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NUMER. FUNCT. ANAL. AND OPTIMIZ., 4 ( 4 ) ,  325-353 (1981-1982) 

L -BOUNDEDNESS OF THE FINITE ELEMENT GALERKIN OPERATOR 
aY 

FOR PARABOLIC PROBLEMS 

J.A. Nitsche 

Institut far Angewandte Mathematik 
Albert-Ludwigs-Universitat 

Hermann-Herder-Str.10, 7600 Freiburg 
Federal Republic of Germany 

Mary F. Wheeler 
Rice University 

Department of Mathematical Sciences 
Houston, Texas 77001 

U.S.A. 

ABSTRACT 

In this paper the heat equation with Dirichlet 
boundary conditions in N I 3 space dimensions - 
serving as model problem of second order parabolic 
initial boundary value problems - is considered. We 
prove: The standard finite element method is uniformly 
bounded in L,with respect to space and time if the 
underlying finite elements are at least cubics. 

0. INTRODUCTION 

Let the model problem 

0 0 1 
be given. With Sh 5 W2 being a finite dimensional 

space - we will consider only finite elements - the 

Copyright O 1982 by Marcel Dekker, Inc. 
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326 NITSCHE AND WHEELER 

0 
standard Galerkin approximation uh = uh(t) E Sh is 

defined by 

(fihYx) + D(uhYx) = ( f , ~ )  

(0.2) 
for x 6 Sh and t E (O,T] 

with 

Here ( )  is the L2(n) - inner product and 
D . . )  the Dirichlet integral. Ph may be any linear 

0 
projection onto Sh . We will restrict ourselves in 
the present paper to Ph being the L2-projection de- 

0 
fined by - for v arbitrary: tp = Phv E Sh and 

0 
(Oa4) ( v Y x )  = ( ~ 9 ~ )  X E Sh 

The result of our paper is 

Theorem 1: In N = 1,2,3 space dimensions and 

for finite elements of order 4 or higher, i.e. 
at least cubics, the mapping u 4 uh is 

bounded in Loo : 

A direct consequence is 

Corollary 1: Under the above assumptions the almost 

best error estimate in Lm 
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F I N I T E  ELEMENT GALERKIN OPERATOR 

is vali2. 

Without aiming for completeness we refer to 

earlier work on maximum norm error estimates: 

Bramble-Schatz-Thomke-Wahlbin [ 11, Dobrowolski 
[ 3 1, [ 4 1, Nitsche [ 6 1, Schatz-Thom6e-~ahlbin [ 8 1, 
Thomke [ 9 1, [lo 1, Wahlbin [il 1 and Wheeler [12 ] 

1. NOTATIONS, FINITE ELEMENTS 

In the following n 5 R~(N I 3) denotes a bounded 
domain with boundary an sufficiently smooth. For any 

k 0' 5 n let W ( a ' )  be the Sobolev space of functions 
P 

having L -integrable generalized derivatives of order 
P 

up to k . The norms are indicated by the correspond- 
ing subscripts. Moreover n' is skipped in case of 

The use of weighted norms resp. semi-norms will be 

essential. They are defined by 

with given by 

k 
(x, E 5 , p > 0 ) . The boundary semi-norms 1 o ( . ) ] a. R '  
are defined in the corresponding way. 
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NITSCHE AND WHEELER 

By rh a subdivision of n into generalized 
simplices is meant, i.e. ,& E rh is a simplex if A 

intersects an in at most a finite number of points 

and otherwise one of the faces of A may be curved. 

Th is called x-regular if to any A E rh there are 

two spheres of diarnecer x-lh and h such that c 
contains the one and is contained in the other. 

The finite element spaces Sh = S(rh) we will 

work with have the following structure: Let m be an 

integer fixed. Any element x E Sh is continuous in 

n and the restriction to A E rh is a polynomial of 

degree less than m . In curved elements we use iso- 
parametric modifications as discussed by Ciarlet- 

0 
Raviart [ 2 1, Zlamal [13). 

sh 1 
is the intersection of 

0 1 Sh and W2 , the closure in W2 of the functions 

with compact support. 

