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w 1. Introduction 

In this paper we investigate the variational integral 

: ( u )=  f ul/l + [Oul2 dx, (1) 

which is to be minimized in the class of functions u : /2  ~ R under Dirichlet 
boundary conditions; /2 is a bounded domain in R n whose boundary Z' is Lip- 
schitz continuous. Furthermore we impose the side condition u(x) >= 0 a.e. on 
s as so as to make J (u)  bounded from below. 

The essential properties of oa(u) are 
(i) the integrand 

f (x ,  u, p) ---- u t / 1 + I P 12 (2) 

grows linearly in p and depends on u explicitly; 
(ii) f(x,  u, p) degenerates if u vanishes. 
The most prominent example for an integral with linear growth is the area inte- 
gral 

~l(u) ---- f r 1 + I Du 12 dx. (3) 
D 

Minimum problems for ~r can be solved by the theory of Cacciopoli sets; 
for details we refer to the recent books by GIUSTI [14] and MASSARI & MIRANDA 
[17]. In this approach ~r is extended to BV(/2), the space of Ll(/2)-functions 
whose distributional derivatives are measures with finite total variation: 

+ IOul 2= sup[f g.+t + u ~ O,g, dx:gtE C2(/2) f r 
O ~ i = 1  

,+I ~ (4) 
Vi ----- 1 . . . .  , n + 1, ~ g2(x) <= 1}. 

i = 1  J 
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For more general integrands f (x ,  u, Du) such an extension may become rather 
complicated because Du is no longer a function. GIAQUINTA, MODICA & SOUCEK 
[13] studied integrands of the form f (x ,  p) + g(x, u), and DAL MASO [6] and AN- 
ZELLOTTI [2] treated the more general case f (x ,  u, p). They define f f ( x ,  u, Du) 

g/ 

on BV(Q) through the elliptic parametric integrand that is associated to f (x ,  u, p). 
However, even for an integrand that unlike (2) does not degenerate and is close 

to the one in (4), e.g. a(u) I/1 + IpL z with a(u) > 0,1 this approach does not 
lead to regularity of  minima. In [6] and [2] the aim is to extend possibly all inte- 
grals with linear growth onto the space BV(12). In the present paper however we 
proceed rather in the opposite way: we choose a particular function space that is 
adapted to the one variational integral J (u) .  

If  we set v - - - - -  I/2, we have 

u l / l  + IDu[ ~ = I/u ~ + u 2 [Du] z 

= I/U ~ + �88 z) 12 (6) 

now 

= 1/v + �88 IOvl2; 

J ( v )  = f t/v + �88 IOvl~ dx (7) 

can be extended onto BV(Y2)/5 {v(x)--> 0 a.e. in .(2} ~ BV+(g2) and we can 
apply the direct methods to (7) because the integrand 

g(x, v, q) • ~/v + �88 I q]Z (8) 

is much simpler in structure than (2) is. The existence of  a minimum for J ( v )  
is shown in w 2 where we also cite a further result supporting our view that BV(.Q) 
is possibly not the appropriate function space for all integrals with linear growth. 

A further decisive property of  J (u )  is the fact that the integral degenerates if u 
vanishes. For  -(2 = BR(0 ), R large enough, and u]oa ~ 1 the minimum for our 
problem vanishes on a set I ~ ~2 of  positive measure; of. Theorem 7. The analysis 
of the boundary ~ Io f the  coincidence set I is usually based on the regularity of  the 
minimum, especially on the behavior of Du on OL Variation of  the independent 
variables leads to 

u IDu]~ u] / i  + IDul ~ = 0 on 81; (9) 
f l  + IDul 2 

as this relation is satisfied for any value of Du, it does not give any information 
about the angle at which u leaves the coincidence set. This states the main differ- 

1 The contribution by TAUSCH [25], who obtaines existence and regularity for 
t5 f a(x, u) t/1 + IDu] 2 dx ---- 0 by completely different methods, indicates that the lack 
of regularity is due to the method rather than being a property of the solution. Inequalities 
as side conditions are not considered in [25]. 
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ence from integrals of the form 

aAif>o {iDul2 + Q2) dx, Q(x) > 0 on ~Q, 

for which ALT & CAFFARELLI [1] developed a new method to investigate the free 
boundary 81; its regularity follows from the Lipschitz continuity of u. An obser- 
vation by KEIeER [16] shows that in the 2-dimensional, axially symmetric case the 
extremals of (1) fail to be that regular. The procedure from [1] was extended by 
CAFFARELLI & FRIEDMAN to more general integrals 

f f(x,u, Du)dx; 
~C~{u > 0} 

in particular they studied the capillary problem for the sessile drop; cf. [5]. Al- 
though this method does not apply to integrals like (1), the present paper and the 
investigation of the free boundary which will be published elsewhere owe very 
much to the work in [5]. 

In w167 4, 5 we show that the minima of J (v)  are continuous in ,Q and analytic 
in the set where u is positive. This implies in particular the equivalence of the 
variational problems for J (u )  and J(v).  These results are based on properties of 
the parametric analogues to J (u)  and J(v).  They allow us to interpret or as an 
area functional for surfaces in certain manifolds. 

We close this introduction by referring to other works that are related to the 
present problem. 

