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A. Preface and introductory remarks.

1. Classical fluid mechanics
Classical fluid mechanics is a branch of continuum mechanics; that is, it
proceeds on the assumption that a fluid is practically continuous and

homogeneous in structure. The fundamental property which distinguishes a fluid



from other continuous media is that it cannot be in equilibrium in a state of stress
such that the mutual action between two adjacent parts is oblique to the common
surface. Though this property is the basis of hydrostatics and hydrodynamics, it is
by itself insufficient for the description of fluid motion. In order to characterize
the physical behavior of a fluid the property must be extended, given suitable
analytical form, and introduced into the equations of motion of a general
continuous medium, this leading ultimately to a system of differential equations
which are to be satisfied by the velocity, density, pressure, etc. of an arbitrary
fluid motion. In this article we shall consider these differential equations, their
derivation from fundamental axioms, and the various forms which they take
when more or less special assumptions concerning the fluid or the fluid motion

are made.

Our intent, then, is to present in a mathematically correct way, in concise
form, and with more than passing attention to the foundations, the principles of
classical fluid mechanics. The work includes the body of exact theoretical
knowledge which accompanies the fundamental equations, and at the same time
excludes relativistic and quantum effects, most of the kinetic theory, special fields
such as turbulence, and all numerical or approximate work. Other topics which
have been omitted, but which properly come within the scope of the article, are
hydrostatics, rotating fluid masses, one-diinensional gas flows, and stability
theory; these subjects are treated elsewhere in this Encyclopedia. A basic
knowledge of vector analysis and partial differential equations is expected of the

reader, and some experience in hydrodynamics will prove helpful.

The paper proper begins with Division B, where the equations of motion are
derived; we have attempted to give rigorous and complete discussions of the
basic points, establishing the entire work on the concept of motion as a
continuous point transformation. In the final part of this chapter we have
discussed transformation of coordinates and variational principles. The
material in Part C is to some extent standard in textbooks, but its omission would
affect the unity of the article. Moreover, it is here that we first meet many of the
ideas which are of importance in the more complex situations treated later. Part D
returns to the foundations of the subject with a concise treatment of the
thermodynamics of fluid motion, including a postulational summary of the
relevant parts of classical thermodynamics. The presentation here may serve as a
model for the discussion of multicomponent hydrodynamical systems.

In Part E we present the general theory of perfect (i.c., nonviscous) gases. We



have attempted as much as possible to include results on non-isentropic motion
and to avoid the ideal gas assumption pV = RT. Rather surprisingly, this point of
view leads in many cases to a considerable economy of thought. Part F deals with
the theory of shock waves in a perfect fluid. The treatment is based entirely on
the postulates of motion (Parts B and D) and requires no new dynamical
assumptions. The section on shock layers should be useful as an introduction to
the specialized literature on the subject. The concluding chapter begins with a
clearcut derivation of the constitutive equations of a viscous fluid and covers

other theoretical work of recent years.

Some of the sections contain new material or improved treatment of known
work. In particular we refer to the following items: the discussion of variational
principles (Sects. 14, 15, 24 and 47), the theory of dynamical similarity (Sects.
36 and 66), the theory of the stress tensor (Sect. 59), the energy method (Sect.
73), an extension of the Helmholtz-Rayleigh theorem (Sect. 75), and several
new formulas or equations, e.g., Egs. (29.9), (40.6), (42.8), etc. An attempt has
been made to cite original authorities whenever possible; on the other hand,
complete references to a subject are seldom given, since they can usually be
traced through the papers which are quoted. Finally, we must add that in a number
of places proofs have been considerably modified and shortened from their

original form.

This work owes much to the stimulating lectures and penetrating scholarship of my
teachers David Gilbarg and Clifford Truesdell. Although the responsibility for the material
presented is solely mine, their influence is apparent in many places. Also to my wife
Barbara I owe sincerest thanks and gratitude, specifically for typing the entire manuscript
and generally for smoothing the whole project to completion. Every work on fluid
dynamics is the better for whatever degree of closeness it attains to the style, clarity, and
thoroughness of Sir Horace Lamb’s Hydrodynamics. The author hopes he has stayed to the
path there laid out.

To the United States Air Force Office of Scientific Research and Development the
author is indebted for support during a portion of the time he was engaged in writing this

article.

2. Vectors and tensors.
The mathematical notation used in this article is that of ordinary Cartesian or
Gibbsian vector analysis. This notation leads to the utmost conciseness of

expression, and at the same time illuminates the physical meaning of the



phenomena represented. Most of the vector operations which we use are standard,
but occasionally an expression is needed which may appear unusual or
ambiguous. For this reason it is convenient to define all operations in terms of
vector components: then the meaning of an equation can always be made clear
simply by rewriting it in component form. Another advantage accrues to this
method, namely that any equation admits an immediate tensorial interpretation if

so desired.

Except in a few special situations we shall use lower case bold face to denote
vectors; in a fixed rectangular coordinate system, the components of vectors b, c,
etc., will be denoted by b, ', etc., or equivalently b, ¢;, etc., where i =1, 2,
3. In this notation the scalar product b-c¢ is defined by

b-c=b'c,=bc',
with the usual convention that a repeated index is summed from 1 to 3.'

Similarly the vector product bxc¢ is defined by its components
(bxe) =e"byey.,

ik

where e’* is the usual permutation symbol.> The magnitude of a vector b is

denoted by the corresponding italic lower case letter, thus

b=bl=Vb-b .
(One important exception to this rule will be made: the magnitude of the velocity
vector v will be denoted by ¢, the letter v being reserved to stand for a velocity
component.)

The symbols gradg, divb and curlb will be employed in their usual

senses, thus

divb =b';

and
(curlb)’ =7y ;, (gradg), =¢,.

The comma in these formulas is a. standard convention denoting differentiation.

That is, if F is an arbitrary scalar or vector function of position we define

F=E o1

ox'
[This definition of F; must be modified in case one wishes to consider
curvilinear coordinate systems, as in Sect. 12. The modification need not concern

us here, however, since except for a few instances the article is couched

1 . o . .
The simultaneous use of upper and lower indices has been adopted in order to conform with the
standard notation of tensor analysis.

2 .
That is, P =Bl =32 2 , @23 =132 =¥ = _1, and all other components are 0.
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exclusively in the notation of Cartesian vector analysis.]

Second order tensors (dyadics) occur frequently in this work. They will.be

represented by uppercase bold face letters: 2,7, etc. The components of a
tensor X will be denoted by X7, and also, upon occasion, by E; and X;.

By the equations
b=c-2 and b=2-c

we mean, respectively

b'=c;x/ and b'=X"c;.

Finally X :T stands for the scalar product ¥ T;.

Several special notation are convenient. By 2. we mean the vector with
components ety - By gradb we mean the tensor with components b,

that is
(gradb)ij =bj’i.
Finally, divX stands for the vector with components X7 ;. From these

definitions it follows that

curlb = (gradb), and (c-gradb), = ¢’ b;.

je

The reader familiar with tensor analysis will observe that if b is regarded as a. short
name for the set of contravariant components b' or covariant components b; of a
vector in a general curvilinear coordinate system, and if X' is likewise regarded as a
short name for the components of a tensor, then the above definitions are tensorially
invariant. Thus the vector symbols we have introduced could equally well serve as a

shorthand for writing tensor formulas.

A general transformation of volume integrals into surface integrals is

embodied in the symbolic formula®

jEidv:§Fnida. @.1)

Here F is any scalar, vector, or tensor, with or without an index 7 to be summed

out; v is a volume in which F is continuously differentiable; o 1is the surface of

3 H. B. PHILLIPS [48], formula (127).



this volume (assumed suitably smooth); and »; are the components of the outer
normal n to the surface o . Replacing F by b’ gives

j divbdy = §b -nda, 2.2)

usually called the divergence heorem; replacing F by ¢”*b ; gives

j curlbdy = § nxbda . 2.3)

v o

These formulas, and others like them, will be used frequently in this work.

List of frequently used symbols.
Within a single section sometimes these same symbols are defined and used in

a different sense. Numbers refer to section where symbol is first used.

i

sound speed, Sect. 35.
internal energy, Sects. 30, 33.
arbitrary function.

total enthalpy, Sects. 18, 38.

E:

F:

H:

I: enthalpy, Sect. 38.
J: Jacobian, Sect. 3.
M:

Mach number, Sect. 36.

n: distance normal to streamline.
p: pressure.

q: speed.

