
9L perit [V o]

2y,>0.

17



Stoke equations (J.A. Nitsche, lecture notes)
For n=2the Stokes equations are given by

—Au—p, = f inQ
—AV—py:g inQ

u,+v,=r inQ
with the compatibility condition: (r,1)=0 .

Der Ansatz mittels der Cauchy-Riemann’schen Differentialgleichungen

u=w, -z,

V=W, +2,

fuhrt auf die beiden entkoppelten Dgln.

AW=r inQ
w=0 auf 0Q
und
&z==(f,-9) ja (Rotation der Kréfte)
Ze ="V auf oQ
2,=0 auf 0Q

Das ist eine hiibsche Sache, allerdings sind die beiden Funktionen w,z nicht mehr
»,in balance®, was die Regularitat betrifft ( f = —-VF = —Vo). Mittels reduzierten

Regularitats-Voraussetzungen an die dusseren Kréafte 16st Nitsche ([INi7]) das
Problem eleganter mit dem Ergebnis:

lull,, +[pl, < cle,, +[nl,

Ju

., *Iple,, =clel,, +[hl

CO./} CO.Z

18



Linear parabolic equations

We consider the two parabolic equations

W—w' = f 2-7"=0 in (01)x[0,T]
w(0,t) = w(Lt) =0 2(0,t) = z(Lt) =0 for te(0,T]
w(x,0) =0 z(x,0) = g(x) for xe (0,) .

The following compatibility relations for the initial value function have to be fulfilled in order to
ensure corresponding regularity of the solution z:

g®=0,9g'(0)=0, g"@®)=g"?@) , etc.

Let w, = (w,¢,) resp. f =(f,p) being the generalized Fourier coefficient related to the eigen
pairs —v’= Av,. Then it holds

W (1) + 4w (1) = f,() and w,(0)=0 .

with the solution

t
W, () = j eI (r)dr -
0
The following shift theorems hold true:
T T
Lemma: ) [, de=cf [ dt
0 0
T T
i) e des cf e ot
0 0

i) @l <t Lol [, ds ol
0

Proof: is given in the appendix, but we recall the basic idea, which is about change
the order of integration:

‘T[HWHiJ,zdt — Zl:@zj'wiz (t)dt < Zﬂik+2]|:jl gh (t—r)dz.i":j'e—l, (t-7) fiz(f)d‘[i|dt

< Zﬂ’lk+2].j'i_l|:j. g 4 (t-7) fiz(T)dTi|dt - Zﬁ'i“—l:i‘ fiz(z_)|:j' g (t—r)dt:|dT .
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Linear parabolic equations with a singular lower order coefficient
(Klaus Hollig)

-1/2

For the solution of the problem (with a t™'° singularity)
U —u, —2t™ 2, =t (xt) e[01]x[0,T]
u*0)=0o

ul0*)=u@*=0
the estimate

9, .}

wu i <t +]

a,al?2

holds if the data f,® satisfy the appropriate compatibility condition.

Proof: The proof is built on a series of estimates, based on the kernel function

[x+2(«/¥—\/§)]2
T 4(t-s)

1

k(x,t,s) = ﬁ«/t—is

e

which fulfills the relation
k,—k, —2s"%k, =0

S

We recall the definition of the Holder norms:

p“(z,,2,) = ‘Xl_ Xz‘z +‘t1 _tz‘

o (u@-u(z))
[u]a/2.a = zsll;;leZ palz(zl _ 22)

n
[u]l+a/22+a = [u]a/Za +Z[uxixj ]a/2.0! <®
i

and note for the heat equation the following shift theorem

[u]l+a/2.2+a < C[f ]a/Z.a '

Remark: In Nitsche/Wheeler Nitsche’s weight function (to prove L_ estimate for elliptic
problems) has been modified to capture specific parabolic weighting:

1, (%,1) :=\x—xo\2+\t—to v U(X,t) = HuHLQ(Lw) :

20



Appendix

8 1 An unusual proof of the shift theorem for the Stokes
problem (([INi7]))

The proof is restricted to n=2, as the argument is based on Cauchy-Riemann
Differentialgleichungen, um die solenoid condition und die Stokes Equations zu
entkoppeln.

Stationary Stokes problem ([INi7]): let n=2; consider the boundary value problem

—Av-Vp=f inQ
divu=h inQ
u=0 onaQ

Let Lz denote the factor spaceL,/R equipped with the corresponding factor norm

and let the right hand sides f with a reduced regularity assumptions in the form

f=—div(e) I8 fi= oy
- - J=1

In this case the weak solution of the Stokes boundary value problem is
characterized by

(Vv,vw)—(p,divw) = (o,vw) forall we D)

(@, Vv,)=(qg,h) forall gelL, .

