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1. INTRODUCTION

Let Q C RY be a domain. The initial-boundary value problem for the incompress-
ible Navier-Stokes Equations is the following one,

(1) %—i—divx(v@v)jtvxp:l/Axv—i—f V(z,t) € Qx(0,T),

1) divyv =0 V(z,t) € Qx (0,T),
1) (i) (z,1) (0,T)
(1ii) v=20 V(z,t) € 092 x (0,T),

(tv) v(x,0) = vo(z) Vo e Q.

0
Here v = v(z,t) : Q x (0,7) — RY is an unknown velocity, p = p(z,t) : @ x (0,T) —
R is an unknown pressure, associated with v, v > 0 is a given constant viscosity,
f:Qx(0,T) — RY is a given force field and vy : 2 — R¥ is a given initial velocity.
The existence of weak solution to (1.1) satisfying the Energy Inequality was first
proved in the celebrating works of Leray (1934). There are many different procedures
for constructing weak solutions (see Leray [3],[4] (1934); Kiselev and Ladyzhenskaya
2] (1957); Shinbrot [5] (1973)). These methods are all based on the so called " Faedo-
Galerkin” aproximation process. In this paper we give a new variational method to
investigate the Navier-Stokes Equations. As an application of this method we give a
new relatively simple proof of the existence of weak solutions to the problem (1.1).
Let us briefly describe our method. Consider for simplicity f = 0 in (1.1). For
every smooth u : Q x [0, T] — R¥ satisfying conditions (ii) — (iv) of (1.1) define the

energy functional
e s L = 1 )
(12)  E(u) == (Vs + Vo) dadt + 5 [ fu(w, T de,
2 /)0 Ja v 2 Jo
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where H,(x,t) solves the following Stokes system for every ¢ € (0,7,

A H, = (%—l—divx(v@v))—i—va €N,

(1.3) div, H, = 0 x e,

H,=0 Vo € 09).

A simple integration by parts gives

(1.4) E(u):i/T/ <]1/V u—V,.H \2) dxdt+l/\v (z)]* dx
. 2 0 0 T ztlu 9 0 0 .

Therefore if there exists at least a smooth solution to (1.1) (with f = 0) then a
smooth function u : Q x (0,7) — RY will be a solution to (1.1) (with f = 0) if and
only if it is a minimizer of the functional in (1.2) among all smooth divergence free
vector fields satisfying the boundary and the initial value conditions of (1.1). For the
rigorous formulations and statements see Section 5. This remark relates the problem
of existence of solutions of the Navier-Stokes equations to that of the problem of
minimizing the energy F(u).

Unfortunately, when applying this method to the Navier-Stokes Equation one meets
certain difficulties, for example in proving the existence of minimizers to £. But we
can apply this method to a suitable approximation of problem (1.1). We approximate
(1.1) by replacing the nonlinear term div,(v®v) with the terms div, { f,,(|v|?)(v®v)},
where f, : RT — R* are regular cutoff functions satisfying f,(s) = 1 for s < n
and f,(s) = 0 for s > 2n. The approximating problems are simpler than (1.1),
since the nonlinear term has higher integrability. Next we consider the energies FE,,
corresponding to the approximating problems and investigate the Euler-Lagrange
equations of E, and the existence of minimizers. In this way we get solutions to
the approximating problems which satisfy the energy equality (in fact these solutions
will be regular if the initial data and the domain are). Next we pass to the limit for

n — oo and obtain a weak solution to (1.1). For the details see Section 3.

2. PRELIMINARIES

For two matrices A, B € RP*? with ¢j-th entries a;; and b;; respectively, we write
p 9
A:B = Z aijbij.
i=1j=1

Given a vector valued function f(z) = (fi(z),..., fr(z)) : @ = R¥ (@ C RY) we
denote by V,f the k x N matrix with ij-th entry ng;‘

For a matrix valued function F(x) := {Fj;(x)} : RY — R* we denote by div F the
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N
R*-valued vector field defined by div F' := (ly,...,l}) where [; = %Zi?' . Throughout
j=1 7

the rest of the paper we assume that  is domain in RY.
Definition 2.1. We denote:
e By Vy the space {p € C®(Q,RY) : div = 0} and by Ly the space, which

is the closure of Vy in the space L*(Q, RY), endowed with the norm ||¢]|| :=

(Jolpldz)".

e By HL(Q,RY) the closure of C>®(Q, RY) with respect to the norm |||||| :=
([ ]Vgdex)l/Q. This space differ from H(Q,RY) only in the case of un-
bounded domain.

e By Vy the closure of Vy in H}(Q,RY).

e By V' the space dual to Vy.

e By Y the space

Y= {o(x,t) € C=(Q x [0,T),RY) : div, o =0} .