For n = 1 the integral (1) becomes 

b 

Jl(u)  := f ul/1 + lul 2 dt; (10) 
a 

it describes the area of a surface that is generated by rotating about the t-axis 
the curve 

7' : :  ((t, u), u = u(t), t E [a, b]). (11) 

Hence a minimum of (11) under Dirichlet boundary conditions gives a rotationally 
symmetric minimal surface that is bounded by two concentric circles. The solution 
of this problem is discussed in NITSCHE'S monograph [20] Chapter VI.3, espec- 
cially w 515. In view of our results on the coincidence set we remark that for certain 
Dirichlet data the absolute minimum of (10) consists in three line segments con- 
necting the points (a, u(a)) and (a, 0), then (a, 0) and (b, 0), and finally (b, 0) and 
(b, u(b)). This solution was established by B. GOLDSCHMIDT in his celebrated paper 
[15] of 1831. The fact that besides regular extremals there may be piecewise smooth 
curves that give an even smaller value to the variational integral was known to 
EULER, cf. [9]; GOLDSCHMIDT and later on SINCLAIR [24] clarified the minimal 
properties of the various extremals. The minimum obtained in the present paper 
can be regarded as the n-dimensional analogue of GOLDSCHMID'r's solution. It 
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is remarkable that the simple geometric configuration consisting in three line seg- 
ments can be minimal only in the one-dimensional problem; an elementary 
calculation shows that in higher dimensions such a configuration does not pro- 
vide even a local minimum. 

Another interpretation of J ( u )  is obtained if we regard the graph of u as a 
material surface of constant mass density. In this setting the variational problem 
for J l ( u )  characterizes the shape of a chain fixed at its endpoints and subject to 
its own weight. This interpretation gives the regular extremals of (1 l) the name 
"catenaries". For two-dimensional parametric surfaces x: B --> R a, B = {~ + it/'. 
~e2 + r/2 ~ 1} the functional now reads 

..r = f z(t, ~) I Dx(t, ~)I z d# d~ (12) 
B 

where z denotes the third component of x. In this setting BOHME, HILDEBRANDT 
& TAUSCrI [4] provided several inclusion theorems; related results are proved by 
DIERKES [7], [8]. 

In [4] it is pointed out that the circular cone u(x 1, x 2) = + ~/(xl) 2 q- (x2) 2 
solves the Euler-Lagrange equations in {(x 1, x2): 0 < (xl) 2 q- (x2) 2 < R}. 
KEIPER [16] observed that every extremal of the axially symmetric version of (1) 

1 
which starts from the u-axis must-approach the cone u(x 1 . . . .  ' x~) ~ n -  1 

I /(xl)2+ ... + (x~) 2 asymptotically. Again the n-cone satisfies the Euler-Lagrange 
equation in R" -- {0}. In view of this singular cone it is conceivable that minima 
of (1) will not necessarily be regular. 

In variational problems for (1 l) one can also prescribe the length of the curve 
u as side condition. This physically realistic constraint poses considerable diffi- 
culties in higher dimensions. Furthermore, for n > 1 the prescribed area of u 
cannot be arbitrary large. This necessary condition, which is a genuinely n- 
dimensional property, was found in a recent investigation by J. C. C. N1TSCHE 
[21]; there an upper bound in terms of the prescribed boundary curve is given. 
In the appendix to this paper as well as in [4] further historical notes may be found. 

w 2. The variational problem and the spaces BV2, BV + 

In this part of our paper we show existence of a minimum to our variational 
problem. We remark that once the space BV2+(g2) is introduced the proofs follow 
rather closely the analogous arguments for non-parametric minimal surfaces; 
cf. e.g. [14] Chapter 14 or [17] w 3.5. 

Suppose ~ ~ R", n ~ 2, be a bounded domain with Lipschitz continuous 
boundary Z' ~ 8s We define 

BV2(-Q) : =  {u E L2(~):  u 2 E BV(g2)}, (13) 

BV+(g2) : =  {uE BV2(~): u :> 0 a.e. in ~}. (14) 
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In analogy to (4) we can now define (1) for more general functions u E BV2([2): 

+ �88 2 : =  s u p / f  ugh+, + �89 2 div g dx: (15) f D t a  
n+l } 

gi E C2(0), ~,  g2(x) <= 1 Yx  E [2 . 
i = l  

From (13) and (15) it is obvious that 

f I/u s + �88 ~ < 
D 

if and only if u is in BV2([2). Moreover it is readily verified that (15) agrees with 
the integral (1) from which we began if only u is regular enough: 

ft/u2+�88 f ur + IOul~dx 
D D 

for all u E HI([2) A L~([2) with u >= 0 a.e. on [2. 
Setting v :---- u 2, ~p :----- ~2 where ~ are the boundary data for u we are thus 

led to the following variational problem: 

minimize j r ( v ) =  f Cv'+ 1 ]Dvl2 in the class 

(e) 
ff0P) : =  {v E BV([2): v ~ 0 a.e. in [2, v = ~p on 2~}. 

As this set is not closed with respect to convergence in L1([2), we consider the 
following problem: 

minimize jr*(v) = Jr(v) + �89 ~ Iv -- ~ol d~ n-~ 
(p*) 

in the class BV+([2) :---- {v E BV([2): v ~ 0 a.e. in [2}. 

