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A. Preface and introductory remarks. 

 

1. Classical fluid mechanics 

Classical fluid mechanics is a branch of continuum mechanics; that is, it 

proceeds on the assumption that a fluid is practically continuous and 

homogeneous in structure. The fundamental property which distinguishes a fluid 
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from other continuous media is that it cannot be in equilibrium in a state of stress 

such that the mutual action between two adjacent parts is oblique to the common 

surface. Though this property is the basis of hydrostatics and hydrodynamics, it is 

by itself insufficient for the description of fluid motion. In order to characterize 

the physical behavior of a fluid the property must be extended, given suitable 

analytical form, and introduced into the equations of motion of a general 

continuous medium, this leading ultimately to a system of differential equations 

which are to be satisfied by the velocity, density, pressure, etc. of an arbitrary 

fluid motion. In this article we shall consider these differential equations, their 

derivation from fundamental axioms, and the various forms which they take 

when more or less special assumptions concerning the fluid or the fluid motion 

are made. 

 

Our intent, then, is to present in a mathematically correct way, in concise 

form, and with more than passing attention to the foundations, the principles of 

classical fluid mechanics. The work includes the body of exact theoretical 

knowledge which accompanies the fundamental equations, and at the same time 

excludes relativistic and quantum effects, most of the kinetic theory, special fields 

such as turbulence, and all numerical or approximate work. Other topics which 

have been omitted, but which properly come within the scope of the article, are 

hydrostatics, rotating fluid masses, one-diinensiona1 gas flows, and stability 

theory; these subjects are treated elsewhere in this Encyclopedia. A basic 

knowledge of vector analysis and partial differential equations is expected of the 

reader, and some experience in hydrodynamics will prove helpful. 

 

The paper proper begins with Division B, where the equations of motion are 

derived; we have attempted to give rigorous and complete discussions of the 

basic points, establishing the entire work on the concept of motion as a 

continuous point transformation. In the final part of this chapter we have 

discussed transformation of coordinates and variational principles. The 

material in Part C is to some extent standard in textbooks, but its omission would 

affect the unity of the article. Moreover, it is here that we first meet many of the 

ideas which are of importance in the more complex situations treated later. Part D 

returns to the foundations of the subject with a concise treatment of the 

thermodynamics of fluid motion, including a postulational summary of the 

relevant parts of classical thermodynamics. The presentation here may serve as a 

model for the discussion of multicomponent hydrodynamical systems. 

In Part E we present the general theory of perfect (i.e., nonviscous) gases. We 
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have attempted as much as possible to include results on non-isentropic motion 

and to avoid the ideal gas assumption pV = RT. Rather surprisingly, this point of 

view leads in many cases to a considerable economy of thought. Part F deals with 

the theory of shock waves in a perfect fluid. The treatment is based entirely on 

the postulates of motion (Parts B and D) and requires no new dynamical 

assumptions. The section on shock layers should be useful as an introduction to 

the specialized literature on the subject. The concluding chapter begins with a 

clearcut derivation of the constitutive equations of a viscous fluid and covers 

other theoretical work of recent years. 

 

Some of the sections contain new material or improved treatment of known 

work. In particular we refer to the following items: the discussion of variational 

principles (Sects. 14, 15, 24 and 47), the theory of dynamical similarity (Sects. 

36 and 66), the theory of the stress tensor (Sect. 59), the energy method (Sect. 

73), an extension of the Helmholtz-Rayleigh theorem (Sect. 75), and several 

new formulas or equations, e.g., Eqs. (29.9), (40.6), (42.8), etc. An attempt has 

been made to cite original authorities whenever possible; on the other hand, 

complete references to a subject are seldom given, since they can usually be 

traced through the papers which are quoted. Finally, we must add that in a number 

of places proofs have been considerably modified and shortened from their 

original form. 

 

This work owes much to the stimulating lectures and penetrating scholarship of my 

teachers David Gilbarg and Clifford Truesdell. Although the responsibility for the material 

presented is solely mine, their influence is apparent in many places. Also to my wife 

Barbara I owe sincerest thanks and gratitude, specifically for typing the entire manuscript 

and generally for smoothing the whole project to completion. Every work on fluid 

dynamics is the better for whatever degree of closeness it attains to the style, clarity, and 

thoroughness of Sir Horace Lamb’s Hydrodynamics. The author hopes he has stayed to the 

path there laid out. 

To the United States Air Force Office of Scientific Research and Development the 

author is indebted for support during a portion of the time he was engaged in writing this 

article. 

 

2. Vectors and tensors. 

The mathematical notation used in this article is that of ordinary Cartesian or 

Gibbsian vector analysis. This notation leads to the utmost conciseness of 

expression, and at the same time illuminates the physical meaning of the 
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phenomena represented. Most of the vector operations which we use are standard, 

but occasionally an expression is needed which may appear unusual or 

ambiguous. For this reason it is convenient to define all operations in terms of 

vector components: then the meaning of an equation can always be made clear 

simply by rewriting it in component form. Another advantage accrues to this 

method, namely that any equation admits an immediate tensorial interpretation if 

so desired. 

 

Except in a few special situations we shall use lower case bold face to denote 

vectors; in a fixed rectangular coordinate system, the components of vectors b, c, 

etc., will be denoted by ib , ic , etc., or equivalently ib , ic , etc., where i =1, 2, 

3. In this notation the scalar product cb ⋅  is defined by 

  i
ii

i cbcb ==⋅cb , 

with the usual convention that a repeated index is summed from 1 to 3.
1
 

Similarly the vector product cb×  is defined by its components 

  kj
ijki

cbe=× )( cb , 

where ijke  is the usual permutation symbol.
2
 The magnitude of a vector b is 

denoted by the corresponding italic lower case letter, thus 

  bbb ⋅== ||b . 

(One important exception to this rule will be made: the magnitude of the velocity 

vector v will be denoted by q, the letter v being reserved to stand for a velocity 

component.) 

The symbols φgrad , bdiv  and bcurl  will be employed in their usual 

senses, thus 

  i
i
b ,div =b  

and 

  jk
ijki
be ,)(curl =b , ii ,)(grad φφ = . 

The comma in these formulas is a. standard convention denoting differentiation. 

That is, if F is an arbitrary scalar or vector function of position we define 

  
ii
x

F
F

∂

∂
≡, ,  i = 1, 2, 3. 

[This definition of iF,  must be modified in case one wishes to consider 

curvilinear coordinate systems, as in Sect. 12. The modification need not concern 

us here, however, since except for a few instances the article is couched 

                                                           
1
 The simultaneous use of upper and lower indices has been adopted in order to conform with the 

standard notation of tensor analysis. 
2
 That is, 1312231123 === eee , 1321132213 −=== eee , and all other components are 0. 
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exclusively in the notation of Cartesian vector analysis.] 

 

Second order tensors (dyadics) occur frequently in this work. They wi1l.be 

represented by uppercase bold face letters: TΣ , , etc. The components of a 

tensor Σ  will be denoted by ijΣ , and also, upon occasion, by 
i
jΣ  and ijΣ . 

By the equations 

  Σcb ⋅=  and cΣb ⋅=  

we mean, respectively 

  
ji

j
i
cb Σ=  and j

iji
cb Σ= . 

Finally TΣ :  stands for the scalar product ij
ij
TΣ . 

 

Several special notation are convenient. By xΣ  we mean the vector with 

components jk
ijk
e Σ . By bgrad  we mean the tensor with components ijb , , 

that is 

  ijij b ,)grad( =b . 

Finally, Σdiv  stands for the vector with components j
ji
,Σ . From these 

definitions it follows that 

  x)grad(curl bb =  and ji
j

i bc ,)grad( =⋅ bc . 

 

The reader familiar with tensor analysis will observe that if b is regarded as a. short 

name for the set of contravariant components 
ib  or covariant components ib  of a 

vector in a general curvilinear coordinate system, and if Σ  is likewise regarded as a 

short name for the components of a tensor, then the above definitions are tensorially 

invariant. Thus the vector symbols we have introduced could equally well serve as a 

shorthand for writing tensor formulas. 

 

A general transformation of volume integrals into surface integrals is 

embodied in the symbolic formula
3
 

∫∫ =
σ

daFndvF i

v

i, .    (2.1) 

Here F is any scalar, vector, or tensor, with or without an index i to be summed 

out; v is a volume in which F is continuously differentiable; σ  is the surface of 

                                                           
3
 H. B. PHILLIPS [48], formula (127). 
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this volume (assumed suitably smooth); and in  are the components of the outer 

normal n to the surface σ . Replacing F by ib  gives 

  ∫∫ ⋅=
σ

dadv

v

nbbdiv ,    (2.2) 

usually called the divergence heorem; replacing F by j
ijk
be  gives 

  ∫∫ ×=
σ

dadv

v

bnbcurl .   (2.3) 

These formulas, and others like them, will be used frequently in this work. 

 

List of frequently used symbols. 

Within a single section sometimes these same symbols are defined and used in 

a different sense. Numbers refer to section where symbol is first used. 

c:  sound speed, Sect. 35. 

E:  internal energy, Sects. 30, 33. 

F:  arbitrary function. 

H:  total enthalpy, Sects. 18, 38. 

I:  enthalpy, Sect. 38. 

J:  Jacobian, Sect. 3. 

M:  Mach number, Sect. 36. 

n:  distance normal to streamline. 

p:  pressure. 

q:  speed.  

