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Abstract. We present a new method to construct an action functional for a field theory
described in terms of nonlinear partial differential equations (PDEs). The key idea relies on an
intrinsic representation of the PDEs governing the physical system relatively to a diffeomorphic
flow of coordinates which is assumed to be a functional of their solution. This flow, which will
be called the conjugate flow of the theory, evolves in space and time similarly to a physical fluid
flow of classical mechanics and it can be selected in order to symmetrize the Gâteaux derivative
of the field equations relatively to a suitable (advective) bilinear form. This is equivalent to
require that the equations of motion of the field theory can be derived from a principle of
stationary action on a Lie group manifold. By using a general operator framework, we obtain
the determining equations of such symmetrizing manifold for a second-order nonlinear scalar
field theory. The generalization to vectorial and tensorial theories is straightforward.
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1. Introduction

The problem of finding an action functional whose Euler-Lagrange equations correspond to a
prescribed set of partial differential equations (PDEs) is known as the inverse problem of the
calculus of variations and it has attracted the attention of researches for more than one century.
Perhaps, one the main reasons is that the formulation of a field theory in terms of an action
functional is very elegant and, more importantly, it allows us to establish an immediate connection
between symmetry principles and conservation laws [23, 32]. As is well known, the existence
conditions of an action functional can be put in a correspondence with the theory of irrotational
vector fields [26, 39, 43]. Essentially, if the path integral of the nonlinear operator representing
the field equations is independent on the trajectory of functions connecting two specified points
in a function space (i.e. in the domain of the nonlinear operator), then there exist a scalar field,
the action, whose variational derivative is stationary in correspondence of the field equations
of the theory. The path integral of an operator along a trajectory of functions is defined in
terms of a bilinear form [25, 41]. Thus, the solution to the inverse problem of the calculus of
variations, i.e. how to determine the action functional of a given set of PDEs, can be reduced to
looking for a bilinear form that makes a given nonlinear operator “irrotational”, if any. It has
been shown by Tonti [42] that there exist not just one but an infinite number of bilinear forms,
often depending on the field equations of the theory, that satisfy this requirement. Therefore,
an infinite number of action functionals can be constructed for a given set of PDEs. However,
the physical meaning of the corresponding action principle sometimes may be obscured by the
generalized bilinear forms that have to be adjusted on the specific problem. An alternative way
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to proceed is to select a specific bilinear form having a physical meaning, and then look for ways
of modifying the given field equations as to obtain a new problem which is potential with respect
to the chosen bilinear form. Among known methods devised to do so, we recall the method of
adding the adjoint equations [30, 15, 27, 20] and the integrating operator method of Tonti [42].

The purpose of this paper is to introduce a new approach to construct an action functional
for an arbitrary field described in terms of nonlinear partial differential equations . The key idea
relies on an intrinsic representation of the field equations relatively to a flow which is assumed
to be a functional of their solution. This flow will be called the conjugate flow of the theory.
Let us briefly describe the main ideas that led us to introduce this conjugate flow and, more
importantly, their relevance in the context of known physical systems. To this end, we first
notice that flows of coordinates being functionals of the solution to a field equation or a system
of field equations arise naturally in many areas of mathematical physics. Perhaps, the most
relevant example is in the context of classical fluid mechanics, where the set of fluid element
trajectories in space is related to the velocity field that solves, e.g., the Navier-Stokes equations
[1, 2]. This flow of curvilinear coordinates is known as Lagrangian coordinate system and it is
obtained by integrating the definition of the velocity field [46]. In this sense, physical fluid flow
of classical mechanics can be considered as a very particular type of conjugate flow. Another
example is the free-falling coordinate system [49] in the Einstein’s theory of gravitation. The
conjugate flow here appears as a geodesic flow [23] in a four-dimensional Riemannian manifold
whose metric is determined by a particular distribution of energy and momentum through the
Einstein’s field equations.

In both examples above, the relation between the solution to the field equations of the
physical system and the flow of curvilinear coordinates is known and it reduces to the definition
of the velocity field in the case of Navier-Stokes equations and to the definition of geodesics in
the case of Einstein’s theory of gravitation. In a broader framework, however, such functional
relation may be left unspecified. This key observation provides us with an infinite number of
functional degrees of freedom (those associated with the conjugate flow) that can be selected,
e.g., by requiring that the field theory, expressed in conjugate flow intrinsic coordinates, is
derivable from a principle of stationary action. In other words, we are posing the following
fundamental question: does it exist a functional flow of curvilinear coordinates such that if we
represent the given set of field equations relatively to that flow then an action functional can be
constructed? This is equivalent to look for a representation of the field equations on a Riemannian
manifold [7, 34] that depends on their solution, in such a way that the Gâteaux derivative of
the nonlinear operator associated with the field equations (in intrinsic coordinates) is symmetric.
This formulation of the inverse problem of the calculus of variations brings together concepts
of differential geometry and nonlinear functional analysis and, as we will see, it results in the
formulation of new types of action principles generalizing those ones based on specific functional
flows of coordinates, such as the Herivel-Lin principle [19, 11, 6].

This paper is organized as follows. In section 2 we introduce the theory of the conjugate
flow and we characterize the group of infinitesimal perturbations by using methods of nonlinear
functional analysis. The representation of arbitrary nonlinear field equations in terms of
conjugate flow intrinsic coordinates is discussed in section 3. Section 4 deals with the existence
of a principle of stationary action in the context of conjugate flow variations. Formal symmetry
conditions and corresponding determining equations for the conjugate flow are finally obtained
and discussed in section 5 for second-order nonlinear scalar field equations.
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Figure 1. Sketch of the transport phenomenon of a volume of particles labeled by σµ

according to two different realizations of the conjugate flow x̂µ(σν ; uj), namely, x̂µ(σν ; uj
1)

and x̂µ(σν ;uj
2). Shown are the trajectories of two different particles labeled as σ1 and σ2. In

this sketch, the time coordinate is not transformed, i.e. we have x̂0 = σ0 = t.