Here ~n-1 denotes the ( n -  1)-dimensional Hausdorff measure. Problems (P) 
and (P*) are equivalent in the following sense: 

Lemma 1. For ZE C I, ~EL2(~ ) with ~o ~ 0 a.e. on ~ and ~p :~- ~9 2, 

inf (jr(v): v E BV+(~2), v ---- W I on 2:} -- inf {jr*(v): v E BV+([2)}. (16) 

Proof. Fix v E BV+([2) and e > O. A theorem of GAGLIARDO [11] provides an 
extension wE H~([2) of  ~ p -  v such that 

w : ~p -- v in L t (S) ,  (17) 

f IDwl ~ (I + e) ~lv -- wl d~n- ' ,  (18) 

f lwl dx <= e ~ lv - ~pl d'~"-'.  (19) 
D 27 
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Now (w + v) + :=  max {w + v, 0} is in BV+(g2), too, and has ~o as its trace on Z'. 
Moreover 

f i/(o + w)+ + �88 ID(v + w)+l = <= f 1Iv + �88 IOvl ~ + �89 f IOwl + f I/Iwl dx 
D D D O 

_< f l /v+ , •  + �89  ~fl~-- v, ld~ o-~ 
o O 

+ (meas D)�89 "(e "z~ lv - ~ol d~"-l) �89 

If  we let e tend to zero and take the infimum over all v E BV+(g2), we obtain 

inf{J(v):  v E BV+(O), v ---- 9} -----< inf{J*(v):  v E BV+(f2)}. 

As the opposite relation is obvious, (16) is therefore proved. [ ]  

The functional J (v)  is lower semicontinuous with respect to convergence in 
Lz,,or 

Lemma 2. Suppose 0 <= v k --+ v in Ll,loc(f2). Then 

f Cv+klDvl2<=liminf fl/v~ +kIDvkl ~. 
k--+ oo 

D t )  

(20) 

Proof. Set u k : =  I /~ and u : = t / v ;  then l u g - - u [ ~ l v k - - v l � 8 9  and conse- 
quently uk tends to u in L2.1o=([2). Lower semicontinuity then follows immedi- 
ately. [ ]  

This lemma implies the following existence theorem because the class 
defined below is now closed with respect to Ll-convergence. 

Lemma 3. Let f2 ~ B ~ Bn(O) and ~ E H~(B -- ~), ~0 ~ 0 a. e. on B be given. 
Then the variational problem 

minimize f l/v + �88 IOvl 2 in the class ff ---- {vC BV+(D): 
B 

v = ~ p  on B--.Q} 

has a solution. 

l 
The main conclusion regarding existence is contained in 

Theorem 4. Suppose X to be Lipschitz continuous, and let ~o be in LI(S). Then the 
variational integral 

j*(v) = fl/v++[Ovl~ +�89 ~lv- -wld~ ~-1 
12 27 

attains its minimum on BV+(/2). 
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Proof. Let ~ E H](B -- 12) denote some non-negative extension of  W; then we set 
for v E BV+(12) 

(x) = ~, v(x), x E 12 

! ~o(x), xE B - - 1 2 .  

Because fi E BV+(B), by use of  the trace formula we obtain 

fr188 fCv++lz~vl2+ f r DV'2+�89162 
B D B - - ~  ,,Y, 

= J (v )  + c(~). 

We now can apply Lemma 3, and the theorem is proved. [ ]  

As a further illustration of  our procedure we refer to the work of  BEMEL- 
MANS [3] in which two-dimensional closed surfaces that are graphs over the unit 
sphere S are studied. Their areas are given by 

~ r  = ~1/u" + u21~*ul2t/-Z g d~ 
S 

and hence constitutes an integral similar to (1) 2 . 
A variational problem for d * ( u )  is considered where among other side con- 

ditions a volume constraint is imposed: 

3e'(u) = ~ u 3 l / ~ d ~  : const. (21) 
S 

Clearly, BV is not an appropriate function space for this problem, because the 
Sobolev embedding theorem yields u ELp, p > 2, which means that (21) is 
not a compact  side condition. The space used in [3] instead is BV2, and the em- 
bedding BV2 --~ Lp, p < 4, is compact.  Therefore (21) which contains the L3- 
norm of  u is a compact  side condition as one expects from the geometric content 
of  the integrals ~r and Y'(u). The problem in this paper as well as the one in 
[3] indicates that the growth of the integrand alone does not determine the appro- 
priate function space. 

w 3. A Maximum Principle 

The maximum principle for the variational problem (P*) states that the Lo~- 
norm of  a minimizer v can be bounded by the supremum of the boundary data;  
as a preparatory step we prove 

Lemma 5. Let v E BV+(12) and meas A(k) ~> O, where A(k) = {x E g2: v(x) > k} 
Then w : m i n ( v , k )  E BV+(12), and for almost all k 

J ( w )  < j ( v ) .  (22) 

z I~*u 12 = e *ij Diu Dju, g*iJis the inverse of the metric tensorg* on S; g* = det (g~). 
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Proof. The first assertion is well known; cfi [12] Lemma A.4. To prove (22) choose a 
sequence of functions V,n E C1(~) with the properties 

vm -+ v in Lt(f2), (23) 

f evm + �88 IDVm[ 2-+ f l/v + �88 IDvl 2. (24) 
D I2 

For w m = min (v,~, k) lower semicontinuity of J (w)  and (24) yield 

f ev + �88 iOvl 2 - f ew + �88 iDwl ~ 
t2 0 

l i m i n f ( ( r  m + �88 z -  f eWm + �88 
m--~ eo [ 5  f2 I 

~ l i m [  ~ I/-~mdx--{fk}l/-kdx} 
m---~ oo [{Vrn-> k } 

f l/7 --1/-k dx. 
A(k) 

Here we used the facts that t/~m tends to I/v in Lt(s and that the characteristic 
function Z{om>k} converges to Z{~>k} for almost all k. 