Q:  mass flow, Sect. 37. 

r:  radial distance.  

s:  distance along streamline. 

S:  entropy, Sects. 30,33. 

t:  time.  

T:  absolute temperature. 

u,v,w: velocity components. 

a:  acceleration vector. 

D:  deformation tensor, Sect. 11. 

f:  extraneous force vector. with the fluid. 

I:  unit matrix. 

n:  unit (outer) normal vector to a surface. 

t:  stress vector, Sect. 6. 

T:  stress tensor, Sect. 6. 

v:  velocity vector. 
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ρ :  density. 

θ :  polar coordinate. 

θ :  velocity inclination. 

Θ :  expansion, Sect. 26. 

φ :  velocity potential. 

Φ :  dissipation function, Scots. 34, 61. 

ψ :  stream function, Sects. 19, 42. 

ω :  vorticity magnitude. 

Ω :  extraneous force potential, Sect. 9. 

ω :  vorticity vector. 

Ω :  vorticity tensor, Sect. 11. 

T
~
:  kinetic energy, Sect. 9. 

W
~
:  vorticity measure, Sect. 27. 

VSC
~

,
~
,

~
:  curves, surfaces, volumes moving with the fluid. 

σ,v :  fixed volume in space, and its bounding surface. 

Other standard notations are introduced in Sects. 2 and 3. 

 

B. The equation of motion. 

I. Kinematics and dynamics of fluid motion. 

3. Kinematical preliminaries. 

Fluid flow is an intuitive physical notion which is represented mathematically 

by a continuous transformation of three-dimensional Euclidean space into itself. 

The parameter t describing the transformation is identified with the time, and we 

may suppose its range to be ∞<<−∞ t , where t = 0 is an arbitrary initial 

instant. 

In order to describe the transformation analytically let us introduce a fixed 

rectangular coordinate system (
321 ,, xxx ). We refer to the coordinate triple 

(
321 ,, xxx ) as the position and denote it by x. Now consider a typical point or 

particle P moving with the fluid. At time t = 0 let it occupy the position X = 

(
321 ,, XXX ) and at time t suppose it has moved to the position x = (

321 ,, xxx ). 

Then x is determined as a function of X and t, and the flow may be represented by 

the transformation 

  ),( tXφx =  (or ),( tx ii Xφ= ).  (3.1) 

If X is fixed while t varies, Eq. (3.1) specifies the path of the particle P initially 

at X; on the other hand, for fixed t:, Eq. (3.1) determines a transformation of the 

region initially occupied by the fluid into its position at time t. 

We assume that initially distinct points remain distinct throughout the entire 
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motion, or, in other words, that; the transformation (3.1) possesses an inverse,
4
 

  ),( txΦX =  (or ),( tX xαα Φ= ).  (3.2) 

It is also assumed that iφ  and αΦ  possess continuous derivatives up to the 

third order in all variables, except possibly at certain singular surfaces, curves, or 

points. Unless otherwise specified, we shall be concerned only with those 

portions of a flow which do not contain singularities. Cases of exception (singular 

surfaces in particular) require a separate examination, and are dealt with in Sects. 

51 and 54. Finally, notice that any closed surface whatever, which moves with the 

fluid, completely and permanently separates the matter on the two sides of it. 

Although a flow is completely determined by the transformation (3.1), it is 

also important to consider the state of motion at a given point during the course of 

time. This is described by the functions 

  ),( txρρ = , ),( txvv = , etc.   (3.3) 

which give the density and velocity, etc., of the particle which happens to be at 

the position x at the time t. It was d’Alembert in 1749 and Euler in 1752 who first 

recognized the importance of the field description (3.3) in the study of fluid 

motion, and Euler who conceived the magnificent idea of studying the motion 

directly through partial differential equations relating the quantities (3.3).
5
 We 

must now develop the ideas just outlined. 

 

The variables (x, t) used in. the field description (3.3) of the flow will be 

called spatial variables; the variables (X, t), which single out individual particles 

will correspondingly be called material variables.
6
 By means of Eq. (3.1) any 

quantity F which is a function of the spatial variables (x, t) is also a function of 

the material variables (X, t), and conversely. If we wish to indicate the 

dependence of F on a particular set of variables we write either 

  ),( tFF x=  or ),( tFF X= , 

the functions F(x, t) and F(X, t) of course being related by the change of variables 

(3.1) and (3.2). Geometrically, F(X, t) is the value of F experienced at time t by 

the particle initially at X, and F(x, t) is the value of F felt by the particle 

instantaneously at the position x. We shall use the symbols 

  
t

tF

t

F

∂
∂

≡
∂
∂ ),(x

 and 
t

tF

dt

dF

∂
∂

≡
),(X
 

for the two possible time derivatives of F; obviously they are quite different 

                                                           
4
 Greek letters will be used as indices for particle coordinates. 
5
 Euler’s work on fluid mechanics will be found, for the most part, in volumes II 12, 13 of his 

collected works (Opera Omnia, Zurich). Professor Truesdell’s introductions to these volumes lucidly 
describe Euler’s contributions to fluid mechanics in relation to those of his predecessors and 

contemporaries, and firmly establish Euler as the founder of rational fluid mechanics. 
6
 The two sets of variables just introduced are usually called Eulerian and Lagrangian, respectively, 
though both are in fact due to Euler; cf. [26]. § 14. 
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quantities. 
dt

dF
 is called the material derivative of F. It measures the rate of  

change of F following a particle, and it can of course be expressed in either 

material or spatial variables. 
t

F

∂
∂

, on the other hand, gives the rate of change of 

F apparent to a viewer stationed at the position x. 

The velocity v of a particle is given by the definition 

  
dt

dx
v ≡ , 











∂
∂

≡≡
t

t

dt

dx
v

ii
i ),(Xφ

. 

As defined, v is a function of the material variables; in practice, however, one 

usually deals with the spatial form 

v = v(x, t). 

In most problems it is sufficient to know v(x, t) rather than the actual motion 

(3.1). 

We have introduced the velocity field in terms of the motion (3.1). It is 

naturally important to be able to proceed in the opposite direction, that is, to 

determine Eq. (3.1) from v(x, t). This transition is effected by solving the system 

of ordinary differential equations 

  ),( t
dt

d
xv

x
=     (3.4) 

with the conditions x(0) = X. The integration of Eq. (3.4) should be carried out 

“in the large” and is therefore not always an easy problem.
7
 

 

Acceleration is the rate of change of velocity experienced by a moving 

particle. Denoting the acceleration vector by a, we have then 
dt

dv
a = . We 

observe that acceleration can be computed directly in terms of the velocity field 

v(x, t), for we have 

  
dt

x

x

v

t

v

dt

dv
a

j

j

iii
i ∂

∂

∂
+

∂
∂

== , 

or 

  vv
v

a grad⋅+
∂
∂

=
t

.    (3.5) 

Eq. (3.5) is a special case of the general formula 

  F
t

F

dt

dF
grad⋅+

∂
∂

= v    (3.6) 

                                                           
7
 In [10], §9.21 there is a particularly interesting example of the integration of equation (3.4), due 

originally to Maxwell, Proc. Lond. Math. Soc. 3, 82 (1870). Other examples are discussed in [10], 

§9.71 and [8], §§72, 159. The general problem of integration is considered by Lichtenstein [9], pp. 
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relating the material derivative to spatial derivatives. Eq. (3.6) may be interpreted 

as expressing, for an arbitrary quantity F = F(x, t), the time rate of change of F 

apparent to a viewer situated on the moving particle instantaneously at the 

position x. 

The Jacobian of the transformation (3.1), namely 

  










∂

∂
=

∂

∂
=

αX

x

XXX

xxx
J

i

det
),,(

),,(
321

321

 

represents the dilatation of an infinitesimal volume as it follows the motion.  

From the assumption that Eq. (3.1) possesses a differentiable inverse it follows 

that 

  ∞<< J0 .    (3.7) 

In the sequel we shall make use of the elegant formula 

  vdivJ
dt

dJ
= ,    (3.8) 

due originally to Euler. To prove this, let α
iA  be the cofactor of 

αX

x
i

∂

∂
 in the 

expansion of the Jacobian determinant, so that 

  i
jj

i

JA
X

x δα
α

=
∂

∂
. 

Then clearly 

  J
x

v
A

X

x

x

v
A

X

v
A

X

x

dt

d

dt

dJ
i

i

i

j

j

i

i

i

i

i

∂

∂
=

∂

∂

∂

∂
=

∂

∂
=











∂

∂
= α

α
α

α
α

α
. 

 

Incompressible fluids. If a fluid is assumed to he incompressible, that is, to move 

without change in volume, then by Eq. (3.8) we have 

  0div =v .     (3.9) 

Further study of incompressible fluid motion must involve dynamical 

considerations; in particular, the common assumption 0curl =v needs dynamical 

justification whenever it is applied. 

