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1. Introduction

Let Ω ⊂ RN be a domain. The initial-boundary value problem for the incompress-

ible Navier-Stokes Equations is the following one,

(1.1)


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



























(i) ∂v
∂t + divx (v ⊗ v) + ∇xp = ν∆xv + f ∀(x, t) ∈ Ω × (0, T ) ,

(ii) divx v = 0 ∀(x, t) ∈ Ω × (0, T ) ,

(iii) v = 0 ∀(x, t) ∈ ∂Ω × (0, T ) ,

(iv) v(x, 0) = v0(x) ∀x ∈ Ω .

Here v = v(x, t) : Ω× (0, T ) → RN is an unknown velocity, p = p(x, t) : Ω× (0, T ) →

R is an unknown pressure, associated with v, ν > 0 is a given constant viscosity,

f : Ω × (0, T ) → RN is a given force field and v0 : Ω → RN is a given initial velocity.

The existence of weak solution to (1.1) satisfying the Energy Inequality was first

proved in the celebrating works of Leray (1934). There are many different procedures

for constructing weak solutions (see Leray [3],[4] (1934); Kiselev and Ladyzhenskaya

[2] (1957); Shinbrot [5] (1973)). These methods are all based on the so called ”Faedo-

Galerkin” aproximation process. In this paper we give a new variational method to

investigate the Navier-Stokes Equations. As an application of this method we give a

new relatively simple proof of the existence of weak solutions to the problem (1.1).

Let us briefly describe our method. Consider for simplicity f = 0 in (1.1). For

every smooth u : Ω̄ × [0, T ] → RN satisfying conditions (ii) − (iv) of (1.1) define the

energy functional

(1.2) E(u) :=
1

2

∫ T

0

∫

Ω

(

ν|∇xu|
2 +

1

ν
|∇xH̄u|

2
)

dxdt +
1

2

∫

Ω

|u(x, T )|2 dx ,
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where H̄u(x, t) solves the following Stokes system for every t ∈ (0, T ),

(1.3)























∆xH̄u =
(

∂v
∂t + divx (v ⊗ v)

)

+ ∇xp x ∈ Ω ,

divx H̄u = 0 x ∈ Ω ,

H̄u = 0 ∀x ∈ ∂Ω .

A simple integration by parts gives

(1.4) E(u) =
1

2ν

∫ T

0

∫

Ω

(

|ν∇xu −∇xH̄u|
2
)

dxdt +
1

2

∫

Ω

|v0(x)|2 dx .

Therefore if there exists at least a smooth solution to (1.1) (with f = 0) then a

smooth function u : Ω × (0, T ) → RN will be a solution to (1.1) (with f = 0) if and

only if it is a minimizer of the functional in (1.2) among all smooth divergence free

vector fields satisfying the boundary and the initial value conditions of (1.1). For the

rigorous formulations and statements see Section 5. This remark relates the problem

of existence of solutions of the Navier-Stokes equations to that of the problem of

minimizing the energy E(u).

Unfortunately, when applying this method to the Navier-Stokes Equation one meets

certain difficulties, for example in proving the existence of minimizers to E. But we

can apply this method to a suitable approximation of problem (1.1). We approximate

(1.1) by replacing the nonlinear term divx(v⊗v) with the terms divx

{

fn(|v|2)(v⊗v)
}

,

where fn : R+ → R+ are regular cutoff functions satisfying fn(s) = 1 for s ≤ n

and fn(s) = 0 for s > 2n. The approximating problems are simpler than (1.1),

since the nonlinear term has higher integrability. Next we consider the energies En

corresponding to the approximating problems and investigate the Euler-Lagrange

equations of En and the existence of minimizers. In this way we get solutions to

the approximating problems which satisfy the energy equality (in fact these solutions

will be regular if the initial data and the domain are). Next we pass to the limit for

n → ∞ and obtain a weak solution to (1.1). For the details see Section 3.

2. Preliminaries

For two matrices A, B ∈ Rp×q with ij-th entries aij and bij respectively, we write

A : B :=
p
∑

i=1

q
∑

j=1
aijbij .

Given a vector valued function f(x) =
(

f1(x), . . . , fk(x)
)

: Ω → Rk (Ω ⊂ RN) we

denote by ∇xf the k × N matrix with ij-th entry ∂fi

∂xj
.

For a matrix valued function F (x) := {Fij(x)} : RN → Rk×N we denote by div F the
2



Rk-valued vector field defined by div F := (l1, . . . , lk) where li =
N
∑

j=1

∂Fij

∂xj
. Throughout

the rest of the paper we assume that Ω is domain in RN .

Definition 2.1. We denote:

• By VN the space {ϕ ∈ C∞
c (Ω, RN) : div ϕ = 0} and by LN the space, which

is the closure of VN in the space L2(Ω, RN ), endowed with the norm ‖ϕ‖ :=
( ∫

Ω |ϕ|2dx
)1/2

.

• By H̄1
0 (Ω, RN) the closure of C∞

c (Ω, RN) with respect to the norm |||ϕ||| :=
( ∫

Ω |∇ϕ|2dx
)1/2

. This space differ from H1
0 (Ω, RN) only in the case of un-

bounded domain.

• By VN the closure of VN in H̄1
0 (Ω, RN).

• By V −1
N the space dual to VN .

• By Y the space

Y := {ϕ(x, t) ∈ C∞
c (Ω × [0, T ], RN) : divx ϕ = 0} .

Remark 2.1. It is obvious that u ∈ D′(Ω, RN) (rigorously the equivalency class of u,

up to gradients) belongs to V −1
N if and only if there exists w ∈ VN such that

∫

Ω

∇w : ∇δ dx = − < u, δ > ∀δ ∈ VN .

In particular ∆w = u + ∇p as a distribution and

|||w||| = sup
δ∈VN , |||δ|||≤1

< u, δ >= |||u|||−1 .