By construction we have Sh c W; but in general 
k 

Sh # W2 for k r 2 . It will be useful to introduce 
the spaces = W&(rh) consisting of functions the 

k restriction of which to any A E rh is in W2(4) . 
Obviously Sh c Wi for all k . 

Parallel to above we introduce 'broken' semi-norms 

The (semi)-scalar-products corresponding to (1.3) 
resp. (1.4) are denoted by ( )  resp. <.,.>' . 

a 
Schwarz' inequality in the form 
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FINITE ELEMENT GALERKIN OPERATOR 

will be used quite often. We remark also the obvious 

inequality for $ > 0 

2. APPROXIMATION THEORY OF FINITE ELEMENTS IN 
WEIGHTED NORMS 

In this section we put together some direct and 
inverse theorems of constructive function theory for 

finite elements in weighted norms. The proofs are 

given in [6] resp. [ 71.  In the formulation we re- 
strict ourselves to the one which is needed in the 

subsequent sections. c will denote a numerical con- 

stant which may differ at different places. If it is 

desirable we use the numbering clJ c2,... . Of course 
the constants will depend on (i) the dimension N , 
(ii) the domain n , (iii) the degree m of the 

finite elements, (iv) the regularity parameter K of 

the subdivisions rh , (v) the index - we will use in 
this section the letter p - of the weighted norms. 

N is restricted to N s 3 , n is a domain fixed 

as well as m is an integer fixed. We assume the sub- 

divisions rh to be X-regular with % fixed. Finally 

the weight-indices will be in a fixed interval - see 
the next sections. With respect to these restrictions 

the c's are 'numerical' constants. 

Lemma 2.1: Let 0 > N/2 . Then for v E Lm 
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Lemma 2.2: Let B > N/2 and h I p . Then for 
X E Sh 

Lemma 2.3: Let h I p . To any v E Wi resp. o 

v E @ i  n wi there is a x Sh resp. g S h  

according to 

Corollary 2.3: The approximating x E S h also 

fulfills 

Lemma 2.4: For x E Sh and 0 g k 5 1  < m  the in- 

verse relations hold true 

Corollary 2.4: In addition to (2.5) also the inequal- 
ities are valid 

0 
Lemma 2.5: Let cp E Sh be given. The function o y-Bcp 

can be approximated by an element x E Sh accord- 
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FINITE ELEMENT GALERKIN OPERATOR 

(V--@V-X) Y I ~  s 

h 
'C - { l i p +  P + llvmilp} 

Finally we recall (~orollary 1 in [6 1): 

Lemma 2.6: There is a constant c such that for - 
c h 15 p the L2-projection admits: - 

3. SHIFT-THEOREMS 

In Section 5 we will need a certain shift theorem 
in weighted norms. In order not to interrupt the con- 
text there this is discussed in the present section. 

We introduce the Hilbert-scale {Hk I k z 01 in 
the following way: Let (vi, 1 be the orthonormal 

set of eigen-pairs of the Laplacian, i.e. 

Any z E L2(n) admits the representation 

( 3 . 2 )  z = C zivt 

with 
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332 NITSCHE AND WHEELER 

In addition Parseval's equation holds: 

Now Hk is the subspace of functions such that 

( 3 . 5 )  
2 k 2 ] l z ] l k  = C Lizi 

is finite. 

Remark: Since we have accepted only z E L2 the 

index k has to be non-negative. 

For integer k I 4 - only these values will be 
relevant - the spaces Hk are connected with the 

usual Sobolev-spaces W: by : 

The Hk-norms are equivalent in these spaces to the 
k corresponding W2-norms. 