Remark 2.1. Tt is obvious that u € D'(Q, RY) (rigorously the equivalency class of u,
up to gradients) belongs to V! if and only if there exists w € Vi such that

/Vw:V6dx:—<u,5> Vo e Vy.
)
In particular Aw = u + Vp as a distribution and

Hwlll= sup  <u,é>=|[Jul]-1.
seV, IllslI<1

Definition 2.2. We will say that the distribution [ € D'(Q2 x (0,T),R") belongs
to L2(0,T; V"), if there exists v(-,t) € L*(0,T;Vy'), such that for every v (z,t) €
Cx(Q x (0,T),RY), satisfying div, 1) = 0, we have

<IU(+,),0(,-) >:/O < (- t), (-, t) > dt.

Remark 2.2. Let v(-,t) € L*(0,T;Vy?'). For a.e. t € [0,T] consider V,(-,t) as in

Remark 2.1, corresponding to v(-,t), i.e.
/ VoVi(2.t) : Vad(2)do = — < 0(-,1),6() > V6 € Vi,
0
Then it is clear that V,(-,t) € L*(0,T;Vy) and

||V11HL2(O,T;VN) = ||UHL2(O,T;VA71)‘
3



In the sequel we will use the following compactness result which is a particular case

of Theorem 2.3 in the book of Temam [6].

Theorem 2.1. Let Q be a bounded domain. Consider the sequence {u,} C L*(0,T;Vy)
such that Oyu,, € L*(0,T,Vy"). Assume that the sets {u,} and {Ou,} are bounded in
L2(0,T;Vy) and L*(0, T, V') respectively. Then {u,} is pre-compact in L*(0,T; Ly).

3. EXISTENCE OF THE WEAK SOLUTION TO THE NAVIER-STOKES EQUATIONS
Throughout this section we assume that Q C R is a bounded domain.

Definition 3.1. Let F(v) = {F;;(v)} € CYRY,R¥*N) N Lip satisfy F(0) = 0 and

gf: (v) = 8§)m]( ) for all v € RY and m,i,5 € {1,...,N}. Denote the class of all

such F' by §.

Remark 3.1. Let F' € §. Then it is clear that there exists G(v) = (G1(v),...,Gy(v)) €
C2(RN,RY), such that 52 (v) = F;(v) ie. V,G(v) = (F(v))T.

Using our variational approach, we will prove in the sequel the existence of a

solution of the following problem

8+ div, F(v) + Vap = Av Y(z,t) € Q% (0,T),

div,v=0  Y(z,t) € Qx(0,T),
(3.1) )
v=20 V(z,t) € 00 x (0,T),

v(x,0) = vo(x) Vo e Q,

\

for every F' € §, which in addition satisfies the Energy Equality (see Theorem 4.1).
But first of all, in the proof of the following theorem we would like to explain how

this fact implies the existence of weak solution to the Navier-Stokes Equation.

Theorem 3.1. Assume N < 4. Let vo(z) € Ly. Then there exists u € L*(0,T; Vy)N
L>(0,T; Ly) satisfying

3.2 0)d Oy z Vau: Vath,
( ).AW()w@ x+/‘/'u b+ (W) : V,0) /L/ w: Vo
for every ¥(z,t) € C2(Q x [0,T),RY) such that div, ¢ = 0, i.e.

Ayu = O+ div, (u@u) + Vep, and u(z,0) = vo(x) .
4



Moreover, for a.e. t € [0,T] we have

(3.3) /Ot/Q]quFdxdt < %(/Qvg(a:)da:—/QuQ(x,t)dx).