Definition 2.2. We will say that the distribution l ∈ D′(Ω × (0, T ), RN) belongs

to L2(0, T ; V −1
N ), if there exists v(·, t) ∈ L2(0, T ; V −1

N ), such that for every ψ(x, t) ∈

C∞
c (Ω × (0, T ), RN), satisfying divx ψ = 0, we have

< l(·, ·),ψ(·, ·) >=

∫ T

0

< v(·, t),ψ(·, t) > dt .

Remark 2.2. Let v(·, t) ∈ L2(0, T ; V −1
N ). For a.e. t ∈ [0, T ] consider Vv(·, t) as in

Remark 2.1, corresponding to v(·, t), i.e.
∫

Ω

∇xVv(x, t) : ∇xδ(x) dx = − < v(·, t), δ(·) > ∀δ ∈ VN .

Then it is clear that Vv(·, t) ∈ L2(0, T ; VN) and

‖Vv‖L2(0,T ;VN ) = ‖v‖L2(0,T ;V −1

N ) .
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In the sequel we will use the following compactness result which is a particular case

of Theorem 2.3 in the book of Temam [6].

Theorem 2.1. Let Ω be a bounded domain. Consider the sequence {un} ⊂ L2(0, T ; VN)

such that ∂tun ∈ L1(0, T, V −1
N ). Assume that the sets {un} and {∂tun} are bounded in

L2(0, T ; VN) and L1(0, T, V −1
N ) respectively. Then {un} is pre-compact in L2(0, T ; LN).

3. Existence of the weak solution to the Navier-Stokes Equations

Throughout this section we assume that Ω ⊂ RN is a bounded domain.

Definition 3.1. Let F (v) = {Fij(v)} ∈ C1(RN , RN×N) ∩ Lip satisfy F (0) = 0 and
∂Fij

∂vm
(v) = ∂Fmj

∂vi
(v) for all v ∈ RN and m, i, j ∈ {1, . . . , N}. Denote the class of all

such F by F.

Remark 3.1. Let F ∈ F. Then it is clear that there exists G(v) = (G1(v), . . . , GN(v)) ∈

C2(RN , RN), such that ∂Gj

∂vi
(v) = Fij(v) i.e. ∇vG(v) = (F (v))T .

Using our variational approach, we will prove in the sequel the existence of a

solution of the following problem

(3.1)







































∂v
∂t + divx F (v) + ∇xp = ∆xv ∀(x, t) ∈ Ω × (0, T ) ,

divx v = 0 ∀(x, t) ∈ Ω × (0, T ) ,

v = 0 ∀(x, t) ∈ ∂Ω × (0, T ) ,

v(x, 0) = v0(x) ∀x ∈ Ω ,

for every F ∈ F, which in addition satisfies the Energy Equality (see Theorem 4.1).

But first of all, in the proof of the following theorem we would like to explain how

this fact implies the existence of weak solution to the Navier-Stokes Equation.

Theorem 3.1. Assume N ≤ 4. Let v0(x) ∈ LN . Then there exists u ∈ L2(0, T ; VN)∩

L∞(0, T ; LN) satisfying

(3.2)

∫

Ω

v0(x) ·ψ(x, 0) dx +

∫ T

0

∫

Ω

(

u · ∂tψ+ (u⊗ u) : ∇xψ
)

=

∫ T

0

∫

Ω

∇xu : ∇xψ ,

for every ψ(x, t) ∈ C∞
c (Ω × [0, T ), RN) such that divx ψ = 0, i.e.

∆xu = ∂tu + divx (u ⊗ u) + ∇xp , and u(x, 0) = v0(x) .
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Moreover, for a.e. t ∈ [0, T ] we have

(3.3)

∫ t

0

∫

Ω

|∇xu|
2 dxdt ≤

1

2

(
∫

Ω

v2
0(x)dx −

∫

Ω

u2(x, t)dx

)

.

Proof. Fix some h(s) ∈ C∞(R, [0, 1]), satisfying h(s) = 1 ∀s ≤ 1 and h(s) = 0 ∀s ≥ 2.

For every n ∈ N define fn(s) := h(s/n). Consider

(3.4) Fn(v) := fn(|v|2)(v ⊗ v) + gn(|v|2)IN ,

where IN is a N × N -unit matrix and gn(r) := 1
2

∫ r
0 fn(s)ds. Then for every n

we have Fn ∈ F and there exists A > 0 such that |Fn(v)| ≤ A|v|2 for every v

and n. Fix also some sequence {v(n)
0 }∞n=1 ⊂ VN such that v(n)

0 → v0 strongly in

LN as n → ∞. By Theorem 4.1, bellow, for every n there exist a function un ∈

L2(0, T ; VN)∩L∞(0, T ; LN), such that ∂tun ∈ L2(0, T ; V −1
N ) and un(·, t) is LN -weakly

continuous in t on [0, T ], which satisfy

(3.5)

∫

Ω

v(n)
0 (x) ·ψ(x, 0)+

∫ T

0

∫

Ω

(

un ·∂tψ+Fn(un) : ∇xψ
)

=

∫ T

0

∫

Ω

∇xun : ∇xψ ,

for every ψ(x, t) ∈ C∞
c (Ω× [0, T ), RN), such that divx ψ = 0. Moreover, by the same

Theorem, for every t ∈ [0, T ] we obtain

(3.6)
1

2

∫

Ω

u2
n(x, t)dx +

∫ t

0

∫

Ω

|∇xun|
2 dxdt =

1

2

∫

Ω

(v(n)
0 )2(x)dx .

Consider Vn(·, t), Wn(·, t) ∈ L2(0, T ; VN) as in Remark 2.2, corresponding to (∂tun +

divx Fn(un)) and divx Fn(un) respectively. But Vn = un. Therefore, by (3.6) we obtain

∫ T

0

∫

Ω

|∇xun|
2 dxdt +

∫ T

0

∫

Ω

|∇xVn|
2 dxdt ≤ C0 .