The following two shift theorems hold true ([JNi7], [HSo] p. 107)

Theorem:
1. Assume the regularity f = —div(c) With seH and nhel, . Then the unique
_ - - -0

(weak) solution @ p} of the boundary value problem has the regularity v ¢ H and

-1

pel, andthe a priori estimate holds true:

M,, Pl =cle],, +Ihl,
2. Assume the regularity f = —div(c) With seCc and heC,, =C,, nL,. Then the
_ - - =02

unique (weak) solution IU p} of the boundary value problem has the regularity

veC and pe Cy. and the a priori estimate holds true:
- -1.2 -

M, <ol <del, -+,
-12 -0.2
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8§82 Parabolic shift theorems

We consider the two parabolic equations

W-w" = f 2-2"=0 in (01)x[0,T]
w(0,t) = w(Lt) =0 2(0,t) = z(Lt) =0 for te(0,T]
w(x,0) =0 z(x,0) = g(x) for xe (0,) .

The following compatibility relations for the initial value function have to be fulfilled in order to
ensure corresponding regularity of the solution z:

g@®)=0,g'(0)=0, g"(®) = g9"*() , etc.

Let w, == (w,¢,) resp. f, = (f,p) being the generalized Fourier coefficient related to the eigen
pairs —v’= Av,. Then it holds

W)+ Aw (1) = f,©) and w,(0)=0 .

with the solution

W (t) = je-ﬂv' I (1)dr -

The following shift theorem holds true:

Lemma:
) T T
) J 2w, dt < cf e ot
0 0

i) 2@l st Vol e, o< o]
0

Proof: i) It holds for <t

T T Tt t
J‘t—l/zHWHi+2 dt = Zi:@zjt-l/zwiz (t)d'[ < Zﬂ,r+z.|'|:je—;n (t—r)d{";l' T—l/ze—/“a(t-r) fiz(z_)dz_i|dt
0 0 olo

0

T t
<Y A j /1,‘1[ j 2= (=) fiz(r)dr}dt
0 0

Exchanging the order of integration gives

t TT T
[ IR (@) dadt = [ [ %6 IR (r)dtd - = j F (r)dt[j (=g }s PR ()t
0 0t

0

© Sy
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and therefore
T T
It‘l’z\w\i”dt < cft‘“ZHFHidt .
0 0

i) From z(x,t)=>z, (t)p,(x) it follows

212" =3 (2,0)+ A2,0)0,() =0 .

Therefore

z,t)=z,0)e* and z,(0)=g, =(g,9,) -
Putting C., ()= Sup At—le—Zlvl
it follows

[z =X 22 (1) =D Ae?'g, <C,, Y Ae™

The conditions

(k _ I)j{k—l—le—zlvt + ﬂ{k_l (_Zt)e—ZZ‘,t =0 resp (k _ I)ﬂk—l—le—Zl\,t — 2tﬁk—| e—ZA,t

leads to (for the critical case k>1) A=~t™

23
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83 Generalized Lemmas of Gronwall

Generalized Lemma of Gronwall (version 1): Let y(t) e C°[0, a] be a real valued
function and h(t) e L,(0,a) be non-negative function with

‘//(t)SOt+jh(z')l//(r)dr , acR.

Then

l//(t) <a *egh(‘r)d‘r

Generalized Lemma of Gronwall (version 2): Let w(t) e C°[0, a] be a real valued
function and h(t) e L,(0,a) be non-negative function with

w(t) < alt) +jh(r)y/(r)dr , aeR.
Then w(t) <alt)+ ja(r)h(r)eH("‘H(’)dT

with H(7) :=j'h(s)ds :

Generalized Lemma of Gronwall (version 3: log type) ([YGil]):: Let a, g be non-
negative constants. Assume that a non negative function a(t, s) satisfies
a(**)eC(0<s<t<T), a(t,*)e L(0,t)forall te ((O,T)] . Furthermore, we assume that
there exists a positive constant ¢, such that

t
sup _[ a(t,s)ds<1/2

OstsT %,

If a non negative function f eC([0,T]) satisfies

f)<a+ ja(t,s) f (s)ds + ﬁj {L+log(1+ f(s))}f (s)ds
for allt e [0, T]. Then we have