 

4. The transport theorem. 

Let )(
~~
tVV =  denote an arbitrary volume which is moving with the fluid,

8
 

and let F(x, t) be a scalar or vector function of position. The volume integral 

  ∫
V

Fdv
~

 

                                                                                                                                    
159 to 170. 
8
 We shall generally use script capital letters to denote volumes, surfaces, and curves which move 

with the particles of fluid. On the other hand, volumes, surfaces, and curves which are fixed in the 

physical space will be denoted by script lower case letters. This notation will prove to be a convenient 
one for the formulation of a number of the basic principles of hydrodynamics. 
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is then a well-defined function of time. Its derivative is given by the important 

formula 

  ∫∫ 






 +=
VV

dvF
dt

dF
Fdv

dt

d

~~

divv .   (4.1) 

To prove Eq. (4.1), we introduce (
321

,, XXX ) as new variables of integration by 

means of Eq. (3.1). Then the moving region )(
~
tV ) in the x-variables is replaced 

by the fixed region )0(
~~

0 VV =  in the X-variables (recall that V
~
 is at all times 

composed of the same particles), and 

  ∫∫ =

0

~
0

~

),(

VV

JdvtFFdv X , 

where the formula 0Jdvdv =  relates the element of volume dv in the x-variables 

to the element of volume 0dv  in the X-variables. The integral on the right 

involves t only under the integral sign, hence 

  ∫∫ 






 +=

0

~~
VV

dv
dt

dJ
F

dt

dF
JFdv

dt

d
, 

and Eq. (4.1) follows at once by transformation of the last integral using Euler’s 

formula (3.8). 

Eq. (4.1) can be expressed in an alternate way which brings out clearly its 

kinematical significance. Indeed, by virtue of Eq. (3.6) the integrand on the right 

of Eq. (4.1) can be written 

  )(div F
t

F
v+

∂
∂

, 

and then by application of the divergence theorem (2.2) we find 

  ∫∫∫ ⋅+
∂
∂

=
SVV

daFFdv
t

Fdv
dt

d

~~~

nv . 

Here S
~
 is the surface of V

~
, nv ⋅  is the component of v along the outward 

normal to S
~
, and 

t∂
∂
 denotes differentiation with V

~
 held fixed. Eq. (4.2) 

expresses that the rate of change of the total F over a material volume V
~
 equals 

the rate of change of the total F over the fixed volume instantaneously coinciding 

with V
~
 plus the flux of F out of the bounding surface. It should be emphasized 

that Eqs. (4.1) and (4.2) express a kinematical theorem, independent of any 

meaning attached to F. 

 

5. The equation of continuity. 

We suppose that the fluid possesses a density function ),( txρρ = , which 

serves by means of the formula 
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  ∫=
V

dvM
~

~
ρ     (5.1) 

to determine the mass M
~
 of fluid occupying a region V

~
. We naturally assume 

0>ρ , and assign to ρ  the physical dimension “mass per unit volume”. 

Turning now to the physical significance of the concept of mass, we postulate 

the following principle of conservation of mass: the mass of fluid in a material 

volume V
~
 does not change as V

~
 moves with the fluid. The principle of 

conservation of mass is otherwise expressed by the statement 

  0
~

=∫
V

dv
dt

d ρ .    (5.2) 

Now from Eqs. (4.1) and (5.2) it follows easily that 

  0div
~

=






 +∫
V

dv
dt

d
vρ

ρ
, 

and since V
~
 is arbitrary this implies 

  0div =+ vρ
ρ
dt

d
.    (5.3) 

This is the spatial, or Eulerian, form of the equation of continuity and is a 

necessary and sufficient condition for a motion to conserve the mass of each 

moving volume. In virtue of Eq. (3.6) we can express the equation of continuity 

in the alternate form 

  0)div( =+
∂
∂

vρ
ρ
t

.    (5.4) 

The derivation just given is substantially due to Euler.
9
 

Multiplying Eq. (5.3) by J and using Eq. (3.8), we derive two forms of the 

material, or Lagrangian, equation of continuity: 

  0)( =J
dt

d
ρ , 0ρρ =J ,   (5.5) 

where )(00 Xρρ =  is the initial density distribution. 

The principle of conservation of mass is sometimes expressed in an equivalent 

form involving a fixed volume: the rate of change of mass in a fixed volume v is 

equal to the mass flux through its surface, i.e., 

  ∫∫ ⋅−=
∂
∂

σ

ρρ dadv
t
v

nv .   (5.6) 

Applying the divergence theorem to the right hand side of Eq. (5.6) leads to 

  0)( =






 +
∂
∂

∫
v

dvdiv
t

vρ
ρ

. 

                                                           
9
 L. Euler: Principes généraux du mouvement des fluids. Hist. Acad. Berlin (1755) (Opera Omnia. II 

12, pp. 54 to 92). As early as 1751 Euler had corresponding ideas for incompressible fluids, but this 
material did not appear in published form until 1761. 
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from which Eq. (5.4) is easily obtained. It is essentially this derivation which is 

found in most texts, but with application of the divergence theorem disguised in a 

discussion of the variation of vρ 0 over a small box. The only objection to this 

derivation is that the principle of conservation of mass in its first form is more 

convincing. 

 

We conclude this section with an important formula, valid for an arbitrary  

function F = F(x, t), namely 

  ∫∫ =
VV

dv
dt

dF
Fdv

dt

d

~~

ρρ .   (5.7) 

Eq. (5.7) is an easy consequence of Eqs. (4.1) and (5.3). 

 

6. The equations of motion. 

We consider now the dynamics of fluid motion; our intention is to derive the 

equations which govern the action of forces, external and internal, upon the fluid. 

In this section we shall present what seems to be the most straight-forward and 

compelling treatment of this topic, stemming from the pioneer work of Euler and 

Cauchy. 

We adopt the stress principle of Cauchy,
10
 which states that “upon any 

imagined closed surface S
~
 there exists a distribution of stress vectors t whose 

resultant and moment are equivalent to those of the actual forces of material 

continuity exerted by the material outside S
~
 upon that inside”.

11
 It is assumed 

that t depends at any given time only on the position and the orientation of the 

surface element da; in other words, if n denotes the (outward) normal to S
~
, then 

t = t(x, t; n). As Truesdell remarks, the above principle “has the simplicity of 

genius. Its profound originality can be grasped only when one realizes that a 

whole century of brilliant geometers had treated very special elastic problems in 

very complicated and sometimes incorrect ways without ever hitting upon this 

basic idea, which immediately became the foundation of the mechanics of 

distributed matter”.
12
 

We now set forth the fundamental principle of the dynamics of fluid motion; 

the principle of conservation of linear momentum: the rate of change of linear 

momentum of a material volume V
~

 equals the resultant force on the 

volume.
13
 This principle is otherwise expressed by the statement 

                                                           
10
 A.-L. Cauchy: Ex. de Math. 2 (1827). (Oeuvres (2) 7, pp.l79 to 81). A similar statement, but 

restricted to the case of perfect fluids, was given by Euler. 
11
 This statement of Cauchy’s principle is due to Truesdell, J. Rational Mech. Anal. 1,125 (1952). 

12
 C. Truesdell: Amer. Math. Monthly 60, 445 (1953). 

13
 The necessity for a clearcut statement of the postulates on which continuum mechanics rests was 
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  ∫∫∫ +=
SVV

dadvdv
dt

d

~~~

tfv ρρ ,   (6.1) 

where f is the extraneous force per unit mass. In setting down axiom (6.1) it is 

tacitly assumed that the force f is a known function of position and time, and 

perhaps also of the state of motion of the fluid. This point of view bypasses one 

of the prime problems in the foundations of mechanics, namely the recognition, 

and even the existence, of a coordinate system in which f is known. Of course, 

in the situations to which fluid mechanics is usually applied, an inertial frame is 