From the other hand, since N ≤ 4, we have

T
∫

0

(
∫

Ω

|∇Wn|
2

)1/2

≤

T
∫

0

(
∫

Ω

|Fn(un)|2
)1/2

≤ A

T
∫

0

(
∫

Ω

|un|
4

)1/2

≤ C

T
∫

0

∫

Ω

|∇xun|
2

Therefore {∂tun} is bounded in L1(0, T ; V −1
N ). Then we can use Theorem 2.1 and

(3.6), to deduce that there exists u ∈ L2(0, T ; VN) ∩ L∞(0, T ; LN) satisfying that, up

to a subsequence, un → u strongly in L2(0, T ; LN) and un ⇀ u weakly in L2(0, T ; VN).

Then, up to a further subsequence, we have un(x, t) → u(x, t) almost everywhere in
5



Ω × (0, T ). In particular fn

(

|un(x, t)|2
)

→ 1 almost everywhere in Ω × (0, T ). Then,

lim
n→∞

∫ T

0

∫

Ω

∣

∣fn(|un|
2)(un ⊗ un) − (u ⊗ u)

∣

∣ dxdt ≤

lim
n→∞

∫ T

0

∫

Ω

|fn(|un|
2)|·|(un⊗un)−(u⊗u)|, dxdt+ lim

n→∞

∫ T

0

∫

Ω

u2
∣

∣fn(|un|
2)−1

∣

∣ dxdt = 0 .

Therefore, letting n tend to ∞ in (3.5), we obtain (3.2). Moreover, by (3.6), for a.e.

t ∈ [0, T ] we obtain (3.3). This completes the proof. !

4. Proof of the existence of solutions to (3.1)

Throughout this section we assume that Ω ⊂ RN is a bounded domain. In the

sequel we will need several lemmas. The following Lemma can be proved in the same

way as Lemmas 2.1 and 2.2 in [1].

Lemma 4.1. Let u ∈ L2(0, T ; VN) ∩ L∞(0, T ; LN) be such that ∂tu ∈ L2(0, T ; V −1
N ).

Consider V0(·, t) ∈ L2(0, T ; VN) as in Remark 2.2, corresponding to ∂tu. Then we

can redefine u on a subset of [0, T ] of Lebegue measure zero, so that u(·, t) will be

LN -weakly continuous in t on [0, T ]. Moreover, for every 0 ≤ a < b ≤ T and for

every ψ(x, t) ∈ Y (see Definition 2.1) we will have

(4.1)

∫ b

a

∫

Ω

∇xV0 : ∇xψ dxdt −

∫ b

a

∫

Ω

u · ∂tψ dxdt

=

∫

Ω

u(x, a) · ψ(x, a)dx −

∫

Ω

u(x, b) · ψ(x, b)dx .

Remark 4.1. Let F ∈ Lip (RN , RN×N) satisfying F (0) = 0. Then for every u ∈

L∞(0, T ; LN) we have F (u) ∈ L∞
(

0, T ; L2(Ω, RN×N)
)

and therefore divx F (u) ∈

L2(0, T ; V −1
N ). If in addition ∂tu ∈ L2(0, T ; V −1

N ) then we obtain ∂tu + divx F (u) ∈

L2(0, T ; V −1
N ).

We have the following Corollary to Lemma 4.1.

Corollary 4.1. Let u be as in Lemma 4.1 and let F ∈ Lip (RN , RN×N) satisfying

F (0) = 0. Assume, in addition, that u(·, t) is LN -weakly continuous in t on [0, T ]

(see Lemma 4.1). Consider V (·, t) ∈ L2(0, T ; VN) as in Remark 2.2, corresponding to

∂tu + divx F (u). Then for every 0 ≤ a < b ≤ T and for every ψ(x, t) ∈ Y we have

(4.2)

∫ b

a

∫

Ω

∇xV : ∇xψ dxdt −

∫ b

a

∫

Ω

(

u · ∂tψ + F (u) : ∇xψ
)

dxdt

=

∫

Ω

u(x, a) · ψ(x, a)dx −

∫

Ω

u(x, b) · ψ(x, b)dx .
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The following Lemma can be proved in the same way as Theorem 4.1 in [1].

Lemma 4.2. Let u ∈ L2(0, T ; VN) ∩ L∞(0, T ; LN) be such that ∂tu ∈ L2(0, T ; V −1
N )

and let u(·, t) be LN -weakly continuous in t on [0, T ] (see Lemma 4.1). Consider

V0(·, t) ∈ L2(0, T ; VN) as in Remark 2.2, corresponding to ∂tu. Then for every t ∈

[0, T ] we have

∫ t

0

∫

Ω

∇xu : ∇xV0 dxdt =
1

2

(
∫

Ω

u2(x, 0)dx −

∫

Ω

u2(x, t)dx

)

.

Corollary 4.2. Let u ∈ L2(0, T ; VN) be such that ∂tu ∈ L2(0, T ; V −1
N ). Then u ∈

L∞(0, T ; LN).

We will give the proof of this Corollary in the Appendix.

Next we have the second Corollary to Lemma 4.2.

Corollary 4.3. Let F ∈ F and let u ∈ L2(0, T ; VN)∩L∞(0, T ; LN) be such that ∂tu ∈

L2(0, T ; V −1
N ) and let u(·, t) be LN -weakly continuous in t on [0, T ] (see Lemma 4.1).

Consider V (·, t) ∈ L2(0, T ; VN) as in Remark 2.2, corresponding to ∂tu + divx F (u)

(see Remark 4.1). Then for every t ∈ [0, T ] we have

(4.3)

∫ t

0

∫

Ω

∇xu : ∇xV dxdt =
1

2

(
∫

Ω

u2(x, 0)dx −

∫

Ω

u2(x, t)dx

)

.