O: mass flow, Sect. 37.

r: radial distance.

s: distance along streamline.

S: entropy, Sects. 30,33.

£ time.

T: absolute temperature.

u,v,w: velocity components.

a: acceleration vector.

D: deformation tensor, Sect. 11.

f extraneous force vector. with the fluid.
I  unit matrix.

n: unit (outer) normal vector to a surface.
t. stress vector, Sect. 6.

T: stress tensor, Sect. 6.

v: velocity vector.



density.
polar coordinate.
velocity inclination.
expansion, Sect. 26.
velocity potential.
dissipation function, Scots. 34, 61.
stream function, Sects. 19, 42.
vorticity magnitude.
extraneous force potential, Sect. 9.

vorticity vector.

R 8 QX &8 § 8% &0 220

vorticity tensor, Sect. 11.

kinetic energy, Sect. 9.

S M

vorticity measure, Sect. 27.

,§ , V- curves, surfaces, volumes moving with the fluid.

™

v,o : fixed volume in space, and its bounding surface.

Other standard notations are introduced in Sects. 2 and 3.

B. The equation of motion.
I. Kinematics and dynamics of fluid motion.
3. Kinematical preliminaries.

Fluid flow is an intuitive physical notion which is represented mathematically
by a continuous transformation of three-dimensional Euclidean space into itself.
The parameter ¢ describing the transformation is identified with the time, and we
may suppose its range to be —oo<f¢ <o, where ¢+ = 0 is an arbitrary initial
instant.

In order to describe the transformation analytically let us introduce a fixed
rectangular coordinate system (xl,xz,x3 ). We refer to the coordinate triple
(xl,xz,x3 ) as the position and denote it by x. Now consider a typical point or
particle P moving with the fluid. At time ¢z = 0 let it occupy the position X =
(X! ,XZ,X3) and at time ¢ suppose it has moved to the position x = (xl,xz,x3 ).
Then x is determined as a function of X and ¢, and the flow may be represented by
the transformation

x=0(X,t) (or x' =¢'(X,0)). (3.1)
If X is fixed while 7 varies, Eq. (3.1) specifies the path of the particle P initially
at X; on the other hand, for fixed #:, Eq. (3.1) determines a transformation of the
region initially occupied by the fluid into its position at time ¢.

We assume that initially distinct points remain distinct throughout the entire



motion, or, in other words, that; the transformation (3.1) possesses an inverse,4

X =d(x,t) (or X% =D%(x,1)). (3.2)
It is also assumed that ¢’ and @% possess continuous derivatives up to the
third order in all variables, except possibly at certain singular surfaces, curves, or
points. Unless otherwise specified, we shall be concerned only with those
portions of a flow which do not contain singularities. Cases of exception (singular
surfaces in particular) require a separate examination, and are dealt with in Sects.
51 and 54. Finally, notice that any closed surface whatever, which moves with the
fluid, completely and permanently separates the matter on the two sides of it.

Although a flow is completely determined by the transformation (3.1), it is

also important to consider the state of motion at a given point during the course of
time. This is described by the functions

p=p(x,t), v=v(x,t),etc. (3.3)
which give the density and velocity, etc., of the particle which happens to be at
the position x at the time z. It was d’ Alembert in 1749 and Euler in 1752 who first
recognized the importance of the field description (3.3) in the study of fluid
motion, and Euler who conceived the magnificent idea of studying the motion
directly through partial differential equations relating the quantities (3.3)." We

must now develop the ideas just outlined.

The variables (x, £) used in. the field description (3.3) of the flow will be
called spatial variables; the variables (X, ¢), which single out individual particles
will correspondingly be called material variables.® By means of Eq. (3.1) any
quantity F which is a function of the spatial variables (x, ¢) is also a function of
the material variables (X, f), and conversely. If we wish to indicate the
dependence of F on a particular set of variables we write either

F=F(x,t) or F=F(X.,?),
the functions F(x, f) and F(X, f) of course being related by the change of variables
(3.1) and (3.2). Geometrically, F(X, ¢) is the value of F experienced at time t by
the particle initially at X, and F(x, f) is the value of F felt by the particle
instantaneously at the position x. We shall use the symbols

OF _oF(x,) . dF _OF(X.0)
o o dt ot

for the two possible time derivatives of F; obviously they are quite different

4 . L . .
Greek letters will be used as indices for particle coordinates.

5 Euler’s work on fluid mechanics will be found, for the most part, in volumes II 12, 13 of his
collected works (Opera Omnia, Zurich). Professor Truesdell’s introductions to these volumes lucidly
describe Euler’s contributions to fluid mechanics in relation to those of his predecessors and
contemporaries, and firmly establish Euler as the founder of rational fluid mechanics.
The two sets of variables just introduced are usually called Eulerian and Lagrangian, respectively,
though both are in fact due to Euler; cf. [26]. § 14.
8



. df .
quantities. 7 is called the material derivative of F. It measures the rate of
t
change of F following a particle, and it can of course be expressed in either
. . . oF .
material or spatial variables. P on the other hand, gives the rate of change of
t

F apparent to a viewer stationed at the position x.

The velocity v of a particle is given by the definition

dx (w’ dx’ 6¢i(X,t)J

Cdr’ dt ot

As defined, v is a function of the material variables; in practice, however, one
usually deals with the spatial form
v=v(x, ?).

In most problems it is sufficient to know v(x, ¢) rather than the actual motion
(3.1).

We have introduced the velocity field in terms of the motion (3.1). It is
naturally important to be able to proceed in the opposite direction, that is, to
determine Eq. (3.1) from v(x, ¢). This transition is effected by solving the system

of ordinary differential equations
é =v(x,1) (3.4)
dt

with the conditions x(0) = X. The integration of Eq. (3.4) should be carried out

“in the large” and is therefore not always an easy problem.’

Acceleration is the rate of change of velocity experienced by a moving
. . . dv
particle. Denoting the acceleration vector by a, we have then a:E. We

observe that acceleration can be computed directly in terms of the velocity field
v(x, f), for we have
oAyt v v o
a =—=—% : 5
dt ot ox/ dt

or
ov

a=—+v-gradv. 3.5

o g (3.5)

Eq. (3.5) is a special case of the general formula

dFF  oF
=~ +y.oradF 3.6
a o (3.6)

"I [10], §9.21 there is a particularly interesting example of the integration of equation (3.4), due

originally to Maxwell, Proc. Lond. Math. Soc. 3, 82 (1870). Other examples are discussed in [10],
§9.71 and [8], §§72, 159. The general problem of integration is considered by Lichtenstein [9], pp.

9



relating the material derivative to spatial derivatives. Eq. (3.6) may be interpreted
as expressing, for an arbitrary quantity F' = F(x, t), the time rate of change of F
apparent to a viewer situated on the moving particle instantaneously at the
position x.

The Jacobian of the transformation (3.1), namely

1 .2 .3 i
_ o(x",x",x7) — det ox
ax L, x%x?% ox“

represents the dilatation of an infinitesimal volume as it follows the motion.
From the assumption that Eq. (3.1) possesses a differentiable inverse it follows
that

0<J <. (3.7)

In the sequel we shall make use of the elegant formula

@ = Jdivw, (3.8)
dt
i
due originally to Euler. To prove this, let 4" be the cofactor of in the
expansion of the Jacobian determinant, so that
i
axa A% = Js.
X
Then clearly
a _d| o 47 = o' A® _ o' o A% _
dt dt\ox“ oxX“ ox’ ox“ ox'

Incompressible fluids. 1f a fluid is assumed to he incompressible, that is, to move
without change in volume, then by Eq. (3.8) we have

divw =0. (3.9)
Further study of incompressible fluid motion must involve dynamical
considerations; in particular, the common assumption curlv = 0 needs dynamical

justification whenever it is applied.

4. The transport theorem.
Let V = I7(t) denote an arbitrary volume which is moving with the fluid,®

and let F(x, ) be a scalar or vector function of position. The volume integral

dev
v

159 to 170.

8 We shall generally use script capital letters to denote volumes, surfaces, and curves which move
with the particles of fluid. On the other hand, volumes, surfaces, and curves which are fixed in the
physical space will be denoted by script lower case letters. This notation will prove to be a convenient
one for the formulation of a number of the basic principles of hydrodynamics.