According to our hypothesis meas A(k) > 0 the last integral is positive, too. 

Theorem 6. Let v E BV+(s be a minimum of(P*)  and let the boundary values v? 
satisfy 0 ~ ~p ~: k < oo on S. Then 

[I v IIL~(~> = k.  (25) 

Proof.  Again we choose a sequence of Cl(f2)-functions v m that satisfy (23), (24) 
and 

vm ~ v in LI.(S). (26) 

Then a consequence of EMMER'S lemma gives 

Wm : =  min (Vm, k) ---> min (v, k) = : w in LI(L-'); 

cf  [12], Lemma A.2. Hence 

~ I w,,, - v,[ d ~ " - '  -+ r  n-I 
X 2: 

and 

~ lVm - ~l d ~ - '  ~ ~ lv - ~l d~ ~-',  
22 22 

As ~o is bounded by k a.e. on ~', we have 

[ Wm --  W[ d~"- '  = r I min (Urn, k) - -  min (% k)] d~"- '  
2~ 2.' 

r IVm - -  ~)1 d ~  n - l "  
22 
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Taking the limit, we obtain 

I w --  "el d~  n-I ~ 9~1 v - -  "el d ~  "-1.  (27) 
2J 2: 

If  A(k)  were of positive measure this together with (22) would yield 

j ( w )  + r [ w - ,el d~  ~ ' < J ( v )  + SS I v - "el d~  ~  
2: 

i.e. 

J * ( w )  < J* (v ) ,  

which contradicts the assumption that v is a minimum of  (P*). Hence meas A(k)  
must vanish and the theorem is proved. 

The results of  [4] on inclusion suggest that the coincidence set {u = 0} is 
1 

empty provided the boundary values 9 lie above the n-cone u(x) - -  ~ - - 1  I xl. 

On the other hand it is very likely that meas {u(x) = 0} > 0 if~0 is small enough. 

Theorem 7. Suppose v E BV+(-(2) is a minimum of(P*)  when the boundary values 
satisfy 0 ~ "e ~ k < cx~. I f  k satisfies 

meas .(2 (28) 
1/k < meas-----~' 

then the coincidence set is o f  positive measure: 

meas {u = 0} > 0. (29) 

Proof. Set u : =  I/v and [u -- e] + : =  max (u -- e, 0). Then [u - -  e ]  + 2  is an 
admissible comparison function in (P*): 

0 _>__ J * ( v )  - f f * ( [ u  - d +2) 

= f l/u ~ + �88 IOu=l 2 - f I/[u - ~1+2 + �88 [D[u -- e]+2l 2 
O 12 

+ �89 .$1 ua - 'el d ~ " - '  - - �89  r  --  ,]+= --  "el d ~ " - ' .  
,U 27 

As in the preceeding proofs there exists a sequence of Cl(O)-functions v m that 

approximate v in the sense of (23), (24), (26). If  we set u m : =  }/Vm, then Um is 
continuous on all of O and continuously differentiable when it does not vanish: 
Um E CI({Um > e}), e > 0. Therefore the inequality above leads to 

0 => lim inf [  f 1/u;~,, + �88 IOu~l 2 dx 
m--+ oo I O 

- -  j r m - -  ,S] +2 ~- �88 IO[Um - -  G]+2 i2 dX}  

+ �89 ~f{I u~ - 'el - I [ u  - ~]+~ - 'el} d~  " - ' ,  
21 
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where we used again the lower semicontinuity of J .  Next we obtain 

0 ~ lim inf  t f 1~urn + �88 IOu~l 2 dx 

+ ~ ~ ( l u  = - wl - I ru - 4 += - wl} d @ " - ' .  
s 

According to GERHARDT [12], Lemma A4, 

[u -- e] + = u -- min (u, e) in LI(X); 

therefore 

0 >~ lim inf  f e 1/1 + [ D u  n 12 dx 
m ~ o o  {U.,n>e} 

+ �89 ~ {I u2 -- ~'] -- u2 -- ~P -- 2u min (u, e) + min 2 (u, e)} d~  n-t 
22 

>= lim i n f ,  f ]/1 + I hu~ ~ dx -- �89 # [min 2 (u, e) - 2u min (u, e)l d ~ " - '  

~ lim infem_~ {u, f 4 dx--e---z~2u+2" min (u' e) dYo"-l" 

This gives, after dividing by e: 

0>~ f d x - ~ u d ~ n - l - � 8 9 1 6 2  n-' .  
{u > ~} 

Now we let e tend to zero and obtain 

r u d,~ '~-I >~ /o dx ~- meas (u > 0}. 