Proof. By Lemma 4.2, for every t ∈ [0, T ] we obtain

(4.4)

∫ t

0

∫

Ω

∇xV : ∇xu dxdt−

∫ t

0

∫

Ω

F (u) : ∇xu dxdt

=
1

2

(
∫

Ω

u2(x, 0)dx −

∫

Ω

u2(x, t)dx

)

.

But for almost every t ∈ [0, T ] u(·, t) ∈ VN , therefore, for every such fixed t there

exists a sequence {δn(·)}∞n=1 ∈ VN , such that δn(·) → u(·, t) in VN . But for every

δ ∈ VN we obtain

∫

Ω

F (δ) : ∇xδ =

∫

Ω

N
∑

i=1

N
∑

j=1

: Fij(δ)
∂δi
∂xj

=

∫

Ω

N
∑

i=1

N
∑

j=1

∂Gj

∂vi
(δ)

∂δi
∂xj

=

∫

Ω

divx G(δ) = 0 ,

where G is as in Remark 3.1. Therefore, since F is Lipshitz function, we obtain
∫

Ω

F (u(x, t)) : ∇xu(x, t) dx = lim
n→∞

∫

Ω

F (δn(x)) : ∇xδn(x) dx = 0 .

Therefore, using (4.4), we obtain (4.3) and the result follows. !
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Definition 4.1. Let u ∈ L2(0, T ; VN)∩L∞(0, T ; LN) be such that ∂tu ∈ L2(0, T ; V −1
N )

and such that u(·, t) is LN -weakly continuous in t on [0, T ]. Denote the set of all such

functions u by R. For a fixed F ∈ F and for every u ∈ R let Hu(·, t) ∈ L2(0, T ; VN)

be as in Remark 2.2, corresponding to ∂tu + divx F (u). That is for every ψ(x, t) ∈

C∞
c (Ω × (0, T ), RN) such that divx ψ = 0 we have

∫ T

0

∫

Ω

(

u · ∂tψ + F (u) : ∇xψ
)

dxdt =

∫ T

0

∫

Ω

∇xHu : ∇xψ dxdt .

Define a functional IF (u) : R → R by

(4.5) IF (u) :=
1

2

(
∫ T

0

∫

Ω

(

|∇xu|
2 + |∇xHu|

2
)

dxdt +

∫

Ω

|u(x, T )|2dx

)

,

and for every v0 ∈ VN consider the minimization problem

(4.6) inf{IF (u) : u ∈ R, u(·, 0) = v0(·)} .

Lemma 4.3. For every u ∈ R and every δ(x, t) ∈ Y, such that δ(x, 0) = 0, we have

(4.7) lim
s→0

IF (u + sδ) − IF (u)

s
=

∫ T

0

∫

Ω

∇xu : ∇xδ +

∫

Ω

u(x, T ) · δ(x, T ) dx

−

∫ T

0

∫

Ω

∂tδ · Hu dxdt +

∫ T

0

∫

Ω

(

N
∑

j=1

δj
∂F

∂uj
(u)
)

: ∇xHu dxdt .

Proof. It is clear that

(4.8) lim
s→0

1

2s

(
∫ T

0

∫

Ω

|∇x(u + sδ)|2 −

∫ T

0

∫

Ω

|∇xu|
2

)

=

∫ T

0

∫

Ω

∇xu : ∇xδ .

Moreover,

(4.9) lim
s→0

1

2s

(
∫

Ω

|u(x, T )+sδ(x, T )|2 dx−

∫

Ω

|u(x, T )|2 dx

)

=

∫

Ω

u(x, T )·δ(x, T ) dx .

Next we have

(4.10)
1

2s

∫ T

0

∫

Ω

(

|∇xH(u+sδ)|
2 − |∇xHu|

2
)

=

1

2s

∫ T

0

∫

Ω

(

∇xH(u+sδ) −∇xHu

)

:
(

∇xH(u+sδ) + ∇xHu

)

=

−
1

2s

∫ T

0

〈

(

s · ∂tδ + divx F (u + sδ) − divx F (u)
)

(·, t),
(

H(u+sδ) + Hu

)

(·, t)
〉

dt

= −

∫ T

0

∫

Ω

∂tδ(x, t) ·
1

2

(

H(u+sδ)(x, t) + Hu(x, t)
)

dxdt

+

∫ T

0

∫

Ω

1

s

(

F (u + sδ) − F (u)
)

:
1

2

(

∇xH(u+sδ) + ∇xHu

)

dxdt .
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Since F is Lipschitz and C1, we obtain

(4.11)

1

s

(

F (u + sδ)−F (u)
)

→
N
∑

j=1

δj
∂F

∂uj
(u) as s → 0 strongly in L2(Ω× (0, T ), RN×N) .

On the other hand, for every h(x, t) ∈ L2(0, T ; VN) we obtain

(4.12) lim
s→0

∫ T

0

∫

Ω

(

∇xH(u+sδ) −∇xHu

)

: ∇xh(x, t) =

lim
s→0

(

− s

∫ T

0

∫

Ω

∂tδ · h dxdt +

∫ T

0

∫

Ω

(

F (u + sδ) − F (u)
)

: ∇xh dxdt

)

= 0 .

Therefore

(4.13) H(u+sδ) ⇀ Hu weakly in L2(0, T ; VN) .

In particular H(u+sδ) remains bounded in L2(0, T ; VN) as s → 0. Therefore, by (4.10),

we obtain

lim
s→0

∫ T

0

∫

Ω

(

|∇xH(u+sδ)|
2 − |∇Hu|

2
)

= 0 .

So

(4.14) H(u+sδ) → Hu strongly in L2(0, T ; VN) .