10



is then a well-defined function of time. Its derivative is given by the important

formula

d dF .
L de=J‘ AL Fdivw |dv. 4.1)
dtd L\ dt
Vv V

To prove Eq. (4.1), we introduce (X', X%, X*) as new variables of integration by
means of Eq. (3.1). Then the moving region I7(I)) in the x-variables is replaced
by the fixed region 170 = 17(0) in the X-variables (recall that V s at all times
composed of the same particles), and

J' Fdv = J.F(X,t)Jdvo ,

v Vo
where the formula dv = Jdv, relates the element of volume dv in the x-variables
to the element of volume dv, in the X-variables. The integral on the right
involves ¢ only under the integral sign, hence

idev = J‘( d—F+Fﬂjdv s
dt A dt dt

0

and Eq. (4.1) follows at once by transformation of the last integral using Euler’s
formula (3.8).

Eq. (4.1) can be expressed in an alternate way which brings out clearly its
kinematical significance. Indeed, by virtue of Eq. (3.6) the integrand on the right
of Eq. (4.1) can be written

oF +div(vF),
ot
and then by application of the divergence theorem (2.2) we find
iJ.Fa’v ZEJ.de+§Fv~nda .
dtJ. ot J.
Vv Vv s
Here S is the surface of 7 , v-n is the component of v along the outward

normal to §, and % denotes differentiation with ¥ held fixed. Eq. (4.2)

expresses that the rate of change of the total F' over a material volume 14 equals

the rate of change of the total F over the fixed volume instantaneously coinciding

with ¥ plus the flux of F out of the bounding surface. It should be emphasized
that Egs. (4.1) and (4.2) express a kinematical theorem, independent of any

meaning attached to F.
5. The equation of continuity.

We suppose that the fluid possesses a density function p = p(x,t), which

serves by means of the formula

11



M = | pav (5.1)

i——

to determine the mass A of fluid occupying a region V. We naturally assume

p>0,and assignto p the physical dimension “mass per unit volume”.
Turning now to the physical significance of the concept of mass, we postulate
the following principle of conservation of mass: the mass of fluid in a material

volume V does not change as V moves with the fluid. The principle of

conservation of mass is otherwise expressed by the statement
il
— v=0. 52
ard pd (5.2)

Now from Eqs. (4.1) and (5.2) it follows easily that
J' (d—p + pdivvjdv -0,
dt

and since ¥ is arbitrary this implies
dp .
—+ odivw =0 5.3
A (5.3)

This is the spatial, or Eulerian, form of the equation of continuity and is a
necessary and sufficient condition for a motion to conserve the mass of each
moving volume. In virtue of Eq. (3.6) we can express the equation of continuity

in the alternate form
Z—f—kdiv(pv) =0. (5.4)

The derivation just given is substantially due to Euler.’
Multiplying Eq. (5.3) by J and using Eq. (3.8), we derive two forms of the

material, or Lagrangian, equation of continuity:

d
“a) =0, pl=py. (5.5)

where p, = p,(X) is the initial density distribution.

The principle of conservation of mass is sometimes expressed in an equivalent
form involving a fixed volume: the rate of change of mass in a fixed volume v is
equal to the mass flux through its surface, i.e.,

%J.pdv:—§pv~nda. (5.6)

o

Applying the divergence theorem to the right hand side of Eq. (5.6) leads to
J' (aa—’; + div(pv)jdv =0.

° L. Buler: Principes généraux du mouvement des fluids. Hist. Acad. Berlin (1755) (Opera Omnia. II
12, pp. 54 to 92). As early as 1751 Euler had corresponding ideas for incompressible fluids, but this
material did not appear in published form until 1761.

12



from which Eq. (5.4) is easily obtained. It is essentially this derivation which is
found in most texts, but with application of the divergence theorem disguised in a
discussion of the variation of pv 0 over a small box. The only objection to this
derivation is that the principle of conservation of mass in its first form is more

convincing.

We conclude this section with an important formula, valid for an arbitrary

function F' = F(x, t), namely
d dF
L pFdv = I LN 5.7
” JV:p Vp 7 (5.7)

Eq. (5.7) is an easy consequence of Egs. (4.1) and (5.3).

6. The equations of motion.

We consider now the dynamics of fluid motion; our intention is to derive the
equations which govern the action of forces, external and internal, upon the fluid.
In this section we shall present what seems to be the most straight-forward and
compelling treatment of this topic, stemming from the pioneer work of Euler and
Cauchy.

We adopt the stress principle of Cauchy,'® which states that “upon any
imagined closed surface S there exists a distribution of stress vectors ¢ whose
resultant and moment are equivalent to those of the actual forces of material
continuity exerted by the material outside S upon that inside”."" It is assumed
that ¢ depends at any given time only on the position and the orientation of the
surface element da; in other words, if # denotes the (outward) normal to S , then
t = t(x, t; n). As Truesdell remarks, the above principle “has the simplicity of
genius. Its profound originality can be grasped only when one realizes that a
whole century of brilliant geometers had treated very special elastic problems in
very complicated and sometimes incorrect ways without ever hitting upon this
basic idea, which immediately became the foundation of the mechanics of
distributed matter”."?

We now set forth the fundamental principle of the dynamics of fluid motion;
the principle of conservation of linear momentum: the rate of change of linear
momentum of a material volume 4 equals the resultant force on the

volume.” This principle is otherwise expressed by the statement

10 A.-L. Cauchy: Ex. de Math. 2 (1827). (Oeuvres (2) 7, pp.179 to 81). A similar statement, but

restricted to the case of perfect fluids, was given by Euler.
" This statement of Cauchy’s principle is due to Truesdell, J. Rational Mech. Anal. 1,125 (1952).
12 C. Truesdell: Amer. Math. Monthly 60, 445 (1953).

13 . . . .
The necessity for a clearcut statement of the postulates on which continuum mechanics rests was

13



%J:pvdv - Ipfdv+§§tda, 6.1)
Vv % s

where fis the extraneous force per unit mass. In setting down axiom (6.1) it is
tacitly assumed that the force fis a known function of position and time, and
perhaps also of the state of motion of the fluid. This point of view bypasses one
of the prime problems in the foundations of mechanics, namely the recognition,
and even the existence, of a coordinate system in which fis known. Of course,
in the situations to which fluid mechanics is usually applied, an inertial frame is
generally evident beforehand, and the axiom (6.1) is patently applicable. By
means of Eq. (5.7), Eq. (6.1) may be written in the form

Ip%dv=[pfdv+§tda; (6.2)
v Vv s
here integration over a moving volume can be replaced, without loss of generality,
by integration over a fixed volume.

From the form alone of Eq. (6.2) follows a result of great importance. Let /°

be the volume of v; dividing both sides of (6.2) by 2, letting v tend to zero, and

noting that the integrands are bounded, we obtain

1imi2 tda=0, (6.3)
v—0] X

that is, the stress forces are in local equilibrium. Consider the tetrahedron of Fig.

1, with vertex at an arbitrary point x, and with three of its faces parallel to the

Fig. 1. Stress tetrahedron.

coordinate planes. Let the slanted face have normal n and area 2. The normals

to the other faces are -i, -j, and -k, and their areas are n 2, n,2 and n;2.

pointed out by Felix Klein and David Hilbert. The first axiomatic presentation is due to G. Hamel,
Math. Ann. 66. 350 (1908); also [38], pp. 1 to 42. In a recent paper, W. Noll has developed the
foundations of continuum mechanics at a level of rigor comparable to that of advanced mathematical
analysis. It should be emphasized that the above postulate cannot be derived from classical mass-point
mechanics by simple limiting processes; rather it is a plausible analogue of the basic equations of that

subject.

14



Now let us apply Eq. (6.3) to the family of tetrahedrons obtained by letting
> —0. Since ¢ is a continuous function of position, and /> ~ X, we obtain
easily

t(n)+ nt(—=i)+nyt(—j)+nst(-k) =0, (6.4)
where #(n) is an abbreviation for #(x, ¢, n). This formula has been proved, of
course, only for the case when all the components n; are positive. To extend its
validity, we first note that by continuity it holds if all the n, are >0. Thus, in
particular,

10) = (), 1(j)=—t(j), t(k)=—t(k). (6.5)
Now applying the "tetrahedron" argument in the other octants, and using Eq. (6.5),
we find that, in all cases,

t(n) = mt(i) + nyt(j) + nst (k) . (6.6)

t may therefore be expressed as a linear function of components of n, that is
= an«fi where T/ =T/ (x,1).