2. The conjugate flow

Conjugate flow is an intuitive physical notion which is represented mathematically by a
continuous point transformation of (n + 1)-dimensional (n denotes the number of spatial
dimensions) Euclidean or Riemannian space into itself. In order to set up this transformation, let
us consider a particle labeled by σν (ν = 0, .., n, 0 being the temporal component) and represent
its trajectory in a fixed space-time Cartesian system as

xµ = x̂µ
(
σν ;uj

)
, µ, ν = 0, .., n, (1)

where uj (j = 1, ..., N) is a vector field that solves a prescribed system of field equations. The
transformation (1) is assumed to be invertible (with differentiable inverse) and eventually to
possess even continuous derivatives up to a prescribed order except possibly at certain singular
surfaces, curves or points. These requirements make (1) a diffeomorphism, i.e. a time-dependent
flow of curvilinear coordinates [46, 28, 37, 38, 24] whose motion in space resembles in toto a
physical fluid flow of classical mechanics. In figure 1 we sketch two realizations of the conjugate
flow (1) for two different solutions fields corresponding, e.g., to different boundary or initial
conditions.

Coordinate flows being functionals of the solution to a field equation are obviously not
new in the scientific literature. For instance, in the context of symmetry analysis of partial
differential equations the so-called non-classical symmetries [5] are remarkable examples of
solution-dependent transformations. Similarly, in classical Lagrangian fluid dynamics the
trajectories of the fluid elements in space are obtained as local functionals of the velocity
field U j

(
xk, t

)
that solves, e.g., the Navier-Stokes equations (xk is a fixed Cartesian coordinate

system)

∂U j

∂t
+ Uk ∂U

j

∂xk
= − ∂P

∂xk
+

1

Re

∂2U j

∂xk∂xk
,

∂Uk

∂xk
= 0, k, j = 1, .., n. (2)

Such functional relation is defined by the solution to the well-known problem

∂X̂j(σi, t)

∂t
= U j

(
X̂k(σi, t), t

)
, X̂j(σi, t0) = σj . (3)
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Note that the physical fluid flow X̂j can be considered as a very particular type of conjugate
flow since it is functionally dependent on the solution to Eq. (2) by means of Eq. (3). Another
conjugate flow which is different from the physical fluid flow may be defined, e.g., by solving

∂X̂j(σi, t)

∂t
= U j

(
X̂k(σi, t) +Bω(σi, t), t

)
, X̂j(σi, t0) = σj . (4)

where Bω(σi, t) is a realization of a space-time Brownian motion. A remarkable result by Gomes
[17] shows that ensemble averaging - over random Bω - of diffeomorphisms of type (4) allows to
construct a variational principle for the Navier-Stokes equations.

2.1. Infinitesimal flow perturbations

The components of the vector field uj appearing in Eq. (1) are, by definition, Cartesian
components expressed in terms of conjugate flow intrinsic coordinates σν . In other words, if we
denote by U j(xµ) the Cartesian components of the solution to a prescribed set of field equations
expressed in Cartesian coordinates (e.g. Eqs. (2)), then uj are defined as

uj(σν)
def
= U j(x̂µ(σν)). (5)

We remark that these are not the tensorial components [1, 44] of the vector field. Let us consider
an infinitesimal perturbation of uj in the form

uj(σν) + εϕj(σν), for ε→ 0. (6)

Then, to the first-order in ε, we obtain the following perturbation in the conjugate flow
trajectories (1)

x̂µ(σν ;uj + εϕj) # x̂µ(σν ;uj) + ε
δx̂µ

δuj
ϕj , (7)

where, by definition

δx̂µ

δuj
ϕj def

= lim
ε→0

x̂µ(σν ;uj + εϕj)− x̂µ(σν ;uj)

ε
. (8)

The quantity δx̂µ/δuj is known as Gâteaux derivative [45] of the functional x̂µ with respect to
uj and under rather weak requirements [31] it is a continuous linear operator. The perturbed
flow x̂µ(σν ;uj + εϕj) is schematically depicted in figure 2 and it is assumed to have the same
regularity properties of the unperturbed one, i.e. invertibility and continuous derivatives up to
prescribed order in all variables.

Let us now postulate that the solution field uj is also functionally connected to the conjugate
flow x̂µ and let us denote this functional relation by uj(σν ; x̂µ). This fundamental assumption

implies that an infinitesimal flow perturbation x̂µ + εφ̃µ induces the following variation in the
solution field uj

uj(σν ; x̂µ + εφ̃µ) # uj(σν ; x̂j) + ε
δuj

δx̂µ
φ̃µ, (9)

where, in analogy with Eq. (8), we have defined the Gâteaux differential as

δuj

δx̂µ
φ̃µ

def
= lim

ε→0

uj(σν ; x̂j + εφ̃µ)− uj(σν ; x̂j)

ε
. (10)

In the context of the Navier-Stokes equations, this means that a perturbation in the conjugate
flow x̂j determines - by assumption - a perturbation in the velocity field U j that solves Eq. (2).
This ultimately results in a perturbation of the physical fluid flow X̂j by means of Eq. (3). In
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Figure 2. Conjugate flow perturbation x̂µ + εφ̂µ induced by a field perturbation uj + εϕj

and corresponding deformation of the volume of particles σν transported by the flow.

other words, by perturbing the conjugate flow in this case we are actually perturbing the physical
fluid flow. At this point it is convenient to set

ϕ̃j =
δuj

δx̂µ
φ̃µ, (11)

φ̂µ =
δx̂µ

δuj
ϕj (12)

and write Eq. (7) and Eq. (9) as

uj(σµ; x̂ν + εφ̃ν) # uj (σµ; x̂ν) + εϕ̃j (σµ; x̂ν) , (13)

x̂µ
(
σν ;uj + εϕj

)
# x̂µ

(
σν ;uj

)
+ εφ̂µ

(
σν ;uj

)
. (14)

Note that in these equations we have φ̂µ $= φ̃µ and ϕj $= ϕ̃j . In fact, if we arbitrarily perform
a simultaneous perturbation of uj and x̂µ we cannot obviously expect that, in general, the
functional disturbances arising from the Gâteaux differentials (11) and (12) coincide with the
perturbations at the left hand side of Eqs. (13) and (14). This immediately leads us to the
question of which variable between uj and x̂µ should be chosen as independent when performing
perturbations. In the sequel we will be mostly concerned with perturbations induced in the
conjugate flow x̂µ through a variation of the solution field uj, i.e. we will mostly employ Eq.
(14), although the other approach, i.e. the one based Eq. (13), can be equivalently considered.