Proof. Fix some h(s) € C*(R, [0, 1]), satisfying h(s) = 1V¥s < 1 and h(s) = 0Vs > 2.
For every n € N define f,(s) := h(s/n). Consider

(3.4) Fo(v) = fu([v[*) (v ® v) + ga(lv[*) Iv

where Iy is a N x N-unit matrix and g,(r) := % [J fu(s)ds. Then for every n
we have F,, € § and there exists A > 0 such that |F,(v)] < Av|? for every v
and n. Fix also some sequence {vé”)}zozl C Vy such that v(g”) — v strongly in
Ly as n — o00. By Theorem 4.1, bellow, for every n there exist a function u, €
L2(0,T;Vy) N L>®(0,T; Ly), such that dyu,, € L*(0,T; Vy') and u,(-, ) is Ly-weakly

continuous in ¢ on [0, 7], which satisfy

(3.5) 1}@@»wmm+lféom@w+ﬂmm:vm):AfAvaVﬂu

for every ¢(x,t) € C>(Q2 x [0, T),RY), such that div, 1) = 0. Moreover, by the same

Theorem, for every t € [0, 7] we obtain

1 ‘ 1
(3.6) §/ﬂui(x,t)dx+/o /Q|V$un\2dxdt: é/g(v(()n))Z(a:)da:.

Consider V,,(+,t), W,,(+,t) € L*(0,T; Vy) as in Remark 2.2, corresponding to (dyu, +
div, F,(uy,)) and div, F, (u,) respectively. But V,, = u,,. Therefore, by (3.6) we obtain

T T
/ / ]qun\dedth/ /‘van‘dedt <.
o Ja 0 Jo

From the other hand, since N < 4, we have

j(/Wwﬁfﬂsi(/mmmﬁwgAi(/wﬁfﬂgoj/wwﬁ

Therefore {d;u,} is bounded in L'(0,T;Vy'). Then we can use Theorem 2.1 and
(3.6), to deduce that there exists u € L*(0,T; Vy) N L>(0,T; Ly) satisfying that, up
to a subsequence, u,, — u strongly in L*(0,T; Ly) and u,, — u weakly in L*(0,T; Vy).

Then, up to a further subsequence, we have wu,(z,t) — u(z,t) almost everywhere in
5



Q x (0,7). In particular f, (|u,(z,t)]*) — 1 almost everywhere in € x (0,7T). Then,

m/o /Q‘fn(\un\Q)(un®un)—(u®u)}dxdt§

T T
—lim/ /|fn(|un|2)\-|(un®un)—(u®u)\,dxdt—i-—lim/ /u2}fn(|un|2)—1\dxdt:o.
n—oo fq Q n—oo Jo Q

Therefore, letting n tend to oo in (3.5), we obtain (3.2). Moreover, by (3.6), for a.e.
t € [0,T] we obtain (3.3). This completes the proof. O

4. PROOF OF THE EXISTENCE OF SOLUTIONS TO (3.1)

Throughout this section we assume that O C RY is a bounded domain. In the
sequel we will need several lemmas. The following Lemma can be proved in the same

way as Lemmas 2.1 and 2.2 in [1].

Lemma 4.1. Let u € L*(0,T;Vy) N L>®(0,T; Ly) be such that Opu € L*(0,T; V).
Consider Vo(+,t) € L*(0,T;Vy) as in Remark 2.2, corresponding to Oyu. Then we
can redefine u on a subset of [0,T| of Lebeque measure zero, so that u(-,t) will be
Ly-weakly continuous in t on [0,T]. Moreover, for every 0 < a < b < T and for

every Y(z,t) € Y (see Definition 2.1) we will have

b b
(4.1) / / V. Vo : Vb dedt —/ /u - Opp dadt
a Q a Q

:/ﬂu(x,a)-zﬁ(x,a)dx—/u(x, b) - v, b)da

Q
Remark 4.1. Let F' € Lip (RY,RY*N) satisfying F(0) = 0. Then for every u €

L>=(0,T; Ly) we have F(u) € L*(0,T;L*(Q,R¥*Y)) and therefore div, F(u) €
L0, T;Vyh). If in addition dyu € L?(0,T;Vy') then we obtain dyu + div, F(u) €
L2(0,T; Vi),
We have the following Corollary to Lemma 4.1.

Corollary 4.1. Let u be as in Lemma 4.1 and let F € Lip (RN, RY*N) satisfying
F(0) = 0. Assume, in addition, that u(-,t) is Ly-weakly continuous in t on [0,T]
(see Lemma 4.1). Consider V (-, t) € L*(0,T;Vy) as in Remark 2.2, corresponding to
Oyu + divg F(u). Then for every 0 < a < b < T and for every i(x,t) € Y we have

(4.2) / ’ /Q V.V i Voo dadt — / ’ /Q (u- 8 + F(u) : V1) dudt

:/Qu(a:,a)~w(x,a)dx—/u(x, b) - (. byda

Q
6



The following Lemma can be proved in the same way as Theorem 4.1 in [1].

