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A fundamental result in scattering and potential theory in R3 states that the 
eigenvalues of the electrostatic integral operator lie in the interval [- 1, I), 
provided the surface of integration is sutliciently smooth. In the case of a sphere it is 
known that the eigenvalues lie in the interval [ - 1,O). In this paper the case when 
the surface is a prolate spheroid is considered. The eigenvalues of the electrostatic 
integral operator are calculated explicitly and it is proven that these eigenvalues 
also lie in the interval [ - l,O). 0 1986 Academic PESS, I~C. 

1. INTg00UcT10~ 

Plemelj [8] derived a fundamental result in the area of scattering and 
potential theory in R3 which states that the eigenvalues li of the elec- 
trostatic integral operator, which we denote by R, satisfy the following 
inequality: 

-1 </li< 1. (1-l) 

(Both our meaning of an eigenvalue and the exact definition of K’ will be 
given in Section 2.) 

Using an integral equations approach, Kleinman [S] has given a simple 
method for “optimally” solving exterior Neumann potential and low fre- 
quency scattering problems in R3 for the case when K’ has only non- 
positive eigenvalues. (For clarification of what is meant here by optimally 
see Kleinman [S] or the discussion of Kleinman’s method in 13, 
pp. 152-1531.) If on the other hand, there exist some positive eigenvalues 
of K’, then Kleinman has shown that the situation becomes far more dif- 
licult. In this latter case it can be shown that Kleinman’s method for 
optimally solving the exterior Neumann problem reduces to evaluating the 
supremum of the set of all positive eigenvalues of K’. Unfortunately, this 
supremum becomes a formidable task to compute. 

Apart from Plemelj’s result (1.1) and with the exception when the surface 
of integration for R is a sphere, explicit representations and information 
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about the location of the eigenvalues of K’ are not known. For the case of a 
sphere, however, it is known (e.g., see [3, p. 1531) that the eigenvalues of 
R are negative, and by a straightforward calculation it can be shown that 
the eigenvalues are given by 

&= - 1/(2i+ l), i = 0, 1) 2 )... . (1.2) 

In view of Kleinman’s results, there has been considerable interest in 
whether or not the sphere is the only geometry for which K’ has no positive 
eigenvalues. 

In the present note we make what we believe is an important con- 
tribution to that area of scattering and potential theory dealing with the 
location of the eigenvalues of the electrostatic integral operator. We 
calculate explicitly the eigenvalues of K’ for the case when the surface of 
integration for K’ is a prolate spheroid and demonstrate that they lie in the 
interval [ - 1,O). 

In the next section we give our notation and pertinent definitions and 
state some basic results which we will need. In Section 3 we consider the 
specific example of a prolate spheroid and calculate explicitly the eigen- 
values of K’. In the last section we show that these eigenvalues indeed lie in 
the interval [ - LO). 

2. NOTATION AND PRELIMINARY RESULTS 

In this section we give our notation and state some results which we 
shall require. Let Di be a bounded domain in R3 containing the origin, with 
a closed, simply connected C* boundary aD and let D, denote the region 
exterior to 6,. Let ri denote a unit normal on aD directed out of Di. Let x 
and y denote typical points in R3. Let @(x, y) be defined by 

qx, y):= -!- 1 
47cJx-yl’ 

x,y~R~,x#y. (2.1) 

We now define the following standard integral operators of potential 
theory: 

(2.2) 

(2.3) 

(2.4) 

(Ku)(x):= 2 j-, a;;;;;’ u(y) dS,, x E ao, 

(K’u)(r):=2j:lo~U(Y)dS,., XEaD, 

(Du)(x):= 2 ja, a;;;;;) u(y) dS,, x E R3\aD. 
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Let C(aD) denote the Banach space of complex-valued continuous 
functions defined on aD equipped with the maximum norm and let 
(C(aD), C(X))) denote the dual system with the bilinear form 

By interchanging the order of integration it can be shown that K and K’ 
are adjoint, that is, (KU, v) = (u, Rv). Furthermore, it can be shown 
(e.g., see [3, Theorem 2.301) that K and K’ are compact on C(aD). 