Therefore, using (4.14) and (4.11) in (4.10), we infer

(4.15) lim
s→0

1

2s

∫ T

0

∫

Ω

(

|∇xH(u+sδ)|
2 − |∇xHu|

2
)

=

−

∫ T

0

∫

Ω

∂tδ · Hu dxdt +

∫ T

0

∫

Ω

(

N
∑

j=1

δj
∂F

∂uj
(u)
)

: ∇xHu dxdt .

Plugging (4.8), (4.9) and (4.15), we obtain that for every δ(x, t) ∈ Y , such that

δ(x, 0) = 0, we must have (4.7). !

Lemma 4.4. Let u ∈ R be a minimizer to (4.6). Then Hu = u, i.e.

∆xu = ∂tu + divx F (u) + ∇xp .

Proof. Fix some δ(x, t) ∈ Y , such that δ(x, 0) = 0. Then for every s ∈ R (u+sδ) ∈ R

and (u + sδ)(·, 0) = v0(·). Therefore,

(4.16) lim
s→0

IF (u + sδ) − IF (u)

s
= 0 .
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So, by (4.7) in Lemma 4.3, we must have

(4.17)

∫ T

0

∫

Ω

∇xu : ∇xδ +

∫

Ω

u(x, T ) · δ(x, T ) dx

−

∫ T

0

∫

Ω

∂tδ · Hu dxdt +

∫ T

0

∫

Ω

(

N
∑

j=1

δj
∂F

∂uj
(u)
)

: ∇xHu dxdt = 0 .

Using Lemma 4.1 (see (4.2)), for every δ(x, t) ∈ Y , such that δ(x, 0) = 0 we obtain

(4.18)

∫ T

0

∫

Ω

∇xHu : ∇xδ dxdt −

∫ T

0

∫

Ω

∂tδ(x, t) · u(x, t) dxdt

−

∫ T

0

∫

Ω

F (u) : ∇xδ dxdt +

∫

Ω

u(x, T ) · δ(x, T )dx = 0 .

Since F is Lipschitz function, for a.e. t we have ∇xF (u) ∈ L2. Then for a.e. t ∈ (0, T ),

(4.19)

∫

Ω

F
(

u(x, t)
)

: ∇xδ(x, t) dx = −

∫

Ω

divx F (u) · δ dx =

−

∫

Ω

∑

1≤i,j,m≤N

∂Fjm

∂ui
(u)

∂ui

∂xm
δj dx = −

∫

Ω

∑

1≤i,j,m≤N

∂Fim

∂uj
(u)

∂ui

∂xm
δj dx

= −

∫

Ω

N
∑

j=1

(

δj
∂F

∂uj
(u)
)

: ∇xu dx .

Inserting (4.19) into (4.18), we deduce

(4.20)

∫ T

0

∫

Ω

∇xHu : ∇xδ dxdt −

∫ T

0

∫

Ω

∂tδ(x, t) · u(x, t) dxdt

+

∫ T

0

∫

Ω

N
∑

j=1

(

δj
∂F

∂uj
(u)
)

: ∇xu dxdt +

∫

Ω

u(x, T ) · δ(x, T )dx = 0 .

Next define Wu := u − Hu. Then Wu ∈ L2(0, T ; VN) and subtracting (4.20) from

(4.17), for every δ(x, t) ∈ Y , such that δ(x, 0) = 0, we obtain

(4.21)

∫ T

0

∫

Ω

∇xWu : ∇xδ +

∫ T

0

∫

Ω

∂tδ(x, t) · Wu(x, t) dxdt

−

∫ T

0

∫

Ω

(

N
∑

j=1

δj
∂F

∂uj
(u)
)

: ∇xWu dxdt = 0 .

Since ∂F
∂uj

∈ L∞, we obtain that the functional L(φ) : VN → R defined by

L(φ) :=

∫

Ω

(

N
∑

j=1

φj
∂F

∂uj
(u)
)

: ∇xWu dx
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belongs to V −1
N for a.e. t ∈ (0, T ). Moreover there exists Q(x, t) ∈ L2(0, T ; VN) such

that for a.e. t ∈ (0, T ) we have

L(φ) :=

∫

Ω

(

N
∑

j=1

φj
∂F

∂uj
(u)
)

: ∇xWu dx =

∫

Ω

∇xQ(x, t) : ∇xφ(x) dx ∀φ ∈ VN .

Then from (4.21) we obtain that ∂tWu ∈ L2(0, T ; V −1
N ) and we have

(4.22) < ∂tWu(·, ·),ψ(·, ·) >= −

∫ T

0

∫

Ω

∇x(Q − Wu) : ∇xψ dxdt

∀ψ ∈ C∞
c (Ω × (0, T ), RN) s.t. divx ψ = 0 .

Therefore, by Corollary 4.2 and Lemma 4.1, we can redefine Wu(·, t) on a set of

Lebegue measure zero on [0, T ] so that Wu(·, t) be LN -weakly continuous in t on

[0, T ]. From now we consider such Wu. Moreover, by (4.2) and (4.22), for every

δ ∈ Y , such that δ(x, 0) = 0, we obtain

∫ T

0

∫

Ω

∇x(Q−Wu) : ∇xδ dxdt−

∫ T

0

∫

Ω

Wu ·∂tδ dxdt = −

∫

Ω

Wu(x, T ) ·δ(x, T )dx ,

or in the another form

(4.23)

∫ T

0

∫

Ω

∇xWu : ∇xδ dxdt −

∫ T

0

∫

Ω

(

N
∑

j=1

δj
∂F

∂uj
(u)
)

: ∇xWu dxdt

+

∫ T

0

∫

Ω

Wu · ∂tδ dxdt −

∫

Ω

Wu(x, T ) · δ(x, T )dx = 0 .