Lemma 4.2. Let u € L*(0,T;Vy) N L>(0,T; Ly) be such that O,u € L*(0,T;Vy")
and let u(-,t) be Ly-weakly continuous in t on [0,T] (see Lemma 4.1). Consider
Vo(-,t) € L*(0,T;Vy) as in Remark 2.2, corresponding to Oyu. Then for every t €
[0, 7] we have

! 1
/ / Vu: V,Vodedt = —(/ u?(z,0)dz — / u2(a:,t)dx) :
0 Jo 2\ Ja Q

Corollary 4.2. Let u € L*(0,T;Vy) be such that du € L*(0,T;Vy"'). Then u €
L0, T; Ly).

We will give the proof of this Corollary in the Appendix.

Next we have the second Corollary to Lemma 4.2.

Corollary 4.3. Let F € § and let w € L*(0,T; Vy)NL>®(0,T; Ly) be such that dyu €
L2(0,T; V') and let u(-,t) be Ly-weakly continuous in t on [0,T] (see Lemma 4.1).
Consider V(-,t) € L*(0,T;Vy) as in Remark 2.2, corresponding to Oy + div, F(u)
(see Remark 4.1). Then for everyt € [0,T] we have

(4.3) /0 t /Q Vou: V,V dedt = %( /Q 2(z,0)dz — /Q u2(x,t)dx).

Proof. By Lemma 4.2, for every t € [0, T| we obtain

//V Vi Vyudedt — // : Veudxdt
_ %(/QuQ(a:,O)dx—/QuQ(x,t)dx).

But for almost every ¢t € [0,7] u(-,t) € Vy, therefore, for every such fixed ¢ there
exists a sequence {d,(-)}>°, € Vy, such that 6,(-) — u(-,t) in V. But for every

0 € Vy we obtain

/ v(s_/zz i 3x /ZZ(%Z /dexc:(a):o,

i=1 j=1

where G is as in Remark 3.1. Therefore, since F' is Lipshitz function, we obtain

/QF(u(a:,t)) :Veu(z,t)de = lim [ F(8,(2)) : Viou(z)dz =0.

n—~0o0 QO

Therefore, using (4.4), we obtain (4.3) and the result follows. O
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Definition 4.1. Let u € L*(0,T; Vy)NL>®(0, T; Ly) be such that ,u € L2(0,T;Vy")
and such that u(-,t) is Ly-weakly continuous in ¢ on [0, 7]. Denote the set of all such
functions u by R. For a fixed F' € § and for every u € R let H,(-,t) € L*(0,T; Vy)
be as in Remark 2.2, corresponding to d;u + div, F'(u). That is for every ¢(z,t) €
C>=(Q x (0,T),RY) such that div, 1) = 0 we have

/T/ (u-8t¢+F(U)IVJ;@/))dxdt:/T/vgﬁHu:Vﬂz)dwdt‘

Define a functional Ip(u) : R — R by

(4.5) (/ / \Voul® + |V H,|? da:dt+/|ua: T)| de)

and for every vy € Vv consider the minimization problem
(4.6) inf{Ip(u) : v e R,u(-,0) =v(-)}.

Lemma 4.3. For every u € R and every §(z,t) € Y, such that (x,0) = 0, we have

(4.7) lim & (““5 = Lr(u / /qu v5+/ w(z,T)-6(x,T) dx

s—0

N

//at(s Hda:dt+// Zaj ) V. H, dudt .
j=1

Proof. 1t is clear that

(4.8) Ei%_s(/ /\v u + s6)|? //\vu|2) //Vu V.6 .

Moreover,

(4.9) hm—(/ (i, T)+s6(x, T dz— /\u 2 T) \de) :/Qu(x,T)-é(x,T) i

s—0 28

Next we have

(4.10) 23// Vo H )| \VH\)

_8/ / (VxH(u-I—scS) - VxHu) : (va(u-i—sé) + VxHu) =
0o Ja
T
~ 5 <(s -0y + div, F(u + sd) — div, F(u))(, t), (H(u+35) + Hu)(~, t)> dt
0
_ / / 08(, 1) - %(H(W;) (2,8) + Ha(z, 1)) dedt

// F(u+ sé) — F(u)) : %(V Huys5) + Vi H,) dzdt .



Since F' is Lipschitz and C', we obtain

(4.11)
1 N OF
—(F(u+sd) — F(u)) — §;i—(u) ass— 0 strongly in L*(Q x (0,T),R¥*N).
s T Ou;
j=1 !