If z = z(t) is an element of Hk for almost 

every 0 < t < T and the Hk-norm is L2-integrable 

with respect to t we will use the notation 

For the sake of completeness we will give the 

proof of the standard shift-theorem: 
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F I N I T E  ELEMENT GALERKIN OPERATOR 

Theorem 3.1: Let the operator A be defined by 

Then A is a bijective mapping of L2(Hk+2) n 
{z I i E L~(H~)} t o  L2(Ek) and 

Proof: Let zi resp. fi denote the 'Fourier'- 

coefficients of z resp. Az with respect to [vi/ . 
Multiplication of (3.8.1) with vi and integration 

over n leads to the uncoupled first order system 

zi + kizi = fi for 0 < t < T , 

the solution of which is 

Application of Schwarz' inequality in the proper way 
gives 
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334 NITSCHE AND WHEELER 

and further by interchanging the order of integration 

Because of the definition of the Hk - resp. L2(Hk)-  

norms (3.9) is proven. 

In Section 2 we discussed weights depending only 

on x E R . It will be advantageous to work also with 
time-dependent weights (for a different approach see 

Dobrowolski [5 I): Let to > 0 be fixed. For 

0 < t 5 to we define - see (1.2) 

Since there will be no confusion we use the same 

letter as in Section 2 . Obviously all the lemmata 
and corollaries of Section 2 remain valid with the 

new weight p except Lemma 2.2. For t < to then 
2 

p2 in (2.2) has to be replaced by p + to - t . 
But we will apply this lemma only for t = to . 

In order to shorten the notations we will write 

with to > 0 fixed. The constants in the estimates 

will not depend on to . 
The counterpart of Theorem 3.1 is 
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FINITE ELEMENT GALERKIN OPERATOR 

Theorem 3.2: Let A be defined by (3 .8 )  and 
p 6 R . Then for k 2 2 and z L2(Hk) n 

The proof is straight-forward by induction. We will 

give the details only for k = 2 , 3  . 
By comparing - for t fixed - the pnorm of a 

second derivative of z with the L2-norm of the 

corresponding derivative of p -@/2z we get 

leading to 

By Theorem 3.1 we have 
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NITSCHE AND WHEELER 

I n  t h i s  way we g e t  

Thus (3 .16)  is  proven f o r  k = 2 . 
I n s t e a d  of (3 .18)  we g e t  i n  case  of k = 3 

Appl ica t ion  of Theorem 3.1 t o  t he  first term on t h e  

r i g h t  hand s i d e  l e a d s  s i m i l a r  t o  above t o  

The t h i r d  term on t h e  r i g h t  hand s i d e  i s  covered by t h e  

o t h e r s  because of Theorem 3 .2  f o r  k = 2 . I n  t h i s  way 
t h e  theorem i s  proven f o r  k = 3 . 

The term with t h e  first d e r i v a t i v e s  of z i n  
(3.16)  is  always covered by t h e  o t h e r  terms because of 

Lemma 3.3: Let  A be de f ined  by ( 3 . 6 )  and y # 0 . 
Then 

Proof: It i s  

( A Z , ~ ) ~  = ( ~ , i ) ~  + D ( Z , P - ~ Z )  
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FINITE ELEMENT GALERKIN OPERATOR 

Integration with respect to t gives 

4. A PRIOR1 ESTIMATES FOR THE GALERKIN SOLUTION IN 

WEIGHTED NORMS 

It will be advantageous to derive the estimates for 

the difference 

of the Galerkin solution uh and the L2-projection of 

u - see (0.4). We mention the initial condition 

because of (0.3). The right hand side of (0.2) can be 
rewritten in the form 

Thus we get the defining relation for @ 

with the abbreviation 
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338 NITSCHE AND WHEELER 

Our aim is to derive a series of inequalities for @ 

resp. v +  in weighted norms. The weight function F 

is the one defined by (3.14) with some to fixed. 

t will be in the range 0 < t < to . 
In view of Lemma 2.2 we try to find a bound for 

2 1141Ia at t = t . In order to do this we consider 
0 

2 
(4.6) (I~+II:)* = 2(b,v-'p) + aII*lla+l 

Let x = P ~ ( ~ - ~ @ )  be the L2-projection of p-O@ . By 
the aid of (4.4) we get 

&La+> = ( i , x )  

- - D ( + , x )  + D(E,x)  
(4 7 )  

= -D(@,P-~@) + ~ ( e , p - ~ + )  + 

+ D ( @ , ~ - " @ - x )  - D(E,V -&@-x) 
=: J1 + J2 + J3 + J4 . 