3. Conjugate flow representation of field equations

Several field equations of mathematical physics, remarkably the fluid mechanics equations,
include naturally the concept of a conjugate flow within their formulation. Such a flow usually
has a direct physical interpretation, e.g., trajectories of fluid elements in space, and it often
constitutes the ground work on which dynamical results are constructed [1, 2]. Many other
equations, however, do not include explicitly any term having a direct reference to a conjugate
flow. This is the case, for example, of the classical heat equation, the Maxwell’s equations of
electrodynamics, the laws of elasticity and, undoubtedly, many others. The fundamental question
at this point is whether it is possible to formulate a law that include both the field equations
and the conjugate flow and allows to study their interaction, e.g., in the context of the principle
of stationary action. The answer is affirmative and the simplest way to achieve this result is to
represent the field equations relatively to a coordinate system which is advected by the conjugate
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flow, namely, coordinates σν . In other words, we represent the partial differential equations
governing the physical system on a curvilinear manifold which is assumed to be functionally
dependent on their solution.

This procedure obviously introduces a functional dependence in the form of the field
equations from their solution. As a consequence, the equations look completely different in
conjugate flow intrinsic coordinates and, in general, they are highly nonlinear. For example, by
using the mathematical tools of Appendix A, it can be show that the classical one-dimensional
heat equation

∂U

∂t
− α

∂2U

∂x2
= 0, (15)

where U(x, t) denotes the temperature in fixed Cartesian coordinates, can be written in terms
of conjugate flow intrinsic coordinates as

∂u

∂t
− 1

∂x̂/∂σ

∂u

∂σ

∂x̂

∂t
− α

(∂x̂/∂σ)3

(
∂x̂

∂σ

∂2u

∂σ2
− ∂2x̂

∂σ2

∂u

∂σ

)
= 0, (16)

where the flow x̂ is a functional of u. For illustration purposes, here we have assumed that
the time variable is not transformed, i.e. we have set x̂0 = σ0 = t. By examining Eq. (16)
under the conjugate flow perspective we see that a perturbation in the field u (σ, t) induces also a
perturbation in conjugate flow x̂ (σ, t;u) (see Eq. (14)) and therefore the perturbed equation in
conjugate flow intrinsic coordinates includes many terms arising from the perturbations of both
u and x̂. Clearly, if the conjugate flow is in rest with respect to the fixed Cartesian coordinate
system then Eq. (16) coincides with Eq. (15), although the effects of the aforementioned
functional perturbations are still present.

The conjugate flow representation of a field equation is obviously much more complex than
a standard formulation in fixed Cartesian coordinates. This has been observed, e.g., by Temam
[36], in the context of the Lagrangian representation of the Navier-Stokes equations. He pointed
out that “the Lagrangian representation is not used too often because the Navier-Stokes equations
in Lagrangian coordinates are highly nonlinear”. Indeed, by using the results of Appendix A, it
can be shown that these equations can be written in general conjugate flow intrinsic coordinates
as

∂uj

∂σν
Aν0 + uk ∂u

j

∂σν
Aνk = − ∂p

∂σν
Aνj +

1

Re

(
∂2uj

∂σλ∂σρ
AρkA

λ
k +

∂uj

∂σλ
∂Aλk
∂σρ

Aρk

)
, (17)

where the quantities Aµ
ν , defined in Eq. (A.6), are rather complex functionals of x̂µ. Clearly,

when the coordinate system σµ is advected exactly by the physical fluid flow, i.e. when the
functional link between uj and x̂j is defined by Eq. (3), then Eq. (17) coincides with the
Lagrangian representation of the Navier-Stokes equations.

3.1. Functional setting

Let us associate with the physical system the linear function space U , whose elements are the
N -tuples u =

(
u1, .., uN

)
. Similarly, let us also consider the configuration space X , whose

elements, denoted as x̂ =
(
x̂0, .., x̂n

)
, represent (n+ 1)-dimensional conjugate flows, n being the

number of spatial dimensions. In general, the configuration space is not a linear space because
the summation of two conjugate flows is not a conjugate flow. This is due to the fact the
superimposition of two invertible flows may not be invertible (the summation of two invertible
Jacobian matrices is not necessarily invertible). However, the requirement that the perturbed
conjugate flow has the same properties of the unperturbed one, i.e. it is still a diffeomorphism, is
equivalent to state that locally, i.e. in the neighborhood of a particular flow x̂, the configuration
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space X is linear or can be linearzed. In this sense we can say that the configuration space X is
locally linear. Given this, an arbitrary field equation (or a system of field equations) written in
terms of conjugate flow intrinsic coordinates can be synthesized as

Nx̂ (u) = ∅V , (18)

where Nx̂ is, in general, a nonlinear operator while ∅V denotes the null element of a third
topological linear space V . The subscript x̂ in Nx̂ reminds us that the operator is defined in
terms of conjugate flow intrinsic coordinates σν , i.e. on the manifold x̂. For example, Eq. (16)
can be written in the form (18) by defying Nx̂ as