generally evident beforehand, and the axiom (6.1) is patently applicable. By 

means of Eq. (5.7), Eq. (6.1) may be written in the form 

  ∫∫∫ +=
SVV

dadvdv
dt

d

~~~

tf
v ρρ ;   (6.2) 

here integration over a moving volume can be replaced, without loss of generality, 

by integration over a fixed volume. 

From the form alone of Eq. (6.2) follows a result of great importance. Let 3l  

be the volume of v; dividing both sides of (6.2) by 2l , letting v tend to zero, and 

noting that the integrands are bounded, we obtain 

  0
1

lim
~

20
=∫→

S
v

da
l

t ,    (6.3) 

that is, the stress forces are in local equilibrium. Consider the tetrahedron of Fig. 

1, with vertex at an arbitrary point x, and with three of its faces parallel to the 

coordinate planes. Let the slanted face have normal n and area Σ . The normals 

to the other faces are -i, -j, and -k, and their areas are Σ1n , Σ2n  and Σ3n . 

                                                                                                                                    

pointed out by Felix Klein and David Hilbert. The first axiomatic presentation is due to G. Hamel, 

Math. Ann. 66. 350 (1908); also [38], pp. 1 to 42. In a recent paper, W. Noll has developed the 

foundations of continuum mechanics at a level of rigor comparable to that of advanced mathematical 

analysis. It should be emphasized that the above postulate cannot be derived from classical mass-point 

mechanics by simple limiting processes; rather it is a plausible analogue of the basic equations of that 

subject. 

Fig. 1. Stress tetrahedron. 
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Now let us apply Eq. (6.3) to the family of tetrahedrons obtained by letting 

0→Σ . Since t is a continuous function of position, and Σ~2l , we obtain 

easily 

  0)()()()( 321 =−+−+−+ ktjtitnt nnn ,  (6.4) 

where t(n) is an abbreviation for t(x, t; n). This formula has been proved, of 

course, only for the case when all the components in  are positive. To extend its 

validity, we first note that by continuity it holds if all the in  are 0≥ . Thus, in 

particular, 

  )()( itit −= , )()( jtjt −= , )()( ktkt −= . (6.5) 

Now applying the "tetrahedron" argument in the other octants, and using Eq. (6.5), 

we find that, in all cases, 

  )()()()( 321 ktjtitnt nnn ++= .   (6.6) 

t may therefore be expressed as a linear function of components of n, that is 

  
ji

j
i

Tnt =  where ),( tTT jiji x= . 

The matrix of coefficients ijT  obviously forms a tensor, called the stress tensor 

and here denoted by T. Each component of T has a simple physical interpretation, 

namely, ijT  is the j-component of the force on the surface element with outer 

normal in the i-direction. The foregoing argument is due in principle to Cauchy.
14
 

Replacing t by Tn ⋅  in (6.2) and applying the divergence theorem, we find 

  ∫∫ +=
vv

dvdv
dt

d
)div( Tf

v ρρ , 

and since v is arbitrary it follows that 

  Tf
v

div+= ρρ
dt

d
.    (6.7) 

This is the simple and elegant equation of motion discovered by Cauchy.
15
 It is 

valid for any fluid, and indeed for any continuous medium, regardless of the form 

which the stress tensor may take. 

Perfect fluids. All real fluids obviously can exert tangential stresses across 

surface elements, so that t generally will fail to be normal to the surface element 

on which it acts. The effect of the tangential stresses is small in many practical 

cases, however, and therefore it is not unreasonable to study the idealized 

situation in which the tangential stresses are neglected altogether. A perfect fluid 

is then by definition a material for which 

  nt p−= .     (6.8) 

p is called the pressure: when p > 0, the vectors t acting on a closed surface tend 

                                                           
14
 A.-L. Cauchy: Ex. de Math. 2 (1827), (Oeuvres (2) 7, pp. 79 to 81). 

15
 A.-L. Cauchy: Ex. de Math. 3 (1823), (Oeuvres (2) 8, pp. 195 to 226). 
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to compress the fluid inside. Comparing Eqs. (6.6) and (6.8), we find 

)()()()( kjin pppp === . That is, p is independent: of n, 

  p = p(x,t). 

The equations of motion now take the simple form
16
 

  p
dt

d
grad-f

v
ρρ = .    (6.9) 

It is satisfying to note that we have obtained four equations, namely Eq. (5.3) 

and the three equations embodied in Eqs. (6.7) or (6.9), relating the four 

quantities ρ  and the components of v. To be sure, further variables T or p enter, 

but one may reasonably expect to express them in terms of ρ  and v by direct 

mechanical or thermodynamical assumptions. The various possibilities for this 

form the material of the following chapters. 

Material forms of the equations of motion. For the case of a perfect fluid it is 

relatively simple to find equations satisfied by v, ρ , and p as functions of the 

variables αX , t. Indeed, noting that 
2

2

dt

d

dt

d xv
= , and multiplying both sides of 

Eq. (6.9) by αα ,,
i

i xx ≡ , we obtain 

  αα ρ ,,2

2 1
pxf

dt

xd
i

i
i

−=









−  

which may be written vectorially as 

  p
dt

d
grad

1
Grad

2

2

ρ
−=










−⋅ f

x
x .  (6.10) 

These equations are inconvenient to handle and infrequently used except for one 

dimensional flows. They are necessary, however, when one wishes to distinguish 

one article from another, as in the case of a non-homogeneous fluid. The material 

equations for fluids sucseptible of tangential stresses are extremely cumbersome 

and never seem to be used.
17
 

 

7. Conservation of angular momentum 

The principle of conservation of angular momentum is usually stated as a 

theorem in the classical dynamics of mass points or rigid bodies. Its proof, 

however, depends on certain axioms concerning the nature of the “inner forces” 

between the particles or bodies making up the dynamical system in question. The 

situation can be treated similarly in continuum mechanics.
18
 Here, in order to 

                                                           
16
 L. Euler: Cf. footnote 9. 

17
 In non-linear elasticity, on the other hand, great importance is attached to the material form of the 

equation of motion. 
18
 The following presentation is similar to that of Hamel, [38], p. 9. A different point of view is 

adopted by Truesdell and Toupin (this Encyclopedia, Vol. III, Part 1), who postulate a generalized law 
of conservation of angular momentum in which extraneous torques are admitted. 
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guarantee the conservation of angular momentum it is necessary to make certain 

assumptions concerning the forces exerted across surface elements, or, in other 

words, concerning the stress tensor. Specifically, we postulate that the stress 

tensor is symmetric, i.e., 

  jiij TT = .     (7.1) 

(When extraneous couples are present this needs modification. However, we 

specifically exclude extraneous couples from this study, since they arise generally 

only for polarized media and thus are not important in fluid mechanics.) As a 

theorem, Eqs. (7.1) are due to Cauchy
19
; that they can equally well serve as 

axioms was first recognized by Boltzmann.
20
 As a consequence of Eqs. (7.1) the 

following result now holds: 

Theorem (conservation of angular momentum). For an arbitrary 

continuous medium satisfying the continuity equation (5.3), the dynamical 

equation (6.7), and the Boltzmann postulate (7.1), we have 

  ∫∫∫ ×+×=×
SVV

dadvdv
dt

d

~~~

)()( trfrvr ρρ ,  (7.2) 

where V
~
 is an arbitrary material volume. 

Proof. From Eqs. (5.7) and (6.7) it is easy to show that 

  

∫∫∫

∫∫
−×+×=

×=×

V

x

SV

VV

dvdadv

dv
dt

d
dv

dt

d

~~~

~~

)(

)()(

Ttrfr

v
rvr

ρ

ρρ

. 

Here xT  is the axial vector field defined by jk
ijki

x Te=)(T . By virtue of Eq. 

(7.1) we have xT  = 0, and Eq. (7.2) is proved. Conversely, if Eq. (7.2) holds for 

arbitrary volumes then T must be symmetric. 

For certain types of fluids the stress tensor turns out to be symmetric on 

purely mechanical grounds, irrespective of any other considerations. We mention 

in particular perfect fluids, where T = -pI, and isotropic viscous fluids in which 

stress is a function of the rate of deformation (Sect. 59). For these important 

cases, then, the Boltzmann postulate is a tautology and Eq. (7.2) can be 

obtained directly from the equations of motion. 

 

It is possible to imagine a. mechanical system for which T is not symmetric, and 

Hamel, in the reference already cited, gives several examples. In cases of this sort, which 

are not of interest in fluid mechanics, the principle of conservation of momentum as given 

                                                           
19
 A.-L. Cauchy: Cf. footnote 14. 

20
 Cf. [38], p. 9. 
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in Eq. (7.2) no longer holds, but must be generalized to allow for “apparent” extraneous 

torques. 

 

8. Surface conditions. 

If a surface in a moving fluid always consists of the same particles, it is 

clearly a possible bounding surface of the fluid. The converse proposition, 

namely that every bounding surface must be a material surface, is less obvious. 

Suppose a fluid to be in continuous motion according to the conditions set 

down in Sect. 3, and let F(x, t) = 0 be the equation of its boundary surface. Then 

F must satisfy the condition 

  0grad =⋅+
∂
∂

= F
t

F

dt

dF
v  when F = 0,  (8.4) 

(Kelvin
21
), and this condition in turn implies that the surface always consists of 

the same particles (Lagrange
22
). 

Proof. It is well known that the normal velocity of a moving surface F(x, t) = 

0 is given by the formula 

  
|grad| F

t

F

V ∂
∂

−
= . 

But if F = 0 is a bounding surface, then 

  
|grad|

grad

F

F
V ⋅=⋅= vnv , 

and Eq. (8.1) follows at once. On the other hand, if Eq. (8.1) holds, we wish to 

show that F = 0 always consists of the same particles. Set 

  )),,((),( ttFtG XφX = , 

so that G(X, t) = 0 describes the initial positions of particles which at time t are on 

the surface F =0. Clearly 

  0=
∂
∂
t

G
 when G = 0. 

Therefore the normal velocity of propagation of the surface G = 0 through the 

X-space is zero. It follows that G = 0 is fixed in the X-space, and hence always 

the same particles make up the moving surface F = 0. 

At a fixed boundary we have the obvious condition 0=⋅nv , independent of 

the preceding analysis. 

 

II. Energy and momentum transfer. 

                                                           
21
 W. Thomson (Lord Kelvin): Cambridge and Dublin Math. J. (1848). (Papers 1, p. 83). 

22
 J. -L. Lagrange: Nouv. Mém. Acad. Sci. Berlin (1781), (Oeuvres 4, p. 706). 
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9. The energy transfer equation. 

Let T
~
 denote the kinetic energy of a volume V

~
, 

  ∫=
V

dvqT
~

2

2

1~ ρ , 

and let D be the deformation tensor, )(
2

1
,, ijjiij vvD += . Then for an arbitrary 

material volume V
~
 we have 

  ∫∫∫ −⋅+⋅=
VSV

dvdadv
dt

Td

~~~

~

D:Tvtvfρ .  (9.1) 

The proof is a simple exercise in use of Eqs. (5.7), (6.7), and the symmetry of T. 