Theorem 6 implies that  0 <_ u _< ]/k'; therefore 

I/k meas L" => meas {u > 0). 

If  {u > 0) were empty, we would have 

meas (u > 0} = meas /2 ,  

hence 

t /k  meas L" ~ meas .(2. 

{u > 0} must have positive measure, and This contradicts to (28); therefore 
the proof  is complete. [ ]  
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w 4. Parametric versions of the variational problem 

by 

and 

For  Borel sets U, VQ Q ~ [2• [0, oo) we define functinals ~-(U) and fr 

~(u)~  f~.+l ID~ovl (31) 
12 

1: . + ,  } sup ~otr D , ~  "+t y,) ds r ,  E C2(Q), Z ~,?(Yc) <= 1 
1 = I  i = 1  

V ~ ~.n+1.2 ~ ( v ) ~ f  �88 ~2++ ".+~lD~vl 
12 1=1 

n+l } 
y, E C~(Q), Z r~(Yc) <= 1 VYc E Q �9 

1=1 

(32) 

As usual, q0 E denotes the characteristic function of some set E; points in Q C R "+1 
are denoted by ~ ~ (~1 . . . . .  ~. + 1) ~ (x, ~" + 1) with x E R ". I f  V is the subgraph 

of a function v E BV+(g2) A Lob(f2) and if U is the subgraph of u = 1/~, both 

integrals ~ ( U )  and ~(V) equal J(v) = f 1Iv + k ]Dvl 2. 
~2 

Lemma 8. For v E BV+(g2) A Lo~(O) and u = +l/v define 

U = {.x E Q:O ~ .~"+1 < u(x)} 

Then 

with 

and V={s  < v(x)}. 

f l/v + k IDol s = f Yc "+' IDq0uI, (33) 
t~ Q 

f 1/v+ +lDvl 2= f 1/~v,~,jlD~0vl, (34) 
t~ O 

gq(~) = �88 8i~ for i, j = 1 . . . .  , n, 

gn+t,n+l = ~.+1, gi,.+l = g~+l,i = 0. 
(35) 

Remark. f ~n+, I Dq~v] may serve as a definition for f u I/1 + ] Dul 2, cf. 
O 

[13], [6], [2]. If  J ( u )  is defined in this way for u = ] /v  we obtain also 

f u l l 1  + lDul2 = f l/v + �88 lDvl 2. 
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Proof. The proof follows closely the one for the corresponding proposition for 
the area functional, c f  [14], chapter 14. Take gi E C~(f2) Vi = 1 . . . . .  n + 1, 

n + l  

with ~ g 2 i ( x ) ~ < l  and ~EC~([0, s u p u +  1]) such that ~ 7 ~ 1  on [0, supu] 
i s  1 

and 1~7(t) l ~ 1 everywhere. Then )J(x, t) = g(x)~( t )  is an admissible test func- 
tion in (31). 

n+! 

Q U L-1 
lU(x) ) 

: J I d  [Dn+l(~Cn+l'n+l) ~- ~n+l 2 J~i~i] d~n'~'l dx 
i= 1 

( ) 
0 i~l 

i = !  

n + l  

If we take the supremum over all gi E C](D) with ~ g~(x) =< I weget from the 
definition of  J(v)  in (16) i=1 

f ~ '  [Dq~v[ >= ft /v + �88 z, 
O o 

The reverse inequality is obvious for vE C2(O), v > 0: 

f ~/i + l lDvl 2 dx = f t/v q- �88 2 ax 
~c~{ o} 

-- f~"+'  [D~0vl 
12 

since ID~vl coincides with the n-dimensional Hausdorff measure on OU. For 
v E BV+(D) there is a sequence {vj}j~l of  smooth functions such that 

f Cvj + �88 Iovjl ~ , f Cv + l IDvl ~, 
.Q D 

as j--~ e~. This implies convergence in Ll,lo~(Q) for the characteristic functions 
of  the associated subgraphs Uy, and as oj- is lower semicontinuous we obtain 

f Y"+' [Dq~v[ ~ lim inf f y"+' ]D~vvj ] 
0 j-~oo 0 

=l ira  f + 

= f g v + � 8 8  ~ 
.O 
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To prove (34) we choose as before giEC~(/2), i =  1 . . . . .  n +  1 and ~/EC2 
([0, sup v + 1]) with ~(t) ~ 1 on [0, sup v] and I~/(t)l -<_ 1 otherwise. Then 

f l / ~  lDq~.l ~ f q~v ~ D,(gi~l) + Dn+, (l/'~"U4-i gn+l~l) dx dx n+' 
12 0 

: j { ~ / V g n + l  q-�89 

which implies that 

~(V)> fl /v+�88 2. 
D 

The reverse inequality follows again from the lower semicontinuity of fr and the 
fact that for v E C2(12) with v ~ 0 

[Dr[ 2 v }�89 
1Iv ~- k IOvl2 = �88 1 ~- IDvl ~ -~ 1 -+-]b~l ~ I/1 -t- IDvl ~ 

Dv 1 ) 
because ~ = (~t . . . .  ,~,+z) : ]/1 -k IDv[ 2 '1 q- [Dvl 2 is the unit normal. 