Let + and - denote the limits obtained for the double layer potential 
(Du)(x) by approaching the boundary aD from D, and Di, respectively, 
that is, 

(D+ U)(X)= lim (Du)(x,), (D-U)(X)= JhX (DU)(Xi)y XEaD. (2.6) x, + x 
-GE& X:ED, 

It can be shown (e.g., see [3, Theorem 2.13)) that for UE C(aD) 

(D, u)(x) = (Ku)(x) f u(x), XEaD, (2.7) 

where the integral (Ku)(x) exists as an improper integral. Consequently, we 
have 

Wb)=; C(D+ u)(x) + (D- u)(x)l, XEaD. (2.8) 

Let A denote any bounded linear operator mapping a Banach space X 
into itself. By an eigenvalue of A we mean a complex number A such that 
the nullspace N(IZ-A)# {0}, h w  ere Z denotes the identity operator. Let 
a(A) denote the spectrum of A. It is known (e.g., see [2, Chap. 181 or [3, 
Theorem 1.343) that if X is an infinite dimensional Banach space and if A 
is a compact linear operator then A = 0 lies in o(A) and c(A)\(O) consists 
of at most a countable set of eigenvalues, with A= 0 the only possible limit 
point. 

We now state the following important results of Plemelj alluded to in 
Section 1 (see [3, Theorem 5.11, [4, pp. 309-3101, or [8]): 

a(K)=a(K)c C-1,1); (2.9) 

dimN(Z+K)=dimN(Z+K’)=l. (2.10) 

In the subsequent sections we shall compute the eigenvalues of K for the 
case when aD is a prolate spheroid and obtain an inequality that these 
eigenvalues satisfy. In view of (2.9), the same results will be true for the 
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eigenvalues of the electrostatic integral operator K’. We choose to work 
with K rather than K’, because, for the case when aD is a prolate spheroid 
the direct computation of these eigenvalues is easier for K than it is for K’. 

3. CALCULATING THE EIGENVALUES FOR A PROLATE SPHEROIDAL SURFACE 

In this section we take the surface aD to be a prolate spheroid. We first 
give some basic results for this geometry and then determine the eigen- 
values of the integral operator K in this case. 

With respect to rectangular coordinates, the prolate spheroid is oriented 
with its axis of revolution along the z-axis and the origin at its geometric 
center. The relationship between the rectangular coordinates (yr, y,, y3) of 
the pointy and prolate spheroidal coordinates (4, 9, 4) is 

(3.1) 

(3.2) 

where d is the interfocal distance of the spheroid and 1 < 5 < cc, 
- 1 < q < 1, 0 < 4 6 27~. The surfaces 5 = constant represent confocal 
prolate spheroids. In terms of rectangular coordinates, the foci are at 
(0, 0, ) d/2) and the limiting case r = 1 is a degenerate case corresponding 
to the line segment between the foci. Let (c,, q,, 4,) and (5, q, 4) denote 
the prolate spheroidal coordinates of the points x and y, respectively. 
Finally, let ta denote the surface coordinate of our prolate spheroid aD. 

From (2.1) and [ 1 ] we have that 

(n-m)! 2 
@(x,y)=kd f i (-l)“e,(2n+l) - [ 1 (n+m)! 

cos 44 - 4J 
n=O m=O 

x K'(v) CYrl,) KY5 <) Q:t4,), (3.4) 

where 

c,=l, m=O (3.5) 

= 2, m = 1, 2,..., 

t < = min tt, L) and 5, = max (5,L) (3.6) 
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and f’ZW9 CW and QX) are the associated Legendre functions (see [6] 
or [7] for the definitions of these functions). Furthermore, it is known (see 
Cl11 

(3.7) 

2 [(<;- l)(+q2)]1’2drj d#. (3.8) 

For y E ao we have from (3.4) and (3.7) 

x cm 44 - 4x1 EYrl) EYVX) x XED,, 
XED~, 

(3.9) 

where the prime denotes differentiation with respect to the argument. 
Define 

CYr, d):= Wrl) cos 4, m,nEZ,O<m<n, (3.10) 

X(r, 4):= P:(v) sin 4, m,nEh,O<m6n,n>l. (3.11) 

For the convenience of the reader we list the following well-known 
orthogonality relations: 

s 
2n cos m(d - 4,) cos rd dq4 = 

271 cos mqh, 
m=r (3.12) 

0 Em ’ 

= 0, m # r, 

s 
2n cos m(d - 4,) sin rq3 dcj = IT sin mqS,, m=r= 1, 2...(3.13) 

0 

=o, m # r, 

5 
I 

CYv) C(v) 4 =f+&, n=s (3.14) 
-1 n .n 

= 0, n # s. 