Comparing (4.23) with (4.21), we obtain that Wu(·, T ) = 0. Therefore, by Corollary

4.2 and Lemma 4.2, for every t ∈ [0, T ] we obtain
∫ T

t

∫

Ω

∇xWu : ∇x(Q − Wu) dxds =
1

2

∫

Ω

W 2
u (x, t)dx ,

or in the equivalent form

(4.24)
∫ T

t

∫

Ω

|∇xWu|
2 dxds +

1

2

∫

Ω

W 2
u (x, t)dx =

∫ T

t

∫

Ω

(

N
∑

j=1

(Wu)j
∂F

∂uj
(u)
)

: ∇xWu dxds .

In particular there exists C > 0, independent of t, such that

∫ T

t

∫

Ω

|∇xWu|
2 dxds ≤

∫ T

t

∫

Ω

(

N
∑

j=1

(Wu)j
∂F

∂uj
(u)
)

: ∇xWu dxds

≤ C

(
∫ T

t

∫

Ω

|∇xWu|
2 dxds ·

∫ T

t

∫

Ω

|Wu|
2 dxds

)1/2

.
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So

(4.25)

∫ T

t

∫

Ω

|∇xWu|
2 dxds ≤ C2

∫ T

t

∫

Ω

|Wu|
2 dxds .

Then, using (4.24) and (4.25) we obtain

(4.26)
1

2

∫

Ω

W 2
u (x, t)dx ≤

∫ T

t

∫

Ω

(

N
∑

j=1

(Wu)j
∂F

∂uj
(u)
)

: ∇xWu dxds

≤ C

(
∫ T

t

∫

Ω

|∇xWu|
2 dxds ·

∫ T

t

∫

Ω

|Wu|
2 dxds

)1/2

≤ C2

∫ T

t

∫

Ω

|Wu|
2 dxds .

Then by Gronwall’s Lemma
∫

Ω W 2
u (x, t)dx = 0. So, by definition of Wu we obtain

Hu = u. This completes the proof. !

Theorem 4.1. For every v0(·) ∈ VN there exists a minimizer u to (4.6). It satisfies

Hu = u, i.e.

∆xu = ∂tu + divx F (u) + ∇xp ,

u(x, 0) = v0(x) and

(4.27)
1

2

∫

Ω

u2(x, t)dx +

∫ t

0

∫

Ω

|∇xu|
2 dxdt =

1

2

∫

Ω

v2
0(x)dx ∀t ∈ [0, T ] .

Moreover if v ∈ R satisfy v(·, 0) = v0(·) and Hv = v, i.e. ∆xv = ∂tv+divx F (v)+∇xp,

then v is a minimizer to (4.6).

Proof. First of all we want to note that the set Av0
:= {u ∈ R : u(·, 0) = v0(·)} is not

empty. In particular the function u0(·, t) := v0(·) belongs to Av0
. Let

K := inf
u∈Av0

IF (u) .

Then K ≥ 0. Consider the minimizing sequence {un} ⊂ Av0
, i.e. the sequence such

that limn→∞ IF (un) = K. Then, by the definition of IF in (4.5), we obtain that there

exists C > 0, independent of n, such that

(4.28)

∫ T

0

∫

Ω

(

|∇xun|
2 + |∇xHun|

2
)

dxdt ≤ C .

Then using Theorem 2.1 we also obtain that, up to a subsequence,

(4.29) un → u0 strongly in L2(0, T ; LN) ,

un ⇀ u0 weakly in L2(0, T ; VN) and Hun ⇀ H̄ weakly in L2(0, T ; VN) .
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From the other hand, by Corollary 4.3, for every t ∈ [0, T ] we have
∫

Ω

u2
n(x, t)dx =

∫

Ω

u2
n(x, 0)dx − 2

∫ t

0

∫

Ω

∇xun : ∇xHun .

Therefore, since, un and Hun are bounded in L2(0, T ; VN) by (4.28) and un(·, 0) is

bounded in LN we obtain that there exists C > 0 independent of n and t such that

(4.30) ‖un(·, t)‖LN
≤ C ∀n ∈ N, t ∈ [0, T ].

But by (4.29) and (4.2), for every t ∈ [0, T ] and for every φ ∈ VN , we have

(4.31) lim
n→∞

∫

Ω

un(x, t) · φ(x)dx =

lim
n→∞

(

∫

Ω

un(x, 0) · φ(x)dx −

∫ t

0

∫

Ω

∇xHun : ∇xφ+

∫ t

0

∫

Ω

F (un) : ∇xφ

)

=

∫

Ω

v0(x) · φ(x)dx −

∫ t

0

∫

Ω

∇xH̄ : ∇xφ+

∫ t

0

∫

Ω

F (u0) : ∇xφ .

Since VN is dense in LN , by (4.30), and (4.31), for every t ∈ [0, T ] there exists

u(·, t) ∈ LN such that

(4.32) un(·, t) ⇀ u(·, t) weakly in LN ∀t ∈ [0, T ] .

Moreover there exists Ĉ > 0, independent of t, such that ‖u(·, t)‖LN
≤ Ĉ. But we have

un → u0 in L2(0, T ; LN), therefore u = u0 a.e. and so u ∈ L2(0, T ; VN)∩L∞(0, T ; LN).

Moreover, by (4.31) we obtain that u(·, t) is LN -weakly continuous in t on [0, T ].

Therefore, by (4.32) and (4.29),

(4.33)
∫ T

0

∫

Ω

|∇xu|
2 dxdt+

∫

Ω

|u(x, T )|2dx ≤ lim
n→∞

(
∫ T

0

∫

Ω

|∇xun|
2 dxdt+

∫

Ω

|un(x, T )|2dx

)

.

Next for every ψ(x, t) ∈ C∞
c (Ω × (0, T ), RN) such that divx ψ = 0 we obtain

(4.34) lim
n→∞

∫ T

0

∫

Ω

(

un · ∂tψ + F (un) : ∇xψ
)

dxdt =

lim
n→∞

∫ T

0

∫

Ω

∇xHun : ∇xψ dxdt =

∫ T

0

∫

Ω

∇xH̄ : ∇xψ dxdt .

