
Mathematical Notes, Vol. 59, No. 1, I996 

Spectral Properties of Operators of the Theory of Harmonic Potential 

J. F. Ahner,  V. V. Dyakin, V. Ya. Raevskii ,  and St. PAtter UDC 517 

ABSTRACT. We classify the points of the spectrum of the operators B and B* of the theory of harmonic 
potential on a smooth closed surface S C ~3. These operators give the direct Value on S of the normal 
derivative of the simple layer potential and the double layer potential. We show that zero can belong to the 
point spectrum of both operators in L2(S). We prove that the half-interval [-2~r, 2~r) is densely filled by 
spectrum points of the operators for a varying surface; this is a generalization of the classical result of Plemelj. 
We obtain a series of new spectral properties of the operators B and B* on ellipsoidal surfaces. 

~1. Introduction 

Let ~ be a simply connected finite domain in R a bounded by a Lyapunov surface S.  The aim of this 
paper is the study of spectral properties of the following operators of the classical potential theory on the 
space L2(S): 

:= L y1-1 dS,, 

/ , ,01= - yl -1 
:= aS,, (1) 

:= [ dS,. 
J s any 

The operator T is the value of the simple layer potential on S,  B is the operator of the direct value on 
S of the normal derivative of the simple layer potential, and the adjoint operator B* is the operator of 
the direct value on S of the double layer potential. It is known (see [1, p. 160]) that nonzero points of 
the spectrum of the compact operators B and B* are real simple poles of their resolvents; they belong to 
the half-interval [-21r, 2~r) and the corresponding eigenfunctions are continuous. To the simple eigenvalue 
p0 = -27r of the operators B and B* there correspond eigenfunctions a0 and co such that  

fsO'O dS ~ 0 and =cons t  c0 

(see [2, p. 9.76] and [3, p. 334]). Moreover, the operator B is quasi-Hermitian (see [4, p. 394 of the Russian 
edition]), i.e., there exists a positive self-adjoint operator T (for instance, we can take the compact operator 
7" in (1)) such that  TB = B*T (see [5]). Let {p,,} be the sequence of nonzero eigenvalues of B (and, 
therefore, of B*), and E(/~, B) denote the finite-dimensional eigensubspace of B that corresponds to an 
eigenvalue # E (Pn }. Since B is quasi-Hermitian, we see that the system of eigenfunctions of the operator 
B* is total, the eigenfimetions of B corresponding to different eigenvalues are orthogonal with respect to 
the energy operator 7" (i.e., with respect to the.inner product (T., .)), mad the following relations hold 
(see [5]): 

and  CKerB*r CKerB*. 
If S E C ~176 then all operators in (1) are pseudodifferential operators (PDO) of order ( - 1 ) ,  that  is, are 
bounded from the Sobolev space H~(S) into H~+~(S) for all r E R, and the operator T is an elliptic 
PDO whose inverse extends to be a continuous operator from Lg(S) onto H-~(S) (if S E C ~176 then 
T -1 maps H~(S) onto H~-I(S) for all r E R (see [6] and [7, p. 151])). Thus, the spectrum of the 
compact self-adjoint positive operator T consists of positive eigenvalues of finite multiplicity and of zero, 
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which belongs to the continuous spectrum. The cited properties of the operators B and B* imply that 
their spectrum consists of a system of eigenvalues of finite multiplicity from the half-interval [-2zr 2~r), 
to which there correspond infinitely smooth eigenfunctions, and zero. 

In potential theory, the following problem concerning the classification of zero in the spectrum of the 
operators B and/3* has been open since a while ago (see [8]): to which part of the spectrum (to the point 
part av, to the continuous part a~, or to the residual part at) of these operators can zero belong? In this 
paper, we obtain a partial answer to this question. Moreover, we give a generalization of Plemelj's classical 
result (1911) concerning the fact that the spectra of the operators B and B* belong to the half-interval 
[ -2 r ,  2~r) ; specifically, we prove that every point of the half-interval is an eigenvalue of these operators 
for a suitable choice of the surface. For completeness, in w we include a short exposition of some results 
obtained by the authors in [9]. In closing, we prove a series of new spectral properties of the operators B 
and B* for ellipsoidal surfaces. 

w Preliminary results 

Since the operator B is quasi-Hermitian, we have the following assertion. 

Theorem 1. 0 ~ ~r(B*). 