Eq. (9.1) states that the rate of change of kinetic energy of a moving volume is 

equal to the rate at which work is being done on the volume by external forces, 

diminished by a “dissipation” term involving the interaction of stress and 

deformation. This latter term must represent the rate at which work is being done 

in changing the volume and shape of fluid elements. Part of the power connected 

with this term may well be recoverable, but the rest must be accounted for as 

heat.
23
 For a perfect fluid the energy equation takes the simpler form 

  ∫∫∫ +⋅−⋅=
VSV

dvpdapdv
dt

Td

~~~

div

~

vnvvfρ .  (9.2) 

The last term is the rate at which work is done by the pressure in changing the 

volume of fluid elements. 

 

A slight simplification of the energy equation may be effected if f is derivable 

from a time-independent potential; Ωgrad−=f , )(xΩΩ = . In this case, 

setting ∫=
V

dvU
~

~
Ωρ , Eq. (9.1) becomes 

  ∫∫ −⋅=+
VS

dvdaUT
dt

d

~~

)
~~

( D:Tvt  

 

10. The momentum transfer equation. 

The principle of conservation of linear momentum, stated in Eq. (6.1), may be 

transformed by Eq. (4.2) into the form 

  ∫∫∫ ⋅−+=
∂
∂

σ

ρρρ dadvdv
t

vv

)( nvvtfv ,  (10.1) 

expressing the rate of change of momentum of a fixed volume v. Because of the 

physical interpretation of the final term, Eq. (10.1) is known as the momentum 

transfer equation. Eq. (10.1) is sometimes used instead of Eq. (6.1) as the basic 

                                                           
23
 See Sect. 34. 
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expression of the law of conservation of linear momentum. 

The momentum transfer equation is often used to determine the force on an 

obstacle immersed in a steady flow. To illustrate this with a single example, 

suppose that the fluid occupies the entire exterior of some obstacle, and that the 

external force field is zero. Then if σ  denotes the surface of the obstacle and 

Σ  denotes a "control surface" enclosing σ , we have the following formula for 

the force F acting on the obstacle, 

  ∫∫ ⋅−=−=
Σσ

ρ dada )( nvvttF ,   (10.2) 

(note that nv ⋅ = 0 on σ ). By an analogous argument proceeding from the Eq. 

(7.2) we find for the moment L on σ  the formula 

  ∫ ⋅−×=
Σ

ρ dv)( nvvtrL . 

Another force formula of a different type can be derived from the energy 

equation (9.1). Consider a rigid body moving with rectilinear velocity U through 

a fluid, the fluid being bounded externally by fixed walls. Let V
~
 denote the 

flow region, σ  its external boundary, and 0σ  the surface of the moving body. 

Then 

  ∫∫ ⋅=⋅

00 σσ

dada tUvt     (10.3) 

(for a perfect fluid this follows from the boundary condition nUnv ⋅=⋅ ; for a 

viscous fluid it depends on the assumption v = U on 0σ ). Combining Eq. (10.3) 

with Eq. (9.1) gives 

  ∫+=⋅
V

dv
dt

Td

~

~

D:TUF ,   (10.4) 

thus determining the component of F in the direction of motion. (The case where 

the flow region is infinite in extent can be handled similarly, given suitable 

asymptotic behavior of the flow at infinity. Further applications of the momentum 

principle will be found in [23], pp. 203 to 234, and in [12].) 

 

11. Kinematics of deformation. The vorticity vector. 

This subject is based upon a simple decomposition of the tensor gradv, 

namely 

  ΩDv +=grad ,    (11.1) 

where 

  )(
2

1
,, ijjiij vvD += , )(

2

1
,, jiijij vv −=Ω . 

The tensors D and Ω  are respectively the symmetric and skew-symmetric parts 
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of gradv. The discussion is conveniently divided into two parts. 

 

1. The deformation tensor. Let dx denote a material element of arc. Its rate of 

change during the fluid motion is given by the formula 

  
j

j

iii
i

dx
x

v
dX

X

v
dX

X

x

dt

d
dx

dt

d

∂

∂
=

∂

∂
=











∂

∂
= α

α
α

α
)( , 

or simply 

  vxx grad)( ⋅= dd
dt

d
.    (11.2) 

From Eq. (11.2) we have easily 

  xDx ddds
dt

d
⋅⋅= 2)(

2
, 

where ds = |dx|. The tensor D thus is a measure of the rate of change of the 

squared element of arc following a fluid motion. In a rigid motion ds = const, 

whence a necessary and sufficient condition that a motion be locally and 

instantaneously rigid is that D =0. For this reason, D is called the deformation 

tensor. The tensor D – 1/3 (Trace D) I is also of interest, for its vanishing is the 

necessary and sufficient condition that the motion locally and instantaneously 

preserves angles. 

If D =0 everywhere in the fluid, the motion is rigid and 

  constv +×= rω
2

1
,    (11.3) 

where ω  is twice the (constant) angular velocity of the motion. Eq. (11.3) can 

also be derived analytically as the integral of the system of first order partial 

differential equations D =0. 

 

2. General motion of a fluid. Let us consider the velocity field in the 

neighborhood of a fixed point P. Denoting the evaluation of a quantity at the 

point P by a subscript, we have near P, 

  )()grad( 2rOPP +⋅+= vrvv , 

where r denotes the radius vector from P. Neglecting terms of order 2r  and 

using Eq. (11.1), we obtain 

  PPP ΩrDrvv ⋅+⋅+= .   (11.4) 

We must now interpret the various terms in this formula. 

The first term on the right represents a uniform translation of velocity Pv . 

If we set rDr ⋅⋅= PD , then the second term can be written in the form 

  D
2

1
grad .     (11.5) 
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This term represents a velocity field normal at each point to the quadric surface D 

= const which passes through that point. In this velocity field there are three 

mutually perpendicular directions which are suffering no instantaneous rotation 

(the axes of strain). The principal (or eigen-) values of D measure the rates of 

extension per unit length of fluid elements in these directions. 

The final term in Eq. (11.4) may be written 

  rω ×P
2

1
,     (11.6) 

where vω curl=  is the vorticity vector. [The simplest way to verify Eq. (11.6) 

is to note that 

  ),,(2)grad( 123123 ΩΩΩ=== xx Ωvω , 

whence the components of Eq. (11.6) are equal to those of PΩr ⋅ .] The vector 

form of Eq. (11.6) shows clearly that the final term PΩr ⋅  represents a rigid 

rotation of angular velocity Pω
2

1
. 

 

By combining the results of the two previous paragraphs, the identity (11.1) 

can be fully interpreted. For an arbitrary motion, the velocity v in the 

neighborhood of a fixed point P is given, up to terms of order 2r , by 

  rωvv ×++= PP D
2

1

2

1
grad ,   (11.7) 

where D = rDr ⋅⋅  is the rate of strain quadric and vω curl=  is the vorticity 

vector: thus an arbitrary instantaneous state of continuous motion is at each 

point the superposition of a uniform velocity of translation, a dilatation along 

three mutually perpendicular axes, and a rigid rotation of these axes.
24
 The 

angular velocity of the rotation is Pω
2

1
. This result amply establishes that ω  

represents the local and instantaneous rate of rotation of the fluid. 

 

If D = 0 at a point it is apparent from Eq. (11.7) that the motion is locally and 

instantaneously a rotation, -while if D =kI the motion is a combination of pure 

expansion and rotation. These results provide a verification of the statements of 

paragraph 1. On the other hand, if throughout a finite portion of fluid we have 

0== Ωω , the relative motion of any element of that portion consists of a pure 

deformation, and is called “irrotational”. In this case it can be shown that v is 

everywhere derivable from a potential ( φgrad=v ), cf. [48], p. 101. 

 

                                                           
24
 A.-L. Cauchy: Ex. d'Anal. Phys. Math. 2 (1841), [Oeuvres (2) 12, pp. 343 to 377]. G. Stokes: Trans. 
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III. Transformation of coordinates. 

12. Transformation of coordinates. 

We shall here obtain the equations of continuity and motion in a general 

curvilinear coordinate system. For this purpose it is useful to employ the 

methods of elementary tensor analysis; the reader unfamiliar with this topic will 

find a lucid discussion in [47], or he may omit the entire section without serious 

detriment to the rest of the article. Let (
321

,, xxx ) be the coordinates of a point in 

a general curvilinear coordinate system. We set x = (
321

,, xxx ) as before, with 

the understanding, however that x is not a vector. The motion is still represented 

by equations of the form (3.1), stating the position of the particles at time t; for 

example, in cylindrical polar coordinates motion is represented by the equations 

),( tr Xχ= , ),( tXφθ = , ),( tz Xψ= . 

It is easy to see that the derivatives 
dt

dx
i

 of the functions (3.1) form the 

contravariant component of a vector, hence the velocity vector in curvilinear 

coordinates retains the. form 
dt

dx
v

i
i = . We define the material derivative of a 

scalar, vector, or tensor function F by the formula 

  i
i
Fv

t

F

t

F
,+

∂
∂

=
δ
δ

,    (12.1) 

where the subscript comma denotes covariant differentiation. This definition 

is clearly consistent with the previous formula (3.6), and furthermore makes the 

material derivative a tensor quantity. It should be observed that the definition of 

the material derivative given in Sect. 3 is not generally valid in a curvilinear 

coordinate system, since for vector or tensor quantities F the expression 

t

tF

dt

dF

∂
∂

=
),(X
 does not transform as a tensor. To establish the correct form for 

the material derivative in material coordinates, one can proceed as follows. 

Writing the covariant derivative 

iii A
dx

dF
F +=, , 

where the iA  denote certain well known expressions involving the Christoffel 

symbols, we obtain from (12.1) the formula 

  i
i

i
i

i Av
dt

dF
A

x

F
v

t

F

t

F
+=








+

∂
∂

+
∂
∂

=
δ
δ

.  (12.1a) 

Eq. (12.1a), which appears also in the theory of parallel translation in differential 

                                                                                                                                    
Cambridge Phil. Soc. 8 (1845). (Papers 1, pp. 75 to 129). 
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geometry, clearly shows the difference between 
t

F

δ
δ

 and the more naive 

expression 
dt

dF
. The reader should observe, however, that in rectangular 

coordinates 
dt

dF

t

F
=

δ
δ

; in other words, just as the covariant derivative is the 

tensor extension of the- ordinary (Cartesian) derivative, so is 
t

F

δ
δ

 an extension 

of 
dt

dF
. Finally, it is evident that Eq. (12.1a) could serve as the starting point for 

the discussion of material derivative, rather than Eq. (12.1). At this point it is 

convenient to introduce vector notation, the definitions of Sect. 2 being carried 

over in the obvious way. For example, v will now denote the set of contravariant 

or covariant components of the velocity vector, whichever is appropriate, and Eq. 

(12.1) will be written 

  F
t

F

t

F
grad⋅+

∂
∂

= v
δ
δ

. 

With these preliminaries taken care of, we see that the equation of continuity 

can be written in either: of the invariant forms, 

  0div =+ vρ
δ
δρ
t

 or 0)div( =+
∂
∂

vρ
ρ
t

,  (12.2) 

where divergence has its usual tensorial meaning, 

  )(
1

,
i

i

i
j bg

xg
bdivb

∂

∂
== . 

Let the stress tensor be defined in a curvilinear coordinate system by means of its 

components in rectangular coordinates. Then the relation between the stress 

vector t and the surface normal n retains the form Tnt ⋅= , even though the 

components of T are no longer equal to the magnitudes of forces acting upon 

surface elements. Finally, the equation of motion has the invariant form 

  Tf
v

div+= ρ
δ
δ

ρ
t

,    (12.3) 

where 

  
j
ik

k
j

k
ik

k
kii TTg

xg
T Γ−

∂

∂
== )(

1
)div( ,T . (12.4) 

It is useful to write out Eqs. (12.2) to (12.4) for an orthogonal coordinate 

system, where the line element has the special form 

  23
3

22
2

21
1

2 )()()( dxhdxhdxhds ++= .  (12.5) 

The equation of continuity becomes simply 
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  0)(
1

=
∂

∂
+

∂
∂ i

i
vg

xgt
ρ

ρ
, 321 hlhhg = . (12.6) 

In order to write out Eq. (12.3) we first observe that 

  
2

2

1
grad q

tt
+×+

∂
∂

== ωv
vv

a
δ
δ

,  (12.7) 

[cf. Eq. (17.1)], whence the acceleration can easily be written down in terms of v 

and ω . The latter is given by the formula 

  
j

k
ijk

jk

ijk
i

x

v

g

e
v

g

e

∂

∂
== ,ω ,   (12.8) 

using the fact that 
l
kj

l
jk ΓΓ = . The term divT requires more effort because of the 

fairly complicated form of Eq. (12.4). The Christoffel symbols corresponding to 

the metric (12.5) are given by 

k

i

i

i
ki

i
ik

x

h

h ∂

∂
==

1
ΓΓ , 

k

i

k

ik
ii

x

h

h

h

∂

∂
−=

2
Γ  ( ki ≠ ), all others zero, 

(i and k unsumrned). Thus after a straightforward calculation, 

  
i

kk
k

k
iki

x

h
TTg

xg ∂

∂
−

∂

∂
=

log
)(

1
)div( T , (12.9) 

(summed on k). The reader should note that this formula is not needed in the case 

of a perfect fluid, while for a viscous fluid obeying the Cauchy-Poisson law (Sect. 

61) it is usually simpler to obtain the equations of motion without first 

determining divT. 

Another method for computing the acceleration may be had from the formula 

  








∂

∂
−

∂

∂
+

∂
∂

=
i

k
kk

iki
i

x

h
v

x

v
v

t

v
a

log
,  (12.10) 

proved by the same calculation which led to Eq. (12.9). 

In practice, rather than using the covariant or contravariant components of a 

vector b, it is convenient to use its physical components iβ , defined by 

  i
i

i
ii b

h
bh

1
==β  (i unsummed); 

thus iβ  is the magnitude of the projection of b on the i-curve through the point 