The matrix of coefficients 7% obviously forms a tensor, called the stress tensor
and here denoted by 7. Each component of T has a simple physical interpretation,
namely, 77 is the j-component of the force on the surface element with outer
normal in the i-direction. The foregoing argument is due in principle to Cauchy.14

Replacing by n-T in (6.2) and applying the divergence theorem, we find
Ip%dv - J'(pf +divT)dv,

v

and since v is arbitrary it follows that
p% =pof +divT . (6.7)

This is the simple and elegant equation of motion discovered by Cauchy."® It is
valid for any fluid, and indeed for any continuous medium, regardless of the form
which the stress tensor may take.

Perfect fluids. All real fluids obviously can exert tangential stresses across
surface elements, so that ¢ generally will fail to be normal to the surface element
on which it acts. The effect of the tangential stresses is small in many practical
cases, however, and therefore it is not unreasonable to study the idealized
situation in which the tangential stresses are neglected altogether. A perfect fluid
is then by definition a material for which

t=-pn. (6.8)

p is called the pressure: when p > 0, the vectors ¢ acting on a closed surface tend

14
15

A.-L. Cauchy: Ex. de Math. 2 (1827), (Oeuvres (2) 7, pp. 79 to 81).
A.-L. Cauchy: Ex. de Math. 3 (1823), (Oeuvres (2) 8, pp. 195 to 226).
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to compress the fluid inside. Comparing Eqgs. (6.6) and (6.8), we find
p(n) = p(i) = p(j) = p(k) . That is, p is independent: of n,
P =px.0).

The equations of motion now take the simple form'®

dv
P pf -gradp. (6.9)

It is satisfying to note that we have obtained four equations, namely Eq. (5.3)
and the three equations embodied in Egs. (6.7) or (6.9), relating the four
quantities o and the components of v. To be sure, further variables 7 or p enter,
but one may reasonably expect to express them in terms of p and v by direct
mechanical or thermodynamical assumptions. The various possibilities for this
form the material of the following chapters.

Material forms of the equations of motion. For the case of a perfect fluid it is

relatively simple to find equations satisfied by v, p, and p as functions of the

2
variables X“, t. Indeed, noting that % = %, and multiplying both sides of
t

Eq. (6.9)by x;, = x' o , we obtain

d*x' ; 1
—f' i =——r
(dtz “ p

which may be written vectorially as
2
Gradx - d—f—f — L oradp. (6.10)
dt P

These equations are inconvenient to handle and infrequently used except for one
dimensional flows. They are necessary, however, when one wishes to distinguish
one article from another, as in the case of a non-homogeneous fluid. The material
equations for fluids sucseptible of tangential stresses are extremely cumbersome

17
and never seem to be used.

7. Conservation of angular momentum

The principle of conservation of angular momentum is usually stated as a
theorem in the classical dynamics of mass points or rigid bodies. Its proof,
however, depends on certain axioms concerning the nature of the “inner forces”
between the particles or bodies making up the dynamical system in question. The

. . .. . . .18 .
situation can be treated similarly in continuum mechanics.”” Here, in order to

16 L. Euler: Cf. footnote 9.

7 non-linear elasticity, on the other hand, great importance is attached to the material form of the

equation of motion.

1 The following presentation is similar to that of Hamel, [38], p. 9. A different point of view is
adopted by Truesdell and Toupin (this Encyclopedia, Vol. IIL, Part 1), who postulate a generalized law
of conservation of angular momentum in which extraneous torques are admitted.
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guarantee the conservation of angular momentum it is necessary to make certain
assumptions concerning the forces exerted across surface elements, or, in other
words, concerning the stress tensor. Specifically, we postulate that the stress
tensor is symmetric, i.e.,
79 =17, (7.1)

(When extrancous couples are present this needs modification. However, we
specifically exclude extraneous couples from this study, since they arise generally
only for polarized media and thus are not important in fluid mechanics.) As a
theorem, Eqs. (7.1) are due to Cauchy'; that they can equally well serve as
axioms was first recognized by Boltzmann.” As a consequence of Egs. (7.1) the
following result now holds:

Theorem (conservation of angular momentum). For an arbitrary
continuous medium satisfying the continuity equation (5.3), the dynamical
equation (6.7), and the Boltzmann postulate (7.1), we have

%J.p(rxv)dv:J.p(rxf)dv+§r><tda, (7.2)
v Vv s

where V is an arbitrary material volume.

Proof. From Egs. (5.7) and (6.7) it is easy to show that
d J‘ dv
— rxv)dv = J- rx—)dv
mﬁp( ) ﬁp( m)

:Ip(rxf)dv+§r><tda—J‘Txdv.
v S v

<2}

Here T, is the axial vector field defined by (7,)' = ekt i« - By virtue of Eq.

(7.1) we have T, =0, and Eq. (7.2) is proved. Conversely, if Eq. (7.2) holds for
arbitrary volumes then 7 must be symmetric.

For certain types of fluids the stress tensor turns out to be symmetric on
purely mechanical grounds, irrespective of any other considerations. We mention
in particular perfect fluids, where 7 = -pl, and isotropic viscous fluids in which
stress is a function of the rate of deformation (Sect. 59). For these important
cases, then, the Boltzmann postulate is a tautology and Eq. (7.2) can be

obtained directly from the equations of motion.

It is possible to imagine a. mechanical system for which 7 is not symmetric, and
Hamel, in the reference already cited, gives several examples. In cases of this sort, which

are not of interest in fluid mechanics, the principle of conservation of momentum as given

19 A.-L. Cauchy: Cf. footnote 14.

20 ¢f. 1381, p. 9.
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in Eq. (7.2) no longer holds, but must be generalized to allow for “apparent” extraneous

torques.

8. Surface conditions.

If a surface in a moving fluid always consists of the same particles, it is
clearly a possible bounding surface of the fluid. The converse proposition,
namely that every bounding surface must be a material surface, is less obvious.

Suppose a fluid to be in continuous motion according to the conditions set
down in Sect. 3, and let F(x, f) = 0 be the equation of its boundary surface. Then

F must satisfy the condition

F OF
d—:a—+v~gradF:0 when F' =0, (8.4)
dt ot
(Kelvin?"), and this condition in turn implies that the surface always consists of

the same particles (Lagrange™).
Proof. It is well known that the normal velocity of a moving surface F(x, ¢) =
0 is given by the formula
OF

_a
| gradF' |

But if F'= 0 is a bounding surface, then

V=v-n=v .% ,
and Eq. (8.1) follows at once. On the other hand, if Eq. (8.1) holds, we wish to
show that "= 0 always consists of the same particles. Set
G(X,t) = F(p(X,0),1),
so that G(X, ) = 0 describes the initial positions of particles which at time ¢ are on

the surface F =0. Clearly

a—G:0 when G = 0.

ot
Therefore the normal velocity of propagation of the surface G = 0 through the
X-space is zero. It follows that G = 0 is fixed in the X-space, and hence always
the same particles make up the moving surface F' = 0.
At a fixed boundary we have the obvious condition v-n =0, independent of

the preceding analysis.

II. Energy and momentum transfer.

2! W. Thomson (Lord Kelvin): Cambridge and Dublin Math. J. (1848). (Papers 1, p. 83).

2 J. -L. Lagrange: Nouv. Mém. Acad. Sci. Berlin (1781), (Oeuvres 4, p. 706).
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9. The energy transfer equation.

Let 7 denote the kinetic energy of a volume v,

~ 1 5
T:—I v,
S| patav
4

. 1 .
and let D be the deformation tensor, D :E(Vi’ ; +v;). Then for an arbitrary

material volume ¥ we have

6Z—TI::J‘pf-va’v—i—§t-va’a— T : Ddv . 0.1
v S v

s
The proof is a simple exercise in use of Egs. (5.7), (6.7), and the symmetry of T.
Eq. (9.1) states that the rate of change of kinetic energy of a moving volume is
equal to the rate at which work is being done on the volume by external forces,
diminished by a “dissipation” term involving the interaction of stress and
deformation. This latter term must represent the rate at which work is being done
in changing the volume and shape of fluid elements. Part of the power connected
with this term may well be recoverable, but the rest must be accounted for as

heat.”® For a perfect fluid the energy equation takes the simpler form
dT’ ,
E:jpf-vdv—ﬁpv~nda+jpdlvvdv. 9.2)
v s vV

The last term is the rate at which work is done by the pressure in changing the

volume of fluid elements.