Next we show that for a local minimizer v of J (v)  the subgraph U of ]/v mini- 
mizes ~-(U) locally. Moreover the subgraph V of v minimizes (q(V) locally among 

all subgraphs. This implies in particular that I/v minimizes f u]/1 q-[Dul z 

locally if the latter integral is defined by fYc "+~ [Dq~v]. The proof follows the 
o 

one given by MIRANDA [18] for the corresponding proposition for the area inte- 
gral. 

Lemma 9. Let F Q Q be a bounded Borel set, and put 

k 

w(x) : lim f ~(x, t) dt. 
k - +  oo 0 

Then z : w 2 satisfies the inequality 

f I/z + �88 IDzl ~ ~ fYr [D~oFI. (36) 
o Q 

Proof. We fix T >  0 such that F C  Q r ~  ~ •  [0, T]; then ItwllLo~<~> ~ T 
n + l  

and IlztlLo,~) _-< T 2 As above we choose gtE C~(~) with ~ g2(x) ~ 1 on 
i =  1 

and ~/EC~([0, T +  1]) with ~ 1  on[0,  T]and  0 ~ ( t ) ~ l  on [0, T + I ] .  
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Then by the definition of ~" we get 

S .~'~+' ]DCF[ ~ S ~F [n~! Di(xn+'~l(xn+')g,(x))] dx d2 "+I 
Q Q Li= 1 

f/~'.~(x, 2 "+') ~+'r~(Y "+') '~ Dig,(x) dx n+l dx 
D 0 i = 1  

+ 
r d 

f g ,+,(x) f  ~0Ax, x "+') ~ (x"+'~(x"+')) d.~ +' dx 
# 0 

]w,., 
> f D,g,(x) f ~"+' d~ "+' + g.+,(x) w(x) dx 

i 0 

Z ~ = j .,.+, + D,., 

T ~ x )  

in the last step we have used f q~r(x, ~+ i )~ .+1  ~(~,+1)d~.+1 ~ f ~d,+l d~,+l. 
0 0 

n + l  

We get (35) by taking the supremum over all gi with ~ g~(x) ~ 1. [] 
i = l  

Theorem 10. Let v E BV+(g2) be a local minimum for J(v).  Then the set U = 

{(x, ~,+1) E Q: 0 <= ~+1 < ~v(x)} is a local minimum for ,~(E) among all measur- 
able subsets E of  Q. 

Furthermore, the subgraph V = ((x, ~"+1)E Q: 0 ~ ~,+1 < v(x)} is a local 
minimum for ~(E) among all subsets E of Q that are subgraphs to some L1(Q)- 
function. 

Proof. Let F Q Qr, T < oo, be a Borel set that coincides with U outside some 
compact set K Q A • [0, ~ ) ,  A QQ D. By the minimum property of v and 

T 

Lemmas 8 and 9 we get with w = f f~.(x, ~n+l)d2,+1 
0 

f ~"+'lD~0ul= f l / v - l - � 88  ~ 
A x [0 ,~)  A 

f ]/w + �88 lDwl 2 
A 

f ~,+1 IOq0f. 
A x [0,oo) 

To remove the restriction that F be bounded we note first that T will be finite if 
chosen to be 1 + inf {3: U Q Q~} since v is bounded according to Theorem 6. 
Furthermore if F Q Q coincides with U outside some closed set K ( A • [0, co) 
with A QQ Q, we set F T = F ~  g2• [0, T]. By definition also Fr  coincides with 
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U outside K and moreover ~-(FT) =< ~ This inequality follows from 

f ~.+, ID~0rrl = f So"+' IO~o~.l + T .  ~"(FA .(2x{T}) 
A x [0,oo) A x (0,T) 

--< f 2 "+'lD~0~ I + z  f ID~0r[ 
A • (0,T) A • [T, oo) 

=< f ~'+' Io~0~l. 
A • [O, oo) 

The second assertion can be proved along the same lines. Lemma 9 is not needed 
because only subgraphs are taken into account rather than arbitrary measurable 
sets. [ ]  

w 5. Regularity 

The integrals ~176 and if(V) we introduced in the preceeding chapter can be 
interpreted as parametric integrals taken over the currents that are associated to 
the sets U and V, respectively..~- and i are parametric integrals over the n-recti- 
fiable currents S = ~ EUq] and T = 0[[Vq] where for some Borel set A C R'+J 
the integral current [[A]] denotes integration over A with the standard orientation 
and ~ is the boundary operator ~[~A~ (~o) : =  E[A~ (&o); for the background from 
geometric measure theory we refer to [10], [23]. In the notation of [22] the (sin- 
gular) integrand F: ( R ~ x R + ) x R  ~+1 ---->R is given by 

F(x, t, p) = t lPl (37) 

for ~" and by 

F(x, t,p) = p~ + tp2+l (38) 

for the integral t .  
This apparatus allows us to apply regularity results for the minima of such 

parametric integrals which in turn yield regularity properties for the minima to 
J (v)  according to Theorem 10. If  we exploit the fact that the subgraph of u can 
be regarded as a minimal surface of codimension 1 in a Riemannian manifold we 
can apply a much stronger regularity theorem from geometric measure theory 
which eventually leads to regular minima u for n < 7. Let F be the Riemannian 
manifold R "+l c~ {2 n'+l --. 0} endowed with the metric f~ = (x-"+l)21n6u V 
i,j = 1, . . . ,  n + 1. Then ~ (U) coincides with the area functional f ]D~ule on F, 

Q 
which is defined by 

f [Dv?vlv : =  sup { f  v2v divF g(x) t/d~scr(fu} d.~ "+'('y) , 
Q 

g E C~ (Q; R"+ ' ) ,  IglF ~ 1}. 
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Here divFg denotes the divergence, and Ig]Fthe norm in the Riemannian space F. 
The functional ~(V) does not admit a geometric interpretation of  this type. 