From Eqs. (2.2), (2.8) and (3.8) through (3.14) it follows after some 
calculations that 

409:117.:1-13 
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where, dropping the subscript d, 

m (n-m)! 
Ln(O:=(-1) (n+m)! ~ (5’- 1) CC’(t) Q34)l’. (3.17) 

From (3.15) and (3.16) it follows that n,,(t) is an eigenvalue of the 
integral operator K with corresponding eigenfunctions C; and S;. Both C; 
and S; lie in our underlying Banach space C(aD). Moreover, the set of 
functions {C;, S; : m, n E Z, 0 < m < n} forms a complete orthogonal 
system in the Hilbert space L,(aD). Consequently, we have the following 
theorem: 

THEOREM 3.1. Let aD represent the surface of a prolate spheroid with 
surface coordinate 5. Let K: C(aD) -+ C(aD) be the compact linear operator 
defined in (2.2). Then the A,,(~)‘s defined in (3.17) are the only eigenvalues 
of K. 

Proof Suppose A* is an eigenvalue of K and let f * E C(aD) c L,(aD) 
be a corresponding eigenfunction. Furthermore, suppose A* #A,,,, for all 
m, n E Z, 0 Q m <n. From the completeness and the orthogonality of the 
set {C;, S;} it follows that 

f*= f. f (%mc':+Pmn~~) in L,(aD) (3.18) 
n=Om=O 

for suitably chosen constants CI,, and /Imn. 
From (3.15), (3.16) and (3.18) it follows that 

;l*f * = Kf * = f i Amn(amnC; + /?,,,,S;), 
n=O m=O 

(3.19) 

where the termwise action of K is justified by (2.6), (2.8) and the fact that 
the kernel of Du in (2.4) as a function of y is in L,(dD). 

Consequently, from (3.18) and (3.19) we have 

A*fLn = Ln%,, robin = LJL”~ m,nEZ,O<m<n (3.20) 

and this leads to a contradiction to the assumptions we have made about 
/I*. i 

4. AN INEQUALITY FOR THE EIGENVALUES L,,,,(t) 

In this section we show that the eigenvalues L,,(t) defined in (3.17) 
satisfy 

ho(~) = - 1, -1 <L(5)<0 for n > 0, (4.1) 
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where here and throughout this section it is understood that 1 < 5 and that 
m and n are integers such that 06 m <n. To this end we now establish 
some preliminary results which we shall require. 

From [7, p. 1651 we have the following Wronskian identity for the 
associated Legendre functions P;(t) and Q;(l): 

where 

From the definition of a Wronskian and (4.2) it can be seen that 

Q35) ’ [ 1 W 
- p;(r) = [P;(5)-j2= [P;($;I - 5’)’ 

(4.4) 

From the result in (4.4) and the asymptotic behavior of the associated 
Legendre functions at + co (e.g., see [7, p. 197]), it follows that 

After some calculations we obtain from (3.17), (4.2) and (4.5) 

MO = - 1+ 2(r2 - 1) f’:(5) P35)’ Itrn Ip,,,(x);(x2 _ l ). (4.6) 
n 

We now prove the following important theorem which will establish 
(4.1): 

THEOREM 4.1. Let P(t):= P;(c). Then 

oa2(C2-I)P(5)P’(C)~~~(X’-~P2~~~<1, r>L (4.7) 

where m and n are integers and 0 6 m < n, and where equality holds only for 
n = 0. 