Nx̂ (u)
def
=

∂u

∂t
−

1

∂x̂/∂σ

∂u

∂σ

∂x̂

∂t
−

α

(∂x̂/∂σ)3

(
∂x̂

∂σ

∂2u

∂σ2
−
∂2x̂

∂σ2

∂u

∂σ

)
. (19)

The domain of the nonlinear operator Nx̂, is a space of functions satisfying the initial or the
boundary conditions of the problem. In the conjugate flow theory, however, the operator Nx̂(u)
acts on both u and x̂ and therefore it implicitly identifies two different domains, one within the
space of fields U and the other one within the configuration space X . These two domains will be
denoted by DU (Nx̂) ⊆ U and DX (Nx̂) ⊆ X , respectively (see figure 3). The range of the operator
Nx̂ will be denoted by R(Nx̂) ⊆ V . The next fundamental step in the functional setting of the
conjugate flow theory of field equations is to introduce duality parings between the linear spaces
U , V and the locally linear one X through non-degenerate local bilinear forms [47, 26]. To this
end, let us define

〈·, ·〉u : V × U → R, (20)

〈·, ·〉x̂ : V × X → R. (21)

The subscripts u and x̂ in Eqs. (20) and (21) emphasize the fact that such forms depend also on
u and x̂, respectively (in a possibly nonlinear way). An explicit expression of (20) will be given
in section 4.2. For the moment we simply observe that, locally, the forms (20) and (21) can be
put in a correspondence through the linear transformations defined by Eqs. (11) and (12). In
fact, as shown in figure 3, the elements of DU(Nx̂) in the neighborhood of a certain u are in
correspondence with the elements of DX (Nx̂) in the neighborhood of a certain x̂. In practice,
such a correspondence can be established locally through the linear operators δu/δx̂ and δx̂/δu.
For instance, by using Eq. (11) we obtain

〈v, ϕ̃〉u = 〈v,
δu

δx̂
φ̃〉u = 〈v, φ̃〉x̂. (22)

We shall conclude this section by explaining why we have chosen the definition “conjugate flow”
for the transformation (1). To this end, we recall that the Gâteaux differential of x̂ with respect
to u defines a linear functional from the space U to the space X ≡ U†, which is the conjugate
space of U . Thus, for every admissible u ∈ U , the flow x̂ belongs to the conjugate space of
U , hence the definition “conjugate flow”. In a broader sense, the adjective “conjugate” simply
emphasizes that there exist a functional relation between the flow x̂, the dynamic equations N of
the field theory and their solution u. We also remark that a definition of conjugate flow already
appeared in the scientific literature [3, 4], as “a flow uniform in the direction of streaming which
separately satisfy the hydrodynamical equations”. This definition, however, is clearly different
from ours.

3.2. Perturbation expansions

By employing the operatorial approach developed in the previous section we can easily synthesize
in a single operator equation the perturbative form of an arbitrary nonlinear field equation
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Figure 3. Sketch of the function spaces employed for the functional setting of the conjugate
flow theory. Shown are the domains DU (Nx̂) ⊆ U and DX (Nx̂) ⊆ X of the nonlinear operator
Nx̂ representing the field equations. The range of Nx̂ is denoted by R(Nx̂) ⊆ V . We also show

the correspondence between field perturbations (u+εϕ), conjugate flow perturbations (x̂+εφ̂)
and corresponding perturbations induced in the field equations (N

x̂+εφ̂
(u+ εϕ)) relatively to

a specific representation (u, x̂, Nx̂). The local bilinear forms that put the various spaces in
duality are indicated in between the sets.

(or a system of nonlinear equations) in the presence of a conjugate flow perturbation, i.e. a
simultaneous perturbation of both the solution field and conjugate flow. To the first-order in ε
we have

N
x̂+εφ̂

(u+ εϕ) = Nx̂ (u) + ε

[
δNx̂

δu
ϕ+

δNx̂

δx̂
φ̂

]
+ · · · , (23)

where the Gâteaux differentials appearing in Eq. (23) are defined as

δNx̂

δu
ϕ

def
= lim

ε→0

Nx̂ (u+ εϕ)− Nx̂ (u)

ε
, (24)

δNx̂

δx̂
φ̂

def
= lim

ε→0

N
x̂+εφ̂

(u)− Nx̂ (u)

ε
, (25)

provided that such limits exist. A function space representation of the conjugate flow
perturbation is sketched in figure 3.

4. Conjugate flow action functionals

Let us consider a field u ∈ DU(Nx̂) and a conjugate flow x̂ ∈ DX (Nx̂). The couple (u, x̂) does
not necessarily have to be a solution to the field equation, i.e. Nx̂(u) $= ∅V . Disregarding the
particular form of the operator Nx̂, it is useful to consider

v = Nx̂ (u) ∈ R(Nx̂) (26)

as a definition two vector fields [31]: one in DU (Nx̂) and the other oneDX (Nx̂), respectively. This
allows us to introduce in a conceptually simple way the notion of a line integral of an operator
according to a geometric standpoint which seems originally due to Volterra [48]. To this end, let
us consider a one-parameter family of fields in the domain DU(Nx̂)

u = uλ (0 ≤ λ ≤ 1) . (27)



Conjugate flow action functionals 9

This can be regarded as a line in the function space DU(Nx̂). With such line we can associate
the number

*u =

∫ 1

0

〈Nx̂ (uλ) ,
∂uλ
∂λ

〉uλ
dλ, (28)

i.e. the path integral of the operator Nx̂ along the trajectory of functions uλ ∈ DU (Nx̂). We
recall that 〈·, ·〉u in (28) denotes the local bilinear form (20). In the context of the conjugate flow
theory, we can also define the path integral of the operator Nx̂ along a trajectory of flows x̂λ in
the space DX (Nx̂), i.e.