A slight simplification of the energy equation may be effected if f'is derivable
from a time-independent potential; f =-—grad@, Q2=.0(x). In this case,

setting U= J-dev , Eq. (9.1) becomes
Vv

%(T+L7):§t~vda—jT:de
s 4

10. The momentum transfer equation.
The principle of conservation of linear momentum, stated in Eq. (6.1), may be

transformed by Eq. (4.2) into the form
%Ipvdv=J'pfdv+§(t—pvv-n)da, (10.1)

expressing the rate of change of momentum of a fixed volume v. Because of the
physical interpretation of the final term, Eq. (10.1) is known as the momentum

transfer equation. Eq. (10.1) is sometimes used instead of Eq. (6.1) as the basic

3 See Sect. 34.
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expression of the law of conservation of linear momentum.

The momentum transfer equation is often used to determine the force on an
obstacle immersed in a steady flow. To illustrate this with a single example,
suppose that the fluid occupies the entire exterior of some obstacle, and that the
external force field is zero. Then if o denotes the surface of the obstacle and
2 denotes a "control surface" enclosing o , we have the following formula for

the force F acting on the obstacle,

F:—jtdazi(t—pvv-n)da, (10.2)

(note that v-n=0 on o ). By an analogous argument proceeding from the Eq.

(7.2) we find for the moment L on o the formula

L:J-rx(t—pvv-n)dv.
z

Another force formula of a different type can be derived from the energy
equation (9.1). Consider a rigid body moving with rectilinear velocity U through

a fluid, the fluid being bounded externally by fixed walls. Let V denote the

flow region, o its external boundary, and o the surface of the moving body.
Then
J.t-vda:UoJ.tda (10.3)
o 9o
(for a perfect fluid this follows from the boundary condition v-n=U -n; for a
viscous fluid it depends on the assumption v = U on o). Combining Eq. (10.3)

with Eq. (9.1) gives

F-U:‘i—T+jT.-de, (10.4)
1 o
v

thus determining the component of F in the direction of motion. (The case where
the flow region is infinite in extent can be handled similarly, given suitable
asymptotic behavior of the flow at infinity. Further applications of the momentum

principle will be found in [23], pp. 203 to 234, and in [12].)

11. Kinematics of deformation. The vorticity vector.
This subject is based upon a simple decomposition of the tensor gradv,

namely

gradv=D+Q, (11.1)

where
1 1
Dy =50y +vi)s 2y =2 05=vi)).

The tensors D and 2 are respectively the symmetric and skew-symmetric parts
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of gradv. The discussion is conveniently divided into two parts.

1. The deformation tensor. Let dx denote a material element of arc. Its rate of
change during the fluid motion is given by the formula
i i i
Ly =] X gy |2 gy 2V g
dt dt| ox® ox“ ox’

or simply
d
—(dx) = dx - gradv . (11.2)
dt
From Eq. (11.2) we have easily
d .2
—(ds*)=2dx-D-dx,
dt

where ds = |dx|. The tensor D thus is a measure of the rate of change of the
squared element of arc following a fluid motion. In a rigid motion ds = const,
whence a necessary and sufficient condition that a motion be locally and
instantaneously rigid is that D =0. For this reason, D is called the deformation
tensor. The tensor D — 1/3 (Trace D) I is also of interest, for its vanishing is the
necessary and sufficient condition that the motion locally and instantaneously
preserves angles.

If D =0 everywhere in the fluid, the motion is rigid and
1
v:war—i-const, (11.3)

where @ is twice the (constant) angular velocity of the motion. Eq. (11.3) can
also be derived analytically as the integral of the system of first order partial

differential equations D =0.

2. General motion of a fluid. Let us consider the velocity field in the
neighborhood of a fixed point P. Denoting the evaluation of a quantity at the
point P by a subscript, we have near P,

v=vp+r-(gradv), +0(r2) ,
where r denotes the radius vector from P. Neglecting terms of order r? and
using Eq. (11.1), we obtain
v=vp+r-Dp+r-Qp. (11.4)
We must now interpret the various terms in this formula.
The first term on the right represents a uniform translation of velocity vp.

Ifweset D=r-Dp-r,then the second term can be written in the form

grad%D . (11.5)
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This term represents a velocity field normal at each point to the quadric surface D
= const which passes through that point. In this velocity field there are three
mutually perpendicular directions which are suffering no instantaneous rotation
(the axes of strain). The principal (or eigen-) values of D measure the rates of
extension per unit length of fluid elements in these directions.

The final term in Eq. (11.4) may be written
la) Xr (11.6)
2 P '

where @ =curly is the vorticity vector. [The simplest way to verify Eq. (11.6)
is to note that

o= (gradv), = Q2 =2(02;,02;,,£2,),
whence the components of Eq. (11.6) are equal to those of r-8,.] The vector

form of Eq. (11.6) shows clearly that the final term r-£2, represents a rigid

.1
rotation of angular velocity Ew p-

By combining the results of the two previous paragraphs, the identity (11.1)
can be fully interpreted. For an arbitrary motion, the velocity v in the

neighborhood of a fixed point P is given, up to terms of order 72, by
1 1
v:vP+gradED+5wP><r, (11.7)

where D = r-D-r is the rate of strain quadric and @ =curly is the vorticity
vector: thus an arbitrary instantaneous state of continuous motion is at each
point the superposition of a uniform velocity of translation, a dilatation along

three mutually perpendicular axes, and a rigid rotation of these axes.** The
. o1 . .
angular velocity of the rotation is Ew p. This result amply establishes that @

represents the local and instantaneous rate of rotation of the fluid.

If D =0 at a point it is apparent from Eq. (11.7) that the motion is locally and
instantaneously a rotation, -while if D =kI the motion is a combination of pure
expansion and rotation. These results provide a verification of the statements of
paragraph 1. On the other hand, if throughout a finite portion of fluid we have
o = =0, the relative motion of any element of that portion consists of a pure
deformation, and is called “irrotational”. In this case it can be shown that v is

everywhere derivable from a potential (v = gradg ), cf. [48], p. 101.

NS Cauchy: Ex. d'Anal. Phys. Math. 2 (1841), [Oeuvres (2) 12, pp. 343 to 377]. G. Stokes: Trans.
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I1I. Transformation of coordinates.
12. Transformation of coordinates.

We shall here obtain the equations of continuity and motion in a general
curvilinear coordinate system. For this purpose it is useful to employ the
methods of elementary tensor analysis; the reader unfamiliar with this topic will
find a lucid discussion in [47], or he may omit the entire section without serious
detriment to the rest of the article. Let (x', x2, %3 ) be the coordinates of a point in
a general curvilinear coordinate system. We set x = (xl,xz,x3) as before, with
the understanding, however that x is not a vector. The motion is still represented
by equations of the form (3.1), stating the position of the particles at time #; for
example, in cylindrical polar coordinates motion is represented by the equations

r=yx(X.,t), 0=¢(X,1), z=w(X,t).

It is easy to see that the derivatives dTX; of the functions (3.1) form the
contravariant component of a vector, hence the velocity vector in curvilinear

i

. . i dx . e .
coordinates retains the. form v’ :7 . We define the material derivative of a
t

scalar, vector, or tensor function F' by the formula

oF OF
—=—+

= ViF
o ot

L2

(12.1)

where the subscript comma denotes covariant differentiation. This definition
is clearly consistent with the previous formula (3.6), and furthermore makes the
material derivative a tensor quantity. It should be observed that the definition of
the material derivative given in Sect. 3 is not generally valid in a curvilinear
coordinate system, since for vector or tensor quantities F the expression

dF _0F(X,1)
dt o

does not transform as a tensor. To establish the correct form for

the material derivative in material coordinates, one can proceed as follows.
Writing the covariant derivative
F,= d—F +4;,

Todx!
where the 4; denote certain well known expressions involving the Christoffel
symbols, we obtain from (12.1) the formula

ﬁ=6—F+\;"(6F +AiJ=d—F+v"AA

= .. (12.1a)
5 ot ox, dt

Eq. (12.1a), which appears also in the theory of parallel translation in differential

Cambridge Phil. Soc. 8 (1845). (Papers 1, pp. 75 to 129).
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. oF .

geometry, clearly shows the difference between 5 and the more naive
!
. dr .
expression R The reader should observe, however, that in rectangular
. oF dF . . . .
coordinates ?:7; in other words, just as the covariant derivative is the
it t

. . . . . OoF .

tensor extension of the- ordinary (Cartesian) derivative, so is 5 an extension
it

/. o . .
of % Finally, it is evident that Eq. (12.1a) could serve as the starting point for
t

the discussion of material derivative, rather than Eq. (12.1). At this point it is
convenient to introduce vector notation, the definitions of Sect. 2 being carried
over in the obvious way. For example, v will now denote the set of contravariant
or covariant components of the velocity vector, whichever is appropriate, and Eq.