On the other hand, for every h(x,t) € L?(0,T; V) we obtain

(4.12) hm/ / (VeHuss) — VaHy) : Vioh(z,t) =

iii%(—s/o /Q@té-hdxdt%—/o /Q(F(u%—sé)—F(u)) :vgchdxdt) =0.

Therefore
(4.13) Hyis5) — H, weakly in L*(0,T; Vy).

In particular H, s remains bounded in L*(0,T; Vi) as s — 0. Therefore, by (4.10),

we obtain
T
hm/ / <|VxH(u+56)‘2 - |VHu|2> =
=0 Jo Jo
So
(4.14) Hys5y — H, strongly in L*(0,T; V).

Therefore, using (4.14) and (4.11) in (4.10), we infer

//ata dedt+// Z )Vdedt

Plugging (4.8), (4.9) and (4.15), we obtain that for every d(z,t) € Y, such that
d(z,0) = 0, we must have (4.7). O

Lemma 4.4. Let u € R be a minimizer to (4.6). Then H, = u, i.e.
Ayu = dyu + div, F(u) + Vp.

Proof. Fix some §(z,t) € Y, such that 6(z,0) = 0. Then for every s € R (u+sd) € R
and (u + s6)(+,0) = vo(+). Therefore,

1 -1
(4.16) li Z(0F50) = Tr(u)

s—0 S
9

=0.




So, by (4.7) in Lemma 4.3, we must have
(4.17) //Vu V(5+/ uw(z,T) 6(x,T)dx

//at(s Hda:dt+// Zajau )Vdedt—O
J

Using Lemma 4.1 (see (4.2)), for every §(z,t) € Y, such that é(x,0) = 0 we obtain

T T
(4.18) / / V.H, : V. 6dxdt — / / 0¢0(z,t) - u(x, t) dedt
o Ja
/ / V(5dxdt+/u(x,T)-(5(1’,T)dx:0.
Q

Since F is Lipschitz function, for a.e. t we have V,F(u) € L?. Then for a.e. t € (0,T),

(4.19) /F(( t)) V(S(a:t)dx——/divx (u)-ddx =

[ X s [ Y W s

0%,
1<4,5,m<N 1<4,5,m<N

/Z au] ) Vudr.

Inserting (4.19) into (4.18), we deduce

(4.20) / /VH V5dxdt—/ /8t x,t) - u(z,t) dodt
//Z aF ) Vdedt+/ﬂu(x,T)-5(x,T)dx:o.

Next define W, := u — H,. Then W, € L?(0,T;Vy) and subtracting (4.20) from
(4.17), for every 6(z,t) € Y, such that 6(z,0) = 0, we obtain

(4.21) //VW V(5+/ /@xt w(x, t) dadt
// Zajau] )Vdedt—O

Since 2£ 6 L>, we obtain that the functional L(¢) : Vy — R defined by

/(Zgﬁj ) v, W, dz

10



belongs to V' for a.e. t € (0,T). Moreover there exists Q(x,t) € L*(0,T;Vy) such
that for a.e. t € (0,7) we have

/(Z@ W) : VWade = [ 9.Qat) Voola) e Vo€ Vi,

Then from (4.21) we obtain that 9,W, € L?(0,T;Vy"') and we have

T
(4.92) < OW( ) (e, ) >— —/0 /va(Q— W) : Vb dadt
Vi € C2(Q x (0,T),RY) s.t. divy1p =0.

Therefore, by Corollary 4.2 and Lemma 4.1, we can redefine W, (-,t) on a set of
Lebegue measure zero on [0,7] so that W,(-,t) be Ly-weakly continuous in ¢ on
[0,7]. From now we consider such W,. Moreover, by (4.2) and (4.22), for every
d € Y, such that §(z,0) = 0, we obtain

T T
/ /VI(Q—WU) : Vx(Sd:Udt—/ /Wuﬁt(dedt = —/ Wy(z,T)-6(x, T)dz,
o Ja 0o Ja Q

or in the another form

N

(4.23) //VW V.0 ddt — // Z(saF )):vaudxdt

7j=1

+/ /Wu~3t5dxdt—/Wu(a:,T)-é(a:,T)dx:O.
o Jo Q

Comparing (4.23) with (4.21), we obtain that W,(-,T") = 0. Therefore, by Corollary
4.2 and Lemma 4.2, for every t € [0, T] we obtain

r 1
/ / V Wy : Ve (Q —W,)dxds = = / W2(z,t)dz,
¢ Ja 2 Jo

or in the equivalent form

(4.24)