of action of b. The physica.1 components of tensors are similarly defined, but 

they will not be needed here. 

 

Example: cylindrical polar coordinates. We have in this case 

  2222 )( dzrddrds ++= θ . 

Letting rv , θv  and zv  be the respective physical components of velocity, the 

equation of continuity (12.6) takes the form 
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The acceleration terms in the equation of motion are, from Eq. (12.7) or from Eq. 

(12.10) 
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The physical components of divT are given in Love’s treatise
25
 and need not be 

reproduced here. Finally, the vorticity vector is given by 
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13. Riemannian space. 

It may be of interest to consider the nature of the hydrodynamical equations in 

a Riemannian space given the line element 

  
ji

ij dxdxgds =2
 

in some coordinate system x = (
n
xx ,,

1
K ). It is generally not possible to 

introduce a set of rectangular coordinates, so that one cannot derive suitable 

“equations of motion” merely by carrying out the steps of the previous work. 

Motion in a Riemannian space is represented by a transformation of the form 

(3.1), although now i runs from 1 to n. We define the velocity vector by 

dt

dx
v

i
i = , and the material derivative by 

  i
i
Fv

t

F

t

F
,+

∂
∂

=
δ
δ

. 

(This definition is in analogy to the one used in Euclidean space, and also has the 

property that, should the space be embedded in a higher dimensional Euclidean 

space, as for example a surface in three space, then the material derivative is the 

                                                           
25
 A. E. H. Love: A Treatise on the Mathematical Theory of Elasticity, 4th edit. Cambridge 1927. See 
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surface component of the “natural” material derivative of Euclidean space.) 

The equation of continuity is easily derived by the method of Sects. 4 and 5. 

In this procedure we must replace Eq. (4.2) with 

  ∫∫ =

0

~
0

~

),(),(

VV

JdvgtdVt Xx ρρ  

and then make use of the formula 

  vdiv)( JgJg
t

=
δ
δ

, 

which follows readily from Eq. (3.7). In other respects the argument is exactly as 

before, the final result being 

  0div =+ vρ
δ
δρ
t

, 

which is exactly the same as Eq. (12.2), but obtained now without recourse to 

rectangular coordinates. 

Deriving appropriate equations of motion involves dynamical considerations 

which do not seem adapted to Riemannian space; in particular, it is not evident 

how to formulate the principle of conservation of momentum. On the other hand, 

there seems to be no valid objection to taking Eq. (12.3) as a postulate. This done, 

further considerations will closely parallel corresponding results of ordinary 

hydrodynamics. 

 

IV. Variational principles. 

The wide scope and great success of variational principles in classical 

dynamics have stimulated many efforts to formulate the laws of continuum 

mechanics in a similar way. In the following section we shall discuss some of 

these formulations; the work applies generally to all continuous media, though it 

is stated only for the motion of fluids. In Sect. 15 we consider some special 

variational principles which apply to perfect fluids. 

 

14. General fluids. 

The variational principle appropriate to a given dissipative system takes a 

form exactly suited to and dependent on the particular mechanism of dissipation, 

and is generally not capable of extension in unchanged form to other problems. 

This fact makes it easy to formulate a variational principle for fluids, but also 

indicates something of the a posferiori nature of the undertaking. The reader will 

observe that the appropriate variational principle is little more than a 

reformulation of the equations of motion; it may, however, provide methods for 

                                                                                                                                    
p. 90. 
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handling constraints otherwise beyond the scope of the original equations. 

Let ),( txηx =δ  be a virtual displacement of the particles of fluid from 

their instantaneous position. The vector function η  is assumed to be finite 

valued and continuously differentiable; moreover it should conform to any 

restrictions placed on the fluid position. This latter condition implies, in particular, 

that η  should be tangent to any wall bounding the fluid. The virtual work 

corresponding to a virtual displacement is defined by 

  ∫−=
V

c dvUU
~

grad:
~~

xT δδδ , 

where V
~
 is the volume occupied by the fluid, T is a tensor function of position, 

and 

  ∫∫ ⋅+⋅=
SV

c dadvU
~~

~
xtxf δδρδ    (14.1) 

is the virtual work done against extraneous force f and surface stresses t. The 

second term in the definition of U
~

δ  is peculiar to continuum mechanics: it 

reflects the common observation that deformations of a fluid medium generally 

require the expenditure of work against stress forces. We need not assume that T 

is symmetric, but otherwise a rigid virtual displacement will produce virtual work 

of deformation. For this reason, it is usual to consider only symmetric stresses T. 

We may now state the fundamental d'Alembert-Lagrange variational 

principle: A fluid moves in such at way that 

  0
~

~

=⋅− ∫
V

dvU xa δρδ ,   (14.2) 

for all virtual displacements which satisfy the given kinematical conditions.
26
 If 

there are no constraints on the motion, except for wall conditions, it follows in a 

well known way that 

  Tfa div+= ρρ  and Tnt ⋅= .  (14.3) 

The first equation holds at all interior points of the motion, the second at “free” 

surfaces. These are of course just the equations of motion already derived. 

Fluid motions on surfaces, or subject to other sorts of constraints, can be 

handled by the usual techniques of the calculus of variations. The interested 

reader should consult Hellinger’s article in the Encyclopaedia of Mathematical 

Sciences, in particular §§ 3e, 4c, and 8b. 

 

                                                           
26
 The statical equivalent of Eq. (14.2), namely that a. continuous medium will be in equilibrium if 

and only if 0
~
=Uδ  for all virtual displacements, is due to Lagrange (Mécan. Anal. 1 part. Sect. IV. § 

1). The extension of this principle to dynamical systems was likewise given by Lagrange, the 

fundamental idea in his derivation being the application of d’Alembert’s principle to the equilibrium 

condition 0
~
=Uδ  (Mécan. Anal. 2e parts. Sects. I, II}. See the articles of P. Voss (Ency. Math. Wiss. 

4, No. 1) and E. Hellinger (Ency. Math. Wiss. 4, No. 30). 
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The d’Alernbert-Lagrange principle may be expressed equivalently in the 

form of Hamilton’s principle. This is obtained by letting the virtual 

displacements arise from variations in the paths of the particles. Thus let a set of 

varied paths be given by );,( εtXφx = , where -1< ε <l, say, and the path ε = 0 

is the one to be investigated. If 

  
0=

≡
εε

δ
d

d
, 

then the virtual displacement corresponding to a varied motion is defined by 

  
0=

==
εε

δδ
d

dφ
φx . 

We have now the following identity 

 
2

2

1
)()( q

dt

d

dt

d

dt

d
δδ

δ
δδ −⋅=⋅−⋅=⋅ xv

x
vxvxa ,  (14.4) 

since δ  and d obviously commute. The density of the varied motions is 

determined by the condition that the mass of fluid corresponding to an arbitrary 

set of particles shall be the same wherever the particles may be. Mathematically 

this leads to the “continuity condition” 

  xδρδρ div−=     (14.5) 

governing the variation of density. To prove Eq. (14.5) we observe that xδ  is the 

initial velocity in a motion for which ε  plays the role of time; thus to obtain Eq. 

(14.5) we simply replace 
dt

d
 and v in the equation of continuity by δ  and xδ , 

respectively. The same reasoning also proves the formula 

  ∫∫ = FdvFdv ρδρδ .    (14.6) 

Condition (14.5) is also the consequence of assuming, (i) that each varied motion 

satisfies the equation of continuity, and (ii) that the virtual displacement vanishes 

at some fixed time. If Eq. (14.4) is multiplied by ρ  and integrated over a 

material volume V
~
, application of formulas (5.7) and (14.6) yields 

  Tdv
dt

d
dv

VV

~

~~

δδρδρ −⋅=⋅ ∫∫ xvxa ,  (14.7) 

where 

  ∫=
V

dvqT
~

2

2

1~
ρ =kinetic energy. 

Finally, by virtue of the d’Alembert-Lagrange principle, Eq. (14.7) can be written 

in the form 

  0
~~

~

=⋅−+ ∫
V

xdvv
dt

d
UT δρδδ .   (14.8) 
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This equation holds under the condition that the varied motions satisfy the 

continuity condition (14.5) and conform to external constraints. If Eq. (14.8) is 

integrated from 0t  to 1t , and if xδ  vanishes at 0t  and 1t , we obtain the 

so-called Hamilton's principle
27
 

  0)
~~

(

1

0

=+∫
t

t

dtUT δδ ; 

each varied motion must satisfy the equation of continuity and external 

constraints, as well as having 0=xδ  at 0t  and 1t .
28
 

 

15. Perfect fluids. 

For an incompressible perfect fluid the d’Alernbert-Lagrange principle 

can be formulated in a more elegant fashion, namely, an incompressible perfect 

fluid moves in such a way that 

  0
~

~

=⋅− ∫
V

c xdvaU δδ     (15.1) 

for all virtual displacements xδ which preserve the volume, or, in other words, 

satisfy 0div =xδ . T he virtual work cU
~

δ  is defined by Eq. (14.1). 

According to the theory of Lagrange multipliers, this is equivalent to 

  0]div)([
~~

=⋅−−⋅− ∫∫
SV

dadv xtxxfa δδλδρ , 

where λ  is a Lagrange multiplier and xδ  is subjected to no side conditions. It 

follows from an integration by parts that 

  λρρ grad−= fa  and nt λ−= .  (15.2) 

λ  thus becomes the “pressure”, one of the principal unknowns of the problem. 

Eqs. (15.2) together with the continuity condition divv = 0 constitute four 

equations for the four unknowns v and λ . 

For the general case of a compressible perfect fluid, Lagrange took Eq. (15.2) 

to be the correct equation, where λ  is to be considered a "reaction" against the 

volume changes which are, of course, now permitted.
29
 This derivation of a 

general case from a particular one - by retaining the old equation, but considering 

the Lagrange multiplier as a new “force of reaction” – Hamel calls the "Lagrange 

freeing principle". He notes further that the reaction is to depend precisely on the 

compressibility (i.e., the density) which was before not allowed to vary. This 

                                                           
27
 Cf. E. Hellinger: Ency. Math. Wiss. 4, footnote 61. 

28
 Other variational principles which may be mentioned are the principle of least time (Hellinger, 

§5c) and an interesting energy principle of J. W. Herivel [Proc. Roy. Irish Acad. 56, 37, 67 (1954)]. Cf. 

also E. Hoelder: Ber. sachs. Akad. Wiss. (Lpz.), Math-phys. Kl. 97 (1950). 
29
 Cf. [6], pp. 473, 522. A similar method was used by G. Piola [Modena Mem. 24 1 (1848)] to derive 

the general equations of continuum mechanics. 
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procedure, although. interesting and leading to a correct result, is not entirely 

convincing - one difficulty becomes evident in the case of gas, where the pressure 

is a definite thermodynamical variable. 

The variational principle (15.1) may be written in the form of Hamilton's 

principle by means of identity (14.5). Thus we have the result: an incompressible 

perfect fluid moves in such a way that 

  0)
~~

(

1

0

=+∫
t

t

c dtUT δδ  

for all variations xδ  of the motion satisfying 

  0div =xδ  and 0=xδ  at 10 , ttt = . 

 

Lichtenstein
30
 has obtained a similar variational principle for the motion of 

compressible perfect fluids. A certain artificiality in his formulation was noticed 

by Taub
31
, who substituted an alternative procedure; the most satisfying form of 

the principle is, however, due to Herivel
32
, and in the following discussion we 

shall use the latter’s formulation. 

We begin with the remark that, for a mechanical system whose energy is 

completely known it should be possible to state Hamilton's principle in the form 

  0)
~~

(

1

0

=+∫
t

t

c dtUL δδ ,    (15.3) 

where the Lagrangian function L
~
 is the difference of the kinetic and potential 

energies. An essential difference between the principle (15.3) and those stated 

earlier is that (15.3) can be written without a priori knowledge of the equations of 

motion. Thus this principle provides a way of deriving the equations of motion by 

a method which is genuinely independent of momentum considerations. Let us 

apply this to the case of a gas. 

We suppose the motion takes place without loss of energy through the 

generation of transfer of heat, or, more precisely, that the specific entropy S of 

each fluid particle remains constant during the motion,
33
 

  0=
dt

dS
.     (15.4) 

In this» e of motion the energy is completely known, having the form IT
~~

+ , 

where T
~
 is the kinetic energy and I

~
 the internal energy of the volume of 

                                                           
30
 L. Lichtenstein [9], Chap. 9. 

31
 A. H. Taub [44]. p. 148. 

32
 J. W. Herivel: Proc. Cambridge Phil. Soc. 51, 344 (1955). 

33
 The thermodynamical basis for the following work will be found in Sect. 30 and in the first 
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fluid considered, 

  ∫=
V

EdvI
~

~
ρ , ),( SEE ρ= = specific internal energy. 

There seems only one reasonable choice for the Lagrangian function, namely 

EIL
~~~