The regularity theorem from [23] requires ~-(U) to be formulated as follows. 
For  0 < a < b < oo and some open ball B Q Q /2  let E denote the open cylin- 
der B•  (a, b) in F. By the result of NASa [19] E cart be embedded isometrically 
into some R "+k with k large enough; let I: E - + R  "+k denote this isometry. The 
relation 

n+l  
*(ga,- . . ,  g,+l) ----- Y, (--1)i-1 gj d21 A ... t ,d~ j-~ AdY j+l /~ ... Ad,~ "+1 

j = l  

defines the canonical isomorphism *: C~(E, Rn+1)--~n(E)  between vector 
fields g and differential n-forms. For  an Le"+l-measurable set U Q E this allows 
us to consider the n-current S = 8EU]] E ~ , (E)  of integral multiplicity that is 
given by 

S(*g) ~- ~[[U~ (*g) 

--- [[U~ (d'g) (39) 

--- f q~u div g dx. 

U has locally finite perimeter in E if and only if the mass Mw(~[[U]]) is finite for 
all W QQ E. In this ease 

Mw(S) =- Mw(8[[U]]) (40) 

W 

Clearly the orientation S of  the approximate tangent space is given by *S = 

8[[U]] = rv, which holds [DqJu] almost everywhere; ~v is the unit normal in the 
sense of measure theory; it is defined on the reduced boundary 0*U and *" 
An(R n + l ) - + R  "+1 is the canonical isometry. Consequently we can write 

S(co) ---- e~_U~ (w) = f (co(x), S )  d~"(x) (41) 
O*UAE 

for all co E ~"(E) where ( , )  denotes the dual pairing for covectors and vectors. 
With I as above the pushed forward current 1~S C ~,(V),  V Q R n +k an open 

set with I(E) Q V, is of the form 

I~S(co) = ~(fftr) (co(Y)' lr(y)) d,~'(y) (42) 
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where o~ 6 ~"(V) and z is an orientation for the approximate tangent space 
Ty(I(O*U)); c f  [23] w 27.2. Since I is an isometry, 

Z~w(I~S) = ~"( i (e*v) /5  w)  
(43) 

Now set 

and 

Lemma 11. Let v be a minimum to the variational problem (P), U-----((x, ~"+'):  

0 ~ ~,+1 < ~v}, and let T be the current OEU/5 E~ L E, 7" : I~T. Then 

MwO') ~ Mw(R) (44) 

for all W ( (  V, where V Q R  "+k is an open set with V/S N ~:O, N =  I(E) 

and (N -- N) /5  V = O, and for all R 6 ~ . ( V )  that are of  integer multiplicity and 

satisfy OR : OT in V and supp (R -- 7") ( Q  N / 5  W. 

Proof. The assumptions on R imply 

supp R ( N/5  V 

n = ~  on (N /S V) \ (N /S W) . 

Moreover there is a rectifiable current E E ~n +,(V) of integral multiplicity n + 1 
such that 

0 E : R - - T  and s u p p 0 E Q Q N / 5  W. 

F -~ E q- E I (UA E)-~ L V. 

Clearly F6 ~n+1(V) and moreover 

OF : R - -  I "  + OEI(U /5 E)7] 

= g --  ~ +  ~ o I ( U n  E)3 

= R -- r  ~t[0(U/5 E)~ 

: R .  

= f x "+~ ID99u] 
1-1(w,~1(E)) 

for W CC V. 
If  we now take U to be the subgraph of ]/~, where v is a solution of our varia- 

tional problem (P), we can show that the current T -~  I~ OEU/5E~ locally 

minimizes mass. This implies regularity, and as the function v and the current 
describe the same geometric object, v is regular, too. 
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According to the decomposition theorem for top-dimensional currents, cf. [23], 
w 27.8, there are ,~"+Lmeasurable subsets Uy Q V n  N, j 6  Z, such that 

+oo 

OF= Y~ O[~Uj]] 
.]= - 

and 

Therefore 

I~o~ = ~ ~a~vj~" 
j ~  - oo 

Mw(R) = Mw(OF) 

= ~o~(W) 
+oo 

= Y~ ~o~ ,~  ( w )  

~_ /ao~ u a(  w )  

= Mw(~Eu~]]) 

= f Iz  ull 
W 

-- f ~"+' IDg0,I 
I - I ( W / S N )  

where /~l = I-1(U1). 
As q~6,=~~ in E - - I - a ( W / S N )  (because s u p p ( R - - T )  Q ( N A  W) 

we obtain from the minimal property of U 

f 2 "+'ID~a,I > f ~+'lD~v] 
I - ~ ( W A N )  1 - a ( W A N }  

-- f I 
W 

= Mw(e/~_Uf~ Eli) 

= Mw(IzT) 

= Mw(~'). 