*x̂ =

∫ 1

0

〈Nx̂λ
(u) ,

∂x̂λ
∂λ

〉x̂λ
dλ, (29)

where 〈·, ·〉x̂ denotes the local bilinear form (21). Therefore, we can define an infinitesimal
circulation of an operator around a certain field u as well as around a certain conjugate flow x̂,
these circulations being of course related by Eqs. (11) and (12). If the line integrals (28) and
(29) are independent of the path of integration then the operator Nx̂ is said to be potential with
respect to the chosen local bilinear form. In this case the line integral from a prefixed element
u0 to any element u in the domain of Nx̂ along an arbitrarily chosen path defines the action
functional

Au [u] = Au [u0] +

∫ 1

0

〈Nx̂ (uλ) ,
∂u

∂λ
〉uλ

dλ. (30)

Similarly, the line integral from a prefixed conjugate flow x̂0 to another flow x̂ along an arbitrarily
chosen line x̂λ defines another (dual) action functional

Ax̂ [x̂] = Ax̂ [x̂0] +

∫ 1

0

〈Nx̂λ
(u) ,

∂x̂λ
∂λ

〉x̂λ
dλ. (31)

In turn, the operator Nx̂ is said to be the gradient of the functionals Au[u] or Ax̂[x̂]. This
definition relies on the fact that if we calculate an infinitesimal line integral by using u or x̂ as
independent variable then we obtain, respectively,

δAu [u] = 〈Nx̂ (u) , δu〉u, δAx̂ [x̂] = 〈Nx̂ (u) , δx̂〉x̂. (32)

The relations (32) show that the equations of motion of the system, i.e. Nx̂ (u) = ∅V , can
be obtained as as a stationary point of either Au[u] or Ax̂[x̂], for arbitrary variations δu and
δx̂, respectively. Thus, the theory of conjugate flows allow us to look for action functionals
associated with field equations in two different ways, depending on which variable between u or
x̂ is assumed as independent. Clearly, if we consider u as independent then we are looking for the
set of conjugate flows such that the field equation is potential. On the contrary, if we consider
the conjugate flow x̂ as independent then we are looking for the set of fields u such that the
field equation is potential. In the sequel we will be mostly concerned with conjugate flows action
functionals where the field u is considered as independent variable.

4.1. Existence conditions

In order to formulate the existence conditions of conjugate flow action functionals we follow the
approach of Magri [26]. To this end, we consider two infinitesimal trajectories (two infinitesimal
straight lines) of the field u in the function space DU(Nx̂)

I : u → u+ εϕ

II : u → u+ νψ
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Correspondingly, we have the following infinitesimal conjugate flow perturbations

I : x̂ → x̂+ εφ̂

II : x̂ → x̂+ νη̂

where φ̂ and η̂ are related to the field perturbations ϕ and ψ in the sense of Eq. (12). Due
to this fundamental relation, an infinitesimal circulation of the operator Nx̂ around the element
u ∈ DU(Nx̂) is associated with an infinitesimal circulation of Nx̂ around a flow x̂ ∈ DX (Nx̂).
The vanishing of these simultaneous circulations with respect to the local bilinear form (20) is
synthesized by the condition

〈Nx̂ (u) , εϕ〉u + 〈Nx̂+εφ̂ (u+ εϕ) , νψ〉u+εϕ =

〈Nx̂ (u) , νψ〉u + 〈Nx̂+νη̂ (u+ νψ) , εϕ〉u+νψ . (33)

To the second-order in ε and ν we have

〈Nx̂+εφ̂ (u+ εϕ) , νψ〉u+εϕ = 〈Nx̂ (u) ,ψ〉u +

εν〈δNx̂

δu
ϕ+

δNx̂

δx̂
φ̂,ψ〉u + εν〈ϕ;Nx̂(u),ψ〉u, (34)

where

〈ϕ; v,ψ〉u
def
= lim

ε→0

〈v,ψ〉u+εϕ − 〈v,ψ〉u
ε

(35)

denotes the Gâteaux differential of the local bilinear form (20), considered as a particular type
of nonlinear operator on u. A substitution of Eq. (34) into Eq. (33) gives

〈
δNx̂

δu
ϕ+

δNx̂

δx̂
φ̂,ψ〉u + 〈ϕ;Nx̂(u),ψ〉u =

〈
δNx̂

δu
ψ +

δNx̂

δx̂
η̂,ϕ〉u + 〈ψ;Nx̂(u),ϕ〉u. (36)

Finally, by using Eq. (12) we can write the vanishing condition of the infinitesimal circulation
entirely in terms of field perturbations ψ and ϕ as

〈Gx̂ϕ,ψ〉u + 〈ϕ;Nx̂(u),ψ〉u = 〈Gx̂ψ,ϕ〉u + 〈ψ;Nx̂(u),ϕ〉u, (37)

where the linear operator Gx̂ is defined as

Gx̂
def
=

δNx̂

δu
+
δNx̂

δx̂

δx̂

δu
. (38)

Thus, if the circulation vanishes along any infinitesimal closed line in DU(Nx̂) then Eq. (37)
must hold for every ϕ, ψ and for all admissible u. This is the necessary condition for operators
to be potential with respect to the local bilinear form (20). If the domain of the operator Nx̂ is
simply connected, then this condition is also sufficient. The happens, for example, when DU(Nx̂)
is defined by linear homogeneous initial or boundary conditions (in this case DU (Nx̂) is a convex
set). We notice that Eq. (37) includes also interesting subcases. For example, if the flow x̂ is
not a functional of u then we have

〈δNx̂

δu
ϕ,ψ〉u + 〈ϕ;Nx̂,ψ〉u = 〈δNx̂

δu
ψ,ϕ〉u + 〈ψ;Nx̂,ϕ〉u. (39)

In addition, if the bilinear form 〈·, ·〉u does not depend on u, i.e. if we are dealing with a global
bilinear form, then the potential theory coincides with the classical theory of Vainberg [45]. In
this case the condition (37) reduces to