(12.1) will be written

5—F:a—F+v~gradF.
o Ot

With these preliminaries taken care of, we see that the equation of continuity

can be written in either: of the invariant forms,
%+mivv:0 or Z—’t’miv(pv):o, (12.2)

where divergence has its usual tensorial meaning,

divb=b’, =L%(\/§b1’).
X

N

Let the stress tensor be defined in a curvilinear coordinate system by means of its
components in rectangular coordinates. Then the relation between the stress
vector ¢ and the surface normal n retains the form ¢=mn-T , even though the
components of T are no longer equal to the magnitudes of forces acting upon

surface elements. Finally, the equation of motion has the invariant form
p%:pf+diVT, (12.3)

where

. 1 0 i
(divT), =T =————([eT") - T/ I (12.4)

= \/E o
It is useful to write out Egs. (12.2) to (12.4) for an orthogonal coordinate
system, where the line element has the special form

ds? = (hydx")* + (hydx*)* + (hydx*)?. (12.5)

The equation of continuity becomes simply
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x/_61(\/_pv) 0, g =hhhi3. (12.6)

In order to write out Eq. (12.3) we first observe that

5\) av 1 2
a=—=—+vXxw+grad—q~, 12.7
5 o grad =g (12.7)

[cf. Eq. (17.1)], whence the acceleration can easily be written down in terms of v

and o . The latter is given by the formula

i/'k z/k av
Y e

using the fact that /7~ jlk =1 ,; The term divT requires more effort because of the

o' (12.8)

fairly complicated form of Eq. (12.4). The Christoffel symbols corresponding to
the metric (12.5) are given by

. . oh. . oh
Ty =1y :i—]’c, rf= —h—lza—h]’{ (i# k), all others zero,
h; ox h,~ Ox

(i and k unsumrned). Thus after a straightforward calculation,

(divT), =——(f ) oloeh (12.9)

\/E ox'

(summed on k). The reader should note that this formula is not needed in the case

of a perfect fluid, while for a viscous fluid obeying the Cauchy-Poisson law (Sect.
61) it is usually simpler to obtain the equations of motion without first
determining divT.

Another method for computing the acceleration may be had from the formula

o, ov,  dlogh
a, =i k| D, GO8Rk | (12.10)
ot ok o'’

proved by the same calculation which led to Eq. (12.9).
In practice, rather than using the covariant or contravariant components of a
vector b, it is convenient to use its physical components f; , defined by
B =hb' :hLbl- (7 unsummed);
i
thus f; is the magnitude of the projection of b on the i-curve through the point
of action of b. The physica.l components of tensors are similarly defined, but

they will not be needed here.

Example: cylindrical polar coordinates. We have in this case
ds* =dr* + (rd0)* + dz>.
Letting v,, v, and v, be the respective physical components of velocity, the

equation of continuity (12.6) takes the form
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op 1[0 0 )
—_ ] — "y + — + — /A% ::O, 12.11
o r [Gr (prv,) 06 (Pv) oz (p 2)} ( )

The acceleration terms in the equation of motion are, from Eq. (12.7) or from Eq.

(12.10)

V,.Vg
aezDVH‘i‘ p .

D:£+vri+v—9i+v2i.
ot or r 006 0z

The physical components of divT are given in Love’s treatise” and need not be

reproduced here. Finally, the vorticity vector is given by

1 ov, Ovy
W, =————-———
r 00 oz
ov ov
wy,=—L-——= . 12.12
07 b5 or ( )
0
o, <o 10V Ve
or r 00 r

13. Riemannian space.
It may be of interest to consider the nature of the hydrodynamical equations in

a Riemannian space given the line element
ds* = gijdxidx-"

in some coordinate system x = (x',...,x"). It is generally not possible to
introduce a set of rectangular coordinates, so that one cannot derive suitable
“equations of motion” merely by carrying out the steps of the previous work.
Motion in a Riemannian space is represented by a transformation of the form
(3.1), although now i runs from 1 to n. We define the velocity vector by
v :ditl , and the material derivative by
oF _OoF |

= ViF..
o ot

l
B

(This definition is in analogy to the one used in Euclidean space, and also has the
property that, should the space be embedded in a higher dimensional Euclidean

space, as for example a surface in three space, then the material derivative is the

25 A.E. H. Love: A Treatise on the Mathematical Theory of Elasticity, 4th edit. Cambridge 1927. See
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surface component of the “natural” material derivative of Euclidean space.)
The equation of continuity is easily derived by the method of Sects. 4 and 5.

In this procedure we must replace Eq. (4.2) with

j p(x,)dV = j p(X.0)gJdv,
v Vo

and then make use of the formula

%(\/EJ) = JgJdivy,

which follows readily from Eq. (3.7). In other respects the argument is exactly as

before, the final result being
op .
—+ pdivy =0,
st

which is exactly the same as Eq. (12.2), but obtained now without recourse to
rectangular coordinates.

Deriving appropriate equations of motion involves dynamical considerations
which do not seem adapted to Riemannian space; in particular, it is not evident
how to formulate the principle of conservation of momentum. On the other hand,
there seems to be no valid objection to taking Eq. (12.3) as a postulate. This done,
further considerations will closely parallel corresponding results of ordinary

hydrodynamics.

IV. Variational principles.

The wide scope and great success of variational principles in classical
dynamics have stimulated many efforts to formulate the laws of continuum
mechanics in a similar way. In the following section we shall discuss some of
these formulations; the work applies generally to all continuous media, though it
is stated only for the motion of fluids. In Sect. 15 we consider some special

variational principles which apply to perfect fluids.

14. General fluids.

The variational principle appropriate to a given dissipative system takes a
form exactly suited to and dependent on the particular mechanism of dissipation,
and is generally not capable of extension in unchanged form to other problems.
This fact makes it easy to formulate a variational principle for fluids, but also
indicates something of the a posferiori nature of the undertaking. The reader will
observe that the appropriate variational principle is little more than a

reformulation of the equations of motion; it may, however, provide methods for

p- 90.
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handling constraints otherwise beyond the scope of the original equations.

Let dx=n(x,t) be a virtual displacement of the particles of fluid from
their instantaneous position. The vector function #n is assumed to be finite
valued and continuously differentiable; moreover it should conform to any

restrictions placed on the fluid position. This latter condition implies, in particular,

that » should be tangent to any wall bounding the fluid. The virtual work

corresponding to a virtual displacement is defined by

5(7:5(7(, —J-T:graddxdv,
v

where 7 is the volume occupied by the fluid, T is a tensor function of position,

and

éﬁc:J.pf-dxdv+j;t-dxda (14.1)
v

%)

is the virtual work done against extraneous force f and surface stresses ¢. The
second term in the definition of SU is peculiar to continuum mechanics: it
reflects the common observation that deformations of a fluid medium generally
require the expenditure of work against stress forces. We need not assume that 7'
is symmetric, but otherwise a rigid virtual displacement will produce virtual work
of deformation. For this reason, it is usual to consider only symmetric stresses 7.
We may now state the fundamental d'Alembert-Lagrange variational

principle: 4 fluid moves in such at way that

Jﬁ—jpa-dxdv:o, (14.2)
7

for all virtual displacements which satisfy the given kinematical conditions.*® If
there are no constraints on the motion, except for wall conditions, it follows in a
well known way that
pa=pf +divl and t=n-T. (14.3)

The first equation holds at all interior points of the motion, the second at “free”
surfaces. These are of course just the equations of motion already derived.