{1+1+Iogc1+2oz)}ezﬁt

f)<e

for allt e [0, T]. Here we put

Y= sup{ sup a(t,s)}

0<t<T | O<s<t-g,

24



Lemma of Gronwall (version 4): Let a(t) and b(t) nonnegative functions in [0, A) and
0< 6 <1. Suppose a nonnegative function y(t) satisfies the differential inequality

yt)+bt) <a®y’®t) on [0,A)
y(O) =Y

Thenfor 0<t< A

¢ ¢ 51(1=5)
y(t)+ [ b(r)dz < (277 + 1)y, + 270 { | a(r)dr:|
0 0

Proof: solving
y'(t) < a®)y’ (1)

leads to

‘ 51(1-5)
Sy <y, {j a(r)dr:|

A standard formula: For
w(t)

F(x)= Iu(x,t)dx

o(t)

It holds

w(t)
F'(x) = J'U(X,t)ﬂlX +y Ouy (t),t) — p(t)u(e(t),t)

o(t)
From this it follows for
s(t)
s(t)=s— j u(x,t)dx
0
the relation

s(t) s(t)
$(t) =1— [u(x,t)dx+$u(s(t),t) =0 =1— [u, (x,t)dx =1—u, (s(t),t) + U, (0),t) = =, (s(t),1) -
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84 The one dimensional Stefan problem

We recall the relation of the free boundary Stefan problem with our model problem ([INi3]):
Let

Q= {(y,r)\r >00<y< s(r)} with s(0)=1 .
The free boundary Stefan problem is looking for a solution U (y, z) fulfilling
U.(y,0)=U,,(y,7)=0 in €2
U,(0,7)=0 for >0 .
Along the free boundary y = s(r) the function U(y,r) vanishes, i.e.
U(s(z),7)=0 for >0
and the function s(z) fulfills the additional condition

s, (2)+U,(s(z),z)=0 for z>0 .

The Stefan problem can be transformed to a non-linear parabolic differential equation with
fixed boundary of the area

Q={xJr>00<x<1}
by the transformation
x=s7(z)y
and the variable change 7 —t defined by

%=32(T), 2(0)=0.

26



Then the free boundary problem is looking for a solution u(x,t) =U(y, ) fulfilling
u (y,7)—u, (xt)=—xu, L tu, in Q
with the boundary conditions
(*)  u,(0t)y=0fort>0
(*) u@,t)=0 fort>0
u(x,0)= f(x) for xe (0,) .
The free boundary can then be derived from the differential equation

%:—ux(l,t)s(t) v 8(0)=1".

Let

H, ={wwe H,(0,1),> 0, w(0) = 0} = {(Ww’ € L, (0,1),> 0, w(0) = 0}

Then v:=u, belongs to H, and, for any ve H, the function defined by
1
u(x,t) = —Iv(z,t)dz

satisfies the boundary condition (*). Multiplying the differential equation above with w,

(we Hl) and integration gives

1 1
J‘uxxwX +u,wdx = ux(l,t)_[ xu,w,dx -
0 0

From [JNixxx] we recall the Model Problem:
P,: Find v suchthat v(* x)eH, and
v, w) + (v, w") =v(@)(xv,w’) for weH, and t>0
v(*,0) = f’
with its related Finite Element approximation problem:

Problem Ph: let S, < H, be an approximation space. Find a function v, with
v, (*,t) €S, c H, fulfilling

Vo, D)+, 2N =V, Q(xv,,, 2" for y(*t)eS, cH, and t>0
Vh(*,O) = fh' =0,=hr0 .
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In case of a regular initial value function v(*,0)= f' quasi-optimal order of convergence
has been proven ([JNil]) in the form

(VEA =0(h").

L (0,f; L)
In case of a reduced regularity assumption in the form

v(x,0)=u,(x,0)= f'(x)=g(x) e L,(0,0)
a non-quasi-optimal convergence of the FEM has been proven ([JNi3]) in the form

at—1/2

v=v,|=c,h , a<l.

The key estimate to prove this result is given by

d ’ ’ a ’ —
Sl +clo b by o s ot fer)? 2o}

with c=xe""" after using a duality argument with
—-wW'=>® xe (0,1)
w(0)=w'())=0
to estimate
[0 =&, )+ a(e, ) + VDD, ) + DXV, , ')

B _%%”w'llz +a(e, ) +VD (P, ¢") + PW)(x, , ¢')

and applying the lemma of Gronwall.

In this case the initial value function g e L,(0,1) is approximated by the L, — projection
g,=Rges,, ie.

(9,,9)=(g.9) for YeS cH,.