〈δNx̂

δu
ϕ,ψ〉 = 〈δNx̂

δu
ψ,ϕ〉, (40)

namely, the Gâteaux derivative of the operator Nx̂ must be symmetric with respect to the bilinear
form 〈, 〉.
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4.2. The local bilinear form defining the conjugate flow action functional

In classical, relativistic and quantum field theories the action functional has the standard form
[22, 23, 49]

A =

∫
L√gdσ. (41)

where L denotes a Lagrangian density, g is the determinant of the metric tensor and
√
gdσ is

the invariant space-time volume element (dσ being a shorthand notation for dσ0dσ1 · · · dσn).
We recall that the square root of the metric tensor determinant is equal to the Jacobian
determinant J of the transformation from fixed Cartesian to conjugate flow intrinsic coordinates
(see Appendix A for further details). A comparison between Eq. (41) and Eq. (30) suggests
that the local bilinear form to be considered for the conjugate flow formulation of the inverse
problem of the calculus of variations is

〈a, b〉u
def
=

∫

Σ

abJdσ, a ∈ U , b ∈ V (42)

where the Jacobian determinant J is a rather complex functional of x̂ (see Eq. (A.5)). The
domain Σ appearing in the integral (42) is a four-dimensional volume of particles σν advected
by the conjugate flow (see figure 1 and figure 2). The form (42) generalizes the bilinear form
appearing in the Herivel-Lin variational principle [19, 6, 11, 35], where the volume of particles is
advected precisely by the physical fluid flow. Note also that (42) is symmetric, non-degenerate
and non-negative, i.e., it satisfies all the properties of an inner product. By using Eq. (A.21) we
obtain the following Gâteaux derivative

〈ϕ; a, b〉u
def
=

d

dε
[〈a, b〉u+εϕ]ε=0

=

∫

Σ

abJ∇ · φ̂dσ (43)

where, according to Eq. (12), φ̂ is a linear functional of ϕ, i.e. (43) is a trilinear form in a, b and
ϕ.

4.3. Incompressible flow perturbations

Let us assume that the divergence of the perturbation field φ̂ appearing in Eq. (43) vanishes.
Under this assumption the symmetry condition (37) simplifies to

〈Gx̂ϕ,ψ〉u = 〈Gx̂ψ,ϕ〉u. (44)

Equation (44) basically requires the symmetry of Gx̂ relatively to the local inner product (42).
Thus, the application of the conjugate flow theory to the inverse problem of the calculus of
variations is now reduced to look for an incompressible four-dimensional flow of curvilinear
coordinates that symmetrizes the operator Gx̂.

5. Symmetrizing flows

A field equation is said to be formally symmetric when the operator symmetry condition, e.g.
Eq. (44), is satisfied disregarding the particular form of the boundary or the initial conditions
associated with the problem. Clearly, when the domain of the operator Nx̂ is formed by a set of
functions satisfying local homogeneous boundary and initial conditions then formal symmetry is a
necessary condition for symmetry. Such a condition, however, is not sufficient even in the case of
homogeneous boundaries [13]. In any case, it is useful to establish formal symmetry conditions
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for particular classes of field equations. This has been done by Tonti [39, 40] using classical
inner products in fixed Cartesian coordinates. In this section we obtain similar conditions in
the context of conjugate flow variations. To this end, let us consider the following second-order
nonlinear scalar field equation

Nx̂(u) = f
(
u;u,µ;u,µν ; x̂

µ
,ν ; x̂

µ
,νλ

)
= 0, (45)

where the comma denotes partial differentiation with respect to σµ (µ = 0, .., 3), i.e. u,µ
def
=

∂u/∂σµ. The Gâteaux differential of Eq. (45) is obtained as

δNx̂

δu
ϕ+

δNx̂

δx̂
φ̂ =

∂f

∂u
ϕ+

∂f

∂u,µ
ϕ,µ +

∂f

∂u,µν
ϕ,µν +

∂f

∂x̂µ
,ν
φ̂µ,ν +

∂f

∂x̂µ
,νλ

φ̂µ,νλ. (46)

The conjugate flow perturbation φ̂µ is related to the field perturbation ϕ by Eq. (12). We remark
that, in general, such transformation could involve both derivatives and integrals. For example,
it could be in the form

φ̂µ =

∫

Σ

Kµ(σν ;u)ϕd4σ +Aµ (u;σν)ϕ+Qµ
λ (u;σ

ν)ϕ,λ . (47)

The choice of the functional dependence between φ̂µ and ϕ is actually a matter of investigation
when looking for a conjugate flow variational principles. In this section we shall limit ourselves
to algebraic flows, i.e. flows that can be expressed in the form

xµ = x̂µ (σν ;u) , (48)

where the functions x̂µ (to be determined) are local functionals of u, i.e. they do not involve

integrals of the field u. Under these assumptions, the flow perturbation φ̂µ is easily obtained as

φ̂µ =
∂x̂µ

∂u
ϕ. (49)

At this point we set

aµ
def
=

∂x̂µ

∂u
, (50)

bµν
def
= aµ,ν +

∂aµ

∂u
u,ν , (51)

cµνρ
def
= bµν,ρ +

∂bµν
∂u

u,ρ. (52)

This allows us to write the conjugate flow perturbation and its partial derivatives as

φ̂µ = aµϕ, (53)

φ̂µ,ν = bµνϕ+ aµϕ,ν , (54)

φ̂µ,νρ = cµνρϕ+ bµνϕ,ρ + bµρϕ,ν + aµϕ,νρ. (55)

Remarkably, the derivative order of φ̂µ is the same as that of ϕ. In other words, the kth-order
derivative of u with respect to σν involves the kth-order derivative of x̂µ (see Eqs. (A.14) and
(A.15)). This is why we have included the second-order derivative of the conjugate flow in the
second-order scalar field equation (45). The symmetry condition (44) can be now explicitly
written as ∫