Fluid motions on surfaces, or subject to other sorts of constraints, can be
handled by the usual techniques of the calculus of variations. The interested
reader should consult Hellinger’s article in the Encyclopaedia of Mathematical

Sciences, in particular §§ 3e, 4c, and 8b.

2 The statical equivalent of Eq. (14.2), namely that a. continuous medium will be in equilibrium if

and only if SU =0 for all virtual displacements, is due to Lagrange (Mécan. Anal. 1 part. Sect. IV. §
1). The extension of this principle to dynamical systems was likewise given by Lagrange, the
fundamental idea in his derivation being the application of d’Alembert’s principle to the equilibrium
condition 85U =0 (Mécan. Anal. 2e parts. Sects. I, II}. See the articles of P. Voss (Ency. Math. Wiss.
4, No. 1) and E. Hellinger (Ency. Math. Wiss. 4, No. 30).
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The d’Alernbert-Lagrange principle may be expressed equivalently in the
form of Hamilton’s principle. This is obtained by letting the virtual
displacements arise from variations in the paths of the particles. Thus let a set of
varied paths be given by x=¢(X,t;¢), where -1<¢ <, say, and the path £=0
is the one to be investigated. If

_4d
de

b
=0

then the virtual displacement corresponding to a varied motion is defined by

ax:a,):%

=0

We have now the following identity

dt(v.dx)_v.@:d

a-dXT:— —(v.
d dt dt

dx)—é%qz, (14.4)

since 0 and d obviously commute. The density of the varied motions is
determined by the condition that the mass of fluid corresponding to an arbitrary
set of particles shall be the same wherever the particles may be. Mathematically
this leads to the “continuity condition”

op =—pdivéx (14.5)
governing the variation of density. To prove Eq. (14.5) we observe that dx is the

initial velocity in a motion for which & plays the role of time; thus to obtain Eq.
. d . . o
(14.5) we simply replace Z and v in the equation of continuity by 6 and o,
t

respectively. The same reasoning also proves the formula
5J' dev=j PSFdv. (14.6)

Condition (14.5) is also the consequence of assuming, (i) that each varied motion
satisfies the equation of continuity, and (ii) that the virtual displacement vanishes

at some fixed time. If Eq. (14.4) is multiplied by p and integrated over a

material volume 7, application of formulas (5.7) and (14.6) yields

Ipa-dxdwdij'pv-&cdv—af, (14.7)
v v
where
T= %J. pq2 dv =kinetic energy.
Vv

Finally, by virtue of the d’ Alembert-Lagrange principle, Eq. (14.7) can be written

in the form

5f+5U——J'pv-§xdv=o. (14.8)



This equation holds under the condition that the varied motions satisfy the
continuity condition (14.5) and conform to external constraints. If Eq. (14.8) is

integrated from ¢, to #;, and if A& vanishes at 7, and ¢#;, we obtain the

so-called Hamilton's principle®’

I
[T + 80 =0;
fo
each varied motion must satisfy the equation of continuity and external

constraints, as well as having ¢ =0 at ¢, and f,.**

15. Perfect fluids.
For an incompressible perfect fluid the d’Alernbert-Lagrange principle
can be formulated in a more elegant fashion, namely, an incompressible perfect

fluid moves in such a way that

éﬁc—J.aﬁxdv:O (15.1)
v

for all virtual displacements & which preserve the volume, or, in other words,
satisfy divox =0. T he virtual work 5(7(, is defined by Eq. (14.1).

According to the theory of Lagrange multipliers, this is equivalent to

I[p(a—f)-dx—/ldivd»c]dv—it-&cda:o,

Vv s
where A is a Lagrange multiplier and d&x is subjected to no side conditions. It
follows from an integration by parts that

pa=pf —gradl and ¢t=-An. (15.2)
A thus becomes the “pressure”, one of the principal unknowns of the problem.
Egs. (15.2) together with the continuity condition divv = 0 constitute four
equations for the four unknowns vand A .

For the general case of a compressible perfect fluid, Lagrange took Eq. (15.2)
to be the correct equation, where A is to be considered a "reaction" against the
volume changes which are, of course, now permitted.”’ This derivation of a
general case from a particular one - by retaining the old equation, but considering
the Lagrange multiplier as a new “force of reaction” — Hamel calls the "Lagrange
freeing principle". He notes further that the reaction is to depend precisely on the

compressibility (i.e., the density) which was before not allowed to vary. This

2 CLE. Hellinger: Ency. Math. Wiss. 4, footnote 61.

28 Other variational principles which may be mentioned are the principle of least time (Hellinger,
§5¢) and an interesting energy principle of J. W. Herivel [Proc. Roy. Irish Acad. 56, 37, 67 (1954)]. Cf.
also E. Hoelder: Ber. sachs. Akad. Wiss. (Lpz.), Math-phys. K1. 97 (1950).

2 Cf. [6], pp. 473, 522. A similar method was used by G. Piola [Modena Mem. 24 1 (1848)] to derive
the general equations of continuum mechanics.
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procedure, although. interesting and leading to a correct result, is not entirely
convincing - one difficulty becomes evident in the case of gas, where the pressure
is a definite thermodynamical variable.

The variational principle (15.1) may be written in the form of Hamilton's
principle by means of identity (14.5). Thus we have the result: an incompressible

perfect fluid moves in such a way that

tl (0T + U )dt =0
| .

fo

for all variations O of the motion satisfying

divox=0 and & =0 at t=1,.¢.

Lichtenstein® has obtained a similar variational principle for the motion of
compressible perfect fluids. A certain artificiality in his formulation was noticed
by Taub®', who substituted an alternative procedure; the most satisfying form of
the principle is, however, due to Herivel*?, and in the following discussion we
shall use the latter’s formulation.

We begin with the remark that, for a mechanical system whose energy is

completely known it should be possible to state Hamilton's principle in the form

I(éi+éﬁc)dt:0, (15.3)

fo

where the Lagrangian function L is the difference of the kinetic and potential
energies. An essential difference between the principle (15.3) and those stated
earlier is that (15.3) can be written without a priori knowledge of the equations of
motion. Thus this principle provides a way of deriving the equations of motion by
a method which is genuinely independent of momentum considerations. Let us
apply this to the case of a gas.

We suppose the motion takes place without loss of energy through the
generation of transfer of heat, or, more precisely, that the specific entropy S of
each fluid particle remains constant during the motion,*®

B o

7 (15.4)

In this» e of motion the energy is completely known, having the form T+7,

where T is the Kinetic energy and I the internal energy of the volume of

39 1. Lichtenstein [9], Chap. 9.
31 A, H. Taub [44]. p. 148.
32 J. W. Herivel: Proc. Cambridge Phil. Soc. 51, 344 (1955).

3 The thermodynamical basis for the following work will be found in Sect. 30 and in the first
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fluid considered,

pEdv, E=E(p,S)=specific internal energy.

2
Vz'—.

There seems only one reasonable choice for the Lagrangian function, namely
L=1-FE.Forthis L we shall now show that Eq. (15.3) leads to the correct
equations of motion for a compressible perfect fluid.

Let ox=0x(X,t) be a variation of the path, vanishing at z, and ¢,.
Assuming that the varied motions satisfy the equation of continuity, the variation
of density is given by Eq. (14.5). By the same arguments, the variation of entropy
must satisfy

o5=0.

From Egs. (14.6) and (14.5), and since (a—EJ =P there follows
s

6p p2 ’

SF = j PSEdy = — j pdivéxdy
v v

= Idx - gradpdv — §pn - oxda
v s

ST is evaluated by means of Eq. (14.7). We may now conclude in the usual way
from Eq. (15.3) and the formulae for oT s OE ,and SU . » that

pa=pf —gradp and t=-pn
These are of course the correct equations.”* We emphasize again that they have
been derived from a principle whose statement involved no a priori knowledge of
their form. This is in contrast to the earlier principle (14.2) and the derivation

from it of Egs. (14.3).