Proof .  Assume the contrary, that is, 0 6 or(B*) =~ d imKerB ~ 0. Let ~ E KerB ;  then 

# 0 =~ TB~ = 0 =~ B*T~ = 0 =~ T~ 6 KerB* =~ 0 6 %(B*) =~ 0 ~ a~(B*), 

which proves the assertion of the theorem. Vl 

Taking into account this result and the relationship between the spectra of adjoint operators [7, p. 34], 
we can readily establish that only three possibilities can occur a i~r/or/: 

0 E a t (B) ,  0 E at(B*), (2) 

0 6 av(B), 0 E av(B*), (3) 

0 e 0 e (4) 

It is known (see [8] and [10]) that possibility (2) occurs for the ease in which S is a sphere or a prolate 
spheroid. In the paper [8], the following problem was posed: Does zero always belong to the continuous 
spectrum of the operators B and B* for sufficiently smooth surfaces S? In the next section, we give a 
negative answer to this question by presenting an example for which possibility (3) occurs. As to (4), the 
problem remains open. We obtain the following result in this direction. 

Theorem 2. 0 E at (B)  r O ~ SerB*  \ {0} C L2(S) \ Ha(s) .  

P roof .  1. Let 0 E err(B) =~ 0 6 av(B* ) :ez KerB* ~ {0}. Assume that there is a ~ such that r ~ 0, 
r 6 Ha(S) ,  and B*(r  = 0. Since T is a bijeetion of L2(S) onto Hi(S)  (see [11, p. 87] and [12]), we 
see that there is a ~0 6 L2(S), ~o # O, such that 

T~ = r ~ B*TT~ = 0 =~ TB~p = 0 ~ B~p = 0 ~ 0 6 o'v(B) ; 

this is a contradiction. 
2. Let Z # KerB* \ {0} C L~(S) \ H i (S )  ::~ 0 E a~(B*) :o 0 6 a t (B) ,  or 0 6 qp(B).  Let us exclude 

the second possibility. We have 

0 e o'p(B) ::~ 3~  # 0 : B~ = 0 ~ r :--~ T~0 ~ Hi(S) ,  B * r  : TB~p = 0 

:r  KerB* \ {0} ~t L2(S) \ Hi (S)  ; 

this is a contradiction, which completes the proof. [] 

Can Ker B* \ {0} consist solely of "nonsmooth" functions? Note that an at tempt  to prove that (4) is 
impossible must be based on specific properties of the operators B and B*,  because for general quasi- 
tlermitian operators, possibility (4) can occur [13]. 



w Spec t ra l  p r o p e r t i e s  of  t he  ope ra to r s  B and  B* for an  ob la te  sphe ro id  

In this section we prove that possibility (3) can occur for the case in which S is an oblate spheroid (an 
ellipsoid of rotation). The Cartesian coordinates (x, y, z) are related to the coordinates (~, y, ~0) of the 
oblate spheroid by the formulas [14, p. 24] 

x = pcos~o, y = ps in~,  z=d~?/2, 
where p2 = d2(1 + ~2)( 1 _ ~72)/4, d is the interfocal distance, 0 _ ~ < cr - 1  < y _< 1, and 0 < ~0 < 2~r. 
The coordinate surfaces ~ = const are oblate spheroids of rotation about the z-axis. If we take such a 
surface for S, then the eigenvalues of the operators B* and B acquire the form [15] 

( . /~ m), . ) 
~-~).~Q. (z() [(n + 1)i,~P~(i,~)-(n-rn+ 1 ) P ~ ( i ~ ) ]  (5) ~ ( ~ )  = -~.~- 1 + 2 ( - 1 )  N + 

and the corresponding eigenfunctions of these operators are 

f cr(,, ~):= PZ(,)cos m~, ; c~(~ , , ,  ~):= c~(,, ~)(~ + r  
S~(ri, V) :-': P2(,)sinmv,  ~ S~(~, rl, V) := S ~ ( , ,  V)(~2 + r/2) - ~  

where n = O, 1,2, . . .  , 0 < rn < n,  and Pn m and Qn m denote the associated Legendre functions. Let us 
study the asymptotic behavior of eigenvalues (5) as ~ -* c~ and ~ ~ O. 

L e m , . a  1. ~ ( ~ ) - ~ - 2 ~ / ( 2 n  + 1) as ~ -~ ~r 

Proof .  Using the asymptotic formulas [16, p. 165 of the Russian edition] 

(2ir  + 112) (1 + 0(r  
P:(i~) = - ' ~ - - ~ -  m-k 1) 

4 ~ r ( .  + m + 1) (1 + o ( c 2 ) )  
Q'2( i~)  = ( -1 ) "  (2i~).+1r( n + 3/2) 

where F denotes the gamma function, after some algebraic manipulations with (5), we obtain 

2----5--~ + off -~) .  
~ ( ~ )  = 2~ + 1 

To complete the proof, we note that, as expected, as ~ ~ o~ we obtain the eigenfunctions of the operators 
B and B* for the sphere. [] 

L e m m a  ?. ~.~(~) --, 2=(_1)-+m+1 as r __, 0. 