N
//|VW|2da:ds+ /Wthda:—// Z ) ):V$Wuda:ds.
i 8u]

In particular there exists C' > 0, independent of ¢, such that

T T N
V. W, |? dxds S/ / V. W, dxds
/t /Q| | t Q JZI J au] )
T T 1/2
SC’(/ /\Vchu\?dxds / /\Wu\2dxds) .
t Jao t Jao
11



So

T T
(4.25) / / VW2 dads < C2 / / W, |2 dads
t Q t Q

Then, using (4.24) and (4.25) we obtain

1 T
4.26) = [ Wiz, t)da < W, dxd
(4.26) 2/Q u(%)l’_/t/ﬂz:: ]8u] )V xds

T 1/2 T
§C(/ /]Vqu\deds / /\WUIdeds) gCQ/ /]Wu\deds.
t Jo t Ja t Jo

Then by Gronwall’s Lemma [, WZ(x,t)dz = 0. So, by definition of W, we obtain
H, = u. This completes the proof. U

Theorem 4.1. For every vy(-) € Vi there exists a minimizer u to (4.6). It satisfies
H, =u, i.e.
Ayu = Oy + div, F(u) + Vp,

u(z,0) = vo(z) and

1 ! 1
(4.27) —/uQ(x,t)dx+/ / |V ul? dedt = —/vg(a:)dx vt € [0,7].
2 Ja 0 Ja 2 Ja
Moreover ifv € R satisfy v(-,0) = vo(+) and H, = v, i.e. Ayv = yv+div, F(v)+V,p,

then v is a minimizer to (4.6).

Proof. First of all we want to note that the set A,, := {u € R : u(-,0) = vo(+)} is not

empty. In particular the function ug(-,¢) := vo(-) belongs to A,,. Let

K := inf Ip(u).

’LLGAUO

Then K > 0. Consider the minimizing sequence {u,} C A,,, i.e. the sequence such
that lim, . Ir(u,) = K. Then, by the definition of I in (4.5), we obtain that there

exists C' > 0, independent of n, such that
T
(4.28) / / (IVaotn|® + |V Hy, |?) dzdt < C'.
0o Ja
Then using Theorem 2.1 we also obtain that, up to a subsequence,

(4.29) w, — up strongly in L*(0,T; Ly),

u, — ug weakly in L>(0,T;Vy) and H,, — H weakly in L*(0,T; Vy) .
12



From the other hand, by Corollary 4.3, for every ¢ € [0,T] we have

¢
/ui(w,t)dx=/ui(x,0)da:—2/ /qun : V. H,, .
Q Q 0 Jo

Therefore, since, u, and H,, are bounded in L*(0,T;Vy) by (4.28) and u,(-,0) is

bounded in Ly we obtain that there exists C' > 0 independent of n and ¢ such that
(4.30) lun( )|y <C VYneN;tel0,T].

But by (4.29) and (4.2), for every t € [0,T] and for every ¢ € Vy, we have

(4.31) lim [ uy(z,t) - ¢(z)de =

n—oo 0

Jim ( /Q un(z,0) - 6(x)dz — /0 t /Q VoH, Vb + /0 t /Q Flu,) vw)
:/Qvo(x)-d)(x)dx—/Ot/§2V$H:V$¢+/Ot/§2F(u0):V$¢~

Since Vy is dense in Ly, by (4.30), and (4.31), for every ¢t € [0,7] there exists
u(+,t) € Ly such that

(4.32) Un(-,t) = u(-,t) weakly in Ly Vt € [0,T].

Moreover there exists C' > 0, independent of ¢, such that ||u(-, )|/, < C. But we have
up — ug in L*(0,T; Ly), therefore u = ug a.e. and sou € L*(0,T; V)NL>®(0,T; Ly).
Moreover, by (4.31) we obtain that wu(-,t) is Ly-weakly continuous in ¢ on [0, 7.
Therefore, by (4.32) and (4.29),

(4.33)

T T
/ /|qu\2dxdt+/ |u(z, T)*dz < lim (/ /\qunIdedth/ |un(x,T)\2dx).
0o JQ Q n—ee 0o Ja Q

Next for every ¥ (x,t) € C2(Q x (0,T),RY) such that div, 1) = 0 we obtain
T
(4.34) lim / / (un - Opp + F(uy,) : V) dadt =
o Ja

T T
lim / /VxHun : Ve dxdt :/ /VIH : Ve dadt .
= Jo  JQ 0 JQ

But we obtained that u, — wu strongly in L*(0,T; Ly). Therefore, since F is a

Lipschitz function we obtain

n—oo

T T
lim /0 /Q (un cO0b + F(uy,) : V;B@/)) dai;lt = /o /Q (u -0 + F(u) : Vac¢)dxdt



So, by (4.34), for every 1 (z,t) € C=°(Q x (0,T),RY) such that div, ¢ = 0 we obtain

(4.35) / / - 0pp + F(u) : Vo) dadt = /0 /Q V. H : Vo dudt.