28



We recall the core elements of the proof, in order to motivate our alternative proposal of an
adequate Hilbert space (which is H,,,) to prove quasi-optimal convergence simulatiously for

both cases. The corresponding proposed “energy” norms are:

2
1/2

2
1/2

) M2 + V1

4

dt

T

i, @+ [t ot
0

For w,zeH, by
a(w,z) = Ww,z")—v@)(xw,z") — w(l)(xv,z")
a bilinear form is defined, fulfilling the following relation:

i) a(**) isboundedin H, ,i.e. [a(w,z)|<M|w||Z|
i) a(**) is coercive in H, ,i.e. a(w,w)=m|w| - AJw]

for m M, A >0 depending only on |v| . Therefore by

Lo (L)
a,(w,z) =a(w,z)+A(w,z)

a bounded, positive definite, not symmetric bilinear form is defined, which is applied to define
the corresponding Ritz-Galerkin approximation:

Let V, =R (v)eS, with S =S, m{;(\;((O) = O} be the Ritz-Galerkin-approximation to v with
respect to this form, i.e. let

a,(v=V,, 2)=0 for y(*t)eS,cH, and t>0 .

The Finite Element space S — H, (1) withk <t consists of functions y € S;* with the
properties:

i) the restriction of y to any triangle A of the triangulation A eI} is a polynomial
of degree less than t

i) xis (k —1) —time continuously differentiable in 1 :=(0,1) .

The following properties are valid:

i) Sk = H, (1)

i) inf[v- 7], e for ve H,
Z€Sh

i) Iz, <ch ||, for x €S, .
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The error e=v-v, of the problem p, is splitin the form

e—=v—V, —(v,—V)=¢—¢ With geS, =S"cH, .

The error ¢ =v-y, of the approximation according to the BLF a, (w, z) is estimated by

lel, +]é], < ch™” for p=-101.

The case g =1 follows directly from the fact, that by a, (w,w) a norm is defined, which is

equivalent to ||W'||2. With the additional regularity assumption that the approximation spaces

are at least quadratic splines, i.e. t > 2 the duality argument of Nitsche-Aubin can be applied
to prove the case f#=0,-1.

In order to estimate the correction term ¢ e S, c H, and therefore e itself the norm
equivalence of 3, (4,4) and (¢',4") in combination with the defining approximation equation

($2)+8,( 1) = A, )+ (£, 1) — A&, 1) —e() (e, 7))
is applied.

In a first step the linear problem

(@ 2)+8,(4.2) = M. ) +EQ(x¢ 1) + (&, 1) = Ale, )~ EQ)(xe, 1)

is analyzed, where an arbitrarily function E(1) is chosen, replacing the quadratic term e(l).
This leads to the estimations of the type

lel._.,, < ch* @+l and <c(h'+h™)E]

Lo (L) "e”Lw(Lw) (Lo)

In a second step, because the image of e of any E with
EeB = {\N‘HM‘LQ(LQ) < 1}

is contained in for h< h :=c", the Schauder’s fix point theorem guarantees the existence of
an E with e=E for h<h. This then proves

V=V, | =0(h*)

Ly (0.3 L)

for sufficiently smooth v in (0,1)x[o,f], properly chosen t>0 and at least quadratic splines.
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Remark: In [INi3] it shown the a priori estimate

Theorem: Consider the problem P, with the assumed regularity g e L,(0,1) of the initial
data. Further let S, < H, be a finite dimensional approximation space. There is a
T > 0depending only on |g|| such that the problem P, has a unique solution for t<T .

For the semi-discrete Galerkin-approximation v, it holds v, e C*((0,T); H(0,1)) and the a
priori bounds

t

H 2

i) sup< t* oy, | +J'r2"H6tkv;
0<t<T 0

2
2
dz’} <y

t
2
+j‘ F2kH
0

0<t<T

i) sup{fkﬂarv; 6f+lvh2dr}s o

are valid. The constants c, are independent of S, and
¢, =max{c, ,Cps}
is bounded by
c, <C*(kh?
with C depending only on |g| . One especially gets
o ) <42 [ [ < V2,
Since the approximation s, on the free boundary is defined by

Sp==V;S, , s,(0)=1

a uniform Holder-continuity of s, with an exponent up to 3/4is the consequence.
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8 5 (Hyper) Singular Integral Operator

Let I" denote the boundary of the unit sphere and if the integral from o to 2~ inthe

Cauchy-sense. Then for ueH = L;(") and for real # the Fourier coefficients are defined by

u, = 1 u(x)e™dx -
2w

This enables the definitions of the norms (e.g. [KBr])