−= . For this L
~
 we shall now show that Eq. (15.3) leads to the correct 

equations of motion for a compressible perfect fluid. 

Let ),( tXxx δδ =  be a variation of the path, vanishing at 0t  and 1t . 

Assuming that the varied motions satisfy the equation of continuity, the variation 

of density is given by Eq. (14.5). By the same arguments, the variation of entropy 

must satisfy 

  0=Sδ . 

From Eqs. (14.6) and (14.5), and since 
2ρρ
pE

S

=







∂
∂

, there follows 

  

∫∫

∫∫
⋅−⋅=

−==

SV

VV

dappdv

dvpEdvE

~~

~~

grad

div
~

xnx

x

δδ

δρδδ

. 

T
~

δ  is evaluated by means of Eq. (14.7). We may now conclude in the usual way 

from Eq. (15.3) and the formulae for T
~

δ , E
~

δ , and cU
~

δ , that 

  pgrad−= fa ρρ  and nt p−= . 

These are of course the correct equations.
34
 We emphasize again that they have 

been derived from a principle whose statement involved no a priori knowledge of 

their form. This is in contrast to the earlier principle (14.2) and the derivation 

from it of Eqs. (14.3). 

 

In theoretical mechanics the energy equation is a consequence of Hamilton’s 

principle. It is interesting to see that this is also true in the present case. For since 

  ∫∫ ==
VV

dvpdv
dt

dE

dt

Ed

~~

div

~

vρ , 

we have from Eq. (9.2), 

  ∫∫ ⋅+⋅=+ dvtdvEI
dt

d

V

vvf
~

)
~~

( ρ , 

which is the usual statement of conservation of energy for a 

non-heat-conducting media. 