We will analyze the four terms separately. By par- 

tial integration we get 

Since we want to avoid derivatives of u resp. 

we have to use partial integration for J2 : 
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FINITE ELEMENT GALERKIN OPERATOR 

The counterpart of (1.5) leads to 

Because of 

we get by the aid of Schwarz' inequality 

Finally using the inverse properties (Lemma and Corol- 

lary 2.4) we get with 0 < 8 < 1 

In the same way we come to 

Once more the inverse relations give rise to 

In view of Lemma 2.6 the super-approximability ex- 
pressed in Lemma 2.5 is valid also with x = Ph(p-a@) . 
This gives D
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340 NITSCHE AND WHEELER 

The remaining term J4 has to be treated like J2 . 
The result is 

Summarizing we come from (4.6) to 

Remark: The two numbered constants will be of special 

relevance. 

Now we choose 6 = 1/(2c ) and have 1 

Step 1: Let p r 2clh . Then 

onthe In the next step we treat the term ] l + l l a + l  
right hand side. Similar to the Looanalysis for ellip- 

tic problems we apply standard duality arguments (see 

Dobrowolski [ 1) : In view of (4.6) we are actual in- 
2 terested in the term lll@l\l . In order to treat it we a+ 1 

would like to introduce an auxiliary function w by 

with A* the adjoint of A ( 3 . 8 ) .  Then we would get 
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FINITE ELEMENT GALERKLN OPERATOR 

which could be handled by using the defining relation 

(4.4) for P . For technical reasons we need w E L2(FI4) 
but the shift theorem gives because of our assumption 
0 

Sh 5 H 1  only w E L (H ) . Therefore an additional 
2 3 

smoothing is necessary. Postponing the proof to Sec- 

tion 5 we will use 

Lemma 4.1: Let B be in the range 1 $ 1  I 2N . For 
4 > 0 given to any ) gh there are approxima- 

tions = according to: '$ E H2 and 
4 

In our further analysis any $ c 1 will be suf- 

ficient. We fix 6 = 1/2 and write '$ = @ 1/2 

In accordance to (4.20) we define w by 

-a- lT 
-W -AW = p in n x  (O,to) , 

(4.23) W = O  on a n x  (O,to) , 

Wt=t = 0 in 62 . 
0 

Then we have 
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342 NITSCHE AND WHEELER I 

and because of the choice of 8 

and further 

Because of the defining relation (4.4) we get for 
x 6 Sh arbitrary 

At the end we will integrate with respect to t 

from 0 to to . Because of (4.2) and (4.23,) we have 

Next we choose x = phw . Then 

is the consequence. In the standard way - 
0 

that the degree m of the spaces Sh is 

we get 

remembering 

at least 4 - 
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FINITE ELEMENT GALERKIN OPERATOR 

In order to get a bound for Jb we apply partial 

integration: 

0 
g = U-Phu (4.5) is orthogonal to Sh . Therefore with 

0 
Y E Sh arbitrary 

01 For t fixed &I is an element of W2 and thus can 

be approximated according to Lemma 2 . 3  giving with y 

chosen appropriately 

The treatment of J is parallel to that of J4 and 
9 

not repeated in detail. We come to 

Summarizing we have derived 
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344 NITSCHE AND WHEELER 

By comparison of (4.35) with (4.19) we choose 

6 = 1/(4c2) and get 

Step 2: Let p r 2clh . Then 

In the next section we will give the proof of 

Lemma 4.2: Let a be in the range 0 e a < 3 . Then 

By the aid of this lemma we get finally 

Step 3: For p = yh with y chosen appropriately 

Now let us assume 

(4.39 ,>N/2+1 . 
Then we get 
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FINITE ELEMENT GALERKIN OPERATOR 

The estimate of the first term on the right hand side 

of (4.38) follows the same lines giving the common 
bound 

It remains to apply Lemma 2.2. Since we have 

coupled p and h by p = yh we finally have 

Phu is bounded in La by u and thus also 

E = u-Phu . Therefore the main theorem is proven. 