2

u\/

Jull, = >
with corresponding Hilbert scales

H, = Rul’, <o} -

For the two singular integral operators
(A (Nu)(x) = ~flog Zsinx;zyu(y)dy = fk(x-yu(y)dy and D(N)=H=L.(I)
(H) (Hu)(x) = [u]x) = %fcct%(y)dt = —lm;r![u(x+ y)—u(x— y)]cot%dy

we note the following properties:

Lemma: The operator H is skew-symmetric in the space L,(0,27z) ([DGa],[BPe], chapter 2,
§9) and maps the space H =L, (0,27) — R isometric onto itself. It holds [KBr1]

|Hu|=Ju| and HZ=—1 , (Huv) =—u,HY) , [ulx) =[]

[ - Hxku(0) = = [u(yydy -
ﬂ-—co
We note

(HUY() = i3 e —ue]eLfor uel, .
1
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Lemma: Let ¢c>0 denote different constants, then it holds
i) INul, =clul,, » (Nuv), = (uNv), =c(uu),y,
ii) cHuHﬂ = HHuHﬂ v —(Hu,v) ; = (U, HY)
i) ifuel, ,then Huel,;
iv) (NU)) = (Hu)(x) »  (Nu)'(x) =—(Hu)(x) » HU)(X)=(Hu)(x);
)] fuel, ,then v=HueH,;

vi) For a Hilbert-transformed function u* (x):=[Hu](x) it holds
[xH - HxJu" (x)) =0 , [xN —Nx]u) = Hu

vi)  ful <], cll,,, -

Proof: The Fourier coefficients of the convolutions (A), (H) are given by ([DGa] pp.63,

appendix, [SGr] 1.441)

1
Nu), =k u, =——
(N, =k, = o,

(Hu), =k''u, = —isign(v)u,
This leads to the propositions i)-v) ([DGa],[BPe],chapter 2, 89, [NMu], §18, 19)

vi) follows by the inequality

u?(x)| = 2_[u(§)u’(§)d§ <d(uun) < cl(Nu”u) =clu’,,,”

Remark: The operator H defines also a bijective mapping from the Hoélder space
C°* onto itself [NMu], §18, 19.

For the general case we mention: let

1
X=y

(Hu)(x) :=%§Iog du(y)

then the integral equation v = Bu has the more general structure [JNi5]
v=HUu+Hu  resp. u=-Hv+HHv

with H being an operator compact in H =L, (0,2z) - R.
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86 Hilbert Scales

Nitsche lecture notes:

There are certain relations between the spaces {H |« > o} for different indices:

Lemma: Let o < . Then
.. <1,

and the embedding H ; — H, is compact.

Lemma: Let o < f< y. Then

Iy < Iz lx

Vz
a

" for x e H
V4 Ve

Lemma: Let a<f<y.Toany xe H, and t>o0 thereisa y =y, (x) according to
) eyl <t

i)

x=yl, <, - M, <,
i), <,

Corollary: Let ¢ < p<y.Toany xe H, and t> o thereis a y =y, (x) according to
) x=yl, <t for aspsp

i) Ivl, <t I,  for psos<y -

Remark: Our construction of the Hilbert scale is based on the operator A with the two
properties i) and ii). The domain D(A) of A equipped with the norm

| =22 (x

i=1

turned out to be the space H, which is densely and compactly embedded in H = H,,. It can

be shown that on the contrary to any such pair of Hilbert spaces there is an operator A with
the properties i) and ii) such that

D(A) = Hz R(A) = H, and HXH2 =HAXH
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For t > Owe introduce an additional inner product resp. norm by

(x, )2, = Ze‘ﬁ‘(x, 2, )

iy = 005 -

Jat

Now the factor have exponential decay € '™ instead of a polynomial decay in case of 4.

Obviously we have

x|, Sc(@b]x], for xeH,

with ¢c(«,t) depending only from ¢ and t > 0. Thus the (t) —norm is weaker than
any  —norm. On the other hand any negative norm, i.e. x| with « <0, is bounded by the

0—normand the newly introduced (t) —norm. It holds:

Lemma 5: Let « > obe fixed. The a—norm of any xe H, is bounded by
[XI°, < &%[x]; + e[,

with ¢ > 0being arbitrary.

Remark 2: This inequality is in a certain sense the counterpart of the logarithmic convexity of
the o —norm, which can be reformulated in the form (v >0, u+v>1)

X7 < velx} + eI,

applying Young’s inequality to

2 2 2
IXIF, = Al A=l -

The counterpart of lemma 4 above is

Lemma 6: Let t,0 > 0be fixed. Toany x € H, thereis a y =y, (x) according to

D x=yl <M
iyl =7
) x=yl, <e™ I -
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