In theoretical mechanics the energy equation is a consequence of Hamilton’s

principle. It is interesting to see that this is also true in the present case. For since

6:15 ‘l p—dv I pdivvdy

we have from Eq. (9.2),

%(7+E):£pf-vdv+§t~vdv,

which is the wusual statement of conservation of energy for a
non-heat-conducting media.
In the paper already referred to, Herivel attempted to find the equations of

perfect fluids on a variational principle of spatial (Eulerian) type. He was not

paragraph of Sect. 33.
The preceding derivation is based on that in Herivel’s paper, with, however, certain modifications
in the formulation and proof.
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entirely successful, in that his principle yields as extremals only a subset of the
class of flows satisfying the Euler equations. This difficulty was first pointed out
by C. C. Lin, who then supplied a correct version of the principle®. Consider, in

particular, the variational principle,
5HL(v,p,S)dvdt=o, (15.5)
where L is the Lagrangian density
1,
L:qu -p(E+ Q).

and the variations of the velocity, density, and entropy are subject to the following

constraints,
. op ..
Conservation of mass: o +div(pv) =0,
t
Conservation of energy: ? =0,
t
. . . . dX
Conservation of the identity of particles: I =0, (15.6)
t

where the vector field X(X t) establishes the initial position of the particle which
occupies the position x at time ¢. We shall now verify that every extremal of the
variational principle (15.5) is a flow (Herivel-Lin)*®.
Upon introduction of the Lagrange multipliers ¢, 5,y the above principle
becomes
5JJ {L + ¢(Z—f + div(pv)j - pﬂ% -py -i—f}dvdt =0,
where v, p, S and X are now to be varied without restrictions. The separate

variations of these quantities now give the following equations

ov: v =grad¢g + fgradS + gradX -y
g _1 »

op: —=—q" -1-9,

» ar 27

S8 ﬁ:(a_Ej -7,
dt \as),

oX: ﬂ:O. (15.7)
dt

With the help of Egs. (15.6) and (15.6) these equations can be shown to imply Eq.

> Herivel’s principle included only the first pair of constraints in Eq. (15.6), the final constraint
being due to C. C. Lin (unpublished). Without this additional constraint, isentropic flows could appear
as extremals only if they were also irrotational [see Eq. (15.7)].
36 Preliminary results of a similar kind are due to A. Clebsch, J. reine angew. Math. 54, 293 (1857);
56, 1 (1859); and to H. Bateman, Proc. Roy. Soc. Lond., Ser. A 125, 598 (1929).
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(6.9). Indeed, if we write Eq. (15.7) in the form v:Z§xgradnx , then a

straightforward calculation based on Egs. (3.5) and (3 .6) yields the acceleration

formula

a+grad%q2 :Z[fxgrad%+%gradnxj. (15.8)
But %:%:%:0, whence

a= —grad%q2 + grad% + il—'fgrads =—grad —%gradp ,

. C 1
where we have used the simple thermodynamic identity 7dS =dl ——dp .
P

To complete the discussion, it must still be shown that every flow is an
extremal for the Herivel-Lin principle Eq. (15.5) to (15.6). This has been done by

the author of the present article (see Sect. 29A).

It is likely that one can derive the equations of motion for a viscous fluid by a
variational argument similar to Herivel’s. The essential point to be observed is
that the energy equation must be postulated as a side condition [in Herivel’s
work, for example, this is reflected in the condition (15.4)]. Without this or some
equivalent side condition, it does not appear possible to obtain the equations of

motion of a viscous fluid from Hamilton’s principle. Thus Millikan®” has shown

that a principle of the type & J- Ldv=0 where L is a function only of v and grad v,

cannot represent the steady motion of a viscous incompressible fluid except in

certain special cases, namely those investigated in Sect. 75 of this article.*®

Other variational principles. In addition to the fundamental principles already
discussed, there are numerous variational formulations of special. problems in
fluid dynamics. At the appropriate place we shall mention some of of these
special principles, e.g., Kelvin’s minimum energy theorem (Sect. 24), Bateman’s

principle (Sect-47), the theorem of Helmholtz and Rayleigh (Sect. 75), etc.

C. Incompressible and barotropic perfect fluids.

I. General principles.

37" ¢. Millikan: Phil. Mag. (7) 7, 641 (1929).
3 Other negative results concerning variational principles yielding the Navier-Stokes equation are
due to R. Gerber, Ann. Inst. Fourier (Grenoble) 1, 157 (1950); J. Math. Pure Appl. 32, 79 (1950). Cf.
also H. IBateman: Phys. Rev. (2) 38, 815 (1931).
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16. Preliminary discussion.
We shall begin our detailed considerations of fluid flow with the special but
highly important case of perfect fluids. Here the stress vector has the simple

form t = - pn, and we have the following equations governing the motion,

dp .

il oS =0, 16.1

i pdivy ( )
dv

P pf —gradp. (16.2)

In general, one may adjoin to these four equations a fifth (thermodynamical)
relation

p=pp.T), (16.3}
where T denotes the absolute temperature. Discussion of this situation is
appropriately deferred to the following chapters, while here we consider the
elegant theory arising when the pressure and density are directly related:

p=p(p) or p=g(p). (16.4)
A flow in which density and pressure are thus related is called barotropic. We
observe that Eq. (16.4) may arise from special circumstances in the flow
considered, or it may be an inherent property of the fluid itself. In the latter case
the fluid is called piezotropic; (the distinction between barotropic flow and
piezotropic fluid is clarified if we note that every flow of a piezotropic fluid is
barotropic, while the converse is not tune, cf. examples below). The special

piezotropic fluids for which p =const are called incompressible.

The following examples of barotropic flow may be noted:

1. Air in steady motion in the Mach number range 0 to 0.4. There is less than
8% overall variation of density in this range of Mach numbers, so that for many
purposes the density can be supposed to have some appropriate constant value.

2. A gas in isentropic motion. For the case of an ideal gas with constant
specific heats we have, in particular,

p=Np’”, N,y=const.
We shall assume in this chapter that the extraneous force f is conservative,
f =—gradQ, and all results will be stated subject to this condition. It is
worthwhile to point out that no further axioms of motion are necessary for the
conclusions of this chapter.

The fundamental property which distinguishes barotropic motion is the simple
formula of Euler,

azﬁ:—grad(J‘d—p+QJ, (16.5)
dt o)
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which shows that acceleration is derivable from a potential. The results of this

chapter are largely due to the simplifying effect of this single equation.

Plane motion. Axially-symmetric motion. Vector-lines. We conclude this section
with a brief summary of these concepts, mainly in order to fix upon a standard
terminology.

A motion is called a plane flow if, in some rectangular coordinate system x =
(x, y, 2), the velocities u=v', v=v? are functions of x, y only, while v} =0.
The motion takes place in a series of planes parallel to x y, and is the same in each
one. For this reason our attention can be directed entirely at the single plane z = 0.
A motion is said to be axially-symmetric if, in some cylindrical polar coordinate

1 2

system x=(x,y,0) the velocitiesat u=v', v=v? are functions of x, y only,

while v*=0. It is obvious that our attention can be confined to the meridian
half-plane 6=0.

Fig. 2. Coordinates for axially-
symmetric motion.

A curve every where tangent to a given continuous vector field is called a
vector-line. In particular, the vector-lines of the velocity field are called
stream-limes, and the vector-lines of the vorticity field are called vortex-lines. (It
should be noted that streamlines and particle paths are identical in steady motion,
but usually not otherwise.) Finally, a motion is said to be irrotational if its

vorticity field is zero.

17. Convection of vorticity.
One of the most important ways of gaining information about a fluid motion

is to examine how its vorticity field changes with time. To this end, we shall

3% The orientation of coordinates is shown in Fig 2. Instead of the present notation, some authors
(notably Lamb and Miln-Thompson) use ( X, @, & ). It may be observed that when polar coordinates
(7,@) are introduced into the meridian plane, the resulting spatial coordinates (7, ¢, ) become

spherical polar coordinates.
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derive a kinematical identity expressing the rate of change of vorticity in an
arbitrary continuous motion. W e begin with the well known vector identity

2
v~gradv:w><v+gradq7. (17.1)

Taking the curl of Eq. (3.5) and using Eq. (17.1) yields
curla = o + curl(w x v) = do o - gradv + odivy
ot dt
whence by Eq. (5.3) follows the diffusion equation of Beltrami*’:

d 1
—(ﬂ)zﬁ-gradv +—curla . (17.2)
at\p) p p

Let us now apply this result to the barotropic flow of a perfect fluid. By
virtue of Eq. (16.5) we have curla = 0, so that Eq. (17.2) reduces to

i(ﬂ)zﬂgradv. (17.3)
at\p) p

This is the end of page 151.

(continued)

40 E. Beltrami: Mem. Ace. Sci. Bologna (1971 to 1873). (Open 2, pp. 202 to 379); especially §6.
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