But we obtained that un → u strongly in L2(0, T ; LN). Therefore, since F is a

Lipschitz function we obtain

lim
n→∞

∫ T

0

∫

Ω

(

un · ∂tψ + F (un) : ∇xψ
)

dxdt =

∫ T

0

∫

Ω

(

u · ∂tψ + F (u) : ∇xψ
)

dxdt

13



So, by (4.34), for every ψ(x, t) ∈ C∞
c (Ω× (0, T ), RN) such that divx ψ = 0 we obtain

(4.35)

∫ T

0

∫

Ω

(

u · ∂tψ + F (u) : ∇xψ
)

dxdt =

∫ T

0

∫

Ω

∇xH̄ : ∇xψ dxdt .

In particular ∂tu+divx F (u) ∈ L2(0, T ; V −1
N ). Therefore ∂tu ∈ L2(0, T ; V −1

N ) and then

u ∈ Av0
= {u ∈ R : u(·, 0) = v0(·)}. Moreover, by (4.35), we obtain that Hu = H̄ .

So, as before,

(4.36)

∫ T

0

∫

Ω

|∇xHu|
2 dxdt ≤ lim

n→∞

∫ T

0

∫

Ω

|∇xHun|
2 dxdt .

Combining (4.36) with (4.33), we infer

IF (u) ≤ lim
n→∞

IF (un) = K .

Therefore, u is a minimizer to (4.6). By Lemma 4.4 it satisfies Hu = u, i.e.

∆xu = ∂tu + divx F (u) + ∇xp .

Moreover, by Lemma 4.2, for every t ∈ [0, T ] we have
∫ t

0

∫

Ω

∇xu : ∇xHu dxdt =
1

2

(
∫

Ω

v2
0(x)dx −

∫

Ω

u2(x, t)dx

)

.

Therefore we obtain (4.27). Moreover, IF (u) = 1
2

∫

Ω v2
0(x)dx. Finally if v ∈ R satisfy

v(·, 0) = v0(·) and Hv = v then since
∫ t

0

∫

Ω

∇xv : ∇xHv dxdt =
1

2

(
∫

Ω

v2
0(x)dx −

∫

Ω

v2(x, t)dx

)

,

we have IF (v) = 1
2

∫

Ω v2
0(x)dx = IF (u). So v is a minimizer to (4.6). !

Remark 4.2. For a fixed r(x, t) ∈ L2(0, T ; VN) we can define a functional Ī{F,r}(u) :

R → R by

(4.37)

Ī{F,r}(u) :=
1

2

(
∫ T

0

∫

Ω

(

|∇xu + ∇xr|
2 + |∇xHu −∇xr|

2
)

dxdt +

∫

Ω

|u(x, T )|2dx

)

,

and for every v0 ∈ VN we can consider the minimization problem

(4.38) inf{Ī{F,r}(u) : u ∈ R, u(·, 0) = v0(·)} .

Then similarly to the proof of Theorem 4.1 we can prove that there exists a minimizer

u to (4.38) and it satisfies Hu = u + r, i.e.

∆xu + ∆xr = ∂tu + divx F (u) + ∇xp .

Then, using this fact, as in the proof of Theorem 3.1 we can deduce the existence of

a weak solution to (1.1) with f ∈ L2(0, T ; V −1
N ).

14



Remark 4.3. Similar method as in the proof of Theorem 3.1 we can apply to the

unbounded domain Ω. In this case we consider a sequence of smooth bounded domains

{Ωn}, such that Ωn ⊂ Ωn+1 and
⋃∞

n=1 Ωn = Ω, and a sequence v(n)
0 → v0 in LN , such

that supp v(n)
0 ⊂ Ωn. Consider un(x, t) ∈ R(Ωn), such that un(·, 0) = v(n)

0 (·) and for

every ψ(x, t) ∈ C∞
c (Ωn× (0, T ), RN), satisfying divx ψ = 0, we have (3.5), where Fn is

defined by (3.4). Then we can deduce that there exists u ∈ L2(0, T ; VN)∩L∞(0, T ; LN)

such that, up to a subsequence, un → u strongly in L2
loc(Ω× (0, T ), RN). Then u will

satisfy conditions (i)-(ii) of Theorem 3.1.

5. Variational principle for more regular solutions of the

Navier-Stokes Equations

Let Ω ⊂ RN be a domain with Lipschitz boundary (not necessarily bounded).

We denote by HN the closure of VN in H1
0 (Ω, RN ) (the spaces HN and VN differ

only in the case of unbounded domain). For every u ∈ L4(Ω × (0, T ), RN) we have

(u ⊗ u) ∈ L2
(

0, T ; L2(Ω, RN×N )
)

and therefore divx (u ⊗ u) ∈ L2(0, T ; V −1
N ). If in

addition ∂tu ∈ L2(0, T ; V −1
N ) then we obtain ∂tu + divx (u ⊗ u) ∈ L2(0, T ; V −1

N ).

Definition 5.1. Let u ∈ L2(0, T ; HN)∩L∞(0, T ; LN) be such that ∂tu ∈ L2(0, T ; V −1
N )

and such that u(·, t) is LN -weakly continuous in t on [0, T ]. Denote the set of all such

functions u by R′. Denote the set R′ ∩ L4(Ω × (0, T ), RN) by P. For every u ∈ P

let H̄u(·, t) ∈ L2(0, T ; VN) be as in Remark 2.2, corresponding to ∂tu + divx (u ⊗ u).

That is for every ψ(x, t) ∈ C∞
c (Ω × (0, T ), RN) such that divx ψ = 0 we have

∫ T

0

∫

Ω

(

u · ∂tψ + (u ⊗ u) : ∇xψ
)

dxdt =

∫ T

0

∫

Ω

∇xH̄u : ∇xψ dxdt .