Σ

ψHϕJdσ +

∫

Σ

ψBµϕ,µJdσ +

∫

Σ

ψF ρνϕ,ρνJdσ =
∫

Σ

ϕHψJdσ +

∫

Σ

ϕBµψ,µJdσ +

∫

Σ

ϕF ρνψ,ρνJdσ, (56)
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where H , Bµ and F ρν are obtained as

H =
∂f

∂u
+

∂f

∂x̂µ
,ν
bµν +

∂f

∂x̂µ
,νρ

cµνρ, (57)

Bν =
∂f

∂u,ν
+

∂f

∂x̂µ
,ν
aµ +

(
∂f

∂x̂µ
,νρ

+
∂f

∂x̂µ
,ρν

)
bµρ , (58)

F ρν =
∂f

∂u,νρ
+

∂f

∂x̂µ
,ρν

aµ. (59)

Next, we integrate by parts the integrals at right hand side of Eq. (56) and we neglect all the
boundary terms (we are looking for formal symmetry). By using the identity (A.22) we obtain,
for instance ∫

Σ

ϕBµψ,µJdσ = −
∫

Σ

ψBνϕ,νJdσ −
∫

Σ

ψBν
,νϕJdσ −

∫

Σ

ψBνΓµ
µνϕJdσ, (60)

where Γαµν denotes the affine connection of the conjugate flow. Proceeding similarly with the
other terms at the right hand of Eq. (56), we conclude that the formal symmetry requirement
is satisfied if and only if

F νρ = F ρν , (61)

Bµ = Fµρ
,ρ + ΓννρF

µρ, (62)

Bµ
,µ = F νρ,ρν + 2Γµ

µνF
νρ
,ρ + ΓββνΓ

µ
µρF

νρ + Γµ
µρ,νF

νρ − Γµ
µνB

ν . (63)

A differentiation of Eq. (62) with respect to σµ and subsequent substitution in Eq. (63) yields
the single relation

(
F νρ,ρ + ΓββρF

ρν −Bν
)
Γµ
µν = 0, (64)

which is equivalent to the following system of determining equations for the conjugate flow

F νρ,ρ + ΓββρF
ρν = Bν . (65)

The system (65) defines the relation x̂µ(σν ;u), i.e. the Lie group manifold that guarantees the
existence of a principle of stationary action for the field equation (45). Once x̂µ(σν ;u) is available,
the action functional of the field theory can be explicitly constructed by calculating the integral
(30) along an arbitrary trajectory of admissible functions uλ. This yields an action of type (41).

We notice that if we remove the functional link between x̂µ and u, then the conditions (65)
consistently reduce to those of Tonti [39, 40]. In order to see this, we simply set aµ, bµν equal
to zero in Eq. (58) and Eq. (59) and then substitute them into Eq. (65). The result in fixed
Cartesian coordinates (Γββρ = 0) is

∂

∂xµ

(
∂f

∂u,µν

)
− ∂f

∂u,ν
= 0. (66)

This is the classical condition arising from the symmetry requirement of a second-order nonlinear
scalar equation [13, 15].

6. Summary

We have developed a new approach to construct an action functional for a field theory described
in terms of nonlinear partial differential equations (PDEs). The key idea relies on an intrinsic
representation of the PDEs governing the physical system relatively to a diffeomorphic flow of
coordinates (the conjugate flow) which is assumed to be a functional of their solution. This flow
can be selected in order to symmetrize the Gâteaux derivative of the field equations relatively to
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a suitable (advective) bilinear form. This is equivalent to require that the equations of motion
of the field theory can be derived from a principle of stationary action on a Lie group manifold.
By using a general operator framework, we have obtained the determining equations of such
symmetrizing manifold for a second-order nonlinear scalar field theory and shown that they are
consistent with classical results in fixed Cartesian coordinates. Once the symmetrizing manifold
is available, then the conjugate flow action functional can be constructed explicitly through path
integration. In particular, the duality principle between the conjugate flow and the solution field
discussed in section 4 allows us to perform integrations either in terms of flows or in terms of
fields.

The proposed new methodology can be generalized to vectorial and tensorial field theories.
In particular, it can be applied to the Navier-Stokes equations, for which a great research effort
has focused in obtaining a physically meaningful principle of stationary action [8, 21, 29, 14].
Recent results of Gomes [17, 18], Eyink [12] and Constantin [10, 9] indeed have shown that an
action principle can be constructed for the Navier-Stokes equations on random diffeomorphisms
[16, 50, 33]. These random flows are usually defined in terms of perturbations of a Lagrangian
base flow. In the proposed new framework, the variational principle for the Navier-Stokes
equations may be constructed on a generalized diffeomorphism (Lie group manifold) satisfying
a set of PDEs similar to (65). These equations, however, are strongly nonlinear and their study
will be the objective of a future work.
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Appendix A. Representation of field equations in conjugate flow intrinsic
coordinates

We recall some fundamental identities from differential geometry [23, 1, 44, 22] that allow us to
write the dynamic equations of a physical system in terms of conjugate flow intrinsic coordinates.
To this end, let us first consider the Jacobian of the conjugate flow transformation (1)

Jµ
ν

def
=

∂x̂µ

∂σν
. (A.1)

It is easy to verify that the transpose of the algebraic complement of Jµ
ν has tensorial expression

(repeated indices are summed)

Cλρ
def
=

1

n!
ελνα···ερµλ···

∂x̂µ

∂σν
∂x̂λ

∂σα
· · · , (A.2)

where n denotes the total number of spatial dimensions while ελνα··· and ερµλ··· are multi-
dimensional permutation symbols, i.e. Levi-Civita tensorial densities. In particular, if we
consider only two dimensions (e.g., one spatial and one temporal dimension) then we obtain
the simple expression (all indices are from 0 to 1)