Proof .  By substituting z = i~ into the formula expressing Qmn(z ) via the hypergeometric function of 
the argument z ~ [17, p. 155 of the Russian edition], after some algebraic manipulations we obtain 

Qm(i~) = iexp(i~r(32-n))v~2m-,(_~2 - 1)m12{ F((nF((n 4- rrt + 1 ) / 2 ) _  rn 4- 2)/2) -4- O(~)}. (6) 

Starting from a similar formula for P~(z) [17, p. 154 of the Russian edition], we obtain 

r("-~-:W) + 
Substituting (6) and (7) into (5), we obtain the formula 

~ ~ , . ~ + m , . ,  + m + l ) r ( . + m + 2  ) 

2 2 2 
where we write a," := (n - m)! / (n + m)! for convenience. 

Now we can readily establish that 

f - 2 ~  + o(~)  for even n + , ~ ,  
~ ( ~ )  

l 27r + O(~) for odd n + m ; 
this completes the proof of the lemma. [] 

The following theorem states that possibility (3) can occur. 

(7) 



Theorem 3. There is a surface S,  which is an oblate spheroid, For which 0 E ap(B) and 0 E ap(B*). 

Proof. Let the sum n + m be odd. Then it follows from Lemmas 1 and 2 and from the continuity of 
A~(~) that there exists an ~ e (0, oo) such that A~(~ ' )  -- 0. The assertion of the theorem holds for 
all oblate spheroids with ~ = ~ .  [] 

This theorem answers the question raised by Ahner in [8]. In the general case, we cannot state that 
the operators B and B* are injective for all smooth surfaces; the spectral nature of zero depends on the 
form of S. 

The following theorem is a generalization of Plemelj's classical result [8] that states that the half-interval 
[-2~r, 2r)  for the eigenvalues of B and B* cannot be shrinked. 

Theorem 4. For each b E [-2~r, 27r) there exists a smooth surface S such that b is an eigenvalue of 
the operators B and B* defined on S. 

Proof. For b = -2zr,  the assertion holds for any smooth surface, and it follows from Lemmas 1 and 2 
that the union of the ranges of the functions A~ and A~ coincides with the interval (-27r, 2~'); this 
completes the proof of the theorem. [] 

w Certain spectral properties of the operators B and B* for ellipsoidai surfaces 

Formula (5), as well as a similar formula for the eigenvalues of B and B* for the case of a prolate 
spheroid [10], can be written in the form 

~ = ) ~  0{P~(i~)Q~'(i~)} e e (0, oo) (8) A~(~) = 2~ri(-1)m(1 + 0~ ' ' 

for an oblate spheroid and 

A~(~) = 2~r(~ 2 - 1 ) a ~ ( - 1 )  m O{P~(~)Q~(~)} 
O~ e e ( 1 , ~ ) ,  (9) 

for a prolate spheroid, n = 0, 1, 2, . . . ,  0 _< rn < n.  The following assertion proves an interesting property 
of these eigenvalues, which is obvious for the sphere. 

Theorem 5. The eigenvalues for the oblate spheroid (8) and the prolate spheroid (9) satisfy the relation 

n 

s . ( o  := ~.(, ' )  + 2 ~ ~7(,~) = -2~ ,  , = o, 1, . . . .  (10) 
~ - - - 1  

First, we obtain some useful formulas. 

L e m m a  3. The foflowing relations hold: 

l_ Ak(x)(1 - x2)'i~/2P~(x)dz = 2 ( -1 )"Ak(z ) (2  - 1)m/2Q'~(z) (11) 
1 Z--'X 

/ /  [P~'---( z-)l-2 = 2(-1)mp:(z)Q'~(z) ,  (12) d= 

1 Z - - Z  

n  r +11 P,(z )O, (z )  + 2 ~-~(-1) '~a'~P:(z)Q~(z) = Qo(z) := 0.5 (13) 

where n = O, 1, . . . ,  0 <_ rn < n, Ak is an arbitrary polynomial of degree k < n - m ,  and z E C \  ( -1 ,  1) 
( C is the complex plane). 