Proof: From [7, p. 1741 we have 

P(5)= (<I- l)““P;m,“‘(g), (4.8) 

where PLm)(<) is the mth derivative of the nth order Legendre polynomial 
Pn(5). 
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For n = 0, P,(r) E 1, P;(r) E 0 and equality in (4.7) holds trivially. 
From now on suppose n > 0. Define the function F(t) by 

F(l):= cat’- 1) p(t) W5)l~ ‘. (4.9) 

From the asymptotic behavior of P(t) at + cc (see [7, p. 1971) we have 
lim c _ + o. I;( 5) = 0 and consequently 

F(5) = -y F(x) dx. (4.10) 
e 

Define the function O(t) by 

(4.11) 

Then from (4.9), (4.10) and (4.11) we have 

W5) = j: [-F(x) - (x2 _ If p2(x)] d-c 
= s oz [(x’-l)PP’]‘-2(x2-l)(P’)2~x 

2[(x2 - 1) PP’]2 . 
(4.12) 

5 

After some calculations, it can be seen that 

where 

and 

Q(x):= (x2 - 1) P’/P, x>l (4.14) 

N(x):=2[(x2- 1) P-J*, x> 1. (4.15) 

From the definitions (4.9) and (4.11) of F(5) and O(t), resepctively, it is 
seen that the statement of the theorem is equivalent to proving that 
D(t) > 0 for < > 1. Noting that N(x) > 0 for x > 1, it suflkes to show that 
Q’(x) > 0 for x > 1. 

From (4.8) and (4.14) we have 

lylmfl)(x) 
Q(x)=mx+(x2-11) pp)(x) (4.16) 

(4.17) 
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where this last step follows from Rodrigue’s formula (see [7, p. 2321) 

P,(x)=y [(x2-1)“]‘“‘. (4.18) 

From Leibnitz’s formula we have 

[(x2- l)n](n+m)= 1 9 [(x- l)“]“‘[(X+ l)“]‘“’ (4.19) 
r,s>O 

r+s=n+m 

=(n+m)! (x- l)+‘(x+ 1),-T 

After some manipulations we have 

[(x2- l)“]‘“+“‘=(n+m)! A(x), 

where 

and 

A(x):= c c,(x - l)‘(x + 1)” > 0, x>l 
r,s > 0 

r+.T=n-m 

n n 
C rs:= 00 > 0. 

r s 

Furthermore, from (4.20) we have 

(x2-1)[(x2-1)“](“+m+1)=(n+m)!(~2-1)A’(~) 

and after some calculations we find 

(x2 - 1) A’(x) = (n -m) xA(x) + B(x), 

where 

B(x):= 1 c,(r-s)(x- l)‘(x+ 1)“. 
r+s=n--m 

A formula similar to (4.24) holds for B(x). It is 

(x2 - 1) B’(x) = (n -m) xB(x) + C(x), 

where 

C(x):= c c,*(r - s)*(x - l)‘(x + 1)“. 
r+.T=n-m 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 
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From Eqs. (4.17), (4.20), (4.23) and (4.24) it follows that 

Q(x)=nx+$$ 
Consequently, 

Q’(x) = n + AB’-2BA’ 

and from (4.24), (4.26) and (4.29) we obtain 

Q,(x) = n + 4x1 C(x) - B2(x) 
(x2 - 1) A2(X) ’ 

x> 1. 

(4.28) 

(4.29) 

(4.30) 

From Eqs. (4.25) and (4.27) it is seen that B(x) = C(x) ~0, if m = n. 
Also, for UE R, we have from (4.21), (4.25) and (4.27) 

dA(X) +2&(x) + C(x) = 1 c,,(u + r - s)2(x - 1 )‘(x + 1)” > 0, 
r+&P=n-??? 

(4.31) 

if m <n and x> 1. Hence A(x) C(x) -B2(x) >O, since the roots 
u = ( -B + d-)/A of u*A + 2uB + C = 0 here cannot be real for any 
x> 1. Thus from (4.30) we have that Q’(x)>n>O for O<m<n, x> 1. 1 

From (2.9), (2.10), (4.6) and Theorem 4.1 we have the following 
theorem: 

THEOREM 4.2. Let aD be the surface of a prolate spheroid with surface 
coordinate < > 1. Then the eigenvalues A,,(<) of the integral operator K 
satisfy 

&o(5)= -1 and -1 <L,(~)<O 

for n>O, O<m<n. 

From this theorem and the fact that K is a linear compact operator on 
the infinite dimensional Banach space C(aD) and (2.9) we have the follow- 
ing result: 

THEOREM 4.3. Let aD be the surface of a prolate spheroid with surface 
coordinate r > 1. Then the spectrum of K and of K’ is given by 

o(K) = o(K) = {,I,,(<): m,n~h,O~m~n}u{O}, 

where the A,,,,( {)‘s denote the eigenvalues of K and are given in (3.17). 
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