Cλρ = ελνερµ
∂x̂µ

∂σν
. (A.3)

Similarly, in 1 + 3 dimensions, i.e. one temporal and three spatial dimensions (all indices are
from 0 to 3)

Cλρ =
1

6
ελναβερµλδ

∂x̂µ

∂σν
∂x̂λ

∂σα
∂x̂δ

∂σβ
. (A.4)
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By using Eqs. (A.1) and (A.2) we obtain the Jacobian determinant

J
def
= det (Jµ

ν ) =
1

n+ 1
Jµ
ν C

ν
µ . (A.5)

This allows us to write the the inverse of the Jacobian matrix (A.1) as

Aλρ
def
=

Cλρ
J

. (A.6)

We denote by

σν = σ̂ν
(
xµ;uj

)
, µ, ν = 0, .., n (A.7)

the inverse transformation of (1). Such inverse transformation exists and is differentiable by
definition of conjugate flow. From the well known identity

∂σ̂ν

∂xµ

∂x̂µ

∂σλ
= δνλ (A.8)

we obtain the following fundamental expression of the partial derivatives ∂σ̂ν/∂xµ as a function
of σλ

∂σ̂ν

∂xµ
= Aνµ

(
σλ;uj

)
, (A.9)

where Aνµ is defined in Eq. (A.6). It is useful to write down Aνµ explicitly for the two-dimensional
case [

A0
0 A0

1

A1
0 A1

1

]
=

1

J

[
∂x̂1/∂σ1 −∂x̂0/∂σ1

−∂x̂1/∂σ0 ∂x̂0/∂σ0

]
, (A.10)

where

J =
∂x̂1

∂σ1

∂x̂0

∂σ0
− ∂x̂0

∂σ1

∂x̂1

∂σ0
. (A.11)

If time is not transformed, i.e. if x0 = σ0 = t, then Eq. (A.10) reduces to
[

A0
0 A0

1

A1
0 A1

1

]
=

[
1 0

−(∂x̂/∂t)/(∂x̂/∂σ) 1/(∂x̂/∂σ)

]
, (A.12)

where we have denoted by σ ≡ σ1 and x ≡ x1.

Partial differentiation in intrinsic coordinates

We consider a vector field U j (xµ) expressed relatively to a fixed Cartesian coordinate system xµ.
If we express the xµ-dependence of U j in terms of the trajectories of the particles σν (advected
by the conjugate flow) we obtain the following equivalent representations

U j (xµ) = U j (x̂µ (σν)) = uj (σν) = uj (σ̂ν (xµ)) . (A.13)

The transformation law for partial derivatives of U j is obtained by differentiating Eq. (A.13)

∂U j

∂xµ
=
∂uj

∂σν
∂σ̂ν

∂xµ
=
∂uj

∂σν
Aνµ, (A.14)

where the quantities ∂σ̂ν/∂xµ are expressed in coordinates σν through the fundamental relation
(A.9). Let us now evaluate the second derivative with respect to xν and express the result in
conjugate flow intrinsic coordinates. To this end let us perform an additional differentiation of
(A.14) with respect to xν . This yields

∂2U j

∂xµ∂xν
=

∂2uj

∂σλ∂σρ
AρνA

λ
µ +

∂uj

∂σλ
∂Aλµ
∂σρ

Aρν . (A.15)

By using the expressions of J and Cνµ obtained in (A.5) and (A.2) it is possible to manipulate
Eq. (A.15) further. However, it is more convenient to obtain first Aνµ explicitly as a function of
σµ and then perform the differentiation appearing in (A.15).
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Perturbations in the metric tensor, affine connection and Jacobian determinant

When the conjugate flow (1) undergoes an infinitesimal disturbance of type (14) then all the
quantities related to its intrinsic geometry are subject to small variations. For instance, the
metric tensor

gµν
def
=

∂x̂β

∂σµ

∂x̂β

∂σν
. (A.16)

becomes, to the first-order in ε, gµν + εhµν where

hµν
def
=

∂φ̂β

∂σµ

∂x̂β

∂σν
+
∂x̂β

∂σµ

∂φ̂β

∂σν
. (A.17)

The corresponding perturbation in the affine connection (Christoffel symbols of the second kind)

Γαµν
def
=

1

2
gαρ

(
∂gρµ
∂σν

+
∂gρν
∂σµ

−
∂gµν
∂σρ

)
(A.18)

is

δΓαµν = −εgαρhρβΓβµν +
ε

2
gαρ

(
∂hρµ
∂σν

+
∂hρν
∂σµ

− ∂hµν

∂σρ

)
. (A.19)

This can be also expressed in a covariant form as [49]

δΓαµν =
ε

2
gαρ (hρµ;ν + hρν;µ − hµν;ρ) (A.20)

the covariant derivatives “;” being of course constructed by using the unperturbed affine
connection Γαµν . These results allow to compute the conjugate flow perturbation of other
fundamental geometric quantities such as the Riemann-Christoffel curvature tensor. Next, we
determine the perturbation of the Jacobian determinant (A.5) induced by a small disturbance
in the conjugate flow. To this end, we substitute Eq. (14) into Eq. (A.5) and we keep only the
terms that are linear in ε. This yields

J + εCνµ
∂φ̂µ

∂σν
= J

(

1 + ε
∂φ̂µ

∂xµ

)

, (A.21)

where ∂φ̂µ/∂xµ denotes the divergence of the flow perturbation (remember that φ̂µ are Cartesian
components). Another useful formula involving the Jacobian determinant is

∂J

∂σµ
= JΓννµ. (A.22)

This can be easily proved by directly differentiating Eq. (A.5) with respect to σµ

∂J

∂σµ
= Cνρ

∂2x̂ρ

∂σν∂σµ

(A.6)
= J

∂σ̂ν

∂xρ
∂2x̂ρ

∂σν∂σµ
︸ ︷︷ ︸

Γν
νµ

. (A.23)
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