In the paper already referred to, Herivel attempted to find the equations of 

perfect fluids on a variational principle of spatial (Eulerian) type. He was not 

                                                                                                                                    
paragraph of Sect. 33. 
34
 The preceding derivation is based on that in Herivel’s paper, with, however, certain modifications 

in the formulation and proof. 
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entirely successful, in that his principle yields as extremals only a subset of the 

class of flows satisfying the Euler equations. This difficulty was first pointed out 

by C. C. Lin, who then supplied a correct version of the principle
35
. Consider, in 

particular, the variational principle, 

  0),,( =∫∫ dvdtSvL ρδ ,   (15.5) 

where L is the Lagrangian density 

  )(
2

1 2 Ωρρ +−= EqL . 

and the variations of the velocity, density, and entropy are subject to the following 

constraints, 

Conservation of mass: 0)(div =+
∂
∂

vρ
ρ
t

, 

Conservation of energy: 0=
dt

dS
, 

Conservation of the identity of particles: 0=
dt

dX
,  (15.6) 

where the vector field X(X, t) establishes the initial position of the particle which 

occupies the position x at time t. We shall now verify that every extremal of the 

variational principle (15.5) is a flow (Herivel-Lin)
36
. 

Upon introduction of the Lagrange multipliers γ,, βφ  the above principle 

becomes 

 0)(div =
⌡

⌠

⌡

⌠









⋅−−






 +
∂
∂

+ dvdt
dt

d

dt

dS

t
L

X
γv ρρβρ

ρ
φδ , 

where v, ρ , S and X are now to be varied without restrictions. The separate 

variations of these quantities now give the following equations 

vδ : γXv ⋅++= gradgradgrad Sβφ  

δρ : Ω
φ

−−= Iq
dt

d 2

2

1
, 

Sδ : T
S

E

dt

d
=








∂
∂

=
ρ

β
, 

Xδ : 0=
dt

dγ
.     (15.7) 

With the help of Eqs. (15.6) and (15.6) these equations can be shown to imply Eq. 

                                                           
35
 Herivel’s principle included only the first pair of constraints in Eq. (15.6), the final constraint 

being due to C. C. Lin (unpublished). Without this additional constraint, isentropic flows could appear 

as extremals only if they were also irrotational [see Eq. (15.7)]. 
36
 Preliminary results of a similar kind are due to A. Clebsch, J. reine angew. Math. 54, 293 (1857); 

56, 1 (1859); and to H. Bateman, Proc. Roy. Soc. Lond., Ser. A 125, 598 (1929). 
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(6.9). Indeed, if we write Eq. (15.7) in the form ∑=
x

xx ηξ gradv , then a 

straightforward calculation based on Eqs. (3.5) and (3 .6) yields the acceleration 

formula 

 ∑ 







+=+ x

xx
x

dt

d

dt

d
q η

ξη
ξ gradgrad

2

1
grad

2
a .  (15.8) 

But 0===
dt

d

dt

d

dt

dS γX
, whence 

 p
dt

d

dt

d
q grad

1
gradgradSgrad

2

1
grad 2

ρ
Ω

βφ
−−=++−=a , 

where we have used the simple thermodynamic identity dpdITdS
ρ
1

−= . 

To complete the discussion, it must still be shown that every flow is an 

extremal for the Herivel-Lin principle Eq. (15.5) to (15.6). This has been done by 

the author of the present article (see Sect. 29A). 

 

It is likely that one can derive the equations of motion for a viscous fluid by a 

variational argument similar to Herivel’s. The essential point to be observed is 

that the energy equation must be postulated as a side condition [in Herivel’s 

work, for example, this is reflected in the condition (15.4)]. Without this or some 

equivalent side condition, it does not appear possible to obtain the equations of 

motion of a viscous fluid from Hamilton’s principle. Thus Millikan
37
 has shown 

that a principle of the type 0=∫ Ldvδ  where L is a function only of v and grad v, 

cannot represent the steady motion of a viscous incompressible fluid except in 

certain special cases, namely those investigated in Sect. 75 of this article.
38
 

 

Other variational principles. In addition to the fundamental principles already 

discussed, there are numerous variational formulations of special. problems in 

fluid dynamics. At the appropriate place we shall mention some of of these 

special principles, e.g., Kelvin’s minimum energy theorem (Sect. 24), Bateman’s 

principle (Sect-47), the theorem of Helmholtz and Rayleigh (Sect. 75), etc. 

 

C. Incompressible and barotropic perfect fluids. 

I. General principles. 

                                                           
37
 C. Millikan: Phil. Mag. (7) 7, 641 (1929). 

38
 Other negative results concerning variational principles yielding the Navier-Stokes equation are 

due to R. Gerber, Ann. Inst. Fourier (Grenoble) 1, 157 (1950); J. Math. Pure Appl. 32, 79 (1950). Cf. 
also H. lBateman: Phys. Rev. (2) 38, 815 (1931). 
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16. Preliminary discussion. 

We shall begin our detailed considerations of fluid flow with the special but 

highly important case of perfect fluids. Here the stress vector has the simple 

form t = - pn, and we have the following equations governing the motion, 

  0div =+ vρ
ρ
dt

d
,    (16.1) 

  p
dt

d
grad−= f

v
ρρ .    (16.2) 

In general, one may adjoin to these four equations a fifth (thermodynamical) 

relation 

),( Tpp ρ= ,    (16.3} 

where T denotes the absolute temperature. Discussion of this situation is 

appropriately deferred to the following chapters, while here we consider the 

elegant theory arising when the pressure and density are directly related: 

  )(ρpp =  or )(pg=ρ .   (16.4) 

A flow in which density and pressure are thus related is called barotropic. We 

observe that Eq. (16.4) may arise from special circumstances in the flow 

considered, or it may be an inherent property of the fluid itself. In the latter case 

the fluid is called piezotropic; (the distinction between barotropic flow and 

piezotropic fluid is clarified if we note that every flow of a piezotropic fluid is 

barotropic, while the converse is not tune, cf. examples below). The special 

piezotropic fluids for which const=ρ  are called incompressible. 

 

The following examples of barotropic flow may be noted: 

1. Air in steady motion in the Mach number range 0 to 0.4. There is less than 

8% overall variation of density in this range of Mach numbers, so that for many 

purposes the density can be supposed to have some appropriate constant value. 

2. A gas in isentropic motion. For the case of an ideal gas with constant 

specific heats we have, in particular, 

  γρNp = , constN =γ, . 

We shall assume in this chapter that the extraneous force f is conservative, 

Ωgrad−=f , and all results will be stated subject to this condition. It is 

worthwhile to point out that no further axioms of motion are necessary for the 

conclusions of this chapter. 

The fundamental property which distinguishes barotropic motion is the simple 

formula of Euler, 









+−== ∫ Ω

ρ
dp

dt

d
grad

v
a ,   (16.5) 
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which shows that acceleration is derivable from a potential. The results of this 

chapter are largely due to the simplifying effect of this single equation. 

 

Plane motion. Axially-symmetric motion. Vector-lines. We conclude this section 

with a brief summary of these concepts, mainly in order to fix upon a standard 

terminology. 

A motion is called a plane flow if, in some rectangular coordinate system x = 

(x, y, z), the velocities 1vu = , 2vv =  are functions of x, y only, while 03 =v . 

The motion takes place in a series of planes parallel to x y, and is the same in each 

one. For this reason our attention can be directed entirely at the single plane z = 0. 

A motion is said to be axially-symmetric if, in some cylindrical polar coordinate 

system ),,( θyx=x
39
 the velocities at 1vu = , 2vv =  are functions of x, y only, 

while 03 =v . It is obvious that our attention can be confined to the meridian 

half-plane 0=θ . 

A curve every where tangent to a given continuous vector field is called a 

vector-line. In particular, the vector-lines of the velocity field are ca1led 

stream-limes, and the vector-lines of the vorticity field are called vortex-lines. (It 

should be noted that streamlines and particle paths are identical in steady motion, 

but usually not otherwise.) Finally, a motion is said to be irrotational if its 

vorticity field is zero. 

 

17. Convection of vorticity. 

One of the most important ways of gaining information about a fluid motion 

is to examine how its vorticity field changes with time. To this end, we shall 

                                                           
39
 The orientation of coordinates is shown in Fig 2. Instead of the present notation, some authors 

(notably Lamb and Miln-Thompson) use ( θϖ ,,x ). It may be observed that when polar coordinates 

( φ,r ) are introduced into the meridian plane, the resulting spatial coordinates ( θφ ,,r ) become 

spherical polar coordinates. 
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derive a kinematical identity expressing the rate of change of vorticity in an 

arbitrary continuous motion. W e begin with the well known vector identity 

  
2

gradgrad
2q

+×=⋅ vωvv .   (17.1) 

Taking the curl of Eq. (3.5) and using Eq. (17.1) yields 

  vωvω
ω

vωa divgrad)(curlcurl +⋅−=×+
∂
∂

=
dt

d

t

ω
, 

whence by Eq. (5.3) follows the diffusion equation of Beltrami
40
: 

  av
ωω

curl
1

grad
ρρρ

+⋅=







dt

d
.   (17.2) 

Let us now apply this result to the barotropic flow of a perfect fluid. By 

virtue of Eq. (16.5) we have curla = 0, so that Eq. (17.2) reduces to 

  v
ωω

grad⋅=







ρρdt

d
.    (17.3) 

 

This is the end of page 151. 

(continued) 

 

 

                                                           
40
 E. Beltrami: Mem. Ace. Sci. Bologna (1971 to 1873). (Open 2, pp. 202 to 379); especially §6. 