In particular dyu+div, F(u) € L*(0,T; Vy?'). Therefore d;u € L*(0,T; V') and then
u€ Ay ={uecR: u(-,0) = v(-)}. Moreover, by (4.35), we obtain that H, = H.
So, as before,
T
(4.36) / / VL Ho|? dedt < lim / / V. H, |2 dedt
Combining (4.36) with (4.33), we infer
Ip(u) < lim Ip(u,) = K.

Therefore, u is a minimizer to (4.6). By Lemma 4.4 it satisfies H, = u, i.e.

Agu = Oy + divg F(u) + Vp.

—

0, 7] we have

( /Q o2 (2)dz — /Q u2(x,t)dx).

r(u) =3 [y vi(x)de. Finally if v € R satisfy

Moreover, by Lemma 4.2, for every t €

t
/ / V.u : V. H, dxdt =
0 Jo

Therefore we obtain (4.27). Moreover,

~ N

v(+,0) = vo(-) and H, = v then since

! 1
/ /Vgcv : Vo H, dedt = - (/ vg (v)dz — / v2(x,t)da:) :
0 Jo 2\ Jo Q

we have Ip(v) = 3 [, v3(z)dz = Ip(u). So v is a minimizer to (4.6). O

Remark 4.2. For a fixed r(x,t) € L*(0,T;Vy) we can define a functional Iz, (u) :
R — R by
(4.37)

Iy (u) (/ / \Vou+ Vor|? + |V H, — V| da:dt—i—/\uxT\Qda:)
and for every vy € Viy we can consider the minimization problem
(4.38) inf{Ip(u) : u€ R,u(-,0) =vo(-)}.
Then similarly to the proof of Theorem 4.1 we can prove that there exists a minimizer
u to (4.38) and it satisfies H, = u +r, i.e.

Agu~+ Ayr = Oy + div, F(u) + Vep.

Then, using this fact, as in the proof of Theorem 3.1 we can deduce the existence of

a weak solution to (1.1) with f € L2(0,T;Vy").
14



Remark 4.3. Similar method as in the proof of Theorem 3.1 we can apply to the
unbounded domain 2. In this case we consider a sequence of smooth bounded domains
{Q,}, such that Q, C Q,41 and |J,~, 2, = Q, and a sequence v(()”) — vy in Ly, such
that suppv\” C €,. Consider u,(z,t) € R(,), such that u,(-,0) = v{”(-) and for
every ¥ (z,t) € C®(Q, x (0,T),RY), satisfying div, ¢ = 0, we have (3.5), where F), is
defined by (3.4). Then we can deduce that there exists u € L*(0,T; Vy)NL>®(0,T; Ly)
such that, up to a subsequence, u,, — wu strongly in L2 _(Q x (0,7),RY). Then u will

satisfy conditions (i)-(ii) of Theorem 3.1.

5. VARIATIONAL PRINCIPLE FOR MORE REGULAR SOLUTIONS OF THE

NAVIER-STOKES EQUATIONS

Let © C RY be a domain with Lipschitz boundary (not necessarily bounded).
We denote by Hy the closure of Vy in H}(Q,RY) (the spaces Hy and Vy differ
only in the case of unbounded domain). For every u € L*(2 x (0,7),RY) we have
(u®@u) € L2(0,T; L*(Q,RY*N)) and therefore div, (u @ u) € L*(0,T;Vy'). If in
addition d;u € L?(0,T;Vy?') then we obtain dyu + div, (u @ u) € L*(0,T; Vy1).

Definition 5.1. Let u € L*(0,T; Hy)NL>(0,T; Ly) be such that dyu € L*(0,T;Vy")
and such that u(-,t) is Ly-weakly continuous in ¢ on [0, 7]. Denote the set of all such
functions u by R’. Denote the set R’ N L4(Q2 x (0,T),RY) by P. For every u € P
let H,(-,t) € L*(0,T;Vy) be as in Remark 2.2, corresponding to dyu + div, (u ® u).
That is for every ¥(z,t) € C(Q x (0,T),RY) such that div, ¢ = 0 we have

/OT/Q(u-@twﬂL(u@)u):wa)dxdt:/OT/vaHu:wadxdt.