For a fixed r(x, t) ∈ L2(0, T ; VN) define a functional J{ϕ,r}(u) : P → R by

(5.1)

J{ϕ,r}(u) :=
1

2

(
∫ T

0

∫

Ω

(

|∇xu + ∇xr|
2 + |∇xH̄u −∇xr|

2
)

dxdt +

∫

Ω

|u(x, T )|2dx

)

.

Theorem 5.1. Let v0 ∈ LN and r(x, t) ∈ L2(0, T ; VN). Assume that there exists

u ∈ P which satisfies u(x, 0) = v0(x), and

(5.2)

∫ T

0

∫

Ω

(

u · ∂tψ + (u ⊗ u) : ∇xψ
)

dxdt =

∫ T

0

∫

Ω

(∇xu + ∇xr) : ∇xψ dxdt

for every ψ(x, t) ∈ C∞
c (Ω × (0, T ), RN), such that divx ψ = 0, i.e.

∆xu = ∂tu + divx (u ⊗ u) + ∇xp − ∆xr .
15



Then u is a minimizer of the following problem

(5.3) inf{J{ϕ,r}(u) : u ∈ P, u(·, 0) = v0(·)} .

Moreover if ū is a minimizer to (5.3), then ū is a solution to (5.2).

Proof. In the same way as in the proof of Theorem 4.1 in [1] we obtain that for every

ū ∈ P we must have

(5.4)

∫ T

0

∫

Ω

∇xū : ∇xHū dxdt =
1

2

(
∫

Ω

ū2(x, 0)dx −

∫

Ω

ū2(x, T )dx

)

.

Therefore,

(5.5) J{ϕ,r}(ū) =
1

2

∫ T

0

∫

Ω

(

|∇xū + ∇xr −∇xHū|
2 + |∇xr|

2
)

dxdt +
1

2

∫

Ω

ū2(x, 0)dx .

Therefore, u ∈ P which satisfy u(x, 0) = v0(x) and ∇xu + ∇xr = ∇xHu will be the

minimizer to (5.3). Then also every minimizer ū will satisfy ∇xū +∇xr = ∇xHū, i.e.

will satisfy (5.2). !

Appendix A

Proof of Corollary 4.2. Let η ∈ C∞
c (R, R) be a mollifying kernel, satisfying η ≥ 0,

∫

R
η(t)dt = 1, supp η ⊂ [−1, 1] and η(−t) = η(t) ∀t. Given small ε > 0 and ψ(x, t) ∈

C∞
c (Ω × (2ε, T − 2ε), RN) such that divx ψ = 0, define

(A.1) ψε(x, t) :=
1

ε

T
∫

0

η
(s − t

ε

)

ψ(x, s)ds .

Then ψε(x, t) ∈ C∞
c (Ω × (0, T ), RN) and satisfies divx ψε = 0. Therefore we obtain

(A.2)

∫ T

0

∫

Ω

u · ∂tψε dxdt =

∫ T

0

∫

Ω

∇xVu : ∇xψε dxdt ,

where Vu(·, t) ∈ L2(0, T ; VN) is as in Remark 2.2, corresponding to ∂tu. But

∫ T

0

∫

Ω

u · ∂tψε dxdt =

∫ T

0

∫

Ω

u(x, t) ·

(

1

ε

∫ T

0

η
(s − t

ε

)

∂sψ(x, s)ds

)

dxdt =

∫ T

0

∫

Ω

∂tψ(x, t) ·

(

1

ε

∫ T

0

η
(s − t

ε

)

u(x, s)ds

)

dxdt =

∫ T

0

∫

Ω

∂tψ(x, t) ·uε(x, t) dxdt ,
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where uε(x, t) = 1
ε

∫ T

0 η((s − t)/ε)u(x, s)ds. By the other hand

∫ T

0

∫

Ω

∇xVu : ∇xψε dxdt =

∫ T

0

∫

Ω

∇xVu(x, t) :

(

1

ε

∫ T

0

η
(s − t

ε

)

∇xψ(x, s)ds

)

dxdt

=

∫ T

0

∫

Ω

∇xψ(x, t) : ∇x

(

1

ε

∫ T

0

η
(s − t

ε

)

Vu(x, s)ds

)

dxdt

=

∫ T

0

∫

Ω

∇xψ(x, t) : ∇x(Vu)ε(x, t) dxdt ,

where (Vu)ε(x, t) = 1
ε

∫ T

0 η((s − t)/ε)Vu(x, s)ds. Therefore, by (A.2), we infer

(A.3)

∫ T

0

∫

Ω

uε · ∂tψ dxdt =

∫ T

0

∫

Ω

∇x(Vu)ε : ∇xψ dxdt .

So ∂tuε ∈ L2(2ε, T − 2ε; V −1
N ). Moreover uε ∈ L2(0, T ; VN) ∩ L∞(0, T ; LN). We

have uε → u and (Vu)ε → Vu strongly in L2(0, T ; VN) as ε → 0. Moreover, up to

a subsequence εn → 0, we have uεn(·, t) → u(·, t) strongly in LN a.e. in [0, T ]. In

addition, by Lemma 4.2, for every a, b ∈ [2ε, T − 2ε] we have

(A.4)

∫ b

a

∫

Ω

∇xuε : ∇x(Vu)ε dxdt =
1

2

(
∫

Ω

u2
ε(x, a)dx −

∫

Ω

u2
ε(x, b)dx

)

.

Then letting ε → 0 in (A.4), we obtain that for almost every a and b in (0, T ) we

have
∫ b

a

∫

Ω

∇xu : ∇xVu dxdt =
1

2

(
∫

Ω

u2(x, a)dx −

∫

Ω

u2(x, b)dx

)

.

So u ∈ L∞(0, T ; LN). !
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