Proof. We were able to find formula (11) for A~,(x) = z k only in the handbook [19, p. 200, formula 8], 
where it is presented with a mistake. Therefore, we had to derive it independently, starting from the 
Neumann integral [20, p. 232 of the Russian edition] 

L dt 
Qn(z) = 0.5 Pn(t) z - t '  z e C \ (-1, 1). (14) 

Substituting Ak(s) = dmP,,(x)/dx m into (11) and taking into account the known expressions for. the 
associated Legendre functions via the derivatives of the polynomials inside and outside the interval ( -1 ,  1), 
we obtain (12). Furthermore, by substituting y = z and a = 0 into the formula expressing the addition 
theorem for Legendre polynomials [20, p. 233 of the Russian edition], 

n 

Pn {xy + [(1 - zz)(1 -y2)]1/2 cosa} = en(T,)en(y) "-{- 2 E Ot~ cos(ma)P~(x)P~m(y), 
m = l  

and taking the relation Pn(1) = 1 into account, we obtain 

n 

P:(:) + 2 ~ ~r[P:(:)]~ = 1. 
fn---.1 

By multiplying both parts of this identity by (z - x )  -x and by integrating with respect to x from ( -1)  
to 1, we obtain the main formula (13), in view of (12) and (14). The proof of the lemma is complete. [] 

The assertions of Lemma 3 yield the proof of Theorem 5. 

P r o o f  o f  T h e o r e m  5. By substituting the values A~(~) from (8) into (10) and by taking into ac- 
count (13), we obtain 

S.(~) = 2rri(1 + ~2) d[0.5 In((i~ + I)/(i~ r - 1))] = -2rr 
d~ 

for an oblate spheroid. Similarly, it follows from formulas (10), (9), and (13) that for a prolate spheroid 
w e  h a v e  

Sn(~) = 21r(~ r - 1) d[O.51n((~ + 1)/(~ r - 1))] = -2rr, 
d~ 

which completes the proof of the theorem. [] 

Numerical calculations show that, apparently, a similar formula holds not only for a spheroid, but also 
for an arbitrary ellipsoid. 

Consider the problem of the signs of the eigenvalues of the operators B and B* defined on the surface 
of the spheroid. Formulas (8) and (9) can be written in a unified form 

~.-(z) = 2~(z ~ - 1 )~ ; " ( - i )  ~ d{P"~ (z)Q" (~)} 
dz 

where z -- ~ > 1 for a prolate spheroid and z = i~, ~ > 0, for an oblate spheroid. Taking into account (12), 
we have ~__d [' [P~'(~)]~ a~ 

A~(z) 7~m(z 2 ------ z e C \  ( -1,  1). (15) l ' a z  . - I  z -  �9 ' 

For a prolate spheroid, this formula gives 

Anm(~ r = -Tranm(~ 2 - I) ~ - ;  d:, ~ > 1 ,  



and we can repeat  the conclusion, made  in [10], that  all eigenvalues of the operators  B and B* are 
negative. It follows from (15) that  for an oblate spheroid we have 

j•o 
1 

A."(,,) = 2=(1 + (== _ , , 2 ) [ p , . ( = ) ] =  d= 
(=2 + 

Hence, for ~ > 1 all eigenvalues Aam(~) are negative. Studying the graphs of the  functions $nm(~) for various 
n and m ,  we can conjecture tha t  this proper ty  holds for all ~ > ~0 ~ 0.660068, but  this conjecture needs 
a rigorous proof. 

In conclusion, let us find an explicit expression for the solution of the Roben problem for an ellipsoid. 
As is known [21, p. 218], this problem can be reduced to the  determinat ion of the  eigenfunction a0(z) 
that  corresponds to the  eigenvalue go = - 2 r  of the operator  B on the surface S or, which is t h e s a m e ,  
is reduced to the solution of the equation Ta0 = const on S .  Our result is based upon  an unexpected  
theorem proved by Ri t ter  in [22] and asserting the  following. Let S be the surface of the  ellipsoid with 
semiaxes a > b > c > 0. Then  for p(z)  := (n(z) ,  z ) ,  z �9 S ,  and for any function ~ �9 C ( S ) ,  we have the 
following relat ion on S: 

B(p~) = pB*(~). (16) 

Here rt(z) is the unit vector of the outward normal to S at the point x �9 S and (n(x), z) is the 
corresponding inner product in IR a . By setting ~(x) = 1 in (16), we readily see that if for some surface S 
relation (16) holds, then  the function p(z) is necessarily a solution of the Roben problem for this surface. 
Thus, the following assertion holds. 

T h e o r e m  6. For an ellipsoid, the solution of  the Roben problem has the form 

= ( - ( = ) ,  = ) ,  = e s .  

We can easily find the explicit form of this function: 

\a4 + J ' 

where z = (zl, z2, za) E S. Regretfully, the assertion of the theorem cannot be generalized to all smooth 
surfaces (in particular, this assertion fails for the torus). 
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