For a fixed r(z,t) € L*(0,T; Vy) define a functional Jy,,1(u) : P — R by
(5.1)

1 T _
J{%T}(u) = 5(/0 /Q <‘qu + VIT‘Q +|V.H, — erP)dxdt + /Q ]u(x,T)de) .

Theorem 5.1. Let vy € Ly and r(x,t) € L*(0,T;Vy). Assume that there exists
u € P which satisfies u(x,0) = vo(x), and

T T
(5.2) / / (u O+ (u®u) : wa)dxdt = / /(qu + V,r) : Ve dedt
o Jo o Ja
for every ¥(z,t) € C(Q x (0,T),RY), such that div, ¢ = 0, i.e.

Ayu = Ou + div, (u@u) + Vyp — Agr.
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Then u s a minimizer of the following problem
(5.3) inf{Jr,m(u) : ue P,u(-,0) =wvo(-)}.
Moreover if u is a minimizer to (5.3), then u is a solution to (5.2).

Proof. In the same way as in the proof of Theorem 4.1 in [1] we obtain that for every

% € P we must have

(5.4) /OT/QVgCﬂ : Vo Hy dxdt = %(/QEQ(QC,O)dx—/QEQ(x,T)dx).

Therefore,

I 1
(55) Jipn(i) = 5 /O /Q (192 + Var — Vo Hol? 4| Varl?) dodt + /Q @(z,0)dz

Therefore, u € P which satisfy u(z,0) = vg(x) and V,u + V,r = V,H, will be the
minimizer to (5.3). Then also every minimizer u will satisfy V,u+ V,r = V, Hj, i.e.

will satisfy (5.2). O

APPENDIX A
Proof of Corollary 4.2. Let n € C*(R,R) be a mollifying kernel, satisfying n > 0,

Jen(@)dt =1, suppn C [-1,1] and n(—t) = n(t) Vt. Given small € > 0 and ¥ (z,t) €
Cx(Q x (26, T — 2¢), RY) such that div, ¢ = 0, define

(A.1) e (x,t) = %/7}(8 — t)¢(x,s)ds.

€
Then . (z,t) € C°(Q2 x (0,T),RY) and satisfies div, 1). = 0. Therefore we obtain

T T
(A.2) / / u - O, dadt = / / V.V : Vb, dadt
0o Ja o Ja

where V, (-, t) € L*(0,T;Vy) is as in Remark 2.2, corresponding to d;u. But

/OT/Qu.atwsdxdt:/oT/Q“(x’t)' (%/OTH<S;t)85w(x,s)ds) e
/OT/Qatzb(x,t). (é /OTn<S;t)u(x, s)ds) dxdt:/OT/Qatqﬁ(x,t).us(x,t) dedt.
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where u.(z,t) = %fOT

/OT /Q V.V, i Vb, dadt = /OT /Q Vo V(1) : G /fn(tt)vw(“)“) dxdt
Z/OT/va(x,t):va /0T77<S;t)Vu(x,s)ds) dedt

T
= / / Voo(x,t) : Vi (Vi)e(2,t) dadt
0o Jo
where (V,)(x,t) = %fOTn((s —t)/e)Vu(x, s)ds. Therefore, by (A.2), we infer

T T
(A.3) / / U - Optp dxdt = / / Ve(Vi)e : Vb dadt .

o Ja o Ja
So du. € L*(2e,T — 2¢;Vy'). Moreover u. € L*(0,T;Vy) N L>®(0,T; Ly). We

n((s —t)/e)u(z, s)ds. By the other hand

have u. — w and (V). — V, strongly in L*(0,T;Vy) as ¢ — 0. Moreover, up to
a subsequence ¢, — 0, we have u., (-,t) — u(-,t) strongly in Ly a.e. in [0,7]. In

addition, by Lemma 4.2, for every a,b € [2e, T — 2¢| we have

(A1) / ’ /Q V. : Va(Va). dedt %( /Q (7, a)dz — /Q ug(x,b)dx).

Then letting ¢ — 0 in (A.4), we obtain that for almost every a and b in (0,7) we

b
/ /qu:VxVudxdt: 1(/uQ(SU,a)olyc—/u2(ac, b)dx).
a Jo 2\ Ja 0

Sowu € L*(0,T; Ly). O

have
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