5. PROOF OF LEMMATA 4.1 AND 4.2 

The smoothing process we will work with is the 

standard one (see Gilbarg-Trudinger [ 5  1, p. 140). Let 

W ( X )  be defined by 
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346 NITSCHE AND WHEELER 

2 
/ ) for 

(5 1 u x  = 6 < 1  , 
for I:[ > 1 

with c according to 

(5 .2 )  JJ .(x) dx = 1 . 
To any v E L ( R ~ )  we define 1 

(5.3) 
-N v k (x) = Jk V(X) = k JJ w (y) v(Y)~Y- 

1 N 
obviously we have vh E crn(f?*) and for v € W_(R ) 

(5.4) Iv(x) - vk(x) I 5 ) 

with 

(5.5) Bk(x) = {Y I Ix-yl } 
1 Further we mention for v E W1 

(5.6) ai vk = J k ( a  i V) 

and 

(5.7) 
- 1 

laivkl 5 c k ~lv~i~_(~k(x) ) 

0 
Now we turn over to the case v = cp E Sh . Because 
0 01 01 N of Sh = W2(n) we extend to a function of wg(F? ) 

by defining cp = 0 outside of n . 
is valid. 

Because of the &-regularity of rh the number of 

A' E NA is uniformly bounded resp. { O * I A  E rh 1 is a 

finite covering. This leads from (5.14) to 
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FINITE ELEMENT GALERKIN OPERATOR 

The same arguments give 

Finally these arguments in connection with (5.7) show 

In order to get the estimates of Lemma 4.1 we have to 
choose k = c 8 h in the proper way. 

In order to 

connection with 

We estimate the 

prove Lemma 4.2 we apply Theorem 3.2 in 
Lemma 3.3: 

first term on the right hand side in 

the way - for t fixed: 

Let A E rh be fixed for the moment. We define the 

neighbour-set 

and 
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NITSCHE AND WHEELER 

If we impose the restriction 

(5.10) k < ,"lh 

then for x E A 

Restricted to any A' E rh the function cp is a poly- 

nomial of degree less than m . Any two norms in finite 
dimensional spaces are equivalent. Since &' is K-re- 

gular and of 'seize' h we have 

with c depending only on N, m and K . 
Straight-forward we come from (5.4) to 

The weight function p does not change too fast - see 
Lemma 1 of [ 1. Therefore also 

Because of the choice of and of (1.6) we get 

The second and third tern on the right hand side of 
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FINITE ELEMENT GALERKIN OPERATOR 349 

(5.18)are bounded in the same way. Integration with re- 

spect to t shows that these terms are bounded accord- 

ing to Lemma 4.2. 

It remains to analyze lil~//L~+~ . Let r(x,y;t) be 

the fundamental solution of the heat equation, i.e. the 

solution of the initial-boundary value problem 

is given by 
t 

Because of the maximum principle r is positive in 

Q x (0,T) . The function w defined by (4.23) has the 

representation 

The factor is the solution of 
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350 NITSCHE AND WHEELER 

Now 

is a super-solution and therefore 

Further we get by interchanging the order of integra- 

t ion 
4. 

with 

The function 
' a  

is the solution of 
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In case a < 3 then 

is a supersolution and according to this 

can be chosen according to (5.29). Thus 

- 
is proven. Because of (4.22) p may be replaced by @ 

what finishes the proof. 
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