This completes the proof that f is minimal in N A  V. [] 

Lemma 11 allows to apply the regularity theorem for minimizing currents 
of codimension one; cf. [23], w 37.7. In this context this theorem reads 

Theorem 12. Let v be a solution of  problem (P) and let U denote the subgraph of 
+ ~  Then the locally n-rectifiable integer multiplicity current T = @~ U~ b Q satis- 
fies 

(i) s i n g T = 0  i f n ~ 6 .  
(ii) sing T is locally finite in Q if n = 7. 

(iii) ~n -7+~(s ingT)=0  u  if n > 7 .  
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Remark. We recall that the singular set sing T is defined as supp T -- reg T, 
the set reg T consisting in all points x such that in a neighborhood of  x the current 
T is of the form [[M]] for some Cl-submanifold M ~ 1% n+k. 

Theorem 13. Assume n <: 6, and let v be a solution to the variational problem (P). 
Then v is continuous in Q. 

Proof. Put  u = +]/v and let Xo E -(2 be a point at which u is positive. I fuwere  
not continuous at Xo, the subgraph OU would have to contain a vertical line seg- 
ment L. Because of the analyticity of 8U this line L must be unbounded. This 
clearly contradicts the assertion of Theorem 6 that v is bounded. [ ]  

The same reasoning shows that u(x) tends to zero for x ~ xo and U(Xo) = O. 
Hence u and consequently v are continuous in ~2. 

Theorem 14. Assume n <: 6, and let v be a solution of  (P). Then v and u = +l/v 
are analytic in the (open) set {x E O: u(x) > 0}. 

Proof. According to theorem 10 the subgraph U of u minimizes ~ ( E )  locally, 
and OUA Q is an analytic surface; its outer normal is v = (vl . . . . .  %+1). If  u 
were not analytic, then v would become vertical at a point Yo = (Xo, U(Xo)) E OU, 
i.e. %+l(Yo) = 0. By performing a suitable rotation in R n we can arrange that 

vl(Yo) = 1, v2(Yo) . . . . .  v,(Yo) = 0. 

Now let yt  = f ( } ) ,  } = (y2, . . . ,  yn+l) be a representation of OU in a neighbor- 
hood N, of Yo; then f i s  analytic and Dr(Y20 . . . . .  y,~+l) = 0. Near (yo 2 . . . . .  ~0 +1) 

D,+lf(y2, . . . , y .+ l )  > 0 or D,,+lf(y2 . . . . .  y~+l) < O. 

Furthermore f solves the Euler equation for the functional f yn+l ~/1 + IDfl  2 
dy2 ... dy "+1. 

n+l y~+l Di F J:~ 
, :_ ]Df?  

This is equivalent to 

~+1 Di f  D,,§ I F 
' ~  D, -- (45) 
,=2 I/1 + IDfl 2 f + ' l / 1  + IDfl 2 

Differentiating (45) with respect to f +  l, we obtain a linear equation for h = Dn + i f :  

n+lE Di /(1 + [Df[2) t)ij -- D i f D J f  D hi 
id=2 [ (1 + l D f ie )  3/2 S J 

{ h } (46) 
= - - D " + l  Y"+' I/1 - t - IOf l  ~ 

D.+lh h h(Df" D(D.+i f  ) I 

= --  y,,+, t l l  + i h f l  2 - ( y , ,+ , )21 / i  + iO f l  2 - f + ' ( 1  + Ihfle)3/2j 

1 + IDf[ ~ + y "+ i (D f  . D (D .+ , f ) )  I D,,+lh 
=-- h (yn+, )2~ '~ i~'f12"[~7"~ J yn+l r + IDf l  2 
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1 
I f  we set 33 = (y2 . . . . .  f + l ) ,  b = 

yn+l f l  -~ [Ofl z ' 

.1 + IDf[ z + y"+IDf . D(D,,+lf) I 
a =  - ( - - F ' P  ( - f -4  j '  

and 
,,~1 (1 -}- [Df[ 2) t~q -- DifDy f 

Ai@,P) = j = 2  "(TT [D-fT?3 37T pj, we can write (46) as 

n+l 
f Z Ai@, Dh) DFf dfp = f {ah -- b D,+,h} cf d.~ 

i = 2  

for all ~0 E Cc(N,). 
In view of y~+l > 0 and Df(.vo) = 0 there is a neighborhood N~ of .Vo in 

which a@) ~ 0 holds. The strong maximum principle then implies in either case 
(i) or (ii) that h@) = 0 u C N~. Evidently this contradicts the continuity ofu.  [ ]  

We are indebted to Professor J. C. C. NITSCHE, Minneapolis, and Professor S. HIL- 
DEBRANDT, Bonn, for helpful conversations. The work was begun while J. BEMELMANS 
enjoyed the hospitality of the Mittag-Leffler Institute in Djursholm, Sweden; he thanks 
the institute and its director, Professor L. HORMANDER, for the excellent research faci- 
lities. 
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